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Abstract

A challenging problem in seeking to bring multi-agent reinforcement learning
(MARL) techniques into real-world applications, such as autonomous driving
and drone swarms, is how to control multiple agents safely and cooperatively
to accomplish tasks. Most existing safe MARL methods learn the centralized
value function by introducing a global state to guide safety cooperation. However,
the global coupling arising from safety constraints and the exponential growth
of the state-action space size limit their applicability in instant communication
or computing resource-constrained systems and larger multi-agent systems. In
this paper, we develop a novel scalable and theoretically-justified multi-agent
constrained policy optimization method. This method integrates the rigorous
bounds of the trust region method and the bounds of the truncated advantage
function to provide a new local policy optimization objective for each agent. Also,
we prove that the safety constraints and the joint policy improvement can be
met when each agent adopts a sequential update scheme to optimize a κ-hop
policy. Furthermore, we propose a practical algorithm called Scalable MAPPO-
Lagrangian (Scal-MAPPO-L). The proposed method’s effectiveness is verified on a
collection of benchmark tasks, and the results support our theory that decentralized
training with local interactions can still improve reward performance and satisfy
safe constraints.

1 Introduction

With the advanced and rapid developments of reinforcement learning technology, many researchers
have gradually shifted their focus from virtual simulation to real-world cyber-physical applications
[1, 2]. In this process, safety challenges are inevitable, especially in multi-agent safety-critical
scenarios, e.g., autonomous vehicle navigation [3], power grids [4], and drone swarms [5], in which
agents perform complex cooperative tasks while adhering to a variety of local and system-wide
limitations or constraints. These constraints can be derived from domain-specific knowledge and
are intended to prevent damage to people or other environmental elements, such as equipment and
infrastructure, or to prevent the inability to accomplish specific tasks or objectives. Take multi-robot
control as an example. Each running robot must not take certain actions or not visit certain states,
which may imply unsafe for itself, its collaborators, or the infrastructure of its environment [6]. These
widespread potential dangers exacerbate the difficulty of safety decision-making when applying
MARL. Consequently, it is necessary to research the safe decision-making problem in MARL to
ensure that agents can work together safely and cooperatively to accomplish tasks.
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There are two main approaches concerning safe MARL techniques in the existing literature. The
first type is shielded-based reactive methods [7, 8], which combine environmental dynamics and
safety specification constraints to predict whether the actions chosen by agents will violate cost
constraints. Nevertheless, due to the reliance on precise modeling knowledge, these methods may
lead to poor performance when the accurate state transition model is unavailable. The second
type formulates the safe MARL problem as a constrained Markov game, which requires agents
to solve a constrained optimization problem, i.e., maximize total reward while avoiding violating
cost constraints. To mention a few, several safe MARL variants, such as CMIX [9] and MAPPO-L
[10], have been proposed, which learn the centralized value function to overcome policy conflicts
caused by the partially observable and non-stationarity nature of the environment faced by each agent.
Unfortunately, the global coupling arising from agents’ safety constraints and the exponential growth
of the state-action space size make the usability of these algorithms in instant communication or
computing resource-constrained systems and the scalability in larger multi-agent systems become a
bottleneck, limiting their applicability.

A promising approach for avoiding these shortcomings, which has received attention in recent years,
is to exploit networked application-specific structures. For example, Safe Dec-PG [11] employs
a primal-dual framework to find the saddle point between maximizing decoupled rewards and
minimizing costs under a consensus network. However, it is worth noting that this approach still
assumes each agent can access the global state and requires that the actions of all neighboring agents
on the network be available. Recent research [12] proposes a scalable safe MARL approach based on
the spatial decay assumption of the environment dynamics, which updates the policies of agents by
the truncated gradient estimators depending on the local states and actions of the κ-hop neighboring
agents. However, due to the dependence on the actions and states of its neighbors, this method
necessarily involves joint training in a local area, which is still plagued by non-stationary issues.
Motivated by the urgent desire for scalable learning in practical applications and the fact that meeting
both safety constraints and joint policy improvement is challenging for most methods, we investigate
a novel scalable safe MARL with theoretical analysis, practical algorithm, and simulation verification.

Specifically, we focus on decentralized learning settings without global observability, where each
agent can only access the local state information of itself and its neighbors. Our main contributions
are summarized as follows.

• We develop a novel scalable multi-agent constrained policy optimization method that
eliminates dependence on the global state and other agent actions during each agent’s
training. Furthermore, we parameterize each agent’s policy and propose a practical algorithm
called Scalable MAPPO-Lagrangian (Scal-MAPPO-L).

• We quantify the maximum information loss regarding the advantage truncation based on two
assumptions about the transition dynamics and policies. Then, each agent’s new local policy
optimization objective is provided by integrating the rigorous bounds of the trust region
method and the bounds of the truncated advantage function. In addition, we prove that the
safety constraints and the joint policy improvement can be guaranteed when updating the
local policy with a sequential update scheme.

• Experimentally, we provide the results on several safe MARL tasks to evaluate the ef-
fectiveness of our proposed method and the sensitivity for the parameter κ. The results
support our theory that decentralized training with local interactions can still improve reward
performance and satisfy safe constraints.

2 Preliminaries

2.1 Constrained Markov game

Consider a safe MARL problem subject to multiple constraints, where each agent are associated
with an underlying undirected graph G = (N , E). Here, N = {1, . . . , n} is the set of n agents and
E ⊂ N × N is the set of edges. The problem can be formulated as a constrained Markov game
〈N ,S,A, P,ρ0, γ,R,C, c〉. S = ×i∈NSi andA = ×i∈NAi are the state and action spaces, which
are the product of local spaces; global state s = (s1, . . . , sn) and joint action a = (a1, . . . , an) for
any s ∈ S and a ∈ A. P : S ×A×S −→ R is the probabilistic transition dynamics function, which
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satisfies the Dobrushin condition [13] as follows:

W ij = sup
zj ,z′j ,z−j

∥∥P i(·|zj , z−j)− P i(·|z′j , z−j)∥∥
1
, (1)

where zj = (sj , aj) and z′j = (s′j , a′j) represent two different state-action pairs of the agent j
respectively, and z−j represents the state-action pair of the agent other than j. The value of W ij

reflects the extent to which the local transition probability of agent i is affected by the state and action
of agent j. ρ0 is the initial state distribution, γ ∈ [0, 1) is the discount factor. R : S × A −→ R is
the joint reward function, C = {Cij}i∈N1≤j≤mi is the sets of cost functions (every agent i has mi cost
functions) of the form Cij : Si ×Ai −→ R, and finally the set of corresponding cost values is given
by c = {cij}i∈N1≤j≤mi .

At each timestep t, every agent i is in a state sit, and takes an action ait according to its policy
πi = (ai|sit). Together with other agents actions, it gives a joint action at = (a1

t , . . . , a
n
t ) and the

joint policy π =
∏n
i=1 π

i(ai|sit). The agents receive the reward R (st,at), meanwhile each agent
i pays the costs Cij

(
sit, a

i
t

)
,∀ j = 1, . . . ,mi, and all agents have a joint goal, i.e., maximizing the

expected total reward of

J(π) , Es0∼ρ0,a0:∞∼π

[ ∞∑
t=0

γtR(st,at)

]
, (2)

meanwhile satisfying every agent i’s safety constraints, written as

J ij(π) , Es0∼ρ0,a0:∞∼π

[ ∞∑
t=0

γtCij(st,a
i
t)

]
≤ cij ,∀ j = 1, . . . ,mi. (3)

2.2 Spatial correlation decay

Exponential decay property [13, 14], also known as spatial correlation decay, is a powerful prop-
erty associated with local interactions, which says that the impact of agents on each other decays
exponentially in their graph distance. More information about spatial correlation decay is presented
in Appendix B.1. Here, inspired by [15], we make the following two assumptions for the spatial
correlation of the transition dynamics and policies. We use the notation πi(·|sN iκ) for κ-hop policies,
where sN iκ represents the state of agent i’s κ-hop neighbors. It may be replaced with πiκ for simplicity
when it is clear from context.
Assumption 2.1. (Spatial Decay of Correlation for the Dynamics) Assume that there exist β > 0 in
(1), for any agents i, j ∈ N , such that

max
i∈N

∑
j∈N

eβd(i,j)W ij ≤ ζ, (4)

where d(i, j) represents the distance between agent i and agent j, and ζ ∈ [0, 2/γ) is a constant.
Assumption 2.2. (Spatial Decay of Correlation for the Policies) Assume that there exist ξ, β ≥ 0
such that for any agent i ∈ N , sN iκ ∈ SN iκ , sN−iκ , s′N−iκ

∈ SN−iκ , one have

sup
sNiκ

,s
N−iκ

,s′
N−iκ

∣∣∣πi (·|sN iκ , sN−iκ )− πi (·|sN iκ , s′N−iκ )∣∣∣ ≤ ξe−βκ. (5)

Assumption 2.2 reveals how much information is lost compared with access to the global state
and allows us to consider a policy class with the necessary properties for the optimal policy under
Assumption 2.1. More information is stated in Appendix B.2.

3 Scalable constrained policy optimization

This section develops a novel scalable and theoretically-justified multi-agent constrained policy
optimization method and proposes a practical algorithm, i.e., Scal-MAPPO-L, by parameterizing
each agent’s policy. Specifically, we first quantify the maximum information loss regarding the
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advantage truncation based on the spatial correlation decay property of the transition dynamics and
policies. Then, the rigorous bounds of the trust region method and the bounds of the truncated
advantage function are integrated to provide a new local policy optimization objective for each agent.
Further, we prove that the safety constraints and the joint policy improvement can be guaranteed
when updating the local police with a sequential update scheme, in which the policy update only
depends on its action and the state of its κ-hop neighbors for each agent.

