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Abstract001

Large language models (LLMs) struggle with002
maintaining accurate knowledge due to con-003
flicting/outdated parametric memories. While004
locate-and-edit methods address this, their re-005
liance on models’ internal representations leads006
to robustness failures in long-context reason-007
ing and paraphrased queries. We identify008
a fundamental limitation of locate-and-edit009
methods: existing semantic keys (for mem-010
ory localization) cannot simultaneously sat-011
isfy robustness (context-invariant activation)012
and specificity (precise knowledge discrimina-013
tion). Through theoretical error-bound anal-014
ysis, we establish formal criteria for effec-015
tive editing. Our solution introduces Ro-016
bust Edit Pathway (REP), a plug-and-play017
module that: (1) disentangles editing keys018
from native model representations; (2) dynam-019
ically adjusts keys via contrastive learning to020
achieve robustness-specificity balance. Exten-021
sive experiments across various editing meth-022
ods (ROME/MEMIT/R-ROME/EMMET), ex-023
isting LLMs (LLaMA2, QWen, Mistral), and024
datasets (CounterFact, ZsRE) show that REP025
improves success rate over robustness tests by026
up-to 66.4% while maintaining the success rate027
unaffected.028

1 Introduction029

Large language models (LLMs, Achiam et al. 2023;030

Touvron et al. 2023a,b) have revolutionized knowl-031

edge storage through their parametric memories,032

yet their reliance on static training data renders033

them prone to inaccuracies from conflicting or out-034

dated information. While knowledge editing meth-035

ods like ROME and MEMIT (Meng et al., 2022a,b)036

attempt to address this by modifying specific model037

parameters, existing approaches are found to suf-038

fer from editing failures with robustness tests (Ma039

et al., 2024c; Yang et al., 2024b). For example,040

editing "Slovenia belongs to Europe → Antarctica"041

frequently collapses when the subject is rephrased042

("Republic of Slovenia"), embedded in long con- 043

texts, or attacked by shuffling subjects. The unreli- 044

ability greatly limits the impact and application of 045

model editing methods. 046

We uncover a fundamental flaw in their core 047

mechanism: the intrinsic instability of the model’s 048

internal representations when used as semantic 049

keys for editing. Existing approaches assume 050

these internal representations can reliably local- 051

ize knowledge. Through formal analysis of key- 052

value associative memory in MLP layers (Defini- 053

tions 3.2 - 3.3) and empirical analyses, we prove 054

that existing internal representations frequently vi- 055

olate the foundational conditions for reliable edit- 056

ing: (1) Key Sensitivity: Representations of the 057

same fact diverge drastically under perturbations. 058

Whitened similarity scores drop to near-random lev- 059

els for shuffled subject tokens (e.g., "_ia Sloven" vs. 060

"Sloven _ia") and for rephrased variants, breaching 061

the robustness bound derived in Lemma 4.6; (2) 062

Key Collisions: Semantically distinct entities ex- 063

hibit unintended overlaps in the whitened space for 064

unrelated pairs like "Michael Jordan" and "Kobe 065

Bryant", Figure 4), contradicting the specificity 066

requirement in Lemma 4.7. 067

To resolve this, we propose Robust Edit Path- 068

way (REP), a novel plug-and-play module that 069

disentangles editing keys from native model rep- 070

resentations. Inspired by our theoretical results, 071

where effective knowledge insertion requires both 072

centering around semantically equivalent surface 073

forms of subjects while not affecting unrelated ones 074

– REP introduces: (1) Disentangled Key Projection: 075

A contrastively trained adapter aligns keys for tar- 076

get facts across perturbations, ensuring context- 077

invariant activation through whitened similarity 078

optimization (Eq. 6); (2) Dynamic Gate Mecha- 079

nism: Token-level gating selectively activates edits, 080

dynamically balancing robustness and specificity. 081

Extensive evaluations across 4 editing methods 082

(ROME/MEMIT/R-ROME/EMMET)(Meng et al., 083
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Figure 1: An example of the edited knowledge ‘Slovenia belongs to the continent of’ through knowledge editing and its failures
on the different scenarios.

2022a,b; Gupta et al., 2024a; Yoon et al., 2024),084

3 LLMs (LLaMA2-7B, Mistral-7B, and Qwen-2-085

7B)(Touvron et al., 2023b; Jiang et al., 2023; Yang086

et al., 2024a), and two datasets (Meng et al., 2022a;087

De Cao et al., 2021) demonstrate REP’s superiority:088

(1) up-to 66.4% absolute gains on robustness tests,089

recovering at most 94% of the editing performance090

versus unperturbed inputs; (2) specificity preserva-091

tion (∆Locality < 1.6) and minimal fluency degra-092

dation (∆Fluency <2.2); (3) effectiveness on both093

in-domain and out-of-domain robustness queries.094

Our contributions are as follows:095

• Through theoretical error-bound analysis, we096

establish formal criteria for effective model097

editing and reveal fundamental limitations in098

using internal representations as editing keys.099

• Extensive experiments demonstrate existing100

semantic keys cannot simultaneously achieve101

robustness (context-invariant activation) and102

specificity (precise knowledge discrimina-103

tion).104

• We propose Robust Edit Pathway (REP), a105

plug-and-play module that disentangles edit-106

ing keys from native model representations107

and dynamically adjusts them via contrastive108

learning.109

• Experiments across various editing methods110

(ROME/MEMIT/R-ROME/EMMET), LLMs,111

and datasets show REP improves success rate112

over robustness tests by up-to 66.4% while113

maintaining editing performance.114

2 Related Work115

Knowledge Editing. As large language mod-116

els have grown in complexity and size, post-117

modification has become increasingly challenging118

due to their opaque mechanisms and vast parameter 119

spaces (Mitchell et al., 2022; Zhong et al., 2023). 120

This has led to heightened interest in knowledge 121

editing, a technique for precise model modification. 122

Knowledge editing are applied to various scenar- 123

ios, such as editing for safety (Wang et al., 2024c), 124

debias (Yan et al., 2024) and concepts (Wang et al., 125

2024d). 126

Our work is in line with the locate-and-edit meth- 127

ods, which draw much attention as they potentially 128

unveil how the knowledge are stored in an LLM. 129

These approaches first identify relevant parameters 130

before updating them to modify specific knowl- 131

edge, including KnowledgeNeuron’s attribution- 132

based neuron updating (Dai et al., 2021), ROME’s 133

causal mediation analysis for MLP editing (Meng 134

et al., 2022a), MEMIT’s multi-layer residual dis- 135

tribution (Meng et al., 2022b), PMET’s refined 136

allocation strategy (Li et al., 2024), and WilKE’s 137

dynamic layer selection (Hu et al., 2024b) to re- 138

duce potential negative effects. These methods all 139

utilize inner representations as keys for key-value 140

modeling. In contrast, we show that inner repre- 141

sentations cannot meet the requirements of robust 142

and specific edits, and we propose a robust edit 143

pathway to mitigate this. 144

Challenges of Knowledge Editing. Despite the 145

promise, various challenges persist in practical ap- 146

plications of model editing methods. Previous stud- 147

ies show that edits often degrade general language 148

abilities (Gu et al., 2024; Ma et al., 2024b), damage 149

the hidden space (Wang et al., 2024b), struggle to 150

propagate to related facts (Hua et al., 2024), and are 151

easily forgotten during sequential updates (Gupta 152

et al., 2024b). Moreover, multi-hop reasoning can 153

elicit old knowledge (Zhang et al., 2024), and mod- 154

els may collapse after few edits (Yang et al., 2024b; 155
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Brown et al., 2023).156

