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Abstract
Enhancing the accuracy and robustness of bionic
limb controllers that decode motor intent is a
pressing challenge in the field of prosthetics.
State-of-the-art research has mostly focused on
Supervised Learning techniques to tackle this
problem. However, obtaining high-quality labeled
data that accurately represents muscle activity dur-
ing daily usage remains difficult. In this work, we
investigate the potential of Reinforcement Learn-
ing to further improve the decoding of human
motion intent by incorporating usage-based data.
We propose a new method which starts with a
control policy, pretrained on a static recording of
electromyograhic (EMG) ground truth data. We
then fine-tune the pretrained classifier with dy-
namic EMG data obtained during interaction with
a game environment developed for this work. We
evaluate our approach in real-time experiments,
showing substantial improvements for human-
in-the-loop performance. The method proves
more effective in predicting simultaneous finger
movements, doubling the decoding accuracy both
during gameplay and in a separate motion test.
See our project page for visual demonstrations
sites.google.com/view/bionic-limb-rl.

1. Introduction
Roughly 58 million people were living with limb amputa-
tion worldwide, as of 2017 (McDonald et al., 2021). Even
though extensive research efforts have gone into develop-
ing prosthetic devices, these are still far from human-level
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performance. As a consequence, the adoption of prosthe-
ses is effortful, and abandonment rates are high, with one
of the main factors being a lack of reliable functionality
(Cordella et al., 2016; Smail et al., 2021). The performance
of a prosthesis greatly depends on the accuracy with which
the user’s motion intent can be decoded to determine the ap-
propriate bionic joint actuation. There are several biological
signals that can be used to determine human motion intent,
such as electroencephalography (EEG) or electromyogra-
phy (EMG) measurements. The latter has been shown to
be more practical and is more widely adopted (Jiang et al.,
2010; Li et al., 2021), and is therefore used in this work.
EMG can be recorded either through surface or implanted
electrodes (Ortiz-Catalan et al., 2014). In myoelectric pros-
thetic control, there are two main approaches used to decode
motor intent for actuating bionic limb joints:

Direct control, involves mapping individual muscle signals,
often on a one-to-one basis, to a specific bionic joint. When
a mapped muscle contracts and its signal value surpasses
a predetermined threshold, the corresponding bionic joint
is actuated. This approach is appealing due to its intuitive-
ness and simplicity, but its applicability is limited because
many muscles, and thereby their signals, are lost during
amputation. Consequently, people with amputation are of-
ten left with a sparse set of usable signals. Moreover, the
few signals available are often not easily separable and thus
cannot always be mapped in a one-to-one fashion. In prac-
tice, direct control frequently involves mapping only two
antagonistic muscle groups, with mode switching employed
to control more than one Degree of Freedom (DOF). For
example, the user might sustain an open hand movement to
switch between types of hand grasps.

Pattern recognition control, employs Machine Learning
(ML) algorithms to train a function approximator. This
method addresses the issue of signal separability, allowing
the user’s biological signals to be mapped to the intended
motion. In other words, the user can execute different con-
traction patterns, and the ML algorithms decode the asso-
ciated motor intent (Kuiken et al., 2016). According to
Mereu et al. (2021), this approach is preferred over direct
control by people with amputation because it is more in-
tuitive. Many ML approaches have been tested to reliably
decode motor intent, from classical algorithms like support
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Figure 1. Selected finger movements, grouped by number of simultaneous DOFs. Top row consists of finger extension movements, while
bottom row consists of finger flexion movements. Each movement is labeled as mi with i = 0, . . . , 12 and with m0 referring to ‘Rest’.

vector machines (Oskoei & Hu, 2008), to deep learning
algorithms using Artificial Neural Networks (ANNs). Pre-
vious work on pattern recognition control has primarily
focused on Supervised Learning (SL) approaches with dif-
ferent ANN architectures, such as feed-forward (Hudgins
et al., 1993), recurrent (Williams et al., 2022; Luu et al.,
2022) and transformers (Godoy et al., 2022).