3.1 Truncated advantage function estimator

For a standard safe MARL, the state-action value function (the definition can be seen in Appendix
C.1) and advantage function of agent i yield that

Qiπ(s, ai) = Ea−i∼π−iQ
i
π(s,a−i, ai), (6)

Aiπ(s, aj , ai) = Qj,iπ (s, aj , ai)−Qjπ(s, aj). (7)
where s represents the global state, a−i represents the actions of all other agents, and Qj,iπ (s, aj , ai)
represents the state-action value function of agent i and agent j. Then, updating agents’ policies with
a sequential update scheme [16], the multi-agent joint advantage functionAπ(s,a) can be written
as a sum of sequentially unfolding multi-agent advantages of individual agents, as stated by the
following lemma.
Lemma 3.1. (Multi-agent advantage decomposition). For any action ai, i ∈ N , and the state s ∈ S ,
the following identity holds

Aπ(s,a) =

n∑
i=1

Aiπ(s,a−i, ai). (8)

Similar result to Lemma 3.1 can be seen in [10], and the proof is reported in Appendix C.2. Specif-
ically, based on the multi-agent advantage decomposition in Lemma 3.1, the "surrogate" return is
given as follows.
Definition 3.2. Let π be a joint policy, π̄1:i−1 be some other joint policy of agents 1 : i− 1, and π̂i
be a policy of agent i. Then, the surrogate return can be defined as

L1:i
π

(
π̄1:i−1, π̂i

)
, Es∼ρπ,a

1:i−1∼π̄1:i−1,ai∼π̂i
[
Aiπ
(
s,a1:i−1, ai

)]
. (9)

Building on Lemma 3.1 and Definition 3.2, one can obtain

L1:i
π

(
π̄1:i−1, π̄i

)
= Es∼ρπ,a

1:i∼π̄1:i

[
i∑

h=1

Ahπ
(
s,a1:h−1, ah

)]
. (10)

Further, recalling Assumption 2.1 and Assumption 2.2, we can quantify the maximum information
loss regarding the advantage function as stated by the following proposition.

Proposition 3.3. For any agent i ∈ N , let the parameters (η, φ) =
(
ξγζ

1−γζ , e
−β
)

. If Assumption 2.1

and Assumption 2.2 hold, for any zN iκ =
(
sN iκ , aN iκ

)
∈ SN iκ ×AN iκ , the exponential decay property

of the advantage function holds, i.e., we have

sup
zNiκ

,z
N−iκ

,z′
N−iκ

∣∣∣Ai (zN iκ , zN−iκ

)
−Ai

(
zN iκ , z

′
N−iκ

)∣∣∣ ≤ ηφκ. (11)

Proposition 3.3 shows that when the transition dynamics and policies correlation satisfy the exponen-
tial correlation decay property, the advantage functions also have exponential decay dependence on
the states and actions of the more distant agents. The proof of Proposition 3.3 is reported in Appendix
C.3. In addition, based on this proposition, we can obtain the following corollary.

Corollary 3.4. For any agent i ∈ N , let the parameters (η′, φ) =
(
Miξ
1−γ + (2+ξ)γζ

1−γζ , e−β
)

, M i is a
constant. If Proposition 3.3 holds, the exponential decay property of the surrogate return holds, i.e.,
we have ∣∣∣L1:i

π

(
π̄1:i−1, π̄i

)
− Liπiκ

(
π̄iκ
)∣∣∣ ≤ η′φκ. (12)
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The proofs of Corollary 3.4 is reported in Appendix C.4.

Corollary 3.4 shows that the approximation error of Liπiκ
(
π̄iκ
)

decreases exponentially with κ when
the truncated advantage functions are bounded. The main advantage of using the estimator Liπiκ

(
π̄iκ
)

lies in that every agent i only needs to know the action and state of its κ-hop neighbors, which can
significantly reduce the communication burden and expand its application scenarios.

3.2 Scalable constrained policy optimization

With the Definition 3.2, we see that Lemma 3.1 allows for decomposing the joint surrogate return
Lπ (π̄) , Es∼ρπ,a∼π̄ [Aπ (s,a)] into a sum over surrogates of L1:i

π

(
π̄1:i−1, π̂i

)
. Then, combining

the rigorous bounds of the trust region method [17] and the bounds of the truncated advantage
function, we can obtain the following proposition.
Proposition 3.5. Let π and π̄ be joint policies. Let each agent i ∈ N sequentially solves the
following optimization problem:

π̄iκ = arg max
π̂iκ

(
Liπiκ

(
π̂iκ
)
− η′φκ − νiκDmax

KL

(
πiκ|π̂iκ

))
, (13)

where (η′, φ) =
(
Miξ
1−γ + (2+ξ)γζ

1−γζ , e−β
)

, νiκ =
2γmaxsNiκ

,ai

∣∣∣Ai
πiκ

(sNiκ
,ai)
∣∣∣

(1−γ)2 , and Dmax
KL

(
πiκ|π̂iκ

)
=

maxsNiκ
DKL

(
πi(· | sN iκ), π̂i(· | sN iκ)

)
, then the resulting joint policy π̄ will improve the expected

return, i.e.,

J (π̄)− J (π) ≥
N∑
i=1

(
Liπiκ

(
π̂iκ
)
− η′φκ − νiκDmax

KL

(
πiκ|π̂iκ

))
. (14)

The proof of Proposition 3.5 is reported in Appendix C.5. Similarly, by generalizing the result about
the surrogate return in Equation (12), we can derive how the expected costs change when the agents
update their policies. Specifically, we provide the following corollary.
Corollary 3.6. Letπ and π̄ be joint policies. For any agent i ∈ N and its cost index j ∈ {1, . . . ,mi},
the following inequality holds

J ij(π̄) ≤ J ij(π) + Lij,πiκ

(
π̄iκ
)

+ η′′φκ + νij,κ

i−1∑
h=1

Dmax
KL

(
πhκ , π̄

h
κ

)
, (15)

where Lij,πiκ
(π̄iκ) = EsNiκ

∼ρπiκ ,a
i∼π̄iκ

[
Aij,πiκ

(
sN iκ , a

i
)]

, νij,κ =
2γmaxsNiκ

,ai

∣∣∣Ai
j,πiκ

(
sNiκ

,ai
)∣∣∣

(1−γ)2 ,

(η′′, φ) =
(
Mjξ
1−γ + (2+ξ)γζ

1−γζ , e−β
)

, and Mj is a constant.

The proofs of Corollary 3.6 is reported in Appendix C.6.

From (14), we can derive that the lower bound for the difference between the new joint policy π̄ and
the old joint policy π in terms of expected return can be decomposed into a cumulative sum of local
surrogate TRPO policy objectives. From (15), we can derive the upper bound for the new joint policy
π̄, which can be used to restrict agents only to choose safe actions. Therefore, we use the objective,
i.e., maximize the lower bound for the reward performance and minimize the upper bound for the
safety constraints with a proper update size, as a surrogate for each agent. Then, we can obtaine the
following theorem.
Theorem 3.7. The joint policy π has the monotonic improvement property, J (π̄) ≥ J (π), as
well as it satisfies the safety constraints, J ij (π̄) ≤ cij , for any agent i ∈ N and its cost index
j ∈ {1, . . . ,mi}, when the policy is updated by following a sequential update scheme, that is, each
agent sequentially solves the following optimization problem:

π̄iκ = arg max
π̂iκ∈Π̄iκ

(
Liπiκ

(
π̂iκ
)
− η′φκ − νiκDmax

KL

(
πiκ|π̂iκ

))
,

s.t.
{
π̂iκ ∈ Π̄i

κ | Dmax
KL

(
πiκ, π̂

i
κ

)
≤ δiκ, and

J ij (πκ) + Lij,πiκ

(
π̂iκ
)

+ η′′φκ + νij,κD
max
KL

(
πiκ, π̂

i
κ

)
≤ cij − νij,κ

∑i−1
h=1D

max
KL

(
πhκ , π̂

h
κ

)}
,

(16)
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where δiκ = min

{
minh≤i−1 min1≤j≤mh

Ξhj −L
h

j,πhκ
(π̄hκ)−η′′φκ

νij,κ
,minh≥i+1 min1≤j≤mh

Ξhj
νij,κ

}
,

νiκ =
2γmaxsNiκ

,ai

∣∣∣Ai
πiκ

(sNiκ
,ai)
∣∣∣

(1−γ)2 , νij,κ =
2γmaxsNiκ

,ai

∣∣∣Ai
j,πiκ

(
sNiκ

,ai
)∣∣∣

(1−γ)2 , (η′, φ) =(
Miξ
1−γ + (2+ξ)γζ

1−γζ , e−β
)
, (η′′, φ) =

(
Mjξ
1−γ + (2+ξ)γζ

1−γζ , e−β
)

, Ξhj = chj − Jhj
(
πhκ
)
−

νhj,κ
∑i−1
l=1 D

max
KL

(
πlκ, π̂

l
κ

)
.

The proof of Theorem 3.7 is reported in Appendix C.7. It assures that if one follows (16) to update
policies, agents will not only explore safe policies independently; meanwhile, every new policy will
be guaranteed to result in performance improvement. It is worth mentioning that these two properties
hold only under the condition that the only policy update restriction, i.e., π̄iκ ∈ Π̄i

κ, is satisfied;
this is due to the KL-penalty term in every agent’s objective, i.e., νiκD

max
KL

(
πiκ, π̄

i
κ

)
, as well as the

constraints on cost surrogates.