Further complications include cross-lingual in-157

consistencies (Wang et al., 2024a), knowledge con-158

flicts (Li et al., 2023), and inadequate evaluation159

in realistic settings such as long-form generation160

(Rosati et al., 2024) and neighborhood knowledge161

(Ma et al., 2024a). These issues underscore the162

need for more sophisticated and comprehensive163

editing techniques. However, previous research164

largely remains focused on the outcomes of knowl-165

edge editing in various scenarios, lacking a deeper166

understanding of the underlying mechanisms of167

these methods and the true reasons behind their168

frequent failures. Our work presents both theo-169

retical and empirical understanding regarding the170

reason for the robustness failures of locate-and-edit171

methods and proposes REP to enhance them.172

3 Knowledge Editing173

In this section, we first formulate knowledge edit-174

ing and review the locate-and-edit methods.175

Task Definition Knowledge editing focuses on176

updating factual associations in language models.177

Following (Meng et al., 2022a) and (Meng et al.,178

2022b), we define a knowledge f as a triple (h, r, t),179

where h is the head entity, r is the relation, and t is180

the target entity (e.g., (USA, has president, Biden)).181

Given a knowledge triple: (h, r, t), the goal is to182

modify the model’s knowledge by replacing the183

target entity t with a new target t∗ = Trump (e.g.,184

changing ‘Biden’ to ‘Trump’).185

Autoregressive large language models (LLMs)186

can complete a natural-language sentence by lever-187

aging implicit knowledge encoded within their pa-188

rameters. Thus, a knowledge triple (h, r, t) is con-189

sidered stored in the LLM when the model can190

predict the target t given a prompt that corresponds191

to (h, r, ·). For instance, given a prompt ‘The presi-192

dent of USA is’, a model with the above knowledge193

would predict ‘Biden’.194

Definition 3.1 (Knowledge Editing for LLMs).195

Given a knowledge triple (h, r, t) already stored196

in the language model M and a new knowledge197

(h, r, t∗), there exists a set of prompts P = {p}198

corresponds to (h, r, ·). The knowledge editing al-199

gorithm A aims to modify the model’s prediction on200

P from t to t∗. This task can be formally expressed201

as follows:202

M′ = A(M) ,203

s.t. M(p) = t,M′(p) = t∗,∀p ∈ P,204

Architectural Foundations for locate-and-edit 205

The efficacy of locate-and-edit methods relies on 206

identifying modular components in LLMs that 207

encode factual knowledge. Transformer-based 208

(Vaswani, 2017) LLMs organize computation into 209

layers containing two core submodules: self- 210

attention (for contextual reasoning) and Multi- 211

Layer Perceptrons (MLPs, for nonlinear feature 212

transformations). A key insight from ROME 213

(Meng et al., 2022a) establishes that factual asso- 214

ciations localize to specific MLP layers—enabling 215

precise edits. 216

Each MLP layer comprises two feed-forward 217

operations: (1) an up-projection that expands hid- 218

den dimensions for fine-grained feature interac- 219

tions, and (2) a down-projection that contracts 220

dimensions to synthesize higher-level representa- 221

tions. ROME treats these MLPs as linear associa- 222

tive memories (Definition 3.2), leveraging causal 223

mediation analysis to pinpoint layers where edits 224

(e.g., substituting “Biden” → “Trump” in presi- 225

dential facts) propagate correctly. By surgically 226

modifying these layers, ROME updates targeted 227

knowledge while preserving unrelated model capa- 228

bilities, minimizing unintended side effects. 229

Definition 3.2 (MLP Layers as Associative Mem- 230

ories). The down-projection weight matrix W in 231

the MLP layer can be interpreted as a linear asso- 232

ciative memory system. Specifically: 233

• Keys K = [k1|k2| · · · |kn] ∈ RD1×n repre- 234

sent the intermediate representations of the 235

prompt corresponding to (h, r, ·) before down- 236

projection. 237

• Values V = [v1|v2| · · · |vn] ∈ RD2×n rep- 238

resent the corresponding outputs after down- 239

projection. 240

The weight matrix W ∈ RD2×D1 approximately 241

maps the keys to their associated values, satisfying 242

WK ≈ V . 243

Definition 3.2 (illustrated by Figure 2 left) en- 244

ables the MLP layers to store and retrieve prompt- 245

target associations. Then, ROME accomplishes 246

knowledge editing by inserting a new key-value 247

pair into the MLP layer, modifying W to Ŵ . 248

Definition 3.3 (The Solution of ROME). In 249

ROME, a new key-value pair (k∗, v∗) can be in- 250

serted into the language model using the following 251

closed-form solution: 252

minimizeŴ ||ŴK − V || s.t. Ŵk∗ = v∗ , 253

by setting Ŵ = W +Λ(C−1k∗)
T 254
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Figure 2: Overview of REP. Left: Key concept visualization; Right: Architectural design of the adapter.

where:255

• C = KKT is a constant matrix pre-cached by256

estimating the uncentered covariance of k from257

a sample of Wikipedia text,258

• Λ = v∗−Wk∗
(C−1k∗)T k∗

is a vector proportional to the259

residual error of the new key-value pair on the260

original memory matrix.261

Intuitively, ||ŴK − V || controls the shift from262

previously stored keys and values, and Ŵk∗ = v∗263

makes sure that the new knowledge is added into264

Ŵ . To implement this solution, it is necessary to265

extract the key k∗ and calculate the value v∗.266

Remark 3.4 (Extract k∗). In M, k∗ is obtained267

by averaging the activations collected at the last268

token of the head entity h, processing a small set269

of texts that end with the head entity h. This can be270

formally written as:271

k∗ =
1

M

M∑
j=1

k(xj + h) ,272

where k(·) is the input of the second MLP layer of273

the l∗-th FFN layer in the transformer, M is the274

number of the selected texts and xj represents a275

random prefix.276

Once k∗ is extracted, the next step is to determine277

the appropriate value v∗ for the new key-value pair.278

Remark 3.5 (Calculate v∗). Let PM′(t∗|p) de-279

note the probability of t∗ after M processes query280

prompt p. We seek a vector z to substitute as the281

output of the MLP in layer l∗ at token i (denoted282

m
(l∗)
i : z) such that the network predicts the target283

tail entity t∗ while maintaining the model’s under-284

standing of the subject’s essence. The optimization285

objective is as follows: 286

v∗ = argmin
z

1

N

N∑
j=1

− logPM(m
(l∗)
i :z)

[h′|xj + p]︸ ︷︷ ︸
(a) Maximizing h′ probability

287

+DKL

(
PM(m

(l∗)
i :z)

[·|p′]||PM[·|p′]
)