One of the drawbacks of SL methods is that they require la-
beled EMG data. This typically involves instructing the user
to repeatedly contract their muscles to generate activation
patterns for each movement that is to be trained during a
lengthy recording session. Collecting such ground-truth data
becomes increasingly cumbersome as the number of DOFs
grows. The problem is only exacerbated when simultane-
ous movements are also considered (e.g. open hand while
rotating wrist) since each movement combination needs to
be present in the data.

In this work, we propose a novel training procedure for
simultaneous myoelectric control based on Reinforcement
Learning (RL) to (a) record data closely resembling real-
life scenarios (b) increase viable training tasks and (c) help
mitigate potentially cumbersome recordings. In contrast to
SL methods, RL allows learning by trial-and-error while
interacting with an environment. Moreover, instead of trying
to clone the behavior observed in the recording session, RL
can optimize a policy based on interactive data and a reward
function. By selecting a reward function which encodes
accurate decoding of motor intent, we aim to improve the
performance of myoelectric control policies. Notably, RL
can be applied to any Markovian task that gives a measure
of success, opening up the possibility for users to give direct
feedback to the control policy, based on their preferences.

To that end, we developed a simplified training environment,
which allows for a quantifiable measure of improvement.
The training environment includes a game inspired by Guitar

Hero, which requires the execution of the correct motions
at the correct time and for the appropriate duration. The
task was developed especially with a simultaneous control
setting in mind since any combination of movements can
be implemented. Our results demonstrate the efficacy of
RL in improving the decoding of motor intent, with a three-
fold increase in normalized cumulative reward (from 0.26
to 0.78) and a more than two-fold increase in Exact Match
Ratio (EMR) compared to a policy pretrained using SL. Ad-
ditionally, the generalizability of our approach is validated
through testing on a separate task, also revealing a two-fold
increase in EMR and thus reinforcing our findings.

2. Related Work
RL methods for prosthetics have received limited explo-
ration. Nevertheless, some promising approaches have
emerged in the literature. In this section, we highlight some
of the related work on RL for myoelectric control.

For lower limb prosthetics, De Vree & Carloni (2021)
showed that simulation-based RL can help to study gate
patterns. However, erratic patterns observed in simulations
limit their direct applicability as control mechanisms in
real-life scenarios. Wen et al. (2019) propose an RL-based
method that uses position, velocity, and force measurements
from bionic legs as inputs, allowing for personalized knee
control. This approach enables online learning of param-
eters and has been tested on both able-bodied individuals
and amputees. Wu et al. (2022) builds upon this work by
additionally tracking the intact knee for improved control.

For upper limb prosthetics, Edwards et al. (2016) present
an RL-based approach that learns adaptive mode switching.
This method enhances the usability of upper limb direct
prosthetic control by reducing the number of mode switches
required to perform tasks. Pilarski et al. (2011) propose an



Improving Bionic Limb Control through Reinforcement Learning

RL method that predicts arm movements using EMG and
robot state information. The agent learns to match the hu-
man arm angle using velocity-based control. They initially
guide the learning through a reward based on proximity to
the desired angle and, subsequently through sparse human
feedback. Vasan & Pilarski (2017) presented a system that
allows for the control of 3 simultaneous DOFs, of a pros-
thetic limb. This was achieved by employing RL, to train an
ANN while recording EMG data of hand movements. Their
method was able to predict proportionality for each DOF
and was successfully tested on three able-bodied subjects.

3. Motivation
This work is motivated by limiting factors, which prevent the
development of intuitive and reliable control of prostheses.
There are three main aspects which we want to highlight:

Firstly, the real-time usability of ML-based controllers re-
mains limited, especially for hand gestures (Li et al., 2021).
Indeed, much of prosthetics research using ML methods
is confined to evaluations using pre-recorded, offline data.
This is notable, as high offline performance in decoding mo-
tor intent does not guarantee the same online performance,
with a human in the loop (Ortiz-Catalan et al., 2015). As
we aim to reach ML solutions which are clinically relevant
and of practical applicability in real-life settings, we priori-
tize low runtime complexity and focus on improvements in
online, human-in-the-loop tests.