3.3 Algorithm

In this section, we focus on how to practically implement policy updates in Theorem 3.7 for each
agent. Specifically, we parameterize each local policy πiθiκ by a neural network with parameter θiκ. At
each policy update, every agent i maximizes its surrogate return subject to surrogate cost constraints
and a form of expected KL-divergence constraint D̃KL

(
πiκ, π̄

i
κ

)
≤ δiκ, which avoids computing

KL-divergence at every state. Then, we introduce a scalar variable λi for any agent i ∈ N and
convert the constrained optimization problem from (16) into a min-max optimization problem with
Lagrangian multipliers by subsuming the cost constraints. As such, the new optimization problem for
any agent i ∈ N is as follows:

max
θiκ

min
λi
1:mi
≥0

[
EsNiκ

∼ρ
πi
θiκ

,ai∼πi
θiκ

[
Aiπi

θiκ

(
sN iκ , a

i
)]

−
mi∑
u=1

λiu

(
EsNiκ

∼ρ
πi
θiκ

,ai∼πi
θiκ

[
Aiu,πi

θiκ

(
sN iκ , a

i
)]

+ diu

) ,
s.t.D̃KL

(
πiθiκ , π̄

i
θiκ

)
≤ δiκ.

(17)

where λi1:mi is a scalar variable, θiκ is a parameter of neural network, and diu is the cost-constraining
value for agent i.

Further, denoting

A
i,(λ)

πi
θiκ

(
sN iκ , a

i
)

= Aiπi
θiκ

(
sN iκ , a

i
)
−

mi∑
u=1

λiu

(
Aiu,πi

θiκ

(
sN iκ , a

i
)

+ diu

)
, (18)

then the optimization problem in (17) can be rewritten as

max
θiκ

min
λi
1:mi
≥0

[
EsNiκ

∼ρ
πi
θiκ

,ai∼πi
θiκ

[
A
i,(λ)

πi
θiκ

(
sN iκ , a

i
)]]

, s.t. D̃KL

(
πiθik

, π̄iθiκ

)
≤ δiκ. (19)

To alleviate the complications caused by computing the KL-divergence constraint, we simplify it
by adopting the PPO-clip objective [18], i.e., replacing the KL-divergence constraint with the clip
operator and updating the policy parameter with first-order methods. The final optimization problem
takes the form

max
θiκ

min
λi
1:mi
≥0

EsNiκ
∼ρ

πi
θiκ

,ai∼πi
θiκ

[
min

(
π̄iθiκ
πiθiκ

A
i,(λ)

πi
θiκ

(
sN iκ , a

i
)
,

(
π̄iθiκ
πiθiκ

, 1± ε

)
A
i,(λ)

πi
θiκ

(
sN iκ , a

i
))]

,

(20)
where the clip operator replaces the policy ratio with 1 + ε, or 1− ε, depending on whether its value
is below or above the threshold interval. As such, agent i can learn within its trust region by updating
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Figure 1: Performance comparisons in terms of cost and reward on three Safe ManyAgent Ant tasks.
Each column subfigure represents a different task, and we plot the cost curves (the lower the better)
in the upper row and the reward curves (the higher the better) in the bottom row for each task.

θiκ to maximize Equation (20), which only depends on its action and the state of its κ-hop neighbors
and can be computed analytically.

To summarize, we give a procedure for each agent i, name Scalable MAPPO-Lagrangian (Scal-
MAPPO-L), and provide its pseudocode (Algorithm 1) in Appendix C.8. The algorithm has a simple
idea that each agent independently optimizes the surrogate objective (20), which only depends
on its action and the state of its κ-hop neighbors for each agent. In the actual execution, some
approximations of the surrogate objective are employed, the same as the MAPPO-L [10]. Most of
these approximations are traditional practices in RL, yet they may make it impossible for the practical
algorithm to rigorously maintain the theoretical guarantees in Theorem 3.7.

4 Experiments

In this section, we evaluate our method via several numerical experiments. Our experiments aim to
answer the following questions: First, how does the cost and reward performance of Scal-MAPPO-L
compare with existing methods on challenging multi-agent safe tasks? Second, how does the different
κ affect the performance of Scal-MAPPO-L, and could the advantage truncation effectively alleviate
computational load?

4.1 Experimental setup

Safe MAMuJoCo [10] is an extension of MAMuJoCo [19], which preserves the agents, physics
simulator, background environment, and reward function and comes with obstacles, like walls or
pitfalls. To answer the first question, we compare our method against the other PPO family algorithms,
i.e., IPPO [20], HAPPO [16], and MAPPO-L [10] and choose three games from Safe MAMuJoCo:
Safe ManyAgent Ant task with 2 agents (2 × 3), 3 agents (3 × 2) and 6 agents (6 × 1) to evaluate
their performance. Concerning the second question, we choose three games with different tasks and
agent numbers from Safe MAMuJoCo: Safe ManyAgent Ant task with 6 agents (6× 1), Safe Ant
task with 8 agents (8 × 1), and Safe Coupled HalfCheetah task with 12 agents (12 × 1). We train
Scal-MAPPO-L with the same network architecture and hyperparameters as the original MAPPO-L
implementation. All reported results are averaged over three or more random seeds, and the curves
are smooth over time.
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Figure 2: Performance comparisons in terms of cost and reward on Safe ManyAgent Ant task, Safe
Ant task, and Safe Coupled HalfCheetah task. In each task, the performance of Scal-MAPPO-L with
different κ and MAPPO-L are demonstrated.

4.2 Results

Comparisons with baselines: Figure 1 shows the cost and reward performance of Scal-MAPPO-L
and other PPO family algorithms on three Safe ManyAgent Ant tasks, where each agent in Scal-
MAPPO-L is set to access the state of about half of the agents by adjusting the value of κ. Specifically,
κ = 1 in Safe ManyAgent Ant (2× 3), κ = 2 in Safe ManyAgent Ant (3× 2), and κ = 3 in Safe
ManyAgent Ant (6× 1). From Figure 1, we can see that compared to IPPO and HAPPO, on all three
tasks, both Scal-MAPPO-L and MAPPO-L have fewer constraint violations and good performance
(in terms of reward), i.e., they keep their explorations within the feasible policy space and quickly
learn to satisfy safety constraints, which show that the safe learning algorithm is effective. Moreover,
it should be further pointed out that Scal-MAPPO-L only accesses half of the state information on
all tasks; it exhibits almost identical performance and constraint violations with MAPPO-L (which
accesses the global state). This means that the sensitivity of each agent to the states and actions
perturbations of distant agents is minimal, and Scal-MAPPO-L is effective. More experimental
results are in Appendix D.

Performance with different κ: Figure 2 shows the performance of Scal-MAPPO-L in different
environments with varying values of κ, where MAPPO-L accesses the global state. We have noticed
that the algorithm’s performance is consistently the lowest, and the cost is nearly the highest when
κ = 1. However, when the truncation with κ >= 3, i.e., each agent has access to the states of at least
two neighbors, we can observe that the performance of Scal-MAPPO-L improves considerably and
can approach or even outperform MAPPO-L in some environments, such as κ = 6 in the Safe Ant task
(8×1). This may be due to the fact that the impact of far-away agents’ states and actions on the agent’s
decision is almost negligible in many cases. However, for algorithms with global communication,
such as MAPPO-L, the difficulty of extracting useful information from many messages may lead
to lower performance. Overall, these results underscore the efficiency of Scal-MAPPO-L since it
employs a smaller communication radius that can significantly reduce the computation.

5 Related work

5.1 Safe RL

Safety is one of the bottlenecks preventing RL use in real-life applications, such as physical robotics
[21], medical applications [22] and autonomous driving [23]. It has become a research hotspot in
recent years and a growing number of safe RL approaches, such as primal-dual methods [24], formal
methods [25], Lyapunov methods [26], Gaussian processes methods [27], and safety-augmented

8



methods [28], have been developed. However, when it comes to multi-agent systems, a great challenge
is exacerbated by policy conflicts caused by multiple agents interacting within a shared environment
and learning simultaneously. In other words, each agent has to not only satisfy its safety constraints
but also consider the conflicts between its safety constraints and maximization reward as well as
the safety constraints of others so that their joint behaviors have a safety guarantee. In order to
address the above issue, CMIX [9] and MAPPO-L [10] have been proposed with the in-depth study
of MARL. These algorithms follow the centralized training and decentralized execution (CTDE)
framework [29, 30, 16], which learns the centralized value function by introducing the global state.
Unfortunately, the global coupling arising from agents’ safety constraints and the exponential growth
of the state-action space size make the usability in communication or computing resource-constrained
systems and the scalability of these algorithms in larger multi-agent systems become a bottleneck,
limiting their applicability. Recent works [11, 12] have provided some theoretical results to avoid
these shortcomings. However, most of these methods fail to ensure both safety guarantee and
joint policy improvement under a decentralized learning framework under a decentralized learning
framework, which motivates us to investigate a new scalable and theoretically-justified safe MARL
method.

