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SPURIOUS CORRELATIONS IN HIGH DIMENSIONAL
REGRESSION: THE ROLES OF REGULARIZATION,
SIMPLICITY BIAS AND OVER-PARAMETERIZATION

Simone Bombari∗, Marco Mondelli∗

ABSTRACT

Learning models have been shown to rely on spurious correlations between non-
predictive features and the associated labels in the training data, with negative
implications on robustness, bias and fairness. In this work, we provide a statistical
characterization of this phenomenon for high-dimensional regression, when the
data contains a predictive core feature x and a spurious feature y. Specifically,
we quantify the amount of spurious correlations C learned via linear regression,
in terms of the data covariance and the strength λ of the ridge regularization. As
a consequence, we first capture the simplicity of y through the spectrum of its
covariance, and its correlation with x through the Schur complement of the full
data covariance. Next, we prove a trade-off between C and the in-distribution
test loss L, by showing that the value of λ that minimizes L lies in an interval
where C is increasing. Finally, we investigate the effects of over-parameterization
via the random features model, by showing its equivalence to regularized linear
regression. Our theoretical results are supported by numerical experiments on
Gaussian, Color-MNIST, and CIFAR-10 datasets.

1 INTRODUCTION

Machine learning systems have been shown to learn from patterns that are statistically correlated
with the intended task, despite not being causally predictive Geirhos et al. (2020); Xiao et al. (2021).
As a concrete example, a blue background in a picture might be positively correlated with the
presence of a boat in the foreground, and while not being a predictive feature per se, a trained deep
learning model could use this information to bias its prediction. In the literature, this statistical (but
non causal) connection is referred to as a spurious correlation between a feature and the learning
task. A recent and extensive line of research has investigated the extent to which deep learning
models manifest this behavior Geirhos et al. (2019); Xiao et al. (2021) and has proposed different
mitigation approaches Sagawa et al. (2020a); Liu et al. (2021), given its implications to robustness,
bias, and fairness Zliobaite (2015); Zhou et al. (2021). The phenomenon, also referred to as shortcut
learning, is often attributed to the relative “simplicity” of spurious features Geirhos et al. (2020); Shah
et al. (2020); Hermann & Lampinen (2020) and to the implicit bias of over-parameterized models
toward learning simpler patterns Belkin et al. (2019); Rahaman et al. (2019); Kalimeris et al. (2019).
Consequently, the core features that are informative about the task (e.g., the boat in the foreground)
may be neglected, as spurious features (e.g., the blue background) provide an easier shortcut to
minimize the loss function.

Prior work has attempted to formalize the simplicity bias relying on boolean functions Qiu et al.
(2024), model-specific biases Morwani et al. (2023), one-dimensional features Shah et al. (2020)
and their pairwise interactions Pezeshki et al. (2021). However, when considering high-dimensional
natural data (e.g., the boat and its background in Figure 1), it remains unclear, based on these notions,
what exactly makes the features easy or difficult to learn, and to what extent a trained model relies
on spurious correlations. Furthermore, while Sagawa et al. (2020b) show that over-parameterization
can exacerbate spurious correlations when re-weighting the objective on minority groups (e.g., boats
with a green background), its effect on models trained via empirical risk minimization (ERM) is less
understood. This is a critical point when additional group membership annotations are too expensive
to obtain, and ERM is a key part of training Liu et al. (2021); Ahmed et al. (2021).
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Figure 1: Left two panels: pictorial representation of the core
(spurious) feature x (y) and an independent core feature x̃, taken
from an image of a boat and a truck in the CIFAR-10 dataset. Right
two panels: examples from a binary Color-MNIST dataset, where
the labels correspond to the number shapes, and the zeros (ones)
are colored in blue (red) with probability (1 + α)/2.

Our work tackles these issues: we
provide a rigorous characterization
of the statistical mechanisms behind
learning spurious correlations in high-
dimensional data, focusing on the so-
lution obtained via ERM. Formally,
we model the input sample z as com-
posed by two distinct features, i.e.,
z = [x, y], where x ∈ Rd is the core
feature and y ∈ Rd the spurious one.
The first panel of Figure 1 provides
an illustration with a boat in the fore-
ground (x) and its blue background (y). Then, we quantify spurious correlations via the covariance C
(see (2.3)) between the label g (“boat”) and the model output given z̃ = [x̃, y] as input. Here, x̃ (a
truck in the foreground) is a new core feature independent of everything else, see the second panel of
Figure 1. Now, if C is positive, it means that the model is biased towards g only because of y, since x̃
is independent from x and g. More precisely, we provide a sharp, non-asymptotic characterization of
C for linear regression (Theorem 1). Armed with such a characterization, we then:

• Interpret C via upper bounds on its magnitude (Proposition 4.1). This highlights the role of the
regularization strength and of the data covariance via (i) its Schur complement with respect to the
covariance of the core feature x, and (ii) the covariance of the spurious feature y. Specifically, we
link the smallest eigenvalue of the Schur complement to the strength of the correlation between y and
x, and the largest eigenvalue of the spurious covariance to the simplicity of y.

• Prove a trade-off between C and the test loss (Proposition 4.3), which implies that spurious
correlations can be beneficial to performance when learning in-distribution. Specifically, we show
that the optimal regularization minimizing the test loss lies in an interval where C is positive and
monotonically increasing.

• Investigate the role of over-parameterization via a random features (RF) model. Specifically, we
show that the RF model is equivalent to linear regression with an effective regularization that depends
on the over-parameterization (Theorem 2). This allows to leverage the earlier analysis on regularized
linear regression to quantify spurious correlations in over-parameterized, non-linear models.

Throughout the paper, the theoretical results are supported by numerical experiments on Gaussian
data, Color-MNIST, and CIFAR-10, which validates our analysis even in settings not strictly following
the modeling choices. Additional discussion about the related work is deferred to Appendix B.

2 PRELIMINARIES

Notation. Given a vector v, we denote by ∥v∥2 its Euclidean norm. Given a matrix A, we denote
by tr(A) and ∥A∥op its trace and operator (spectral) norm. Given a symmetric matrix A, we denote
by λmin (A) (λmax (A)) its smallest (largest) eigenvalue. All complexity notations Ω(·), O(·), ω(·),
o(·) and Θ(·) are understood for large data size n, input dimension d, and number of parameters p.
We indicate with C, c > 0 numerical constants, independent of n, d, p, whose value may change
from line to line.
Setting. We consider supervised learning with n training samples {(z1, g1), . . . , (zn, gn)} and
labels defined by a (not necessarily deterministic) function of the inputs gi = f∗(zi), where zi ∈ R2d

denotes the i-th training input and gi ∈ R the corresponding label. Input samples are composed by
two distinct parts (or features), i.e., z⊤i = [x⊤

i , y
⊤
i ], with xi, yi ∈ Rd, and they are sampled i.i.d. from

the distribution PXY . We further denote with PX (PY ) the marginal distribution of the xi-s (yi-s).
The features x and y have the same dimension d to ease the presentation.