Secondly, a majority of ML research in prosthetics relies on
SL methods using data from recording sessions, which can
differ from natural muscle activity during daily usage. This
discrepancy between training data and real-life usage can
hinder robust control and thereby impact the functionality
of ML-based prostheses. To address this issue, we propose
training a classifier within a more interactive setting, which
can be more representative of daily life scenarios. In essence,
we choose to apply RL on interactive data, in order to bridge
the distributional gap between training and usage. Moreover,
by having the user interact with the environment with the
learned RL policy, there is an implicit human feedback
embedded in the collected data.

Thirdly, as discussed in Vasan & Pilarski (2017), by for-
mulating the prosthetic control task as an RL problem we
also open up the possibility to apply our method to a wider
range of tasks. While in this work we present a proof-of-
concept for a specific game environment, one could adapt
our methods to include real-life tasks, tailored to the pa-
tient’s need. Specifically, it could allow for personalized
adaptation through direct user feedback, which has been
demonstrated to be a powerful approach, referred to as
Reinforcement Learning from Human Feedback (RLHF)
(Ouyang et al., 2022).

Figure 2. EMG recording setup, with sliding window over 8 input
channels. The Hudgins et al. (1993) features are extracted for each
recorded channel.

4. Preliminaries
In this section we aim to introduce the key concepts which
make up our proposed method, namely myoelectric control
in Section 4.1 and RL in Section 4.2.

4.1. Myoelectric Control

When designing a myoelectric controller, a key choice is
to decide on the specific movements to control. This deci-
sion hinges on the participant’s amputation level; greater
proximal limb loss precludes control of movements tied
to now-absent muscles. Although our method is broadly
applicable, we focus on finger movements corresponding
to common grasp patterns, shown in Fig. 1. Incongruent
articulations (flex + extend combinations) are not selected as
there is evidence that natural control of such motions is not
simultaneous (Rosenbaum, 2009). This selection of finger
movements would be feasible for people with trans-radial
amputation. Alternatively, they would be reasonable for pa-
tients who have lost the limb more proximal but underwent
nerve transfer surgery to create additional myoelectric sites
(Ortiz-Catalan et al., 2020; Osborn et al., 2021).

To acquire EMG signals, eight surface electrodes are placed
on the forearm of the participant, with an additional elec-
trode for ground, as illustrated in Fig. 2. The electrodes are
placed in a bipolar configuration, i.e. for each channel, two
adjacent signals are subtracted from one another to reduce
noise. The EMG data stream of these eight channels is split
with a sliding window approach, into 200 ms windows with
150 ms overlap, equating to an update frequency of 20 Hz.

A common approach to overcome the problem of having
high dimensional raw EMG data is to extract a set of four
features proposed by Hudgins et al. (1993) from the win-
dowed EMG data. The features in question are: mean abso-
lute value (MAV), waveform length in time-domain (TWL),
number of zero crossings (ZC) and slope changes (SLPCH).
The input to the myoelectric control policy is the stacked
vector of these features for each channel (see Fig. 2).
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Figure 3. The used RL framework consists of obtaining EMG signals from humans, that are given to the policy to perform actions in an
environment. This environment then gives a reward based on how successful an action was.

Note how for each DOF (Thumb, Index and Middle, see Fig.
1), there are two movements (Flex and Extend). Clinically,
sequential myoelectric control is prevalent. This means that
for each possible DOF that a prosthesis can actuate, only one
can be active at any given time (m1 to m6). In such cases,
the ML problem is formulated as a simple classification task.
However, since dexterous manipulation requires simultane-
ous actions, there have been attempts to control multiple
DOFs at the same time (Jiang et al., 2008; Ameri et al.,
2018). The most straightforward approach is to treat each
movement combination as a new class. Alternatively, we
can formulate the ML problem as a multi-label classification
task instead. To that end, each movement is encoded into
a binary vector mi ∈ {0, 1}2·DOF+1, with DOF = 3. For
example, simultaneous thumb and index flexion is encoded
as:

m8 =
[ ︸︷︷︸

Thumb

0 1 ︸︷︷︸
Index

0 1 ︸︷︷︸
Middle

0 0 ︸ ︷︷ ︸
Rest

0
]

(1)

The control policy is chosen to be a relatively small feed-
forward, fully-connected (6 hidden layers with ReLU activa-
tion, each with 128 neurons) ANN architecture (see Molin
(2022) for more details), in order to allow easy transfer to
an embedded device. The output layer has a sigmoid activa-
tion function, outputting values between [0, 1]. At test time,
outputs are rounded to be exactly {0, 1}.