︸ ︷︷ ︸
(b) Controlling essence drift

. 288

where p′ is ‘subject is a’. 289

In conclusion, the ROME method effectively 290

enables the insertion of new knowledge triples 291

(h, r, t∗) into large language models through op- 292

erating key-value pairs. 293

4 Theoretical Results of Key-Value 294

Associative Memory 295

The idea of keys and values in associative mem- 296

ory (as shown in Definition 3.2) is analogous to 297

the key-value databases in modern computer sys- 298

tems. What makes the difference here is that down- 299

projection FFNs implement a fuzzy retrieval mech- 300

anism, whereas modern key-value databases gener- 301

ally require the keys to be unique. 302

Lemma 4.1 (Fuzzy Key-Value Mapping). Given 303

K ∈ RD1×n and V ∈ RD2×n as defined in Defini- 304

tion 3.2 that are already stored in the feed-forward 305

layer W ∈ RD2×D1 , assume n ≫ D1 and K 306

has the rank of D1. When a new query k∗ comes, 307

its corresponding value can be represented as the 308

weighted sum of existing values, v∗ =
∑N

i=0 αivi 309

and α = KT (KKT )−1k∗ can be solved by the 310

Moore-Penrose pseudoinverse. 311

Lemma 4.1 demonstrates that the retrieved mem- 312

ory of a new test query can be considered as the 313

linear combination of previously stored memory, 314

which leads to the following direct corollary. 315
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Corollary 4.2 (Edited Key-Value as a Patch316

against Original Knowledge). In locate-and-edit317

algorithms, new knowledge is injected into the318

memory as a key-value pair (k∗, v∗). Consider319

a set of existing key-value pairs (ki, vi) where320

ki ∈ Ks, vi ∈ Vs that represent the same knowl-321

edge as (k∗, v∗) (e.g., paraphrases). Suppose the322

injection is lossless1 and that Ks has full row rank,323

querying with any ki ∈ Ks would retrieve a value324

v =
∑

i αivi + α∗v∗.325

Remark 4.3. This corollary reveals that knowledge326

editing operates as an additive mechanism rather327

than a replacement one. Instead, it leaves the pre-328

viously stored knowledge intact and counters them329

with a newly added value v∗.330

Lemma 4.4 (Bound on optimized ∆v = v∗ − vo).331

Assume the edited layer is only connected to the332

final prediction layer via an attention layer, where333

the attention layer has parameters WQ,WK ,WV ,334

and wt and wt∗ are the output embeddings for the335

original and edited target, we have the following336

inequality,337

(wt∗ − wt)
TWV (v∗ − vo) > ϵ1 + ϵ2338

⇒||(wt∗ − wt)
TWV || · ||v∗ − vo|| > ϵ1 + ϵ2,339

where ϵ is the logit gap after projection to the out-340

put embedding between t and t∗. ϵ1 denotes the341

logit gap before edit and ϵ2 denotes the logit gap342

after edit. A value of ϵ ≈ 2.30 corresponds to a343

90% top-1 prediction probability.344

Remark 4.5. Lemma 4.4 suggests that an edited345

value should be first similar to the vector pointing346

from t to t∗ after a projection with WV . Then, the347

edited values ∆v should be sufficiently large to348

ensure the success of the edit.349

Our assumption here simplifies the connection350

between the edited layer and the prediction layer,351

as in real-world scenarios, the edit layer might pass352

through subsequent layers and undergo multiple at-353

tention operations before finally connecting to the354

prediction layer. However, the path we’re consider-355

ing (i.e., from the edit layer to the prediction layer356

via an attention layer) is arguably the most direct357

route. We contend that this direct path is crucial358

and warrants particular attention, and this simpli-359

1In a real-world scenario, the edit cannot be lossless. Here,
for a clear intuition, the above lemma is presented in an ideal
way as the editing process will change the value of previously
stored key-value pairs. We show that even considering the
lossless scenario, the current LLMs cannot satisfy robustness
and specificity requirements.

fication allows us to focus on the most immediate 360

and potentially significant impact of edits. 361

Lemma 4.6 (Robustness Requirement for the 362

Key-Values). Robust editing requires consistency 363

across semantically equivalent inputs: when edit- 364

ing knowledge with a new pair (k∗, v∗), the edit 365

should propagate to all semantically equivalent 366

representations in the memory. For an edit to 367

be considered a robust edit, querying with any 368

ks ∈ Ks should reliably retrieve the new knowl- 369

edge (h, r, t∗). This can be expressed as the follow- 370

ing constraint: 371

(wt∗−wt)
TWV (k

T
s C

−1k∗)·vT∗ > ϵ1+ϵ2,∀ks ∈ Ks. 372

373

When we look into the Lemma 4.6, βs,∗ = 374

kTs C
−1k∗ can be seen as a similarity measure 375

on a projected space, namely whiten similarity. 376

This lemma implies that (1) v∗ is decided by 377

minks′∈Ks(ks′C
−1k∗), that is, k∗ should be near all 378

ks ∈ Ks. If not, v∗ needs to be of large magnitude 379

to counter the difference. Such large-magnitude 380

updates can destabilize the model’s learned repre- 381

sentations and potentially degrade its overall per- 382

formance; (2) v∗ needs not only to be aligned with 383

the direction (wt∗ −wt), but also has a sufficiently 384

large magnitude to ensure editing success. 385

Lemma 4.7 (Specificity Requirement for the 386

Key-Values). If the newly added knowledge triplet 387

(h, r, t∗) would not be retrieved for any ko /∈ Ks, it 388

requires the following inequality to be satisfied: 389

(wtn − wt∗)
TWV (k

T
o C

−1k∗) · vT∗ < ϵ3, 390

∀ko /∈ Ks and ∀w ∈ W, 391

where tn is the original target retrieved by ko and 392

ϵ3 denotes the logit difference between tn and t∗. 393

One simple solution for this lemma is 394

kTC−1k∗ = 0, which describes no superposition, 395

as discussed in one of the concurrent work (Hu 396

et al., 2024a). However, as superposition gener- 397

ally exists among existing LLMs, we discuss more 398

general cases here. 399

Lemma 4.8 (Whitened Similarity Bounds). For 400

a successful edit to achieve both robustness and 401

specificity, the whitened similarities must satisfy: 402

1. Lower bound for semantically equivalent 403

keys: 404

βs,∗ = kTs C
−1k∗ ≥ βmin, ∀ks ∈ Ks (1) 405

where βmin = ϵ1+ϵ2
||(wt∗−wt)TWV ||·||v∗|| 406
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Figure 3: The distribution of normalized whitening similarity
between different kinds of keys and original keys.