We focus on the setting where the labels gi depend only on xi, i.e., gi = f∗(zi) = f∗
x(xi) for some

(not necessarily deterministic) function f∗
x . Hence, yi is independent from gi, after conditioning on

xi. We highlight that the independence between yi and gi is conditional to xi, as the covariance
between yi and xi is in general non-zero. We refer to yi as the spurious feature of the i-th sample,
and to xi as its core feature. As an example, xi may represent the main object in an image and yi the
(not necessarily independent) background, see Figure 1.
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In this setup, the training data is used to learn f∗(z) through a parametric model f(θ, z) via regularized
empirical risk minimization (ERM). Specifically, we perform the following optimization in parameter
space:

θ̂ = argminθ

(
1

n

n∑
i=1

ℓ (f(θ, zi), gi) + λ ∥θ∥22

)
, (2.1)

for some regularization term λ ≥ 0, where ℓ is a loss function1. We define the (in-distribution) test
loss associated to the model f(θ̂, ·) as

L(θ̂) = Ez∼PXY , g=f∗(z)

[
ℓ
(
f(θ̂, z), g

)]
. (2.2)

Spurious correlations. We express the extent to which a model f(θ̂, ·) learns spurious correlations
between the spurious feature y and the label g as

C(θ̂) = Cov
(
f
(
θ̂, [x̃⊤, y⊤]⊤

)
, g
)
, (2.3)

where the covariance is computed on the probability space of [x⊤, y⊤]⊤ ∼ PXY , g = f∗
x(x) and

of the independent core feature x̃ ∼ PX . In words, C(θ̂) expresses how the output of the model
f(θ̂, ·) evaluated on an out-of-distribution sample [x̃⊤, y⊤]⊤ (where the two features are sampled
independently from the marginal distributions PX and PY ) correlates to the label associated to the
in-distribution sample g = f∗(z) = f∗

x(x). We highlight that, if the model f(θ̂, ·) does not rely on
the spurious feature y, then C(θ̂) = 0 as x and x̃ are independent. We formally connect (2.3) to the
out-of-distribution test loss in Appendix E.

3 PRECISE ANALYSIS FOR LINEAR REGRESSION

To study C(·) as defined in (2.3), we focus on a high-dimensional linear regression model, i.e.,

fLR(θ, z) = z⊤θ, (3.1)

where θ ∈ R2d. The data also follows a linear model, i.e., gi = z⊤i θ
∗ + ϵi = x⊤

i θ
∗
x + ϵi, where

θ∗ ∈ R2d, θ∗x ∈ Rd, and ϵi is label noise. Notice that this implies that θ∗ = [θ∗x
⊤,0⊤

d ]
⊤, where

θ∗x,0d ∈ Rd and each entry of 0d is 0. We set ∥θ∗∥2 = ∥θ∗x∥2 = 1 and let the ϵi-s be i.i.d.
(and independent from the zi-s), mean-0, sub-Gaussian, with variance σ2 > 0. We introduce the
shorthands Z = [z⊤1 , . . . , z⊤n ]

⊤ ∈ Rn×2d, G = [g1, . . . , gn]
⊤ ∈ Rn, and E = [ϵ1, . . . , ϵn]

⊤ ∈ Rn to
indicate the data matrix, the labels, and the noise vector respectively. Then, using a quadratic loss,
(2.1) reads

θ̂LR(λ) = argminθ

(
1

n
∥Zθ −G∥22 + λ ∥θ∥22

)
=
(
Z⊤Z + nλI

)−1
Z⊤G, (3.2)

where the second step holds for λ > 0 and, if Z⊤Z is invertible, also for λ = 0.
Assumption 1 (Data distribution). {zi}ni=1 are n i.i.d. samples from a mean-0, Gaussian distribution
PXY , such that its covariance Σ := E

[
zz⊤

]
∈ R2d×2d is invertible, with λmax (Σ) = O (1),

λmin (Σ) = Ω(1), and tr(Σ) = 2d.

This requirement could be relaxed to having sub-Gaussian data. We focus on the Gaussian case for
simplicity, deferring the discussion on the generalization to Appendix C.2.

Warm-up: no regularization (λ = 0). Our first result concerns the un-regularized setting.
Proposition 3.1. Let λ = 0 and Z⊤Z ∈ R2d×2d be invertible2. Let C(θ̂LR(0)) be the amount of
spurious correlations learned by the model fLR(θ̂LR(0)). Then, we have that EE [C(θ̂LR(0))] = 0.
Furthermore, if Assumption 1 holds and n = ω(d), |C(θ̂LR(0))| = O(log d/

√
d), with probability at

least 1− 2 exp(−c log2 d) over Z and E , where c is an absolute constant.

1In general, existence and uniqueness of θ̂ depend on the choice of the model f(θ, z), the loss function ℓ and
the regularization term λ. For the purposes of our work, we will precisely define θ̂ for linear regression (Section
3) and for random features (Section 5).

2Under Assumption 1, this holds with probability 1 for n ≥ 2d.
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Figure 2: Test loss L(θ̂LR(λ)) (black) and spurious correlations
C(θ̂LR(λ) (red) as a function of λ for two values of the number of
samples n. Left: synthetic Gaussian dataset; right: binary Color-
MNIST dataset (additional details in Appendix F).

In words, fLR(θ̂LR(0)) does not learn
any spurious correlation between the
spurious feature y and the label g.
This is also clear from Figure 2,
where we report in red the value of
C(θ̂LR(λ)), which approaches 0 as λ
becomes small. The idea of the ar-
gument is to write explicitly the so-
lution θ̂LR(0) =

(
Z⊤Z

)−1
Z⊤G =

θ∗ +
(
Z⊤Z

)−1
Z⊤E , where in the

second step we separate the ground
truth θ∗ (which does not capture any
dependence on y) from a term only
depending on the label noise, which
is mean-0 and independent from y. This directly gives the first result, while the second bound is
obtained via standard concentration results on λmin

(
Z⊤Z

)
. The details are in Appendix C.

General case with regularization (λ > 0). Setting a regularizer λ > 0 often reduces the test loss,
see the black curve in Figure 2. However, it also leads to non-trivial spurious correlations, and our
main result provides a non-asymptotic characterization of this phenomenon.
Theorem 1. Let Assumption 1 hold, n = Θ(d) and C(θ̂LR(λ)) be the amount of spurious correlations
learned by the model fLR(θ̂LR(λ)) for λ > 0. Denote by Py ∈ R2d×2d the projector on the last d
elements of the canonical basis in R2d, and set

CΣ(λ) := θ∗⊤Σ (Σ + τ(λ)I)
−1

PyΣθ
∗, (3.3)

where τ := τ(λ) is implicitly defined as the unique positive solution of

1− λ

τ
=

1

n
tr
(
(Σ + τI)

−1
Σ
)
. (3.4)

Then, for every t ∈ (0, 1/2), PZ,E
(∣∣∣C(θ̂LR(λ))− CΣ(λ)

∣∣∣ ≥ t
)
≤ Cd exp

(
−dt4/C

)
, where C is an

absolute constant.

In words, Theorem 1 guarantees that |C(θ̂LR(λ))− CΣ(λ)| = o(1) with high probability (e.g., setting
t = d−1/5). Thus, for large d, n, we can estimate C(θ̂LR(λ)) via the deterministic quantity CΣ(λ),
which depends on the true parameter θ∗, the covariance of the data Σ, and the regularization λ via
the parameter τ(λ) introduced in (3.4). Note that, since θ̂LR(λ) is given by (3.2), when λ > 0 it
cannot be decomposed as θ∗ +

(
Z⊤Z

)−1
Z⊤E (as in the proof of Proposition 3.1 for λ = 0). Thus,

we rely on the non-asymptotic characterization of θ̂LR(λ) recently provided by Han & Xu (2023).
In particular, in the proportional regime n = Θ(d), their analysis allows to provide concentration
bounds on a certain family of low-dimensional functions of θ̂LR(λ), which includes C as defined in
(2.3). The details are in Appendix C.