To evaluate the policy’s capability of decoding motor in-
tent, we calculate the EMR and the F1 macro scores. In the
context of ML, the EMR corresponds to the classification
accuracy, however, in a multi-label setting, this terminology
can be ambiguous. For this reason, we refer to the EMR in-
stead, which measures the proportion of correct predictions
out of all predictions made by the classifier. When comput-
ing the EMR, even partially correct answers are considered
completely incorrect, emphasizing the requirement for pre-
cise and accurate predictions. Nevertheless, if some but not
all of the target labels are predicted, one could argue that
this is more accurate than a case in which none of the target
labels are predicted. Therefore we additionally consider the

F1 score for evaluation, which offers a class-wise assess-
ment of performance and is a commonly used indicator for
multi-label classification tasks (Yang, 1999). The F1 score
for each class, i = 1, . . . , N , is computed as:

F1i =
TPi

TPi + 0.5(FPi + FNi)
(2)

where TP denotes True Positives, FP represents False Posi-
tives, and FN corresponds to False Negatives. The F1 macro
score is obtained by taking the macro average:

F1macro =
1

N

N∑
i=1

F1i (3)

Together, these evaluation metrics provide comprehensive
insights into the effectiveness of the classifier for multi-label
classification tasks.

4.2. Reinforcement Learning

The idea behind RL is to learn a policy from trial-and-error
while interacting with the environment which provides a
reward signal. More formally, RL problems are formu-
lated as Markov Decision Processes (MDPs). In this work,
we consider an episodic MDP setting, defined as a tuple
(S,A, p, r, γ), where r : S → R is a reward function and
γ ∈ (0, 1] is the discount factor. S and A are the state and
action spaces, respectively. The probability density function
p(st+1|st, at) represents the probability of transitioning to
state st+1, given the current state st and action at, with
st, st+1 ∈ S and at ∈ A.

We aim to learn an ANN policy πθ(st) = at, i.e. the
actor, parameterized by θ. The long-term objective function
is defined by the return, which is the sum of discounted
future rewards: Gt =

∑T
k=t γ

k−tr(sk), where t and T are
the current and terminal state’s indices, respectively. RL
algorithms aim to maximize the expected return conditioned
on states, i.e. the state-value V (s), or state-action pairs, i.e.
the action-value Q(s, a). In deep RL Qϕ(s, a), also referred
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to as the critic, is modelled by an ANN parameterized by ϕ.
Typically in actor-critic methods, the actor is updated such
that Q(s, a) is maximized:

θk+1 = argmax
θ

E [Qϕ(s, πθk(s))] (4)

For our application, the RL agent is a combination of the
human and the ANN policy. The former contracts their
muscles to execute an intended movement, and the latter
maps the recorded EMG signals to the correct movement.
Online RL presents unique challenges when humans are
involved. Firstly, participants having to adapt to policy
changes can lead to a less satisfactory experience due to
inconsistency between policies. Secondly, the interaction
between the human and the environment needs to be real-
time, since significant lags between the commands of the
human and the game would lead to actions at in response to
earlier states st−l, where l is the lag. Applying online RL
could slow down the game interface, creating such lags.

An alternative that has been gaining interest in the literature
is offline RL (Levine et al., 2020), which aims to learn from
a static dataset, D. This solves the aforementioned prob-
lems but brings its own challenges. Because pure offline
RL assumes no additional online data collection, it usually
cannot reach acceptable online results without additional
fine-tuning. The recent Advantage Weighted Actor-Critic
(AWAC) algorithm proposed by Nair et al. (2020) aims
to accelerate such online fine-tuning with offline datasets.
AWAC trains an off-policy critic and an actor with an im-
plicit policy constraint. This leads to the modified policy
update as described as:

θk+1 = argmax
θ

E
[
log πθ exp

(
1

λ
A (s, πθk(s))

)]
(5)

where A (s, a) = Qϕ(s, a)−V (s), is the advantage function
and λ is the Lagrangian multiplier. By implicitly constrain-
ing the actor to stay close to the actions observed in the
data, this algorithm was shown to be able both effectively
train offline and to continue improving with experience, on
real-world robotic problems.