2. Upper bound for unrelated keys:407

|βo,∗| = |kTo C−1k∗| ≤ βmax, ∀ko /∈ Ks

(2)408

where βmax = ϵ3
maxw∈W ||w−wt∗ ||·||WV ||·||v∗||409

Detailed proof of all lemmas can be found in410

Appendix A.411

Remark 4.9. Lemma 4.9 suggests that when412

adding new knowledge, a new key must be intro-413

duced at an appropriate position. This new key414

must be placed carefully, as its position can affect415

both its intended target and potentially interfere416

with nearby keys.417

5 Empirical Analysis: A Break of418

Requirements419

In light of our theoretical results in previous section,420

we analyze the current knowledge editing methods,421

showing that the robustness and specificity require-422

ments from previous section cannot be satisfied423

with inner representations as keys, motivating our424

approach.425

5.1 Experimental Setup426

Following previous work, we use the Counter-427

Fact (Meng et al., 2022a) datasets, choosing428

LLaMA-2 as our base model. In addition to the429

prompt from CounterFact dataset, we additionally430

consider three types of perturbation in our exper-431

iments, namely prompt appended with unrelated432

long context, subject rephrase and random shuf-433

fled subject. Even though the shuffled subject does434

not contain the same semantic meaning, it demon-435

strates how keys shift when the position of same436

token occurs at different positions.437

We collect 10 rephrases for each subject by438

prompting gpt-4o-mini. The prompt we use can439

be found in Appendix. For long context, we follow440

(Ma et al., 2024c) and extract random text span of441

512 tokens from Wikitext-103 (Merity et al., 2016). 442

For rephrased prompts, we use the paraphrases of 443

prompts released by (Patil et al., 2023). For shuf- 444

fled subject, we sample 10 random orderings of 445

tokens in the subject. We use 100 samples in our 446

valid set for empirical analyses. 447

5.2 Empirical Statistics of Keys, Values and 448

Others 449

Dissimilar Keys. In Figure 3, we present the dis- 450

tribution of whiten similarity β for three operations 451

over the original edit along with a random key base- 452

line. The implementation detail can be found in 453

Appendix B.2. 454

We can see that the similarity after these opera- 455

tions drops drastically. Rephrasing and shuffling 456

word orders generally reduce the similarity from 457

1.0 to less than 0.4, even to the random level. Ap- 458

pending long context is less destructive, but still re- 459

duces the key similarity to [0.2, 0.9]. These results 460

indicate a violation of the robustness requirement, 461

showing a significant variability in the representa- 462

tion of the same subject, making locate-and-edit 463

difficult to retrieve the edited value to be retrieved. 464

These findings challenges the intuition that se- 465

mantically equivalent subjects should have similar 466

representations, and poses severe challenges to the 467

effectiveness of edits. 468

Similar but Non-Related Keys. We also investi- 469

gate whether there exist different subjects that have 470

highly similar keys. To this end, we iterate through 471

a slice of Wikitext-103 dataset (about 80M tokens) 472

and select those close to subjects in CounterFact in 473

the whitening space. We filter those tokens whose 474

prefix has the same subject token and collect the 475

top 10 unrelated keys of each subject in Counter- 476

Fact. The left of Figure 4 plots the distribution of 477

whitening similarities between unrelated prefixes 478

and CounterFact subjects. We find that a large 479

portion of them has an extremely high whitening 480

similarity score, i.e., > 2500. Based on our theory, 481

it indicates that any edit that affects these subjects 482

would inevitably affect the output on these unre- 483

lated prefixes. 484

On the right side of Figure 4, we present a list of 485

subjects and their top-1 prefix in terms of whiten- 486

ing similarities. Interestingly, we observe that a 487

subject can exhibit similarity in distributional se- 488

mantics (Lenci and Sahlgren, 2023) to its corre- 489

sponding top unrelated prefix. For example, the 490

keys of Michael Jordan are highly similar to keys 491
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of a prefix related to Kobe. Considering that these492

two basketball players has much in common in493

many perspectives, it makes sense that their keys494

are similar. However, an edit to Michael Jordan495

affects Kobe would be definitely unreasonable.496

6 Robust Edit Pathway497

Our solution is to separate keys from the model’s498

internal representations by introducing a potential499

branching path as keys for edited facts.500

This is done by adding an adapter after the keys,501

allowing their representations to be modified when502

needed. As shown on the right of Figure 2, our503

adapter consists of two modules, a projection mod-504

ule that is responsible for aligning the keys and a505

gate module that activates the adapter when a token506

representation needs to be edited:507

k̂ = fgate(k) ◦ fproj(k) + k, (3)508

where k ∈ Rbsz×L×D, fgate(k) ∈ Rbsz×L×1 and509

fproj(k) ∈ Rbsz×L×D.510

The gate mechanism here operates on the gran-511

ularity of tokens and adaptively selects whether a512

key should be modified or not.513

We train the adapter by aggregating the keys of514

same subject ks ∈ Ks toward our injected target515

key k∗:516

Lagg = −|( k̂s

||k̂s||2
)TC−1k∗| (4)517

where k̂s is the output keys after adapter. The in-518

tuition is inspired by Lemma 4.6 and 4.7. If the519

edited key is close to the keys of the same subject,520

especially those we found dissimilar in Section 5.2,521

the edit would be more robust.522

In practice, we find that the model inclines to523

‘cheat’ by simply increasing the norm of ks, and524

thus we normalize the output of f . In practice, we 525

take the last token of rephrased subjects over dif- 526

ferent contexts and rephrased templates as ks. This 527

objective, built on the whiten similarity, further 528

strengthens the validness of our theoretical results. 529

To address the drift of the target key k∗ dur- 530

ing optimization, we introduce a target consistency 531

loss: 532

Lconsistency = MSE(k̂∗, k∗) (5) 533

The final training objective combines both compo- 534

nents: 535

L = Lagg + αLconsistency (6) 536

with α controlling the trade-off. 537

For testing, we use a gate threshold τ to deter- 538

mine whether to activate this projection. This gate 539

mechanism allows the model to dynamically de- 540

cide whether the original keys should be modified. 541

If not, the keys are left intact and thus ensure the 542

locality of edits. The whole algorithm can be found 543

in Appendix. 544

6.1 Experimental Results 545

Setup We evaluate our Robust Edit Pathway with 546

representative locate-and-edit methods, namely 547

ROME, MEMIT, R-ROME, and EMMET. We use 548

the LLaMA2-7B, Mistral-7B, and Qwen2-7B as 549

our base model and CounterFact and ZsRE as our 550

datasets. We filter knowledge triplets of datasets 551

not presented in the model as (Meng et al., 2022a) 552

did, and randomly sample 100 knowledge triplets 553

as the validation set and 400 triplets as the test set. 554

While other studies in model editing explore modi- 555

fying multiple facts continuously (Mitchell et al., 556

2022; Hartvigsen et al., 2024; Meng et al., 2022b), 557

we have found that robustly injecting even a single 558

fact presents significant challenges. Therefore, we 559
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Method Edit Performance In-Domain Out-of-Domain
Sucess↑ Locality↑ Para.↑ Fluency↓ Rephrase↑ Shuffle↑ Long↑ Rephrase↑ Shuffle↑ Long↑

Baseline Methods

ROME 100.0 96.1 63.8 587.4 61.0 13.0 89.8 62.6 13.7 89.8
MEMIT 99.3 91.2 71.9 571.4 73.3 30.0 92.3 73.4 32.0 94.3

R-ROME 99.7 95.8 62.1 583.8 58.9 14.7 89.5 61.7 16.1 90.7
EMMET 99.7 93.8 63.0 584.0 59.7 16.3 83.7 60.9 16.5 83.0

With REP

ROME 100.0+0.0 94.6-1.5 66.9+3.1 587.5+0.1 88.0+27.0 59.9+46.9 91.7+1.9 75.5+12.9 28.7+15.0 91.3+1.5

MEMIT 99.4+0.1 90.8-0.4 74.2+2.3 567.2-4.2 89.9+16.6 58.9+28.9 93.6+1.3 84.4+11.0 45.2+31.5 94.2-0.1

R-ROME 99.9+0.2 94.7-1.1 67.4+5.3 586.0+2.2 88.8+29.9 60.3+45.6 92.0+2.5 76.5+14.8 29.5+13.4 92.0+1.3

EMMET 99.8+0.1 92.2-1.6 68.4+5.4 584.6+0.6 94.4+34.7 82.7+66.4 88.4+4.7 82.9+22.0 42.5+26.0 88.6+5.6

Table 1: The main results of REP across three seeds comparing ROME, MEMIT, R-ROME, and EMMET editing methods
on Llama2-7B on CounterFact dataset. REP consistently enhances model performance Results averaged over three seeds with
τ = 0.9. The upperscript numbers denote the improvement after using REP.