4 ROLES OF REGULARIZATION AND SIMPLICITY BIAS

We now interpret CΣ(λ), which characterizes the spurious correlations via Theorem 1, in terms of the
data covariance Σ and the regularization λ. To do so, we introduce the following notation

Σ =:

(
Σxx Σxy
Σyx Σyy

)
, SΣ

x := Σyy − ΣyxΣ
−1
xxΣxy (4.1)

where the block Σxx = Ex∼PX

[
xx⊤] ∈ Rd×d (Σyy = Ey∼PY

[
yy⊤

]
∈ Rd×d) denotes the

covariance of the core (spurious) feature sampled from its marginal distribution. The off-diagonal
blocks are Σxy = Σ⊤

yx = E[x⊤,y⊤]⊤∼PXY

[
xy⊤

]
∈ Rd×d. SΣ

x denotes the Schur complement of Σ
with respect to the top-left d×d block Σxx. In our setting, SΣ

x offers a helpful statistical interpretation.
In fact, for multivariate Gaussian data, it corresponds to the conditional covariance of y given x, i.e.,
SΣ
x = Cov(y|x = x̄) = Ey|x=x̄[(y − Ey|x=x̄[y])(y − Ey|x=x̄[y])⊤]. Therefore, the spectrum of SΣ

x
describes the degree of dependence between y and x: on the one hand, if its eigenvalues are small, the

4



Published as an SCSL Workshop Paper at ICLR 2025

feature y is close to be determined by the knowledge of the feature x (i.e., y is highly correlated with
x); on the other hand, if its eigenvalues are large, the two features tend to be independent. We provide
an intuitive example based on the Color-MNIST dataset to better visualize the Schur complement in
a low dimensional setting in Appendix F. At this point, leveraging the decomposition of Σ in (4.1)
and the Schur complement SΣ

x , we provide the following bounds on CΣ(λ), which are proved in
Appendix C.
Proposition 4.1. Let CΣ(λ) and SΣ

x be defined in (3.3) and (4.1), respectively. Then,

∣∣CΣ(λ)
∣∣ ≤ min

(
∥Σyx∥op ,

λmax (Σ)
2

τ(λ)
, τ(λ)

√
Var(g)− σ2

λmax (Σyy)− λmin

(
SΣ
x

)
λmin (SΣ

x )
√
λmin (Σxx)

)
. (4.2)

We discuss the three upper bounds in (4.2) below.

(i): |CΣ(λ)| ≤ ∥Σyx∥op. The off-diagonal blocks Σyx = E[yx⊤] and Σxy = Σ⊤
yx describe the

correlation between y and x. In the limit case ∥Σyx∥op = 0, we have that x and y are uncorrelated
and, therefore, CΣ(λ) = 0, as there is no spurious correlation that the model can learn.

(ii): |CΣ(λ)| ≤ λmax (Σ)
2
/τ(λ). From (3.4), one obtains that τ(λ) → ∞ as λ → ∞. Thus, the

bound implies that CΣ(λ) approaches 0 as λ grows large. This captures the intuition that, when the
regularization λ is large, the minimization in (3.2) is biased towards solutions with small norm and,
therefore, the output of the model is small, which drives to 0 the spurious correlations as defined in
(2.3). The behavior is confirmed by Figure 2: |C(θ̂LR(λ))| is decreasing for large values of λ and it
eventually vanishes; at the same time, large values of λ make the output of the model small, which in
turn increases the test loss L(θ̂LR(λ)).

(iii): The third bound in (4.2), after isolating the term depending on the covariance of the core
feature x (

√
λmin (Σxx)) and on the scaling of the labels (

√
Var(g)− σ2), depends on (a) τ(λ), (b)

λmin

(
SΣ
x

)
, and (c) λmax (Σyy). As for (a), we note that CΣ(λ) approaches 0 for small values of

λ. In fact, the RHS of (3.4) is smaller or equal to 2d/n; thus, if we consider 2d < n, we also get
τ ≤ λ (1− 2d/n)

−1, which implies τ(λ) → 0 as λ → 0. This is in agreement with Proposition 3.1,
which handles the case without regularization, and also with the numerical experiments of Figure 2.
As for (b), we note that the bound is decreasing with λmin

(
SΣ
x

)
. This is in agreement with the earlier

discussion on how the spectrum of the Schur complement SΣ
x measures the degree of independence

between the spurious feature y and the core feature x. Finally, as for (c), we note that the bound
is increasing with λmax (Σyy), which is connected below to the simplicity of the spurious feature
y. The increasing (decreasing) trend of CΣ(λ) w.r.t. λmax (Σyy) (λmin

(
SΣ
x

)
) is clearly displayed in

Figure 5 for Gaussian data, available in Appendix F.
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Figure 3: Test loss L(θ̂LR/RF(λ)) (black) and spurious correla-
tions C(θ̂LR/RF(λ) (red) as a function of λmax (Σyy) / tr(Σyy) on
a CIFAR-10 dataset for different levels of whitening (additional
details in Appendix F).

The connection between λmax (Σyy)
and the simplicity bias of ERM can be
illustrated via our initial image recog-
nition example. The (spurious) back-
ground feature is intuitively an easy
pattern to learn from the model: the
pixels corresponding to the spurious
feature behave consistently across the
training data. This in turn skews the
spectrum of Σyy , which has few domi-
nant directions with eigenvalues much
larger than the others. Note that this
interpretation is similar to the model-
dependent definition of simplicity in
Morwani et al. (2023). An empirical
verification is provided in Figure 3, where we consider the CIFAR-10 dataset, restricted to the “boat”
and “truck” classes. Before training a regression model, we whiten up to some level the background
feature (as defined in Figure 1) to make it harder to learn, see the right side of Figure 3. Then,
for different levels of whitening, we report C(θ̂LR(λ)) as a function of λmax (Σyy). We normalize
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λmax (Σyy) by the trace tr(Σyy) to exclude the size of the pattern from our experiment3. The red
curve shows an increasing trend: small values of λmax (Σyy) correspond to significant whitening and,
hence, to small spurious correlations, as predicted by Proposition 4.1.

Trade-off between L(θ̂LR(λ)) and C(θ̂LR(λ)). Figure 2 shows that there is an interval of values
for the regularization (λ ∼ 10−1) where the test loss L(θ̂LR(λ)) is decreasing in λ, while the spurious
correlations C(θ̂LR(λ)) are increasing. This evidence suggests a natural trade-off between these two
quantities, mediated by λ. To theoretically capture such trade-off, we first provide a non-asymptotic
concentration bound for L(θ̂LR(λ)).
Proposition 4.2. Let Assumption 1 hold, n = Θ(d) and L(θ̂LR(λ)) be defined according to (2.2). Set

LΣ(λ) :=

(
σ2 + τ(λ)2

∥∥∥(Σ + τ(λ)I)
−1

Σ1/2θ∗
∥∥∥2
2

)
/
(
1− tr

(
(Σ + τ(λ)I)

−2
Σ2
)
/n
)
, (4.3)

where τ(λ) is defined via (3.4). Then, for every t ∈ (0, 1/2), PZ,E
(∣∣∣L(θ̂LR(λ))− LΣ(λ)

∣∣∣ ≥ t
)
≤

Cd exp
(
−dt4/C

)
.

In words, Proposition 4.2 guarantees that |L(θ̂LR(λ)) − LΣ(λ)| = o(1) with high probability. Its
proof is an adaptation of Theorem 3.1 in Han & Xu (2023), and the details are in Appendix C. Armed
with the non-asymptotic bounds of Theorem 1 and Proposition 4.2, we characterize the trade-off
between L(θ̂LR(λ)) and C(θ̂LR(λ)) by studying the monotonicity of LΣ(λ) and CΣ(λ).
Proposition 4.3. Let CΣ(λ) and LΣ(λ) be defined as in (3.3) and (4.3). Then, if 2d < n, we have
that LΣ(λ) is monotonically decreasing in a right neighborhood of λ = 0, and there exists λL > 0
such that LΣ(λ) is monotonically increasing for λ ≥ λL. Furthermore, if Σxx = I , then CΣ(λ) is
non-negative and there exists λC such that CΣ(λ) is monotonically increasing for λ ≤ λC . Finally, as
long as

2d

n
≤ λmin(Σ)

4
min

(
1,

2λmax(Σ)/σ
2

(λmax(Σ)/λmin(Σ) + 1)
2

)
, (4.4)

we have that λC ≥ λL.