5. Methods
We now present an overview of the proposed framework
in Section 5.1, followed by the pretraining procedure in
Section 5.2, the RL formulation of the problem in Section
5.3 and the evaluation procedure in Section 5.4.

5.1. Overview

Our framework is illustrated by the block diagram in Fig. 3.
The starting point of our method is to execute the traditional
procedure for training an SL policy. That is, we perform a

recording session where the subject is prompted to repeat-
edly execute each movement for a certain duration of time.
The resulting raw EMG data is then processed as described
in Section 4.1 and labeled with the corresponding binary
vector mi for each movement class i, to create an initial
dataset, D0 ∼ (S,A).

A policy π0 is subsequently trained through SL using D0.
This initial policy is then used to play a game similar to
Guitar Hero. The goal of the game is to execute the correct
movements, precisely initiating them at the right moment
and sustaining them for the specified duration, as if to play
notes in a song. After the participant finishes the first song,
the new EMG data recorded during the game form a dataset
D1 ∼ (S,A, {−1, 0, 1}). This new dataset is then used to
train a policy π1 through an offline RL implementation, with
policy π0 as the starting point. The resulting policy replaces
the previous one to play the song again. This process is
repeated n times, with each repetition appending the dataset
i.e. D1 ⊂ D2 ⊂ . . . ⊂ Dn. For our experiments, we
repeated the procedure for n = 8 times.

5.2. SL Pretraining

Each movement (see Fig. 1) is recorded 6 times, with a
duration of 3 s for each repetition. The first and last 10%
of each recording is discarded to omit transient EMG. Sub-
sequently, the resulting D0 dataset is used to train an ANN
described in Section 4.1. The second and fifth recordings
are exclusively reserved as the validation set to determine
the best model. Following 500 training epochs, the model
with the highest F1 macro score on the validation set is
selected as the baseline policy and will be referred to as the
pretrained model, i.e. π0.

Typically, multi-label classification problems treat each out-
put as the probability of each class being present in the input,
by minimizing the sum of binary cross-entropy losses of
all classes. Instead, we use a simple RMSE loss, which
is more generally used in Behavior Cloning applications
(Azam et al., 2021) (i.e. SL for control applications).

5.3. RL Formulation

While in Section 4.2 we presented the general RL frame-
work, here we introduce the details of our MDP formulation.
We select γ = 0.89 and λ = 0.95, following a hyperparam-
eter optimization process (see Appendix A). The state space
S ∈ R32 is defined as the stacked vector of 4 features for
all 8 channels, as illustrated in Fig. 2. The action space
A ∈ {0, 1}7 is the binary vector described in equation (1).
Finally, the reward function is defined as:

r(st) =


1 if at = a∗t ∧ a∗t ̸= m0

0, if at = a∗t ∧ a∗t = m0

−1, otherwise
(6)
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Figure 4. Game interface. Each vertical line refers to a controlled
DOF: Thumb (red), Index (yellow) and Middle (blue). The
arrows pointing up or down refer to extension and flexion, re-
spectively. Desired movements are shown along the vertical lines,
while predictions are displayed on the diamonds by short arrows,
indicating the direction and DOF that is activated. When the agent
executes the desired movement, a green arrow appears over the di-
amond of the specific DOF (left). Conversely, when the movement
is incorrect the arrows are shown in white (right).

where a∗t is the correct movement at time t. The reward
function plays a crucial role in the effectiveness of RL for
any given task. Our objective is to train a policy that can
accurately predict all movements made by the participant.
As described by equation (6), we assign a reward of 1 to cor-
rect predictions and a reward of -1 to incorrect predictions.
Furthermore, when no movement is desired. i.e. a∗t = m0,
and the ‘Rest’ class is predicted we assign zero reward.