keep our focus on single-edit paradigm.560

For evaluation, we first follow (Meng et al.,561

2022a,b) and utilize the following four metrics for562

edit performance: (1) Success: the ratio of targeted563

knowledge achieving the top probability; (2) Lo-564

cality: the ratio of related but non-identical facts565

kept intact by the edit; (3) Paraphrase (Para.): the566

ratio of targeted knowledge achieving success on567

paraphrased prompts; (4) Fluency: the weighted568

average of bi- and tri-gram entropies.569

Moreover, we report the success rate for three ro-570

bustness tests: paraphrasing subjects, shuffling sub-571

jects’ token ordering, and appending long context,572

as discussed throughout the paper. Improving these573

metrics suggests a more robust editing method. We574

report robustness metrics at both in-domain, where575

the test cases are seen in training adapter, and out-576

of-domain, where the test cases are not seen by577

adapter. Note that in our ‘in-domain’, we do not578

reveal the target knowledge to the model, we only579

aggregate the keys.580

ROME and MEMIT’s Failure on Robustness.581

Our results are shown in Table 1. We can see582

that our baseline methods, ROME, MEMIT, R-583

ROME, and EMMET achieve near-perfect edit584

success rates (>99%) while preserving good lo-585

cality scores (93-96%). Nonetheless, these meth-586

ods are prune to robustness tests. Taking ROME587

as an example, the success rate drops 39% with588

rephrased subjects, 87% with shuffled subjects or-589

dering, and 10.2% with randomly appended long590

context. These results reconcile with those reported591

in previous studies (Ma et al., 2024c).592

Effectiveness of Robust Edit Pathway. REP im-593

proves the robustness of each of the locate-and-edit594

methods significantly, with a slight cost of local-595

ity drop. For instance, REP improves ROME over 596

three robustness tests with +27.0%/+46.9%/+1.9% 597

for in-domain queries, and +12.9%/+15.0%/+1.5% 598

for out-of-domain queries. We also conduct ex- 599

periments over a different dataset (ZsRE) and two 600

additional base models (QWen and Mistral). The 601

results are shown in Appendix and consistently 602

demonstrate the effectiveness of REP. This vali- 603

dates our theoretical results and empirical insights. 604

Ablation Studies. Gate threshold τ and consis- 605

tency loss weight α are crucial to the performance 606

of REP. We study them in the Appendix with Figure 607

5 and Figure 6. We find that a larger τ and a larger 608

α leads to a better locality and success rate. Mean- 609

while, the robustness metrics first plateau, then 610

degrade with the increase of τ and α, indicating a 611

trade-off between robustness and edit performance. 612

Throughout our experiments, we use τ = 0.9 and 613

α = 5e+ 4. 614

7 Conclusion 615

In this work, we challenge a core assumption in 616

the locate-and-edit mechanism – the model’s inner 617

representations can serve as semantic keys for edit- 618

ing. We present theoretical results and empirical 619

analyses revealing that these keys are both sensitive 620

and unspecific. To address this issue, we propose 621

the Robust Edit Pathway (REP), which disentan- 622

gles the editing keys from native model representa- 623

tions. By extensive experiments, we show that REP 624

can significantly enhance robustness over various 625

locate-and-edit methods while maintains the edit 626

success rate. 627

8 Limitations 628

While REP demonstrates significant improvements 629

in knowledge editing robustness, our work is lim- 630
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ited in the following aspects: (1) REP requires addi-631

tional training steps to learn the adapter parameters,632

introducing computational overhead compared to633

direct editing methods. (2) Our current evaluation634

focuses on single-fact editing. The effectiveness635

of REP in scenarios involving multiple interrelated636

facts or continuous editing remains to be investi-637

gated. (3) In this work, we focus on locate-and-edit638

methods. Even though it is the dominant line of639

methods in model editing methods, there are still640

other model editing methods and REP does not641

apply to them.642
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A Proofs815

A.1 Proof of Lemma 4.1816

Since K has full row rank (rank(K) = D1), KKT817

is invertible. To find α, we use the Moore-Penrose818

pseudoinverse of K.819

Given K ∈ RD1×n, the pseudoinverse K+ is820

defined as: K+ = KT (KKT )−1, which also min-821

imizes ||Kα− k̂||.822

Then, we can express v̂ as:823

v̂ = V α = V KT (KKT )−1k̂. (7)824

Note that since n ≫ D1, the system Kα = k̂ is825

underdetermined. This means there are infinitely826

many solutions for α, and the Moore-Penrose pseu-827

doinverse gives the one with the smallest norm.828

A.2 Proof of Lemma 4.4829

We can focus on the logit difference between the830

largest and the second-largest logits to achieve high831

confidence in the final prediction. This difference is832

an important factor in determining the confidence833

of a prediction in a softmax layer.834

Here, we simplify the modeling by only consid-835

ering the contribution of edited layer towards final836

prediction via its the edited layer is connected to837

the final prediction layer directly via its attention838

layer839

Given a vector of logits z = [z1, z2, . . . , zn],840

the softmax function yields probabilities p =841

[p1, p2, . . . , pn], where:842

pi =
ezi∑n
j=1 e

zj
843

To increase the confidence in the prediction for844

the largest logit, maximize the difference between845

the largest logit and the second-largest logit.846

Let zmax be the largest logit and zother be another847

logit. The logit difference ∆ is given by: ϵ =848

zmax − zother.849

The softmax confidence for the class correspond-850

ing to zmax can be expressed as:851

pmax =
ezmax

ezmax + ezother +
∑

k ̸=max, other e
zk

(8)852

<
ezmax

ezmax + ezother
(9)853

=
1

1 + e−ϵ
(10)854

After organizing between two sides, we get a lower855

bound of ϵ for achieving a sufficiently large confi-856

dence: 857

ϵ > − log(1− 1

pmax
) (11) 858

Now, in a transformer architecture, the edited 859

MLP layer is connected to the word prediction layer 860

through an attention layer at the final token. Let 861

the difference between the original and the edited 862

output of the MLP layer be ∆v, the parameters of 863

the attention layer are WQ,WK ,WV ∈ RD×D and 864

the query vector at the prediction token is q = Qh, 865

the attention layer’s output is defined by 866

o =
∑
j

Softmax(qTWKvj)WV vj . (12) 867

Since in the locating part we use causal intervention 868

to identify the most influential position of tokens 869

to edit, we can assume that (qTWKvs) has already 870

get the largest weight. The difference caused by 871

edited MLP is, 872

∆o = Softmax(·)WV ∆v. (13) 873

Then, residual connections directly connect this 874

output to the final word prediction layer. Combin- 875

ing our result from equation 11, let the original fact 876

t before the edit has a logit gap ϵ1 and the new fact 877

t∗ after edit has ϵ2, we can bound the ∆o with, 878{
(wt − wt∗)