In words, Proposition 4.3 shows that CΣ(λ) grows with λ at least until the regularization equals a
value λC . For example, in Figure 2, λC ∼ 1 for a Gaussian data and λC ∼ 10 for Color-MNIST.
Furthermore, in this interval, LΣ(λ) is initially decreasing and then increasing as λ ≥ λL. These
trends in turn imply that the optimal value λ∗

L that minimizes the test loss is s.t. λ∗
L ∈ (0, λC ] – an

interval where the spurious correlations are strictly positive and increasing. The proof of Proposition
4.3 (whose details are in Appendix C) relies on the monotonicity of τ(λ) in λ, and the last statement
follows from showing that τ(λC) ≥ λmin

(
SΣ
x

)
≥ λmin (Σ) ≥ τ(λL). The upper bound on 2d/n in

(4.4) is required to prove that λmin (Σ) ≥ τ(λL) and, due to Assumption 1, it is implied by taking
n = ω(d). We note that the latter scaling holds in standard datasets, e.g., MNIST (n = 6 · 104,
2d ≈ 2 · 103 when considering the 3 color channels) and CIFAR-10 (n = 5 · 104, 2d ≈ 3 · 103).

5 ROLE OF OVER-PARAMETERIZATION

Our analysis has so far focused on linear regression, highlighting the role of data covariance and
regularization. However, moving to complex predictive models, such as neural networks, may lead to
differences in the degree to which spurious correlations are learned. As an example, in the left panel
of Figure 6 in Appendix F, we train an over-parameterized two-layer neural network on the binary
Color-MNIST and CIFAR-10 datasets, for different values of the regularizer λ. While for high values
of λ the results are qualitatively similar to the ones in Figure 2, a striking difference is that spurious
correlations remain significant even when there is little to no regularization (i.e., λ ≈ 0), in sharp
contrast with Proposition 3.1. We also note that the phenomenon is in line with previous empirical
work Sagawa et al. (2020a). We bridge the gap between linear regression and over-parameterized
models by focusing on random features:

fRF(z, θ) = ϕ(V z)⊤θ, (5.1)

where V is a p×2d matrix s.t. Vi,j∼i.i.d.N (0, 1/(2d)), and ϕ is an activation applied component-wise.
We consider ϕ to be L Lipschitz, and odd, such that its 1st Hermite coefficient µ1 ̸= 0. The number of

3If y has 0-mean, then E∥y∥22 = tr(Σyy), i.e., the trace captures the size of the pattern.
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parameters of this model is p, as V is a fixed random matrix and θ ∈ Rp contains trainable parameters.
The scaling of input data (tr(Σ) = 2d) and the variance of the entries of V guarantee that the pre-
activations of the model (i.e., the entries of the vector V z ∈ Rp) are of constant order. We consider
the ERM in (2.1) with a quadratic loss θ̂RF(λ) = argminθ(

1
n ∥Φθ −G∥22 + λ ∥θ∥22), where we set

Φ := [ϕ(V z1), . . . , ϕ(V zn)]
⊤ ∈ Rn×p. When λ = 0, if ΦΦ⊤ is invertible, the minimization above

does not necessarily have a unique solution. In that case, we set θ̂RF(0) to be the solution obtained via
gradient descent with 0 initialization, which corresponds to the min-norm interpolator (see equation
(33) in Bartlett et al. (2021)). Then4, we can write, for λ ≥ 0, θ̂RF(λ) = Φ⊤ (ΦΦ⊤ + nλI

)−1
G.

Theorem 2. Let Assumptions 1 hold, n = Θ(d), p = ω(n log4 n), log p = Θ(log n), and z ∈ R2d

be sampled from a distribution satisfying Assumption 1, not necessarily with the same covariance as
PXY , independent from everything else. Let fRF(z, θ̂RF(λ)) be the RF model defined in (5.1), and
fLR(z, θ̂LR(λ̃)) be the linear regression model defined in (3.1) with θ̂LR(λ̃) given by (3.2). Then, for
λ ≥ 0, ∣∣∣fRF(z, θ̂RF(λ))− fLR(z, θ̂LR(λ̃))

∣∣∣ = O

(
d1/4 log d

p1/4
+

log3/2 d

d1/8

)
= o(1), (5.2)

with probability at least 1− C
√
d log2 d/

√
p− C log3 d/d1/4, where the effective regularization λ̃

is given by

λ̃ =
2µ̃2d

µ2
1n

+
2d

µ2
1p

λ, (5.3)

and µ̃2 =
∑
k≥2 µ

2
k, with µk denoting the k-th Hermite coefficient of ϕ.

In words, Theorem 2 shows that the over-parameterized RF model, when evaluated on a new test
sample (not necessarily from the same distribution as the input data), is asymptotically equivalent
to linear regression with regularization λ̃, given by (5.3). In particular, even in the ridgeless case
(λ = 0), the RF model is equivalent to linear regression with strictly positive regularization.

Thus, we expect the presence of spurious correlations, just like in Figure 6, since C(θ̂RF(0)) ap-
proaches CΣ(λ̃) with λ̃ > 0. Notably, the effective regularization λ̃ depends on the activation ϕ via
its Hermite coefficients, and it increases with the ratio µ̃2/µ2

1. This is also verified in Figure 6 via
experiments on Gaussian data, as discussed in Appendix F. We finally remark that Theorem 2 holds
in more generality than Assumption 1. In Appendix D, we provide the full argument using the less
stringent Assumption 6.
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asymptotics for quantifying heterogeneous transfers. arXiv preprint arXiv:2010.11750, 2023.

Wenqian Ye, Guangtao Zheng, Xu Cao, Yunsheng Ma, and Aidong Zhang. Spurious correlations in
machine learning: A survey. arXiv preprint arXiv:2402.12715, 2024.

10



Published as an SCSL Workshop Paper at ICLR 2025

Jingzhao Zhang, Aditya Krishna Menon, Andreas Veit, Srinadh Bhojanapalli, Sanjiv Kumar, and
Suvrit Sra. Coping with label shift via distributionally robust optimisation. In International
Conference on Learning Representations, 2021.

Chunting Zhou, Xuezhe Ma, Paul Michel, and Graham Neubig. Examining and combating spurious
features under distribution shift. In International Conference on Machine Learning (ICML), 2021.

Indre Zliobaite. On the relation between accuracy and fairness in binary classification. In 2nd ICML
Workshop on Fairness, Accountability, and Transparency in Machine Learning (FATML), 2015.

A ADDITIONAL NOTATION

We define a sub-Gaussian random variable according to Proposition 2.5.2 in Vershynin (2018),
and ∥X∥ψ2

:= inf{t > 0 : E
[
exp(X2/t2)

]
≤ 2}. If X ∈ Rn is a random vector, then

∥X∥ψ2
:= sup∥u∥2=1

∥∥u⊤X
∥∥
ψ2

. When we state that a random variable or vector X is sub-Gaussian,
we implicitly mean ∥X∥ψ2

= O (1), i.e. its sub-Gaussian norm does not increase with the scalings
of the problem.

We say that X respects the Lipschitz concentration property if, for all 1-Lipschitz continuous functions
φ, we have ∥φ(X)− E [φ(X)]∥ψ2

= O (1). Notice that then, if X is Lipschitz concentrated, then
X − E[X] is sub-Gaussian.

Given two symmetric matrices A,B, we use the notation A ⪰ B if A − B is p.s.d. Notice that
if A ⪰ B ≻ 0, then we also have B−1 ⪰ A−1. We denote with ∥A∥F the Frobenius norm of A,
and with ker(A) its kernel space. If A is a square matrix, we use the notation diag(A) to denote a
matrix identical to A on the diagonal, and 0 everywhere else. We let A ◦ B denote the Hadamard
(component-wise) product between matrices, and A◦k denote A ◦ A ◦ ... ◦ A, where A appears k
times.