5.2 Centralized training

In cooperative MARL settings, the training of agents can be broadly divided into two paradigms,
namely centralized and decentralized [31]. The centralized training paradigm describes agent
policies updated based on mutual information, which can be further differentiated into the centralized
and decentralized execution framework. Centralized training and centralized execution (CTCE)
utilize the centralized evaluator and executor to learn the joint policy of all agents [32, 18]. The
obvious flaw is that its applicability is limited because its implementation requires the premise that
instantaneous and unconstrained information exchange between agents. Recently, centralized training
and decentralized execution (CTDE) has become the most popular framework [30, 20, 16, 10], since
the fact that it addresses the non-stationarity issue with the centralized value function, and removes
the dependency on global state and actions during execution. Many experiment results demonstrate
state-of-the-art performance on challenging tasks, such as unit micromanagement in StarCraft II
[33]. However, although this framework does not require agents to access the global state during
execution, the reliance on the global state only during training still poses a significant barrier to
real-world applications, especially in scenarios where communication and computational resources
are constrained [34, 35].

5.3 Decentralized training

In a decentralized learning paradigm, each agent learns independently and accessses local observations
rather than the global state; the idea is direct, comprehensible, and easy to realize in practice
[36, 34]. There are two mainline research approaches concerning decentralized learning in the
existing literature. One line of research pursues fully decentralized learning, such as independent
Q-learning (IQL) [37, 38] and independent actor-critic (IAC) [39, 20], which make agents directly
execute the single-agent Q-learning or actor-critic algorithm individually. Another line of research
allows agents to establish rational local communication networks, such as setting certain distance
or neighbor graphs [40, 41], which is also known as networked MARL. Communication networks
expand agents’ perceptual capabilities and mitigate, to some extent, the decision conflicts or errors
caused by partial observability. However, it is worth noting that each agent’s decision violates the
stationary condition of the Markov Decision Process (MDP) in both lines of research, even though
they achieve good experimental results on a collection of benchmark tasks. It poses a significant
challenge to the convergence analysis of algorithms in the short term. Recently, motivated by good
experiment performance, some studies have tried to provide theoretical support for these phenomena.
To mention a few, Qu et al. [42] introduced the spatial correlation decay property into the field of
MARL and carried out a series of fundamental results [15, 43, 12], which broadened the research
avenues of scalable MARL. However, all of these studies mainly focus on (natural) policy gradient
methods with average rewards or general utilities and have not yet been combined with trust region
methods, which rigorously enable RL agents to learn monotonically improving policies. Furthermore,
only recent research [12] considers both safety and scalability for MARL. Our results build upon the
scalable MARL family of works [42, 15, 43, 12] and PPO-based (TRPO-based) MARL family of
works [16, 10].
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6 Conclusion

Safety is a tremendous challenge for MARL when applied to real-world scenarios. In this paper,
we quantize the approximation errors arising from policy implementation and advantage truncation
and then derive a novel lower bound for joint policy improvement and an upper bound for the safety
constraints for every agent. Furthermore, we propose a novel scalable and theoretically justified
multi-agent constrained policy optimization method that follows a sequential update scheme to
optimize κ-hop policies. Finally, we introduce a practical constrained policy optimization algorithm
called Scal-MAPPO-L and experimentally validate the effectiveness of the proposed algorithm on a
collection of benchmark tasks.
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A Preliminary lemmas

Before proving propositions, corollaries, and theorems, we need a series of intermediate results as a
foundation. Results similar to Lemmas A.1 and A.2 can be found in Chapter 8 of [44], Lemma A.3 is
an extension of results from [15], Lemma A.4 is an extension of Lemma A.2 found in [12]. We state
these lemmas and provide the corresponding proofs for completeness as follows.
Lemma A.1. Let f : S → [m,M ], where S = ×i∈NSi and m,M ∈ R. For every i ∈ N , let
µi and νi be two distributions on Si. Let µ and ν be the respective product distributions. Let
δi(f(s)) = supsi,s−i,s′i

∣∣f (si, s−i)− f (s′i, s−i)∣∣. Then, one have

|Es∼µf(s)− Es∼νf(s)| ≤
∑
i∈N

DTV

(
µi, νi

)
δi(f). (21)

Proof. We prove Lemma A.1 by induction. Note that

DTV(µ,ν) =
1

2
max
|h|≤1

|Eµ(h)− Eν(h)|

is an equivalent formulation of the total variation distance [45].

For |N | = 1, one have∣∣Eµ1(f)− Eν1(f)
∣∣

=

∣∣∣∣Eµ1

(
f − M +m

2

)
− Eν1

(
f − M +m

2

)∣∣∣∣
=
M −m

2

∣∣∣∣Eµ1

(
2f

M −m
− M +m

M −m

)
− Eν1

(
2f

M −m
− M +m

M −m

)∣∣∣∣
≤ M −m

2
max
|h|≤1

∣∣Eµ1(h)− Eν1(h)
∣∣

= DTV

(
µ1, ν1

)
δ1(f).

As induction assumption, assume that Lemma A.1 holds for |N | > 1. Then, one have
|Es∼µf(s)− Es∼νf(s)|

=
∣∣Es1∼µ1Es2:n∼µ2:nf(s)− Es1∼ν1Es2:n∼ν2:nf(s)

∣∣
=
∣∣Es1∼µ1Es2:n∼µ2:nf(s)− Es1∼µ1Es2:n∼ν2:nf(s)

+ Es1∼µ1Es2:n∼ν2:nf(s)− Es1∼ν1Es2:n∼ν2:nf(s)
∣∣

≤
∣∣Es1∼µ1Es2:n∼µ2:nf(s)− Es1∼µ1Es2:n∼ν2:nf(s)

∣∣
+
∣∣Es1∼µ1Es2:n∼ν2:nf(s)− Es1∼ν1Es2:n∼ν2:nf(s)

∣∣
≤ Es1∼µ1

∣∣Es2:n∼µ2:nf(s)− Es2:n∼ν2:nf(s)
∣∣+
∣∣∣Es1∼µ1 f̃

(
s1
)
− Es1∼ν1 f̃

(
s1
)∣∣∣ ,

where f̃
(
s1
)

= Es2:n∼ν2:nf(s).

By induction assumption, one have∣∣Es2:n∼µ2:nf(s)− Es2:n∼ν2:nf(s)
∣∣ ≤ ∑

i6=1∈N

DTV

(
µ1, ν1

)
δ1
(
f
(
s1, ·
))

≤
∑

i6=1∈N

DTV

(
µ1, ν1

)
δ1(f).

Since
δ1(f̃) = sup

s1,s′1

∣∣Es2:n∼ν2:nf
(
s1, s2:n

)
− Es2:n∼ν2:nf

(
s′1, s2:n

)∣∣
≤ sup

s1,s′1
Es2:n∼ν2:n

∣∣f (s1, s2:n
)
− f

(
s′1, s2:n

)∣∣
≤ sup

s1,s′1,s2:n

∣∣f (s1, s2:n
)
− f

(
s′1, s2:n

)∣∣
= δ1(f),
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one have
|Es∼µf(s)− Es∼νf(s)|

≤ Es1∼µ1

∑
i 6=1∈N

DTV

(
µi, νi

)
δi(f) +DTV

(
µi, νi

)
δi(f)

≤
∑
i∈N

DTV

(
µi, νi

)
δi(f),

which concludes the induction.

Lemma A.2. Consider a Markov Chain with state s ∈ S , where S = ×i∈NSi, andN = {1, . . . , n}
is the set of agents. Suppose its transition probability factorizes as

P (st+1 | st) =
∏
i∈N

P i
(
sit+1 | st

)
.

Let W ∈ Rn×n be a matrix whose elements respect the condition

W ij ≥ sup
sj ,s−j ,s′j

DTV

(
P i
(
· | sj , s−j

)
, P i

(
· | s′j , s−j

))
.

If
∑
j∈J e

βd(j,i)W ij ≤ ζ, J ⊆ N , then one have

sup
sj ,s−j ,s′j

DTV

(
P i
(
· | sJ , s−J

)
, P i

(
· | s′J , s−J

))
≤
∑
j∈J

W ij , (22)

and
sup

sj ,s−j ,s′j
DTV

(
P i
(
· | sJ , s−J

)
, P i

(
· | s′J , s−J

))
≤ ζe−βd(J ,i), (23)

where d(J , i) = minj∈J d(j, i).

Proof. We prove the first claim of Lemma A.2. The first claim clearly holds if |J | = 1. As induction
assumption, assume that the first claim holds for a set J . Then, it holds for J ′ = J + {k}

sup
sj ,s−j ,s′j

DTV

(
P i
(
· | sJ

′
, s−J

′
)
, P i

(
· | s′J

′
, s−J

′
))

= sup
A⊆Si

sj ,s−j ,s′j

∣∣∣P i (A | sJ′ , s−J′) , P i (A | s′J′ , s−J′)∣∣∣
≤ sup

A⊆Si
sj ,s−j ,s′j

∣∣∣P i (A | sJ′ , s−J′) , P i (A | s′J , s−J)∣∣∣
+ sup

A⊆Si
sj ,s−j ,s′j

∣∣∣P i (A | s′J , s−J) , P i (A | s′J′ , s−J′)∣∣∣
≤
∑
j∈J

W ij +W ik

=
∑
j∈J ′

W ij .

The second claim follows immediately, since

eβd(J ,i)
∑
j∈J

W ij ≤
∑
j∈J

eβd(j,i)W ij ≤
∑
j∈N

eβd(j,i)W ij ≤ ζ,

and ∑
j∈J

W ij ≤ ζe−βd(J ,i).
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Lemma A.3. Consider the setting of Lemma A.2. For a generic value of κ, denote by ρt and ρ̃t the
distribution of st with starting state, respectively, s =

(
sN iκ , sN−iκ

)
and s̃ =

(
sN iκ , s̃N−iκ

)
. Then, if∑

j∈N e
βd(j,i)W ij ≤ ζ, we have that DTV

(
ρit, ρ̃

i
t

)
≤ ζte−βκ,∀ i ∈ N .