The final element of our RL formulation is the environ-
ment itself, represented by probability density function
p(st+1|st, at). To avoid ambiguous results and make it
easier to evaluate the performance of the policy-human
agent, we designed a task that involves distinct movements
at defined times. This simplifies the process of assigning
rewards to the policy. Moreover, in order to make the train-
ing process more engaging, we developed a serious game
environment similar to Guitar Hero, shown in Fig. 4. Note
that gamification has been shown to increase participant
engagement in previous studies (Prahm et al., 2018).

The serious game (see Fig. 4) involves syncing movements
to the beat of a song and displaying them in a way that
mimics playing notes. The timing and correctness of the
movements can be easily tested in this way. Each song cor-
responds to one RL episode, with movements lasting for
0.5, 1.0, 1.5, and 2.0 seconds. These lengths were chosen to
align with the time needed for the average prosthetic hand
to move, with 2 seconds being the maximum time elapsed
from one extreme to the other. Each movement appears
once for each length in one song, thus with 4 repetitions
overall. Every repetition uses the same song to allow for a
fair comparison. Each episode lasts for 137 seconds, with
60 seconds of these filled with notes. For this setting, each
episode’s undiscounted (γ = 1) return falls within the range
G0 ∈ [−2740, 1200], which is used to normalize the re-

sults. However, seeing a negative score could demotivate
the participants while interacting with the game. There-
fore, we defined a scoring system that is always positive but
follows the same trend as the episode’s return. The score
was displayed on the top left of the user interface to help
participants keep track of their performance.

Based on the proposed RL formulation, we apply the AWAC
algorithm introduced in Section 4.2 to train the myoelectric
control policy. As one episode provides relatively little data,
we include all recorded gameplay data in the replay buffer.
In order to enhance the dataset and introduce exploration,
we apply data augmentation by randomizing samples within
dataset Dn. To ensure a smoother playtime experience, the
randomization process occurs after each episode, before
training rather than in real-time. This randomization hap-
pens with a probability ϵ for samples with negative rewards.
If triggered, a movement from Fig. 1 is selected based on
a uniform probability distribution. Subsequently, a new
reward is calculated for the selected movement.

5.4. Evaluation

Policy evaluation is important for two main purposes: (i)
model selection and (ii) method validation.

Model selection is necessary because deep RL algorithms
do not monotonically improve the learned policy. Indeed,
determining if under- or over-fitting occurs is still an open
problem (Kumar et al., 2021). Thus, in each training repeti-
tion, the best result may not be the last policy. Consequently,
intermediate policies are tested based on all recorded game
data so far. While the best procedure for model selection is
to have the participant test each policy online, we want to
minimize the amount of tests one must carry out, to prevent
fatigue. Instead, during training, the song is simulated using
the recorded data as input to each intermediate model to ob-
serve how the episode return improves. For each repetition,
we choose the policy that has the highest simulated episode
return, after 2000 gradient steps (see Appendix A). This
showed increased performance compared to simply training
for a predefined length and taking the last policy.

Method validation is a challenging task, as offline and on-
line performances do not necessarily align in EMG control.
Ideally, a classifier has to be tested online to come to a valid
conclusion about its effectiveness. The episode return is
such an online metric of performance, and we further com-
pute the EMR and F1 macro scores, introduced in Section
4.1, for each song repetition. However, to not just evaluate
our approach on gameplay data, which the pretrained policy
did not train on, we also perform a separate online Motion
Test (Kuiken et al., 2009). This test is performed at the end
for both π0 and π8 in a randomized manner, to compare the
SL policy with the final RL policy. During a Motion Test,
participants are prompted to execute each movement a given
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number of times, and the classification results are recorded.
We have the participant repeat each movement 3 times in
random order. For each trial, if the correct movement is
predicted 40 times (i.e. for 2 seconds) the test is considered
successful. Otherwise, a timeout of 10 seconds is reached.
The next movement is prompted either after succeeding or
after a timeout.

5.5. Experimental Setup

Since this study consists of a preliminary investigation of
the potential of RL for prosthetic control, we first carry out
our experiments on able-bodied individuals. We recruited
nine participants to perform the experiments, with an age
ranging from 23-28.