B RELATED WORK

Spurious correlations. Learning from spurious correlations in a training dataset is rather common
Geirhos et al. (2019); Arjovsky et al. (2020); Geirhos et al. (2020); Sagawa et al. (2020a); Xiao et al.
(2021); Singla & Feizi (2022) and it has unwanted consequences, e.g., lack of robustness towards
domain shift, prediction bias and compromised algorithmic fairness Zliobaite (2015); Geirhos et al.
(2019); Zhou et al. (2021); Veitch et al. (2021); Seo et al. (2022). Thus, multiple mitigation approaches
have been proposed, with Sagawa et al. (2020a); Zhang et al. (2021) or without Liu et al. (2021);
Ahmed et al. (2021) available annotations. Specifically, Tiwari & Shenoy (2023) exploit the difference
in the features learned at different layers of a deep neural network; Izmailov et al. (2022); Kirichenko
et al. (2023) re-train the last layer of the ERM solution to adapt the features to the distribution shift;
and Chang et al. (2021a); Plumb et al. (2022) mitigate the problem via data augmentation.

Simplicity bias. Recent work has shown that deep learning models have a bias towards learning
from “easier” patterns Belkin et al. (2019); Rahaman et al. (2019); Kalimeris et al. (2019). In shortcut
learning, this property is formalized in different ways across the literature. The difficulty of a feature
is defined in terms of the minimum complexity of a network that learns it by Hermann & Lampinen
(2020) and in terms of the smallest amount of linear segments that separate different classes by Shah
et al. (2020). Moayeri et al. (2022) connect the simplicity to the position and size of the features in
an image. Morwani et al. (2023) define the simplicity bias in 1-hidden layer neural networks via
the rank of a projection operator that does not alter them substantially, and they focus on a dataset
generated via an independent features model learned via the NTK. The NTK is also used to analyze
gradient starvation Pezeshki et al. (2021) and feature availability Hermann et al. (2024), regarded
as explanations of the simplicity bias. Qiu et al. (2024) focus on parity functions and staircases,
analyzing the learning dynamics of features having different complexity.

High-dimensional regression. The test loss of linear regression when the input dimension d scales
proportionally with the sample size n has been characterized precisely both in-distribution (Hastie
et al., 2019; Cheng & Montanari, 2024) and under covariate shift Yang et al. (2023); Mallinar et al.
(2024); Song et al. (2024). Furthermore, Montanari et al. (2019); Chang et al. (2021b); Han & Xu
(2023) have studied the distribution of the ERM solution via the convex Gaussian min-max Theorem
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Thrampoulidis et al. (2015). Specifically, our work builds on the non-asymptotic characterization
provided by Han & Xu (2023).

In contrast with linear regression where the number of parameters equals the input dimension, random
features models Rahimi & Recht (2007) capture the effects of over-parameterization, as the number
of parameters is independently of d and n. Mei & Montanari (2022) have characterized the test loss
of random features, showing that it displays a double descent Belkin et al. (2019). Furthermore, the
RF model has been used to understand a wide family of phenomena such as feature learning Ba et al.
(2022); Damian et al. (2022); Moniri et al. (2024), robustness under adversarial attacks Dohmatob &
Bietti (2022); Bombari et al. (2023); Hassani & Javanmard (2024), and distribution shift Tripuraneni
et al. (2021); Lee et al. (2023). The equivalence between an over-parameterized RF model and a
regularized linear one has also been studied in detail Goldt et al. (2022; 2020); Hu & Lu (2023);
Montanari & Saeed (2022). However, existing rigorous results show the equivalence at the level of
training and test error. In contrast, we are interested in the covariance defined in (2.3) and, for this
reason, we prove an equivalence at the level of the predictor (Theorem 2).

C PROOFS FOR LINEAR REGRESSION

Proof of Proposition 3.1. Note that

θ̂LR(0) =
(
Z⊤Z

)−1
Z⊤G. (C.1)

Since we have gi = z⊤i θ
∗ + ϵi, (C.1) reads

θ̂LR(0) =
(
Z⊤Z

)−1
Z⊤ (Zθ∗ + ϵ) = θ∗ +

(
Z⊤Z

)−1
Z⊤E . (C.2)

Then, we can plug this result in the definition of C(θ̂) in (2.3) to obtain

EE

[
C(θ̂LR(0))

]
= EE

[
Cov[x⊤,y⊤]⊤∼PXY , g=f∗

x (x), x̃∼PX

(
fLR

(
θ̂LR(0), [x̃

⊤, y⊤]⊤
)
, g
)]

= EE

[
Cov[x⊤,y⊤]⊤∼PXY , x̃∼PX

(
[x̃⊤, y⊤]θ̂LR(0), x

⊤θ∗x

)]
= EE

[
Cov[x,y]∼PXY , x̃∼PX

(
x̃⊤θ∗x + [x̃⊤, y⊤]

(
Z⊤Z

)−1
Z⊤E , x⊤θ∗x

)]
= Cov[x,y]∼PXY , x̃∼PX

(
x̃⊤θ∗x, x

⊤θ∗x
)

= 0,

(C.3)

where in the second line we used that E is independent from everything else, in fourth line we used
E [E ] = 0, and that E is independent from all the other random variables, and the last step holds since
x̃ is independent from x.

For the second part of the statement we have that

C(θ̂LR(0)) = Cov[x⊤,y⊤]⊤∼PXY , x̃∼PX

(
[x̃⊤, y⊤]

(
Z⊤Z

)−1
Z⊤E , x⊤θ∗x

)
= Cov[x⊤,y⊤]⊤∼PXY , x̃∼PX

(
E⊤Z

(
Z⊤Z

)−1
Py[x

⊤, y⊤]⊤, [x⊤, y⊤]θ∗
)

= E⊤Z
(
Z⊤Z

)−1
PyΣθ

∗,

(C.4)

where in the second line we introduced Py ∈ R2d×2d, defined as the projector on the last d elements
of the canonical basis in R2d. Then, since E is a sub-Gaussian vector (the entries are mean-0,
i.i.d. sub-Gaussian) independent from everything else, we have that, with probability at least
1− 2 exp

(
−c1 log

2 d
)
,∣∣∣C(θ̂LR(0))

∣∣∣ ≤ log d
∥∥∥Z (Z⊤Z

)−1
PyΣθ

∗
∥∥∥
2

≤ log d
∥∥∥Z (Z⊤Z

)−1
∥∥∥

op
∥Py∥op ∥Σ∥op ∥θ

∗∥2

≤
log d ∥Σ∥op√
λmin (Z⊤Z)

,

(C.5)
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where we used ∥Py∥op = 1 and ∥θ∗∥2 = 1. Since Z is a n×2d matrix with independent rows having
second moment Σ, by Theorem 5.39 in Vershynin (2012) (see Remark 5.40), we have that∥∥∥∥Z⊤Z

n
− Σ

∥∥∥∥
op

= O

(√
d

n

)
= o(1), (C.6)

with probability at least 1− 2 exp (−c2d). Hence, with this probability, by Weyl’s inequality, we also
have

λmin

(
Z⊤Z

)
≥ nλmin (Σ)−

∥∥Z⊤Z − nΣ
∥∥

op = Θ(n), (C.7)

where the last step holds because of Assumption 1. Thus, we have that (C.5) reads∣∣∣C(θ̂LR(0))
∣∣∣ ≤ log d ∥Σ∥op√

λmin (Z⊤Z)
= O

(
log d√

n

)
, (C.8)

with probability at least 1− 2 exp
(
−c3 log

2 d
)

over Z and E , which gives the desired result.