T oori > ϵ1

(wt∗ − wt)
T (oori +∆o) > ϵ2

(14) 879

⇒ (wt∗ − wt)
T∆o > ϵ1 + ϵ2 (15) 880

⇒ (wt∗ − wt)
TSoftmax(·)WV ∆v > ϵ1 + ϵ2

(16)
881

⇒ (wt∗ − wt)
TWV ∆v > ϵ1 + ϵ2 (17) 882

(18) 883

Given that the softmax weight is at most 1, we have 884

our lower bound on ∆v. 885

A.3 Proof of Lemma 4.6 886

For an edit to be robust, it must propagate correctly 887

to all semantically equivalent inputs. We derive 888

this requirement step by step: 889

1) From Lemma 4.4, a successful edit requires: 890

(wt∗ − wt)
TWV (v

∗ − vo) > ϵ1 + ϵ2 891

2) When querying with a semantically equivalent 892

key ks ∈ Ks, by Lemma 4.1, the retrieved value is: 893

v = kTs C
−1k∗ · v∗ = βs,∗ · v∗ 894

where βs,∗ represents the whiten similarity between 895

ks and k∗. 896

3) For robust editing, this retrieved value must 897

11



maintain the prediction gap:898

(wt∗ − wt)
TWV (βs,∗ · v∗) > ϵ1 + ϵ2899

4) Rearranging terms:900

(wt∗ − wt)
TWV (k

T
s C

−1k∗) · v∗T > ϵ1 + ϵ2,901

∀ks ∈ Ks902

This inequality must hold for all semantically903

equivalent keys ks ∈ Ks, establishing our robust-904

ness requirement.905

A.4 Proof of Lemma 4.7906

The specificity requirement ensures edits do not907

affect unrelated knowledge. We derive this as fol-908

lows:909

1) Consider an unrelated key ko /∈ Ks with origi-910

nal target tn. The corresponding output embedding911

is wn.912

2) To preserve specificity, the edit should not913

significantly alter predictions for unrelated inputs:914

(wn − wt∗)
TWV (k

T
o C

−1k∗) · v∗T < ϵ3915

3) This constraint must hold for:916

• All unrelated keys ko /∈ Ks917

• All possible target embeddings wn ∈ W918

4) Therefore, our specificity requirement is:919

(wn − wt∗)
TWV (k

T
o C

−1k∗) · v∗T < ϵ3,920

∀ko /∈ Ks, ∀wn ∈ W921

This establishes the formal criterion for main-922

taining specificity in knowledge editing. The re-923

quirement ensures that edits remain localized to the924

intended knowledge while not affecting unrelated925

retrievals.926

B Experimental Details927

B.1 Data Construction928

We build our evaluation data based on the Counter-929

Fact dataset. We further augment our data with all930

three robustness tests. For rephrased subjects by931

prompting gpt4o-mini with the following prompt.932

Give 10 rephrases representing the same933

entity: {ENTITY}934

The irrelevant long contexts are extracted from the935

Wikitext-103 dataset (Merity et al., 2016). The936

shuffled tokens are generated via sampling different937

word ordering. Finally, we filter the samples that938

are not present in the current LLM, that is, given939

the prefix, the target tokens are not predicted by the940

LLMs with the top-1 probabilities. We sample 100 941

samples for validation and 400 samples for test. To 942

evaluate in-domain and out-of-domain robustness, 943

we split the all three kinds of robustness queries 944

in a 50-50 manner. For each sample, we have 5 945

in-domain queries and 5 out-of-domain queries. 946

B.2 Analyzing Dissimilar Keys 947

In Section 5.2, for each subject in CounterFact, we 948

compute the dot product for each pair of keys of 949

a subject’s rephrases. We utilize the inputs to the 950

FFN’s down projection of layer 5 of LLaMA-2 as 951

our keys, consistent with previous ROME exper- 952

iments. Additionally, we include the dot product 953

values of randomly sampled keys as a baseline for 954

comparative analysis. We normalize the whiten 955

similarity by the similarities between the subject 956

itself. 957

B.3 Details of Training REP 958

We implement our methods based on 959

EasyEdit (Wang et al., 2023). We use Adam 960

optimizer for all experiments and the learning rate 961

is 5e-4. We train each adaptor for 10 steps. The 962

inner dimension of the projection module is 32, 963

and the inner dimension of gate module is 0.1 of 964

key dimension. 965

C Additional Results 966

Table 2 and 3 present the performance of ROME, 967

MEMIT, R-ROME, and EMMET methods, both 968

with and without the REP enhancement, across 969

CounterFact and ZSRE respectively. Across both 970

datasets, REP consistently improves model robust- 971

ness, particularly in in-domain generalization and 972

out-of-domain adaptability, despite minor trade- 973

offs in edit success rates. Results are averaged 974

over three seeds , with standard deviations indicat- 975

ing stable improvements. Notably, REP-enhanced 976

variants demonstrate superior fluency and locality 977

preservation, highlighting its effectiveness in bal- 978

ancing edit precision with broader generalization. 979

D Ablation Study 980

The gate threshold τ and consistency loss weight 981

α significantly influence REP’s performance, as 982

discussed in Section 6.1. Empirical analysis (Fig- 983

ures 5 and 6) demonstrates that increasing τ and 984

α improves locality preservation and edit success 985

rates. However, robustness metrics initially plateau 986
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Table 2: The main results of REP across three seeds comparing ROME, MEMIT, R-ROME, and EMMET editing methods
on Llama2-7B, Mistral-7B and Qwen2-7b on CounterFact dataset. REP consistently enhances model performance Results
averaged over three seeds with τ = 0.9, showing standard deviations. ↑ indicates higher values are better, ↓ indicates lower
values are better.

Edit Performance Generalization In-Domain Out-of-Domain

Model Method Success↑ Locality↑ Reversion↓ Para.↑ Fluency↑ Rephrase↑ Shuffle↑ Long↑ Rephrase↑ Shuffle↑ Long↑

Llama2

ROME 100.0 ± 0.0 96.1 ± 0.1 0.0 ± 0.0 63.8 ± 0.3 587.4 ± 1.2 61.0 ± 0.7 13.0 ± 0.9 89.8 ± 0.2 62.6 ± 0.1 13.7 ± 0.5 89.8 ± 0.5
+REP 100.0 ± 0.0 94.6 ± 0.2 0.0 ± 0.0 66.9 ± 0.3 587.5 ± 0.8 88.0 ± 0.2 59.9 ± 0.3 91.7 ± 0.2 75.5 ± 0.6 28.7 ± 1.9 91.3 ± 1.4

MEMIT 99.3 ± 0.5 91.2 ± 0.6 0.0 ± 0.0 71.9 ± 1.7 571.4 ± 2.6 73.3 ± 1.2 30.0 ± 0.9 92.3 ± 0.9 73.4 ± 0.7 32.0 ± 3.1 94.3 ± 3.3
+REP 99.4 ± 0.1 90.8 ± 0.2 0.0 ± 0.0 74.2 ± 0.1 567.2 ± 0.3 89.9 ± 0.4 58.9 ± 0.8 93.6 ± 1.1 84.4 ± 0.5 45.2 ± 0.8 94.2 ± 1.5

R-ROME 99.7 ± 0.5 95.8 ± 0.3 0.3 ± 0.5 62.1 ± 1.3 583.8 ± 3.3 58.9 ± 0.7 14.7 ± 0.8 89.5 ± 3.5 61.7 ± 1.3 16.1 ± 1.8 90.7 ± 0.5
+REP 99.9 ± 0.1 94.7 ± 0.4 0.0 ± 0.0 67.4 ± 0.2 586.0 ± 0.1 88.8 ± 0.5 60.3 ± 1.2 92.0 ± 0.2 76.5 ± 0.6 29.5 ± 1.4 92.0 ± 0.8

EMMET 99.7 ± 0.5 93.8 ± 0.2 0.0 ± 0.0 63.0 ± 1.3 584.0 ± 6.5 59.7 ± 2.3 16.3 ± 0.6 83.7 ± 0.2 60.9 ± 1.2 16.5 ± 1.5 83.0 ± 2.4
+REP 99.8 ± 0.2 92.2 ± 0.4 0.1 ± 0.1 68.4 ± 0.2 584.6 ± 0.8 94.4 ± 0.2 82.7 ± 1.0 88.4 ± 1.9 82.9 ± 0.3 42.5 ± 1.3 88.6 ± 2.2

Mistral

ROME 99.9 ± 0.1 94.1 ± 0.0 0.0 ± 0.0 69.1 ± 0.5 609.4 ± 0.8 71.1 ± 0.2 14.6 ± 0.2 94.6 ± 0.4 71.8 ± 0.3 14.3 ± 1.1 94.4 ± 0.3
+REP 99.8 ± 0.2 92.8 ± 0.1 0.1 ± 0.1 72.2 ± 0.2 610.0 ± 0.5 95.5 ± 0.2 84.6 ± 0.6 95.1 ± 0.4 84.8 ± 0.8 41.6 ± 0.5 94.7 ± 0.3

MEMIT 99.7 ± 0.3 89.2 ± 0.2 0.0 ± 0.0 76.8 ± 0.5 607.0 ± 0.9 84.0 ± 0.1 29.0 ± 0.3 95.0 ± 0.6 82.4 ± 0.4 28.6 ± 0.4 94.0 ± 0.5
+REP 98.5 ± 0.5 85.5 ± 0.1 0.0 ± 0.0 77.3 ± 0.6 605.5 ± 1.0 93.1 ± 0.5 75.1 ± 1.3 95.4 ± 0.4 89.2 ± 0.3 62.7 ± 0.7 94.3 ± 0.3