Proof. We prove Lemma A.3 by induction. The case where t = 1 follows from Lemma A.2. As
induction assumption, assume that Lemma A.3 holds for t. Then, one have∣∣∣Es∼ρt+1

1A(s)− Es∼ρ̃t+1
1A(s)

∣∣∣
=
∣∣Es∼ρtEs∼P i(·|s)1A(s)− Es∼ρ̃tEs∼P i(·|s)1A(s)

∣∣
≤
∑
j∈N

DTV

(
ρit, ρ̃

i
t

)
δj
(
Es∼P i(·|·)1A(s)

)
≤
∑
j∈N

DTV

(
ρit, ρ̃

i
t

)
W ij

= ζte−βκ
∑
j∈N

eβd(j,i)W ij

≤ ζt+1e−βκ,

where we used Lemma A.1 in the first inequality.

Lemma A.4. Consider the setting of Lemma A.2. Let P t (s′ | s) = P (st = s′ | s0 = s) and

δjP i,t = sup
sj ,s−j ,s′j

DTV

(
P i,t

(
· | sj , s−j

)
, P i,t

(
· | s′j , s−j

))
.

If
∑
j∈N e

βd(i,j)W ij ≤ ζ, we have∑
j∈N

eβd(i,j)δjP i,t ≤ ζt,∀ i ∈ N . (24)

Proof. We prove Lemma A.4 by induction. The claim holds for t = 1,∑
j∈N

eβd(i,j)δjP i,t =
∑
j∈N

eβd(i,j)W ij ≤ ζ.

As induction assumption, we assume that the claim holds for t. Then, using Lemma A.1,

δjP i,t+1 = sup
A⊆Si

sj ,s−j ,s′j

∣∣Es∼P i,t+1(·|sj ,s−j)1A(s)− Es∼P i,t+1(·|s′j ,s−j)1A(s)
∣∣

= sup
A⊆S′i

sj ,s−j ,s′j

∣∣Es∼P t(·|sj ,s−j)Es∼P i(·|s)1A(s)− Es∼P t(·|s′j ,s−j)Es∼P i(·|s)1A(s)
∣∣

≤ sup
sj ,s−j ,s′j

∑
k∈N

DTV

(
P k,t

(
· | sj , s−j

)
, P k,t

(
· | s′j , s−j

))
δj
(
Es∼P i(·|·)1A(s)

)
≤
∑
k∈N

δjP k,tW ik,

and using the inverse triangle inequality,∑
j∈N

eβd(i,j)δjP i,t+1 ≤
∑
j∈N

eβd(i,j)
∑
k∈N

δjP k,tW ik

≤
∑
k∈N

eβd(i,k)W ik
∑
j∈N

eβ(d(i,j)−d(i,k))δjP k,t

≤
∑
k∈N

eβd(i,k)W ik
∑
j∈N

eβd(k,j)δjP k,t

≤ ζt+1,

which concludes the induction.
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B Supplementary materials for Section 2

B.1 Spatial correlation decay

Exponential decay property [13, 14], also known as spatial correlation decay, is a powerful property
associated with local interactions, which says that the impact of agents on each other decays exponen-
tially in their graph distance. Over the past decades, many researchers have utilized spatial correlation
property to design scalable, distributed algorithms for optimization and control problems in scenar-
ios such as epidemics [46] and wireless communication [47]. Inspired by the studies mentioned
above, a recent line of work [48] has formally considered spatial decay of correlation assumptions
and proposes a method that finds nearly optimal local policies. An application [49] with the same
principles adopts the setting of mean-field MARL [50], which proposes an actor-critic algorithm with
global convergence. However, unlike the mean-field setting, which requires an agent’s transition
scheme to be only affected by the mean effect from its neighbors and effective only when agents are
homogeneous, we allow each agent to have different transition probabilities and local policies.

B.2 Regarding Assumptions 2.1 - 2.2

Assumption 2.1 portrays a common phenomenon: the transition dynamic of each agent is expo-
nentially less sensitive to perturbations of the states and actions of more distant agents. This is
commonly seen in scenarios involving wireless communication, epidemics, traffic, and so on [46, 47].
Assumption 2.2 imposes a design constraint for the policy class that encodes a weaker correlation
decay property than the assumptions on the nature of Assumption 2.1. Moreover, Assumption 2.2
reveals how much information is lost compared with access to the global state and allows us to
consider a policy class with the necessary properties for the optimal policy under Assumption 2.1.
Below, we use a mathematical example to illustrate the relationship between the two assumptions.

Mathematical example: Firstly, we start from Assumption 2.1, letting κ̃ = maxi,j∈N d (i, j)
be the maximum distance between agent i and agent j. Define a set of differentiable functions{
fκ : SN iκ ×A

i → K | 0 ≤ κ ≤ κ̃
}

, where K ⊂ [−K,K], K > 0, and a set of parameters
{ακ ≥ 0 | 0 ≤ κ ≤ κ̃}. Then, for each agent i, one have

f i
(
s, ai

)
=

κ̃∑
κ=0

ακf
i
κ

(
sN iκ , a

i
)
,

πi (a | s) =
exp

(
f i (s, a)

)∑
a′∈Ai exp (f i (s, a′))

.

By tuning the parameters ακ, we can make any policy belonging to this policy class respect Assump-
tions 2.2, as we show in the following. Let κ ∈ {0, . . . , κ̃}, s, s̃ ∈ S be such that sN iκ = s̃N iκ , then
one have∥∥πi(·|s)− πi(·|̃s)

∥∥
1

=
∑
a∈Ai

∣∣πi(a | s)− πi(a | s̃)
∣∣

=
∑
a∈Ai

∣∣∣∣∣ exp
(
f i (s, a)

)∑
a′∈Ai exp (f i (s, a′))

−
exp

(
f i (s̃, a)

)∑
a′∈Ai exp (f i (s̃, a′))

∣∣∣∣∣
=

∑
a∈Ai

∣∣∑
a′∈Ai exp

(
f i (s, a)

)
exp

(
f i (s̃, a′)

)
−
∑

a′∈Ai exp
(
f i (s̃, a)

)
exp

(
f i (s, a′)

)∣∣∑
a′∈Ai exp (f i (s, a′))

∑
a′∈Ai exp (f i (s̃, a′))

≤
∑

a∈Ai
∑

a′∈Ai
∣∣exp

(
f i (s, a)

)
exp

(
f i (s̃, a′)

)
− exp

(
f i (s̃, a)

)
exp

(
f i (s, a′)

)∣∣∑
a′∈Ai exp (f i (s, a′))

∑
a′∈Ai exp (f i (s̃, a′))

≤
∑

a∈Ai
∣∣exp

(
f i(s̃, a)

)
− exp

(
f i(s, a)

)∣∣∑
a∈Ai exp (f i(s̃, a))

≤

∑
a∈Ai

∣∣f i(s̃, a)− f i(s, a)
∣∣ exp

(
sups′∈{s,̃s} f

i (s′, a)
)

∑
a∈Ai exp (f i(s̃, a))
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≤ e2K(κ̃−κ)

∑
a∈Ai

∣∣f i(s̃, a)− f i(s, a)
∣∣ exp

(
f i(s̃, a)

)∑
a∈Ai exp (f i(s̃, a))

≤ e2K(κ̃−κ)Eπi

∣∣∣∣∣
κ̃∑

κ′=κ+1

ακ′
(
f iκ′
(

s̃N i
κ′
, a
)
− f iκ′

(
sN i

κ′
, a
))∣∣∣∣∣

≤ e2K(κ̃−κ)
κ̃∑

κ′=κ+1

ακ′Eπiκ
∣∣∣(f iκ′ (s̃N i

κ′
, a
)
− f iκ′

(
sN i

κ′
, a
))∣∣∣

≤ 2Ke2K(κ̃−κ)
κ̃∑

κ′=κ+1

ακ′ .

Denote that (ξ, β) =
(

2Ke2Kκ̃
∑κ̃
κ′=κ+1 ακ′ , 2K

)
, and setting the parameters {ακ′}κ′∈{κ+1,...,κ̃}

small enough ensures that the policy respects Assumption 2.2.
Remark B.1. The mathematical example illustrates the relationship between the Assumptions 2.1
and 2.2. It is evident from this mathematical example that Assumption 2.2 necessarily holds when
Assumption 2.1 holds and the parameters ξ and β satisfy certain conditions. However, for the sake of
more concise presentation, we treat it as a separate assumption.
Remark B.2. When Assumption 2.1 holds, the numerical example can provide a reference basis
for selecting the values of the parameters in Assumption 2.2. However, accurately determining the
spatial decay of correlation for the dynamics remains a challenging engineering task. In this paper,
we empirically adopt conservative values.
Remark B.3. Assumption 2.2 implies that multi-agent environments must satisfy the requirement that
the impact from far-away agents’ states and actions is almost negligible for the agent’s decision; in
other words, an action of an agent has an instantaneous effect on the system only locally. We believe
that this formulation realistically describes most multi-agent interactions in the real-world. Take
multi-vehicle transportation as an example. For a vehicle traveling on the road, a far-away vehicle
taking different actions or being in a different state will affect itself shortly thereafter, but the impact
on the current policy is minimal. More examples are seen in wireless communication, epidemics,
traffic, and other scenarios [46, 47].
Remark B.4. It is worth noting that the assumption of spatial correlation decay is not in direct conflict
with well-known phenomena, e.g., Butterfly Effect, since two seemingly unrelated things can also
have a significant impact on each other, generally occurring in different time domains.