Proof of Theorem 1. As in Han & Xu (2023), we define the Gaussian sequence model θ̂ρ ∈ R2d as

θ̂ρ = (Σ + τ(λ)I)
−1

Σ1/2

(
Σ1/2θ∗ +

γρ√
2d

)
, (C.9)

where ρ is a standard Gaussian vector in R2d. In the equation above, γ > 0 is implicitly defined via

nγ2

2d
= σ2 + Eρ

[∥∥∥Σ1/2
(
θ̂ρ − θ∗

)∥∥∥2
2

]
(C.10)

On the other hand, following a similar argument as the one in (C.3), we have that, for every θ ∈ R2d,

C(θ) = Cov[x⊤,y⊤]⊤∼PXY , x̃∼PX

(
[x̃⊤, y⊤]θ, x⊤θ∗x

)
= θ⊤E[x⊤,y⊤]⊤∼PXY , x̃∼PX

[
[x̃⊤, y⊤]⊤x⊤] θ∗x

= θ⊤E[x⊤,y⊤]⊤∼PXY

[
[0⊤, y⊤]⊤[x⊤,0⊤]⊤

]
θ∗

= θ⊤PyE[x⊤,y⊤]⊤∼PXY

[
[x⊤, y⊤]⊤[x⊤, y⊤]⊤

]
θ∗

= θ⊤PyΣθ
∗,

(C.11)

where the third line holds since x̃ has 0 mean and is independent with x and y, and by definition of
θ∗x, and the fourth line holds because Py[x

⊤, y⊤]⊤ = [0⊤, y⊤]⊤ and because the last d entries of θ∗
are 0 (i.e., Pyθ∗ = 0). Thus, since we have that ∥PyΣθ∗∥2 ≤ ∥Py∥op ∥Σ∥op ∥θ∗∥2 ≤ ∥Σ∥op because
of Assumption 1, we have that C(·) : R2d → R is a ∥Σ∥op-Lipschitz function.

Now, since PXY is multivariate Gaussian, Theorem 2.3 of Han & Xu (2023) gives that, for any
1-Lipschitz function φ : R2d → R, and any t ∈ (0, 1/2),

PZ,G
(∣∣∣φ(θ̂LR(λ))− Eρ

[
φ
(
θ̂ρ
)]∣∣∣ ≥ t

)
≤ C1d exp

(
−dt4/C1

)
, (C.12)

where C1 is a constant depending on λmin (Σ), ∥Σ∥op, σ2, and n/d = Θ(1). Since C(·) is linear,
notice that we have

Eρ
[
C
(
θ̂ρ
)]

= C
(
Eρ
[
θ̂ρ
])

= C
(
(Σ + τ(λ)I)

−1
Σθ∗

)
= θ∗⊤Σ (Σ + τ(λ)I)

−1
PyΣθ

∗ = CΣ(λ),

(C.13)
where we used (C.11) in the third step, and the definition of CΣ(λ) in (3.3) in the last one. Thus,
setting φ(·) to be C(·)/ ∥Σ∥op, and plugging (C.13) in (C.12) we obtain

PZ,G


∣∣∣C(θ̂LR(λ))− CΣ(λ)

∣∣∣
∥Σ∥op

≥ t

 ≤ C1d exp
(
−dt4/C1

)
, (C.14)

which gives the thesis after absorbing the constant ∥Σ∥op in t, and noticing that the bound is still true
for t ∈ (0, 1/2) since ∥Σ∥op ≥ tr(Σ)/2d = 1 by Assumption 1.

13
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Proposition C.1. Let CΣ(λ) be defined in (3.3), and let SΣ+τ(λ)I
x be the Schur complement of

Σ+ τ(λ)I with respect to the top-left d× d block. Then, we have that

CΣ(λ) = τ(λ) θ∗x
⊤ (Σxx + τ(λ)I)

−1
Σxy

(
SΣ+τ(λ)I
x

)−1

Σyxθ
∗
x. (C.15)

Proof. During the proof, to ease the notation, we will often leave implicit the dependence of τ on λ.
Then, we can write

CΣ(λ) = θ∗⊤Σ (Σ + τI)
−1

PyΣθ
∗

= θ∗⊤(Σ + τI − τI) (Σ + τI)
−1

PyΣθ
∗

= −τθ∗⊤ (Σ + τI)
−1

PyΣθ
∗ + θ∗⊤PyΣθ

∗

= −τθ∗⊤ (Σ + τI)
−1

PyΣθ
∗,

(C.16)

where the last step holds since Pyθ
∗ = 0. This expression can be further manipulated using the

notation introduced in (4.1). We also introduce the following notation

(Σ + τI)
−1

=


[
(Σ + τI)

−1
]
xx

[
(Σ + τI)

−1
]
xy[

(Σ + τI)
−1
]
yx

[
(Σ + τI)

−1
]
yy

,

 (C.17)

where we divided (Σ + τI)
−1 in four d×d blocks. Notice that, the expression in (C.16) only depends

on
[
(Σ + τI)

−1
]
xy

, i.e.,

CΣ(λ) = −τθ∗⊤Px (Σ + τI)
−1

PyΣθ
∗ = −τθ∗x

⊤
[
(Σ + τI)

−1
]
xy

Σyxθ
∗
x, (C.18)

where we denoted the projector on the first d elements of the canonical basis of R2d as Px ∈ R2d×2d.
Exploiting the Schur complement SΣ+τI

x , it holds that

[
(Σ + τI)

−1
]
xy

= − (Σxx + τI)
−1

Σxy
(
SΣ+τI
x

)−1
, (C.19)

which combined with (C.18) proves (C.15).

Proof of Proposition 4.1. During the proof, to ease the notation, we will often leave implicit the
dependence of τ on λ. Then, according to (3.3), we have that

∣∣CΣ(λ)
∣∣ = ∣∣∣θ∗⊤Σ (Σ + τI)

−1
PyΣPxθ

∗
∣∣∣ ≤ ∥θ∗∥22

∥∥∥Σ (Σ + τI)
−1
∥∥∥

op
∥PyΣPx∥op ≤ ∥Σyx∥op ,

(C.20)
and

∣∣CΣ(λ)
∣∣ = ∣∣∣θ∗⊤Σ (Σ + τI)

−1
PyΣθ

∗
∣∣∣ ≤ ∥θ∗∥22 ∥Σ∥

2
op

1

λmin (Σ) + τ
≤ λmax (Σ)

2

τ
. (C.21)

14
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Then, using (C.15), we get

CΣ(λ) = τ θ∗x
⊤ (Σxx + τI)

−1
Σxy

(
SΣ+τI
x

)−1
Σyxθ

∗
x

= τ θ∗x
⊤ (Σxx + τI)

−1/2
(Σxx + τI)

−1/2
Σxy

(
SΣ+τI
x

)−1
Σyx (Σxx + τI)

−1/2
(Σxx + τI)

1/2
θ∗x

≤ τ
∥∥∥(Σxx + τI)

−1/2
θ∗x

∥∥∥
2

∥∥∥(Σxx + τI)
1/2

θ∗x

∥∥∥
2

∥∥∥(Σxx + τI)
−1/2

Σxy
(
SΣ+τI
x

)−1
Σyx (Σxx + τI)

−1/2
∥∥∥

op

≤ τ
1√

λmin (Σxx) + τ

√
θ∗x

⊤Σxxθ∗x + τ
∥∥∥(Σxx + τI)

−1/2
Σxy

(
SΣ+τI
x

)−1
Σyx (Σxx + τI)

−1/2
∥∥∥

op

≤ τ

√
Ex∼PX

[
(x⊤θ∗x)

2
]
+ τ√

λmin (Σxx) + τ

∥∥∥(Σxx + τI)
−1/2

Σxy

∥∥∥2
op

λmin

(
SΣ+τI
x

)
= τ

√
Eg=x⊤θ∗x+ϵ

[g2]− σ2 + τ√
λmin (Σxx) + τ

λmax

(
Σyx (Σxx + τI)

−1
Σxy

)
λmin

(
Σyy + τI − Σyx (Σxx + τI)

−1
Σxy

)
≤ τ

√
Eg [g2]− σ2 + τ√
λmin (Σxx) + τ

λmax

(
ΣyxΣ

−1
xxΣxy

)
λmin

(
Σyy + τI − ΣyxΣ

−1
xxΣxy

)
= τ

√
Eg [g2]− σ2 + τ√
λmin (Σxx) + τ

λmax (Σyy)− λmin

(
SΣ
x

)
λmin (SΣ

x ) + τ

≤ τ
√
Var(g)− σ2

λmax (Σyy)− λmin

(
SΣ
x

)
λmin (SΣ

x )
√

λmin (Σxx)
,

(C.22)
where in the fifth line we denoted with PX the marginal distribution of the core feature x, and
Eg [·] from the sixth line on denotes an expectation with respect to g distributed as the labels of the
model. The last step simplifies the expression with respect to τ , and it holds since Var(g)− σ2 =

θ∗x
⊤Σxxθ

∗
x ≥ λmin (Σxx). This, together with (C.20) and (C.21) gives the desired result.