R-ROME 99.8 ± 0.1 93.7 ± 0.1 0.0 ± 0.0 70.5 ± 0.1 608.6 ± 0.9 73.2 ± 0.2 16.1 ± 0.4 95.5 ± 0.4 73.4 ± 0.3 16.0 ± 1.2 95.3 ± 1.2
+REP 99.7 ± 0.1 92.4 ± 0.0 0.1 ± 0.1 73.6 ± 0.1 609.4 ± 1.2 96.1 ± 0.1 86.9 ± 0.3 95.9 ± 0.2 85.9 ± 0.2 43.9 ± 0.5 95.4 ± 1.0

EMMET 99.8 ± 0.1 92.5 ± 0.2 0.1 ± 0.1 69.6 ± 0.9 609.0 ± 1.0 73.8 ± 0.5 16.7 ± 0.5 92.0 ± 0.7 73.5 ± 0.3 16.4 ± 0.6 91.4 ± 1.3
+REP 99.0 ± 0.0 89.9 ± 0.3 0.1 ± 0.1 74.2 ± 1.1 608.4 ± 0.3 98.2 ± 0.1 95.2 ± 1.0 93.6 ± 0.7 90.2 ± 0.3 58.7 ± 1.0 92.9 ± 1.5

Qwen2

ROME 99.6 ± 0.1 95.6 ± 0.1 0.0 ± 0.0 69.4 ± 0.3 620.4 ± 1.5 63.2 ± 0.3 20.0 ± 0.4 94.1 ± 0.3 62.7 ± 0.2 18.1 ± 0.5 93.9 ± 0.5
+REP 99.4 ± 0.1 91.0 ± 0.1 0.0 ± 0.0 73.1 ± 0.1 622.1 ± 1.9 81.0 ± 0.6 70.5 ± 0.5 95.9 ± 0.2 75.6 ± 0.0 65.4 ± 0.6 95.8 ± 0.5

MEMIT 99.6 ± 0.1 90.3 ± 0.2 0.4 ± 0.1 75.6 ± 0.1 620.1 ± 0.3 75.9 ± 0.6 31.4 ± 0.9 97.6 ± 0.1 74.8 ± 0.4 29.7 ± 0.9 96.6 ± 0.3
+REP 99.7 ± 0.1 81.8 ± 0.1 0.0 ± 0.0 79.7 ± 0.2 620.2 ± 2.2 95.7 ± 0.2 81.7 ± 1.2 98.0 ± 0.1 89.7 ± 0.1 72.3 ± 1.5 96.9 ± 0.2

R-ROME 99.8 ± 0.0 96.2 ± 0.1 0.2 ± 0.0 68.5 ± 0.4 621.0 ± 0.4 63.1 ± 0.3 20.2 ± 0.3 93.8 ± 0.2 62.3 ± 0.1 18.4 ± 0.4 93.3 ± 0.9
+REP 99.9 ± 0.1 91.9 ± 0.1 0.1 ± 0.1 72.4 ± 0.5 621.1 ± 0.2 81.4 ± 0.3 70.8 ± 0.8 95.7 ± 0.5 75.5 ± 0.2 64.8 ± 0.9 94.5 ± 1.1

EMMET 99.8 ± 0.0 92.5 ± 0.1 0.2 ± 0.0 72.2 ± 0.1 619.5 ± 0.2 71.5 ± 0.7 31.3 ± 0.6 96.2 ± 0.4 70.5 ± 0.9 30.0 ± 0.4 96.7 ± 0.6
+REP 99.9 ± 0.1 76.4 ± 0.8 0.0 ± 0.0 78.5 ± 0.4 621.0 ± 2.6 92.9 ± 0.3 88.4 ± 0.9 97.0 ± 0.1 89.2 ± 0.3 87.1 ± 1.3 97.4 ± 0.6

0.7 0.8 0.9 0.95
tau

0.92

0.94

0.96

0.98

1.00

Va
lu

e

(a) Success and Locality

Success
Locality

0.7 0.8 0.9 0.95
tau

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Va
lu

e

(b) In-domain Metrics

ID Rephrase
ID Shuffle
ID Long

0.7 0.8 0.9 0.95
tau

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
Va

lu
e

(c) Out-of-domain Metrics

OD Rephrase
OD Shuffle
OD Long

Figure 5: Hyper-parameter study of τ on validation set.

before deteriorating with further parameter esca-987

lation, underscoring the need to balance precision988

against generalization. This trade-off analysis justi-989

fies our selection of τ = 0.9 and α = 1e+5, which990

optimally reconcile competing objectives across991

experiments.992

E Case Visualization993

Figure 7 (right) provides a visualization of rep-994

resentations for the subject ’Slovenia’ after three995

types of perturbations, reduced to two dimensions996

using Principal Component Analysis (PCA). This997

visualization corroborates our previous findings:998

(1) Context sensitivity: Long irrelevant context999

induces a slight shift in the representation, indi-1000

cating contextual influence on subject encoding.1001

(2) Rephrase variability: Rephrased versions of 1002

the subject sometimes cluster close to the original 1003

representation, while at other times they are dis- 1004

tant. (3) Order dependence: Shuffling the word 1005

order results in substantial deviations from the orig- 1006

inal representation. This observation highlights the 1007

model’s sensitivity to word order, even when the 1008

constituent tokens remain unchanged. 1009

When the edited key has near-zero or negative 1010

similarity with other keys, based on Lemma 4.6 it 1011

becomes virtually impossible for the edited value 1012

to be retrieved, potentially compromising the ro- 1013

bustness of the edit. 1014

F Analyzing Value Distributions 1015
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Table 3: The main results of REP across three seeds comparing ROME, MEMIT, R-ROME, and EMMET editing methods on
Llama2-7B, Mistral-7B and Qwen2-7b on ZSRE dataset. REP consistently enhances model performance. Results averaged over
three seeds with τ = 0.9, showing standard deviations. ↑ indicates higher values are better, ↓ indicates lower values are better.

Edit Performance Generalization In-Domain Out-of-Domain

Model Method Sucess Locality Reversion Fluency Rephrase Shuffle Long Rephrase Shuffle Long

Llama2

ROME 92.1 ± 0.1 99.6 ± 0.0 0.5 ± 0.0 566.1 ± 1.8 44.4 ± 0.3 4.7 ± 0.1 68.2 ± 0.6 44.2 ± 0.9 4.5 ± 0.3 68.3 ± 1.0
+REP 90.0 ± 0.5 99.6 ± 0.0 0.6 ± 0.1 567.2 ± 1.8 72.3 ± 0.2 51.5 ± 0.3 72.5 ± 0.2 58.0 ± 0.7 24.9 ± 0.4 71.2 ± 1.7

MEMIT 88.5 ± 0.6 99.4 ± 0.1 0.5 ± 0.0 545.1 ± 2.6 53.7 ± 0.8 13.0 ± 0.9 72.0 ± 1.9 54.5 ± 0.6 12.7 ± 0.5 71.2 ± 2.3
+REP 87.1 ± 0.1 99.4 ± 0.1 0.5 ± 0.0 543.3 ± 2.3 57.0 ± 0.3 17.4 ± 0.6 71.9 ± 1.9 56.2 ± 0.6 14.5 ± 0.2 71.8 ± 1.5