C Supplementary materials for Section 3

C.1 Basic definitions

Regarding the state value function and the state-action value function, we give the following defini-
tions.

Definition C.1. We define the state value function and the state-action value function in terms of
reward as

Vπ(s) , Ea∼π [Qπ(s,a)] , (25)

Qπ(s,a) , Es1:∞∼p,a1:∞∼π

[ ∞∑
t=0

γtR(st,at)|s0 = s,a0 = a

]
. (26)

Based on C.1, one can expand to derive

V iπ(s) = Ea−i∼π−i
[
Qiπ(s, ai)

]
, (27)

Qiπ(s, ai) = Ea−i∼π−i,s1:∞∼p,a1:∞∼π

[ ∞∑
t=0

γtR(st, a
i
t)|s0 = s,a0 = a

]
. (28)
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Definition C.2. We define the jth state cost value function and state-action cost value function for
agent i as follows

V ij,π(s) , Es1:∞∼p,a1:∞∼π

[ ∞∑
t=0

γtCij(st, a
i
t)|s0 = s

]
, (29)

Qij,π(s, ai) , Ea−i∼π−i,s1:∞∼p,a1:∞∼π

[ ∞∑
t=0

γtCij(st, a
i
t)|s0 = s,a0 = a

]
. (30)

C.2 The proof of Lamma 3.1

Proof. We write the multi-agent advantage function as in its definition, and then expand it in a
telescoping sum.

Aπ (s,a) = Qπ (s,a)− Vπ(s)

=

n∑
i=1

[
Q1:i
π

(
s,a1:i

)
−Q1:i−1

π

(
s,a1:i−1

)]
=

n∑
i=1

Aiπ
(
s,a1:i−1, ai

)
.

C.3 The proof of Proposition 3.3

Proof. Let s, s̃ ∈ S, a, ã ∈ A, such that for any agent i ∈ N , sN iκ = s̃N iκ and aN iκ = ãN iκ .
According to Equation (7), when only the state and action of the far-away agent are different, one
have ∣∣Aiπ(s,a)−Aiπ(s̃, ã)

∣∣
=
∣∣(Qiπ(s,a)− V iπ(s)

)
−
(
Qiπ(s̃, ã)− V iπ(s̃)

)∣∣
=
∣∣(Qiπ(s,a)−Qiπ(s̃, ã)

)
+
(
V iπ(s)− V iπ(s̃)

)∣∣
≤
∣∣Qiπ(s,a)−Qiπ(s̃, ã)

∣∣+
∣∣V iπ(s)− V iπ(s̃)

∣∣ .
(31)

Next, we analyze
∣∣Qiπ(s,a)−Qiπ(s̃, ã)

∣∣ and
∣∣V iπ(s)− V iπ(s̃)

∣∣ separately.

Firstly, for
∣∣Qiπ(s,a)−Qiπ(s̃, ã)

∣∣, we have∣∣Qiπ(s,a)−Qiπ(s̃, ã)
∣∣

=

∣∣∣∣∣
∞∑
t=0

γtE [R (st,at) | π, s0 = s,a0 = a]−
∞∑
t=0

γtE [R (st,at) | π, s0 = s̃,a0 = ã]

∣∣∣∣∣
≤
∞∑
t=0

γt |E [R (st,at) | π, s0 = s,a0 = a]− E [R (st,at) | π, s0 = s̃,a0 = ã]|

≤
∞∑
t=1

γtDTV

(
ρit, ρ̃

i
t

)
,

where ρit and ρ̃it are the distributions at time t with starting point (s,a) and (s̃, ã), respectively. We
use the result in Lemma A.3 to bound DTV

(
ρit, ρ̃

i
t

)
. The structure of our MDP implies that:

P (st+1,at+1 | st,at) =
∏
i∈N

πi
(
ait+1 | sN iκ,t+1

)
P i
(
sit+1 | sN iκ,t, a

i
t

)
.

Then, if Assumption 2.1 holds, the requirements of Lemma A.3 are satisfied, one haveDTV

(
ρit, ρ̃

i
t

)
≤

ζte−βκ and∣∣Qiπ(s,a)−Qiπ(s̃, ã)
∣∣ ≤ ∞∑

t=1

γtDTV

(
ρit, ρ̃

i
t

)
≤ e−βκ

∞∑
t=1

γtζt =
γζ

1− γζ
e−βκ, (32)
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where ζ is defined in Assumption 2.1.

Let
δjQiπ(s,a) = sup

zj ,z−j ,z′j

∣∣Qiπ (zj , z−j)−Qiπ (z′j , z−j)∣∣ ,
and the MDP satisfies the condition of Lemma A.4, one can obtain∑

j∈N
eβd(i,j)δj

(
Qiπ(s, ·)

)
≤
∞∑
t=1

γt
∑
j∈N

eβd(i,j)δjP i ≤
∞∑
t=1

γtζt =
γζ

1− γζ
.

Secondly, building on Assumption 2.2 and Lemma A.4, we analyze
∣∣V iπ(s)− V iπ(s̃)

∣∣ can further
obtain∣∣V iπ(s)− V iπ(s̃)

∣∣
=
∣∣Ea∼π(·|s)Q

i
π(s,a)− Ea∼π(·|̃s)Q

i
π(s̃,a)

∣∣
=
∣∣Ea∼π(·|s)Q

i
π(s,a)− Ea∼π(·|̃s)Q

i
π(s,a) + Ea∼π(·|̃s)Q

i
π(s,a)− Ea∼π(·|̃s)Q

i
π(s̃,a)

∣∣
≤
∣∣Ea∼π(·|s)Q

i
π(s,a)− Ea∼π(·|̃s)Q

i
π(s,a)

∣∣+
∣∣Ea∼π(·|̃s)Q

i
π(s,a)− Ea∼π(·|̃s)Q

i
π(s̃,a)

∣∣
≤
∑
j∈N

DTV

(
πj(· | s), πj(· | s̃)

)
δjQiπ(s,a) +

γζ

1− γζ
e−βκ

≤ ξe−βκ
∑
j∈N

e−βd(j,i)δjQiπ(s,a) +
γζ

1− γζ
e−βκ

≤ γζ

1− γζ
ξe−βκ +

γζ

1− γζ
e−βκ

≤ (1 + ξ)γζ

1− γζ
e−βκ.

(33)

Then, bringing (32) and (33) into (31), we have∣∣Aiπ(s,a)−Aiπ(s̃, ã)
∣∣

≤
∣∣Qiπ(s,a)−Qiπ(s̃, ã)

∣∣+
∣∣V iπ(s)− V iπ(s̃)

∣∣
≤
∣∣Ea∼π(·|s)Q

i
π(s,a)− Ea∼π(·|̃s)Q

i
π(s,a)

∣∣+ 2
∣∣Ea∼π(·|̃s)Q

i
π(s,a)− Ea∼π(·|̃s)Q

i
π(s̃, ã)

∣∣
≤ γζ

1− γζ
ξe−βκ +

2γζ

1− γζ
e−βκ

≤ (2 + ξ)γζ

1− γζ
e−βκ.

(34)

Finally, denoting (η, φ) =
(

(2+ξ)γζ
1−γζ , e−β

)
, we can obtain the Proposition 3.3.

C.4 The proof of Corollary 3.4

Proof. Firstly, according to Lamma 3.1 and Definition 3.2, the following result holds when each
agent adopts a sequential update scheme to optimize policy, i.e., we have∣∣∣L1:i

π

(
π̄1:i−1, π̄i

)
− Liπiκ

(
π̄iκ
)∣∣∣

=
∣∣∣Es∼ρπ,a

1:i∼π̄1:i

[
Aiπ
(
s,a1:i−1, ai

)]
− EsNiκ

∼ρπiκ ,a
i∼π̄i

[
Aiπiκ

(
sN iκ , a

i
)]∣∣∣

=
∣∣Es∼ρπ,a

1:i∼π̄1:i

[
Aiπ
(
s,a1:i−1, ai

)]
− Es∼ρπ,a

i∼π̄i
[
Aiπ
(
s, ai

)]
+Es∼ρπ,a

i∼π̄i
[
Aiπ
(
s, ai

)]
− Es̃∼ρ̃π,a

i∼π̄i
[
Aiπ
(
s̃, ai

)]∣∣
≤
∣∣Es∼ρπ,a

1:i∼π̄1:i

[
Aiπ
(
s,a1:i−1, ai

)]
− Es∼ρπ,a

i∼π̄i
[
Aiπ
(
s, ai

)]∣∣
+
∣∣Es∼ρπ,a

i∼π̄i
[
Aiπ
(
s, ai

)]
− Es̃∼ρ̃π,a

i∼π̄i
[
Aiπ
(
s̃, ai

)]∣∣ .