Proof of Proposition 4.2. During the proof, to ease the notation, we will often leave implicit the
dependence of τ on λ. Then, as in Han & Xu (2023) and in the proof of Theorem 1, we define the
Gaussian sequence model θ̂ρ ∈ R2d as (C.9) where ρ is a standard Gaussian vector in R2d and γ > 0
is implicitly defined via

nγ2

2d
= σ2 + Eρ

[∥∥∥Σ1/2
(
θ̂ρ − θ∗

)∥∥∥2
2

]
= σ2 +

∥∥∥Σ1/2
(
(Σ + τI)

−1
Σ− I

)
θ∗
∥∥∥2
2
+

γ2

2d
tr
(
(Σ + τI)

−2
Σ2
)
,

(C.23)

which also reads

nγ2

2d
=

σ2 + τ2
∥∥∥(Σ + τI)

−1
Σ1/2θ∗

∥∥∥2
2

1− tr((Σ+τI)−2Σ2)
n

. (C.24)

Then, due to Theorem 3.1 of Han & Xu (2023) on the prediction risk, since PXY is a multivariate
Gaussian due to Assumption 1, we have that, for any t ∈ (0, 1/2),

PZ,G
(∣∣∣L(θ̂LR(λ))− LΣ(λ)

∣∣∣ ≥ t
)
≤ Cd exp

(
−dt4/C

)
, (C.25)

where C is a positive constant depending on λmin (Σ), ∥Σ∥op, σ2, and n/d = Θ(1).

Proof of Proposition 4.3 As τ(λ) is an increasing function of λ, all the statements on the mono-
tonicity of LΣ(λ) and CΣ(λ) can be proved by showing monotonicity w.r.t. τ (whose dependence
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w.r.t. λ is left implicit throughout the argument). In particular, we have

dLΣ(λ)

dτ
=

d
dτ

(
τ2
∥∥∥(Σ + τI)

−1
Σ1/2θ∗

∥∥∥2
2

)(
1− tr((Σ+τI)−2Σ2)

n

)
(
1− tr((Σ+τI)−2Σ2)

n

)2

−

(
σ2 + τ2

∥∥∥(Σ + τI)
−1

Σ1/2θ∗
∥∥∥2
2

)
d

dτ

(
1− tr((Σ+τI)−2Σ2)

n

)
(
1− tr((Σ+τI)−2Σ2)

n

)2 .

(C.26)

To study the sign of the above expression, it suffices to focus on the numerators, as the denominator
is always positive.

Note that the RHS of (3.4) is smaller or equal to 2d/n; thus, as 2d < n, we also get τ ≤
λ (1− 2d/n)

−1, which implies τ(λ) → 0 as λ → 0. Hence, to show that LΣ(λ) is monotoni-
cally decreasing in a right neighborhood of λ = 0, it suffices to show that (C.26) evaluated in τ = 0
is strictly negative. For τ = 0, the first factor in the numerator of the first term in (C.26) is 0, as the
following chain of equalities holds:

d
dτ

(
τ2
∥∥∥(Σ + τI)

−1
Σ1/2θ∗

∥∥∥2
2

)
=

d
dτ

(∥∥∥(Σ/τ + I)
−1

Σ1/2θ∗
∥∥∥2
2

)
= θ∗⊤

d
dτ

(Σ/τ + I)
−2

Σθ∗

= −θ∗⊤ (Σ/τ + I)
−2

(
d

dτ
(Σ/τ + I)

2

)
(Σ/τ + I)

−2
Σθ∗

= −θ∗⊤ (Σ/τ + I)
−2

(
−2Σ

τ2
(Σ/τ + I)

)
(Σ/τ + I)

−2
Σθ∗

= 2τθ∗⊤ (Σ + τI)
−3

Σ2θ∗.
(C.27)

Furthermore, the second term gives

−σ2 d
dτ

1−
tr
(
(Σ + τI)

−2
Σ2
)

n

 =
σ2

n

d
dτ

(
2d∑
k=1

λ2
k

(λk + τ)
2

)
= −2σ2

n

2d∑
k=1

λ2
k

(λk + τ)
3 < 0,

(C.28)
where λk denotes the k-th eigenvalue of Σ. This gives the first claim.

To show that there exists λL > 0 such that LΣ(λ) is monotonically increasing for λ ≥ λL we
will show that the derivative of LΣ(λ) with respect to τ is positive for all τ ≥ τL := τ(λL). For
simplicity, in the rest of the argument we use the notation λmax and λmin to indicate the largest and
smallest eigenvalues of Σ, respectively. Instead, the notation λmin (·) still represents the smallest
eigenvalue of its argument. For the first factor of the first term of (C.26), continuing from (C.27), we
have

d
dτ

(
τ2
∥∥∥(Σ + τI)

−1
Σ1/2θ∗

∥∥∥2
2

)
≥ 2

1

λmax (Σ/τ + I)
3λmin (Σ/τ)

2
=

2λ2
min

τ2 (λmax/τ + 1)
3 .

(C.29)
For the second factor of the first term of (C.26), we have

1−
tr
(
(Σ + τI)

−2
Σ2
)

n
= 1− 1

n

2d∑
k=1

λ2
k

(λk + τ)
2 ≥ 1− 2dλ2

max

nτ2
. (C.30)

For the first factor of the second term of (C.26), we have

τ2
∥∥∥(Σ + τI)

−1
Σ1/2θ∗

∥∥∥2
2
≤ τ2

λmax

(λmin + τ)
2 (C.31)
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For the second factor of the second term of (C.26), we have

d
dτ

1−
tr
(
(Σ + τI)

−2
Σ2
)

n

 = − 1

n

d
dτ

(
2d∑
k=1

λ2
k

(λk + τ)
2

)
=

2

n

2d∑
k=1

λ2
k

(λk + τ)
3 ≤ 4dλ2

max

nτ3
.

(C.32)

Thus, putting together (C.26), (C.29), (C.30), (C.31), and (C.32), the monotonicity of LΣ(λ) is
implied by

2λ2
min

τ2 (λmax/τ + 1)
3

(
1− 2dλ2

max

nτ2

)
?
≥

(
σ2 + τ2

λmax

(λmin + τ)
2

)
4dλ2

max

nτ3
. (C.33)

Now, we have that the above inequality holds for sufficiently large τ : the LHS is Θ(1/τ2) (considering
fixed the other quantities), while the RHS is Θ(1/τ3); and the desired statement is therefore proved.

Next, we set τC := τ(λC) =
√

λmin (SΣ
x ) and show that CΣ(λ) is monotonically increasing for

τ ∈ [0, τC ]. Plugging Σxx = I in (C.15) we get

CΣ(λ) = τ θ∗x
⊤ (Σx + τI)

−1
Σxy

(
SΣ+τI
x

)−1
Σyxθ

∗
x =

τ

1 + τ
θ∗x

⊤Σxy

(
Σyy + τI − ΣyxΣxy

1 + τ

)−1

Σyxθ
∗
x.