R-ROME 92.1 ± 0.2 99.7 ± 0.0 0.5 ± 0.0 565.0 ± 0.9 43.1 ± 0.9 4.6 ± 0.2 68.7 ± 0.4 43.1 ± 1.1 4.4 ± 0.3 68.7 ± 1.4
+REP 89.8 ± 0.3 99.7 ± 0.0 0.8 ± 0.2 562.0 ± 2.2 71.4 ± 0.6 51.2 ± 0.7 72.4 ± 0.2 57.2 ± 0.9 25.2 ± 0.9 72.0 ± 1.7

EMMET 86.6 ± 1.4 99.7 ± 0.1 0.5 ± 0.0 563.8 ± 0.9 33.0 ± 1.3 2.8 ± 0.3 52.1 ± 2.6 33.0 ± 1.1 2.8 ± 0.3 52.7 ± 3.9
+REP 84.7 ± 1.3 99.7 ± 0.1 0.7 ± 0.1 561.6 ± 2.0 66.7 ± 2.3 50.9 ± 2.2 59.4 ± 2.2 50.0 ± 1.8 22.6 ± 1.8 59.7 ± 3.7

Mistral

ROME 97.2 ± 0.3 99.5 ± 0.1 1.6 ± 0.1 584.0 ± 2.5 49.2 ± 0.4 4.2 ± 0.4 77.2 ± 0.1 50.3 ± 0.9 4.1 ± 0.7 78.3 ± 0.9
+REP 93.1 ± 0.6 99.5 ± 0.1 1.5 ± 0.0 584.6 ± 1.0 84.3 ± 0.8 74.1 ± 1.1 78.6 ± 0.6 71.5 ± 1.5 40.8 ± 1.5 79.1 ± 1.4

MEMIT 94.1 ± 1.0 99.4 ± 0.1 1.4 ± 0.1 579.6 ± 3.1 60.5 ± 0.8 12.4 ± 0.8 80.9 ± 2.2 62.1 ± 1.2 11.9 ± 0.3 81.8 ± 1.2
+REP 90.2 ± 0.7 99.4 ± 0.1 1.3 ± 0.0 579.0 ± 1.6 68.9 ± 1.9 36.5 ± 2.4 80.0 ± 1.9 66.1 ± 1.7 25.9 ± 1.6 80.8 ± 1.6

R-ROME 97.5 ± 0.2 99.6 ± 0.2 1.6 ± 0.1 585.5 ± 2.5 50.1 ± 0.4 4.3 ± 0.3 78.4 ± 0.8 50.9 ± 0.7 4.4 ± 0.8 78.8 ± 1.1
+REP 93.3 ± 0.7 99.6 ± 0.2 1.6 ± 0.1 585.0 ± 4.3 84.9 ± 0.7 75.6 ± 0.7 79.3 ± 0.6 72.0 ± 1.6 42.4 ± 1.5 80.3 ± 1.4

EMMET 95.9 ± 0.3 99.5 ± 0.1 1.7 ± 0.1 588.0 ± 0.9 41.8 ± 1.2 2.9 ± 0.5 52.8 ± 4.2 42.4 ± 1.4 2.7 ± 0.3 52.6 ± 5.4
+REP 90.2 ± 1.0 99.5 ± 0.1 1.6 ± 0.1 589.1 ± 1.8 83.0 ± 0.6 76.1 ± 0.7 61.0 ± 3.2 68.4 ± 1.5 44.8 ± 2.0 60.2 ± 4.2

Qwen2

ROME 98.3 ± 0.1 98.9 ± 0.2 2.0 ± 0.0 562.1 ± 3.7 53.8 ± 0.2 11.0 ± 0.5 76.8 ± 0.4 55.9 ± 0.1 11.0 ± 0.9 77.5 ± 1.1
+REP 97.0 ± 0.4 97.4 ± 0.0 2.0 ± 0.0 568.8 ± 2.9 64.2 ± 0.4 42.2 ± 1.0 80.6 ± 0.5 61.7 ± 0.8 36.0 ± 0.4 79.2 ± 1.0

MEMIT 95.4 ± 0.2 98.2 ± 0.1 1.5 ± 0.0 573.9 ± 5.8 62.4 ± 0.3 22.2 ± 0.3 88.8 ± 1.6 65.2 ± 0.3 22.1 ± 0.8 89.2 ± 0.5
+REP 94.2 ± 0.3 97.2 ± 0.1 1.6 ± 0.1 576.4 ± 4.1 78.7 ± 0.9 51.9 ± 2.0 88.8 ± 1.5 74.8 ± 0.7 41.2 ± 2.4 89.0 ± 0.4

R-ROME 98.2 ± 0.2 98.8 ± 0.1 2.0 ± 0.0 571.5 ± 2.2 54.2 ± 0.3 11.5 ± 0.5 77.2 ± 1.3 56.7 ± 0.1 12.0 ± 0.8 76.7 ± 1.5
+REP 96.0 ± 0.2 97.4 ± 0.1 2.2 ± 0.3 575.5 ± 3.3 66.3 ± 1.0 45.3 ± 0.4 80.0 ± 2.1 63.3 ± 0.7 38.8 ± 0.5 78.9 ± 2.5

EMMET 94.6 ± 0.2 97.7 ± 0.3 1.5 ± 0.0 570.6 ± 4.2 58.5 ± 0.5 17.7 ± 0.4 75.2 ± 1.8 60.3 ± 0.7 18.9 ± 0.5 75.6 ± 0.9
+REP 91.4 ± 0.3 91.7 ± 0.1 1.8 ± 0.2 574.5 ± 4.6 78.2 ± 0.5 70.7 ± 0.5 77.2 ± 1.8 75.0 ± 0.9 67.6 ± 1.0 77.2 ± 0.8
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Figure 6: Hyper-parameter study of consistency loss weight α on validation set.

Loud Voices. In Figure 8, we present the dis-1016

tribution of values before and after edits, using1017

LLaMA-2 7B and ROME. The results demonstrate1018

that post-edit values exhibit significantly larger L21019

norms compared to pre-edit values. This observa-1020

tion aligns with our findings in Lemma 4.4 and1021

4.6, which suggest that edited values must be suf-1022

ficiently large to effect changes on the current key1023

and influence distant keys.1024

However, this increase in value magnitude, while1025

necessary for effective editing, presents potential1026

challenges. As indicated by Lemma 4.7 and our1027

previous analysis, these ’loud’ values may inad-1028

vertently affect unrelated keys, particularly those1029

that are proximal in the representation space to the1030

one being edited. This observation highlights a ten- 1031

sion between achieving targeted edits and avoiding 1032

unintended consequences in the model’s broader 1033

knowledge representation. 1034

Summary. Our findings collectively suggest that 1035

the inner representations of large language models 1036

(LLMs) may not serve as reliable keys for editing 1037

purposes. The observed variability in key similari- 1038

ties, even among semantically equivalent subjects, 1039

coupled with the necessity for large-magnitude 1040

value changes, poses significant challenges for pre- 1041

cise and controlled model editing. These issues 1042

can lead to unintended effects on unrelated parts of 1043

the model’s knowledge and compromise the speci- 1044

ficity of edits. Furthermore, the sensitivity of rep- 1045
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Figure 7: A visualization for key representations of rephrases
for ‘Slovenia’ in LLaMA2-7B.
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Figure 8: Values before and after edit with ROME.

resentations to word order and context underscores1046

the instability of using these internal states as edit1047

targets. These limitations motivate us to explore1048

alternative approaches, particularly the concept of1049

branching a separate path for keys. By creating a1050

dedicated pathway for key representations, we may1051

achieve more stable and controllable edit targets,1052

potentially mitigating the issues of representation1053

variability and unintended side effects observed1054

when directly manipulating the model’s inner rep-1055

resentations.1056
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