(35)
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Then, based on Assumptions 2.2, we have∣∣Es∼ρπ,a
1:i∼π̄1:i

[
Aiπ
(
s,a1:i−1, ai

)]
− Es∼ρπ,a

i∼π̄i
[
Aiπ
(
s, ai

)]∣∣
=

∣∣∣∣∣Es∼ρπ,a
i∼π̄i

[
i−1∑
h=1

(
π̄h − πh

)
Aiπ
(
s, ai

)]∣∣∣∣∣
≤ Es∼ρπ,a

i∼π̄i

[
i−1∑
h=1

∣∣π̄h − πh∣∣ ∣∣Aiπ (s, ai)∣∣
]

≤ Es∼ρπ,a
i∼π̄i

[
M i

i−1∑
h=1

∣∣π̄h − πh∣∣] M i = max
πi

∣∣Aiπ (s, ai)∣∣
≤ M i

1− γ

i−1∑
h=1

max
s
DTV(π̄h, πh)

≤ M iξ

1− γ
e−βκ.

(36)

According to (34), we have∣∣Es∼ρπ,a
i∼π̄i

[
Aiπ
(
s, ai

)]
− Es̃∼ρ̃π,a

i∼π̄i
[
Aiπ
(
s̃, ai

)]∣∣
≤ E

∣∣[Aiπ(s,a)−Aiπ(s̃, ã)
]∣∣

≤ (2 + ξ)γζ

1− γζ
e−βκ.

(37)

Then, bringing (36) and (37) into (35), we have∣∣L1:i
π

(
π̄1:i−1, π̄i

)
− Liπ

(
π̄iκ
)∣∣

≤
∣∣Es∼ρπ,a

1:i∼π̄1:i

[
Aiπ
(
s,a1:i−1, ai

)]
− Es∼ρπ,a

i∼π̄i
[
Aiπ
(
s, ai

)]∣∣
+
∣∣Es∼ρπ,a

i∼π̄i
[
Aiπ
(
s, ai

)]
− Es̃∼ρ̃π,a

i∼π̄i
[
Aiπ
(
s̃, ai

)]∣∣
≤ M iξ

1− γ
e−βκ +

(2 + ξ)γζ

1− γζ
e−βκ

≤
(
M iξ

1− γ
+

(2 + ξ)γζ

1− γζ

)
e−βκ.

Finally, denoting (η′, φ) =
(
Miξ
1−γ + (2+ξ)γζ

1−γζ , e−β
)

, we can obtain the Corollary 3.4.

C.5 The proof of Proposition 3.5

Proof. From (12), we can obtain−η′φκ ≤ L1:i
π

(
π̄1:i−1, π̄i

)
−Liπiκ

(
π̄iκ
)
≤ η′φκ. By the trust region

theorem in Theorem 1 from [17], we have
J (π̄)− J (π) ≥ Es∼ρπ,a∼π̄ [Aπ(s,a)]− νDmax

KL (π, π̄)

≥ Es∼ρπ,a∼π̄ [Aπ(s,a)]−
n∑
i=1

νDmax
KL

(
πi, π̄i

)
=

n∑
i=1

Es∼ρπ,a
1:i∼π1:i

[
Aiπ
(
s,a1:i−1, ai

)]
−

n∑
i=1

νDmax
KL

(
πi, π̄i

)
=

n∑
i=1

(
L1:i
π

(
π̄1:i−1, π̄i

)
− νDmax

KL

(
πi, π̄i

))
≥

n∑
i=1

(
Liπiκ

(
π̂iκ
)
− η′φκ − νDmax

KL

(
πi|π̂i

))
≥

n∑
i=1

(
Liπiκ

(
π̂iκ
)
− η′φκ − νiκDmax

KL

(
πiκ|π̂iκ

))
.
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Then, when each agent sequentially solves the following optimization problem:

π̄iκ = arg max
π̂iκ

(
Liπiκ

(
π̂iκ
)
− η′φκ − νiκDmax

KL

(
πiκ|π̂iκ

))
,

where (η′, φ) =
(
Miξ
1−γ + (2+ξ)γζ

1−γζ , e−β
)

, νiκ =
2γmaxsNiκ

,ai

∣∣∣Ai
πiκ

(sNiκ
,ai)
∣∣∣

(1−γ)2 , and

Dmax
KL

(
πiκ|π̂iκ

)
= maxsNiκ

DKL

(
πi(· | sN iκ), π̂i(· | sN iκ)

)
, we have J (π̄) − J (π) ≥∑n

i=1

(
Liπiκ

(
π̂iκ
)
− η′φκ − νiκDmax

KL

(
πiκ|π̂iκ

))
.

C.6 The proof of Corollary 3.6

Proof. Firstly, by generalizing the result about the return in (14), one can derive how the expected
costs change when the agents update their policies. Inspired by [10], we provide the following lemma.

Lemma C.3. Let π and π̄ be joint policies. Let i ∈ N be an agent, and j ∈ {1, . . . ,mi} be an index
of one of its costs. The following inequality holds

J ij(π̄) ≤ J ij(π) + Lij,π
(
π̄i
)

+ νij

i∑
h=1

Dmax
KL

(
πh, π̄h

)
.

where Lij,π(π̄i) = Es∼ρπ,a
i∼π̄i

[
Aij,π

(
s, ai

)]
, νij =

2γmaxs,ai |Aij,π(s,ai)|
(1−γ)2 .

Proof. From the upper bound version of Theorem 1 of [17] applied to joint policies π̄ and π, we
conclude that

J ij(π̄) ≤ J ij(π) + Es∼ρπ,a
1:i∼π̄1:i

[
Aij,π

(
s, ai

)]
+

4α2γmaxs,ai
∣∣Aij,π (s, ai)∣∣

(1− γ)2
,

where α = Dmax
TV (π1:i, π̄1:i) = maxsDTV(π1:i(· | s), π̄1:i(· | s)).

Then, using Pinsker’s inequality DTV(p, q)2 ≤ DKL(p, q)/2, we obtain

J ij(π̄) ≤ J ij(π) + Es∼ρπ,a
1:i∼π̄1:i

[
Aij,π

(
s, ai

)]
+

2γmaxs,ai
∣∣Aij,π (s, ai)∣∣

(1− γ)2
Dmax

TV (π1:i, π̄1:i),

where Dmax
KL (π1:i, π̄1:i) = maxsDKL(π1:i(· | s), π̄1:i(· | s)).

Notice that we have Es∼ρπ,a
1:i∼π̄1:i

[
Aij,π

(
s, ai

)]
= Es∼ρπ,a

i∼π̄i
[
Aij,π

(
s, ai

)]
as the action of

agents other that i do not change the value of the variable inside of the expectation. Furthermore,

Dmax
KL (π1:i, π̄1:i) = max

s
DKL(π1:i(· | s), π̄1:i(· | s))

≤ max
s

(
i∑

h=1

DKL

(
πh(· | s), π̄h(· | s)

))

≤
i∑

h=1

max
s

(
DKL

(
πh(· | s), π̄h(· | s)

))
=

i∑
h=1

Dmax
KL

(
πh, π̄h

)
.

Setting νij =
2γmaxs,ai |Aij,π(s,ai)|

(1−γ)2 , we finally obtain

J ij(π̄) ≤ J ij(π) + Lij,π
(
π̄i
)

+ νij

i−1∑
h=1

Dmax
KL

(
πh, π̄h

)
.
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Secondly, from (12), we can obtain−η′φκ ≤ L1:i
π

(
π̄1:i−1, π̄i

)
−Liπiκ

(
π̄iκ
)
≤ η′φκ. By generalizing

the result, we can obtain −η′′φκ ≤ L1:i
j,π

(
π̄1:i−1, π̄i

)
− Lij,πiκ

(
π̄iκ
)
≤ η′′φκ. Further, we can derive

the upper bounds about surrogate cost

J ij(π̄) ≤ J ij(π) + Lij,π(π̄i) + νij

n∑
h=1

Dmax
KL (πh, π̃h)

≤ J ij(π) + Lij,πiκ

(
π̄iκ
)

+ η′′φκ + νij,κ

i∑
h=1

Dmax
KL

(
πhκ , π̄

h
κ

)
.

where Lij,πiκ(π̄iκ) = Esπiκ
∼ρπiκ ,a

i∼π̄i
[
Aij,πiκ

(
sN iκ , a

i
)]

, (η′′, φ) =
(
Mjξ
1−γ + (2+ξ)γζ

1−γζ , e−β
)

, νij,κ =

2γmaxsNiκ
,ai

∣∣∣Ai
j,πiκ

(
sNiκ

,ai
)∣∣∣

(1−γ)2 , and Mj is a constant.

C.7 The proof of Theorem 3.7

Proof. Based on the conclusions in Proposition 3.5 and Corollary 3.6, we can derive that in order to
realize reward performance improvement and satisfy safety constraints, agents have to sequentially
maximize their surrogate returns and ensure that their surrogate costs stay below the corresponding
safety thresholds. Meanwhile, they have to constrain the policy search to small local neighborhoods
(w.rt, max-KL distance). Therefore, the size of KL constraint in Equation (16) should be set as

δiκ = min

{
min
h≤i−1

min
1≤j≤mh

chj − Jhj (π)− Lij,πhκ
(
π̄hκ
)
− η′′φκ − νhj,κ

∑i−1
l=1 D

max
KL

(
πlκ, π̄

l
κ

)
νhj,κ

,

min
h≥i+1

min
1≤j≤mh

chj − Jhj (π)− νhj,κ
∑i−1
l=1 D

max
KL

(
πlκ, π̄

l
κ

)
νhj,κ

}
,

(38)
where h ∈ N i

κ is the κ-hop neighbors of agent i, and j ∈ {1, . . . ,mh} is its cost index.

Note that δ1
κ is guaranteed to be non-negative if π satisfies safety constraints; that is because then

chj ≥ Jhj (π) for all h ∈ N , and j ∈
{

1, . . . ,mi
}

, and the set {h | h < i} is empty.