To familiarize the participants with the initial policy, π0, a
short version of the Motion Test was conducted (1 repetition
and 5 seconds of timeout). Furthermore, to also get familiar
with the game, one song was played for which the resulting
data was discarded. After completing the proposed proce-
dure, i.e. after the n-th iteration, the participants were asked
to play the song one more time using the initial policy. This
was important to be able to distinguish the impact of RL
learning from just human learning. See our project page for
visual examples sites.google.com/view/bionic-limb-rl.

The study protocols were carried out in accordance with
the declaration of Helsinki. Signed informed consent was
obtained from each participant before conducting the exper-
iments. The study was approved by the Regional Ethical
Review Board in Gothenburg (Dnr. 2022-06513-01).

6. Experimental Results
We found that the normalized average cumulative reward
of the last RL repetition π8 increased by 3 times (from
0.26±0.10 to 0.78±0.13) compared to the initial SL policy
π0 (see Fig. 5). The normalized average cumulative reward
consistently increased from π1 to π8. While results appear
to plateau, the observed increase between repetitions 7 and
8 implies that additional training could yield further benefits.
Moreover, while the normalized average cumulative reward
of the initial SL policy π0 in the final repetition is higher
than in repetition 0 (0.28± 0.13 compared to 0.26± 0.10),
it is still more than 2.5 times lower than the final RL policy
π8. This indicates that the RL approach had a substantial
impact in improving performance, despite the human learn-
ing effect. These results were corroborated by the EMR
more than doubling (from 0.30± 0.16 to 0.79± 0.08, see
Fig. 6a) and a 40% increase in F1 scores (from 0.52± 0.10
to 0.75± 0.15, see Fig. 6b).

Substantial improvements were observed in most cases ex-
cept for one participant (see the lower outliers depicted as
circles in Fig. 5 and Fig. 6). This presents an opportunity to
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Figure 5. Normalized average cumulative reward over all subjects
for RL training repetitions. The first and last repetition is done
with the initial pretrained policy π0, so RL training is only done
between repetitions 0 and 8 using the most recent policy πi. There
are outliers in most repetitions, they belong to the same participant
for whom RL did not seem to find patterns. The outlier in repe-
tition 0 belongs to another person for whom pretraining worked
exceptionally well.

further discuss the factors necessary for successfully using
RL for decoding motor intent. Our hypothesis is that high
variability in the participant’s movements during gameplay,
including incorrect movements, may have been the primary
obstacle. It is noteworthy that some human error occurs for
most participants during the training process. While this
may prolong the learning time, it does not seem to hinder
improvement for most participants. This finding highlights
the interdependence between human and policy. Neverthe-
less, we believe that with continued training of both entities,
RL could eventually also exhibit improvements for this par-
ticipant, but further experiments are necessary.

An additional comparison was performed based on the out-
comes of the Motion Test in order to understand if the im-
provements described above were still observed in a context
different from the game environment. Indeed, the mean
EMR of the RL policy π8 during the Motion Test doubled
(from 0.23±0.14 to 0.47±0.19) compared to the pretrained
policy π0 (see Fig. 6c). Moreover, notable improvements
were observed in the F1 macro score, with an increase of
over 15% (from 0.58± 0.11 to 0.68± 0.19) (see Fig. 6d).

One possible reason for the lower observed metrics in the
Motion Test compared to the game environment could be the
difference in the participant’s focus between the two settings.
During gameplay, the primary focus is on the game, thus
mainly on the correct timing of movements, while in the
motion test, the participant’s sole focus is on how to execute
the movement. This shift in attention may result in altered
muscle activations, potentially contributing to the variations
in observed metrics.

https://sites.google.com/view/bionic-limb-rl
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Figure 6. EMR and F1 macro for all movements in Fig. 1 and per DOF for both Gameplay and Motion Test. Note that all movements also
include m0, ’Rest’, which is not included in the box plots per DOF. For Gameplay, repetition 8 with policy π8 and repetition 9 with π0

are compared. Every measure in all scenarios improves with RL, especially for movements that performed poorly before, namely 1 DOF
classes. Similar to before, the lower outliers in RL belong to one subject where RL did not improve performance. Detailed numerical
values can be found in Table 2 in the Appendix.