This formula for δiκ, combined with Lemma 3.1, assures that the policies πiκ within δiκ max-KL
distance from πiκ will not violate other agents’ safety constraints, as long as the base joint policy π did
not violate them (which assures δ1

κ ≥ 0). To see this, for every h = 1, . . . , i− 1, and j = 1, . . . ,mh,
we have

Dmax
KL

(
πiκ, π̄

i
κ

)
≤ δiκ ≤

chj − Jhj (π)− Lij,πhκ
(
π̄hκ
)
− η′′φκ − νhj,κ

∑i−1
l=1 D

max
KL

(
πlκ, π̄

l
κ

)
νhj,κ

,

which implies

Jhj (π) + Lij,πhκ

(
π̄hκ
)

+ η′′φκ + νhj,κ

i−1∑
l=1

Dmax
KL

(
πlκ, π̄

l
κ

)
+ νhj,κD

max
KL

(
πiκ, π̄

i
κ

)
≤ chj . (39)

By Corollary 3.6, the left-hand side of the inequality (39) is an upper bound of Jhj
(
π̄1:i−1, πi

)
,

which implies that the update of agent i does not violate the constraint of Jhj . The fact that the
constraints of Jhj for h ≥ i+ 1 are not violated, i.e.,

Jhj (π) + νhj,κ

i−1∑
l=1

Dmax
KL

(
πlκ, π̄

l
κ

)
+ νhj,κD

max
KL

(
πiκ, π̄

i
κ

)
≤ chj .

Therefore, let (η′, φ) =
(
Miξ
1−γ + (2+ξ)γζ

1−γζ , e−β
)
, (η′′, φ) =

(
Mjξ
1−γ + (2+ξ)γζ

1−γζ , e−β
)

,

νiκ =
2γmaxsNiκ

,ai

∣∣∣Ai
πiκ

(sNiκ
,ai)
∣∣∣

(1−γ)2 , νij,κ =
2γmaxsNiκ

,ai

∣∣∣Ai
j,πiκ

(
sNiκ

,ai
)∣∣∣

(1−γ)2 , δiκ =
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min

{
minh≤i−1 min1≤j≤mh

Ξhj −L
h

j,πhκ
(π̄hκ)−η′′φκ

νij,κ
,minh≥i+1 min1≤j≤mh

Ξhj
νij,κ

}
, Ξhj =

chj − Jhj
(
πhκ
)
− νhj,κ

∑i−1
l=1 D

max
KL

(
πlκ, π̂

l
κ

)
, when the policy is updated by following a se-

quential update scheme, that is, each agent sequentially solves the following optimization
problem:

π̄iκ = arg max
π̂iκ∈Π̄iκ

(
Liπiκ

(
π̂iκ
)
− η′φκ − νiκDmax

KL

(
πiκ|π̂iκ

))
,

s.t.
{
π̂iκ ∈ Π̄i

κ | Dmax
KL

(
πiκ, π̂

i
κ

)
≤ δiκ, and

J ij (πκ) + Lij,πiκ

(
π̂iκ
)

+ η′′φκ + νij,κD
max
KL

(
πiκ, π̂

i
κ

)
≤ cij − νij,κ

i−1∑
h=1

Dmax
KL

(
πhκ , π̂

h
κ

)}
,

the joint policy π has the monotonic improvement property, J (π̄) ≥ J (π), as well as it satisfies the
safety constraints, J ij (π̄) ≤ cij , for any agent i ∈ N and its cost index j ∈ {1, . . . ,mi}.

C.8 Algorithm

In this subsection, we provide the main pseudocode for Scalable MAPPO-Lagrangian (Scal-MAPPO-
L), as outlined in Algorithm 1.

Algorithm 1 Scalable MAPPO-Lagrangian
Input: Stepsizes αθ, αλ, batch size B, number of agents n, episodes Z, steps per episode T ,

discount factor γ, parameter κ.
Initialize: Actor networks θ1

κ,0, . . . , θ
n
κ,0, V-value network χ1

κ,0, . . . , χ
n
κ,0, V-cost networks{

φij,0
}i∈N

1≤j≤mi , ∀ i ∈ N , j ∈ 1, . . . ,mi, Replay buffer B.

1: for z = 0, 1, . . . , Z − 1 do
2: Collect a set of trajectories by running the policies πθ1κ , . . . ,πθnκ .
3: Push transitions

{(
oit, a

i
t, o

i
t+1, r

i
t

)
,∀ i ∈ N , t ∈ T

}
into B.

4: Sample a random minibatch of B transitions from B.
5: for i = 1 : n do
6: Initialize a policy parameter θiκ,0 and Lagrangian multipliers λij , ∀ i ∈ N , j ∈ 1, . . . ,mi.
7: Compute advantage function Âi(s, ai) and cost advantage functions Âij

(
s, ai

)
.

8: Compute the parameters η′, η′′, φ, νiκ and νij,κ, ∀ j ∈
{

1, . . . ,mi
}

.
9: Compute the radius of the KL-constraint δiκ.

10: Compute the advantage function in (18).
11: Update policy according to (20).
12: Update V-value network and V-cost networks.
13: end for
14: end for

The algorithm has a simple idea that each agent independently optimizes the surrogate objective, which
only depends on its action and the state of its κ-hop neighbors for each agent. In the actual execution,
we adopt the surrogate objective (20) instead of (16). It actually uses some approximations for the
decentralized surrogate objective, the same as the MAPPO-L [10]. Most of these approximations are
traditional practices in RL, yet they may make it impossible for the practical algorithm to rigorously
maintain the theoretical guarantees in Theorem 3.7. However, we need to argue that we should go
one step further and provide a decentralized surrogate for decentralized learning with a convergence
guarantee. We believe and expect that a better practical method can be found based on this objective
in future work.
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D Supplementary materials for Section 4

D.1 Additional experimental results

In this paper, we compare the algorithm of our proposed (i.e., Scal-MAPPO-L in Algorithm 1) against
other PPO family algorithms on several safe MARL tasks to evaluate their performance. Here, we
provide some additional experimental results, which are illustrated in Figures 3-4.
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Figure 3: Performance comparisons in terms of cost and reward on three Safe Ant-v2 tasks. Each
column subfigure represents a different task, and we plot the cost curves (the lower the better) in the
upper row and the reward curves (the higher the better) in the bottom row for each task.
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Figure 4: Performance comparisons in terms of cost and reward on three Safe Coupled HalfCheetah
tasks.

Remark D.1. It is worth pointing out that, in our code, unlike the original, the global state consists of
a patchwork of each agent’s ID and the κ-hop information rather than a long state vector. This is the
main reason of the difference in performance from the original paper. As we consider decentralized
learning, the agents in the experiments do not use parameter-sharing. In all experiments, the network
architectures and common hyperparameters of our algorithm and MAPPO-L are the same for a fair
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comparison. All reported results are averaged over three or more random seeds, and the curves are
smooth over time.

D.2 The computer resources and computational complexity

Computation resources: We executed our code on a computer with NVIDIA GeForce RTX 4090
(GPU) and Intel Core i9-13900K (CPU).

Computational complexity: The computational complexity of Scal-MAPPO-L (ours) is O(TNMHP),
where T denotes the number of steps, N denotes the number of agents, M denotes the number of
constraints, H denotes the number of PPO-Epoch, and P denotes the number of policy parameters.

Besides, we test the running time of Scal-MAPPO-L on Safe Manyagent Ant 6× 1, Safe Ant 8× 1,
and Safe Coupled HalfCheetah 12× 1. The running steps are 1× 107 in each environment. When the
parameter κ is maximized, the algorithm’s average wall-clock times are 8.43h, 9.28h, and 11.65h,
respectively. It is worth noting that the wall-clock times do not significantly down when κ gradually
decreases. This may be due to the fact that we have yet to consider the process of sending and
receiving information realistically. However, based on the successful research conducted in the field
of communication [51, 52], it is evident that algorithms requiring less communication undoubtedly
have an advantage in terms of reducing communication burden and enhancing applicability.

E The discussion of limitations and impacts

E.1 Limitations

This paper is centered on theoretical analysis and also contains practical algorithms and simulation
verification. The main results in the paper characterize the proposed method’s performance in terms
of safety constraints and joint policy improvement. Below, we discuss the limitations of the proposed
approach for both theory and experiment aspects as follows:

1) Our theoretical results are based on the two assumptions about the spatial decay of correlation for
the dynamics and the policies in Assumption 2.1 and Assumption 2.2. Our conclusions may be useless
when such assumptions do not hold, e.g., the decisions of each agent are non-negligibly related to the
decisions of all other agents. However, fortunately, existing works [46, 47] have shown that many
real-world situations satisfy both assumptions, so our study is still important and meaningful.

2) Our experiments show that Scal-MAPPO-L, with communication between a small number of
neighbors, outperforms MAPPO-L in some cases, which we would like to see because it implies
fewer communication requirements. However, we have yet to develop an equilibrium relationship
between the amount of communication and the performance, which we will focus on next.

E.2 Broader impacts

This paper presents work that aims to advance the field of RL, especially safe MARL. Our work has
many positive societal impacts, such as providing a theoretical foundation for scalable Safe MARL,
none of which we feel must be specifically highlighted. There are no negative societal impacts on our
work.
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Justification: The research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
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• If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: The paper discusses both potential positive societal impacts and negative
societal impacts of the work performed in Appendix E.2.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.
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12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We cite the original paper that produced the code package.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We provide details of new assets in supplemental material..

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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