We further noticed that single DOF movements demon-
strated substantial improvement, while movements involv-
ing 2 or 3 simultaneous DOFs displayed less marked
changes (see Fig. 6a-d). Single DOF movements might
be more challenging to decode due to their relatively lower
muscle activation compared to movements with multiple
DOFs, explaining the lower EMR and F1 score for single
DOF movements. On one hand, lower scores inherently
provide more room for improvement. On the other hand,
this could also mean that the RL approach primarily fo-
cuses on refining movements that initially perform poorly.
These trends are consistent across both the game environ-
ment and the Motion Test, with slightly more pronounced
effects observed in the game environment.

7. Conclusion
In this study, we leveraged RL to improve the decoding of
motion intent with the aim of creating more intuitive and
responsive bionic limb controllers. The proposed method

using an interactive game substantially enhanced the online,
human-in-the-loop performance of an ML controller, thus
bridging the gap between offline training and real-life usage.

To validate the general efficacy of our method, the same
experiment will be repeated with people with amputation in
future work. Since our approach is rather general, it can be
extended to other serious games more representative of daily
prosthetic use. Notably, our work could also be extended
to allow fine-tuning based on human feedback and thereby
improve prosthetic functionality to better accomplish tasks
encountered in daily life.

Acknowledgments
This project was funded by the Promobilia Foundation, the
IngaBritt and Arne Lundbergs Foundation and the Swedish
Research Council (Vetenskapsrådet). Additionally, this
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A. Implementation Details
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Figure 7. Progression of simulated reward during training. The policy is evaluated every 10 gradient steps.

To determine the best policy during training we employ a simulation of playing a song and calculate the cumulative reward
at intervals of 10 gradient steps. After training for 2000 gradient steps, we select the policy with the highest reward as the
preferred choice for further progression. In Fig. 7, we present a typical reward progression during the early repetitions.
Initially, the reward increases, but it gradually begins to decline. Hence, selecting the last policy would be detrimental.
Unlike in SL, where training is often stopped when the loss fails to decrease after a certain number of epochs, we avoid such
early stopping. RL training can exhibit instability, and the simulated reward may continue to increase even after several
decreasing gradient steps. Thus, we opt for a fixed number of 2000 gradient steps to ensure sufficient training.

In addition to early stopping, we performed an automated parameter search to optimize our hyperparameters. During this
process, the best policy is chosen as described above using training data and evaluated on test data that it did not see during
training. Using training data for choosing the best model was necessary because, during online training, we lack access to a
test song that could solely serve this purpose. The hyperparameters yielding the highest test reward are summarized in Table
1 and are employed for RL training in our experiments.
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Table 1. Hyperparameters used for RL training. The values are found by a hyperparameter search where the policy with highest test
reward was chosen.

HYPER-PARAMETER VALUE

RL BATCH SIZE 512
DISCOUNT FACTOR γ 0.8935
WEIGHT CALCULATION λ 0.95
REWARD SCALING 1
POLICY WEIGHT DECAY 10−4

POLICY LEARNING RATE 9.844 ∗ 10−4

Q HIDDEN SIZES [256, 256]
Q HIDDEN ACTIVATIONS RELU
Q WEIGHT DECAY 0
Q-FUNCTION LEARNING RATE 7.627 ∗ 10−4

NUMBER OF CRITICS 2
TARGET NETWORK SYNCHRONIZATION COEFFICIENCY τ 8.948 ∗ 10−3

NUMBER OF ACTION SAMPLED TO CALCULATE Aπ(st, at) 1
N-STEP TD CALCULATION 1
Q-FUNCTION MEAN APPROXIMATOR
INTERVAL TO UPDATE POLICY 4
CHANCE TO RANDOMIZE WRONG NOTES ϵ 0.9

Table 2. Comparison of classification results during gameplay and Motion Test, using policy π8 (in episode 8), the initial policy, π0 (in
episode 9). Results are described by the EMR, F1 and their standard deviation, across all participants.

GAMEPLAY MONTION TEST

EMR F1 MACRO EMR F1 MACRO
π0 0.30± 0.16 0.52± 0.10 0.23± 0.14 0.58± 0.11
π8 0.79± 0.08 0.75± 0.15 0.47± 0.19 0.68± 0.19