(C.34)

By the product rule, and introducing the shorthand A(τ) = Σyy + τI − Σ⊤
xyΣxy

1+τ , we have

dCΣ(λ)

dτ
=

(
d

dτ

(
τ

1 + τ

))(
θ∗x

⊤ΣxyA(τ)−1Σ⊤
xyθ

∗
x

)
+

(
τ

1 + τ

)(
d

dτ

(
θ∗x

⊤ΣxyA(τ)−1Σ⊤
xyθ

∗
x

))
=

1

(1 + τ)2
θ∗x

⊤ΣxyA(τ)−1Σ⊤
xyθ

∗
x +

(
τ

1 + τ

)(
θ∗x

⊤ΣxyA(τ)−1

(
− d

dτ
A(τ)

)
A(τ)−1Σ⊤

xyθ
∗
x

)
=

1

(1 + τ)2
θ∗x

⊤ΣxyA(τ)−1Σ⊤
xyθ

∗
x −

τ

1 + τ

(
θ∗x

⊤ΣxyA(τ)−1

(
I +

Σ⊤
xyΣxy

(1 + τ)2

)
A(τ)−1Σ⊤

xyθ
∗
x

)

=
1

(1 + τ)
θ∗x

⊤ΣxyA(τ)−1

(
A(τ)

1 + τ
− τ

(
I +

Σ⊤
xyΣxy

(1 + τ)2

))
A(τ)−1Σ⊤

xyθ
∗
x

=
1

(1 + τ)
θ∗x

⊤ΣxyA(τ)−1

(
Σyy + τI

1 + τ
−

Σ⊤
xyΣxy

(1 + τ)2
− τI − τ

Σ⊤
xyΣxy

(1 + τ)2

)
A(τ)−1Σ⊤

xyθ
∗
x

=
1

(1 + τ)2
θ∗x

⊤ΣxyA(τ)−1
(
Σyy − Σ⊤

xyΣxy − τ2I
)
A(τ)−1Σ⊤

xyθ
∗
x

=
1

(1 + τ)2
θ∗x

⊤ΣxyA(τ)−1
(
SΣ
x − τ2I

)
A(τ)−1Σ⊤

xyθ
∗
x,

(C.35)
where in the second line we used the identity d

dτ

(
A(τ)−1

)
= A(τ)−1

(
− d

dτA(τ)
)
A(τ)−1. Then, if

τ ≤
√

λmin (SΣ
x ) = τC , we have that

(
SΣ
x − τ2I

)
is p.s.d., which in turn implies dCΣ(λ)

dτ ≥ 0, thus
giving the desired claim. The non-negativity of CΣ(λ) readily follows from (C.34).

For the last statement, setting τL = λmin (Σ) we show that LΣ(λ) is monotonically increasing for
all τ ∈ [τL,+∞) as long as the additional bound on 2d/n holds. As λmin

(
SΣ
x

)
≤ λmin (Σyy) ≤

tr (Σyy) /d = tr (Σ− Σxx) /d = 1, we also have

τC =
√
λmin (SΣ

x ) ≥ λmin

(
SΣ
x

)
≥ λmin (Σ) = τL, (C.36)

where the second inequality follows from Lemma C.3. Thus, from the monotonicity of τ(λ) in λ, the
final result readily follows.

It remains to prove the monotonicity of LΣ(λ) in [λmin (Σ) ,+∞). To do so, we again study the sign
of (C.26).
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For the first factor of the first term of (C.26), we have
d

dτ

(
τ2
∥∥∥(Σ + τI)

−1
Σ1/2θ∗

∥∥∥2
2

)
= 2θ∗⊤ (Σ/τ + I)

−3
(Σ/τ)

2
θ∗

= 2θ∗⊤Σ1/2 (Σ + τI)
−1

(Σ + τI)
−1

τΣ (Σ + τI)
−1

Σ1/2θ∗

≥ 2

τ
λmin

(
Σ (Σ + τ)

−1
)
τ2
∥∥∥(Σ + τI)

−1
Σ1/2θ∗

∥∥∥2
2

=
2

τ

λmin

λmin + τ
τ2
∥∥∥(Σ + τI)

−1
Σ1/2θ∗

∥∥∥2
2
.

(C.37)
For the second factor of the first term of (C.26), we have

1−
tr
(
(Σ + τI)

−2
Σ2
)

n
= 1− 1

n

2d∑
k=1

λ2
k

(λk + τ)
2 ≥ 1− 2d

n
. (C.38)

For the second factor of the second term of (C.26), we have

d
dτ

1−
tr
(
(Σ + τI)

−2
Σ2
)

n

 =
2

n

2d∑
k=1

λ2
k

(λk + τ)
3 ≤ 2

n

1

τ (λmin + τ)

2d∑
k=1

λ2
k

(λk + τ)
≤ 4d

nτ (λmin + τ)
.

(C.39)

Thus, putting together (C.26), (C.37), (C.38), and (C.39), the monotonicity of LΣ(λ) is implied by
2

τ

λmin

λmin + τ
τ2
∥∥∥(Σ + τI)

−1
Σ1/2θ∗

∥∥∥2
2

(
1− 2d

n

)
?
≥
(
σ2 + τ2

∥∥∥(Σ + τI)
−1

Σ1/2θ∗
∥∥∥2
2

)
4d

nτ (λmin + τ)
(C.40)

Since we assumed that 2d/n ≤ λmin/4 ≤ 1/4, we have
2

τ

λmin

λmin + τ

(
1− 2d

n

)
− 4d

nτ (λmin + τ)
=

2

τ

λmin

λmin + τ

(
1− 2d

n
− 2d

nλmin

)
≥ 1

τ

λmin

λmin + τ
,

(C.41)
and

τ2
∥∥∥(Σ + τI)

−1
Σ1/2θ∗

∥∥∥2
2
≥ λmin

(
τ2Σ (Σ + τI)

−2
)

= mink
τ2λk

(λk + τ)
2

= mink
λk

(λk/τ + 1)
2

≥ mink
λk

(λk/λmin + 1)
2

= λmin mink
λk/λmin

(λk/λmin + 1)
2

=
λmax

(λmax/λmin + 1)
2 ,

(C.42)

where in the fourth line we used that τ ≥ λmin, and in the last step we used that f(x) := x/(x+ 1)2

is decreasing for x ≥ 1.

Thus, using (C.41) and (C.42) gives that (C.40) is implied by
λmax

(λmax/λmin + 1)
2

1

τ

λmin

λmin + τ

?
≥ σ2 4d

nτ (λmin + τ)
, (C.43)

which holds since we assumed
2d

n
≤ 1

2σ2

λmaxλmin

(λmax/λmin + 1)
2 . (C.44)
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C.1 PROOFS ON SΣ
x

For completeness, in this section we prove two known results about SΣ
x .

Lemma C.2. Let z =
[
x⊤, y⊤

]⊤ ∼ PXY be distributed according to a mean-0, multivariate
Gaussian distribution with covariance Σ, such that Σ is invertible. Then, the Schur complement SΣ

x
of Σ with respect to the top left block Σxx (see (4.1)) corresponds to the conditional covariance of y
given x, i.e.,

SΣ
x = Cov (y|x = x̄) = Ey|x=x̄

[(
y − Ey|x=x̄[y]

) (
y − Ey|x=x̄[y]

)⊤]
. (C.45)

Proof. Consider the expression z⊤Σ−1z. According to the notation in (4.1) and in (C.17), we have

z⊤Σ−1z = x⊤ [Σ−1
]
xx

x+ y⊤
[
Σ−1

]
yy

y + x⊤ [Σ−1
]
xy

y + y⊤
[
Σ−1

]
yx

x. (C.46)

Then, the formulas for the inverse of a block matrix give

z⊤Σ−1z

= x⊤
(
Σ−1
xx +Σ−1

xxΣxyS
Σ
x

−1
ΣyxΣ

−1
xx

)
x+ y⊤SΣ

x

−1
y + x⊤

(
−Σ−1

xxΣxyS
Σ
x

−1
)
y + y⊤

(
−SΣ

x

−1
ΣyxΣ

−1
xx

)
x

= x⊤Σ−1
xxx+

(
y − ΣyxΣ

−1
xxx

)⊤
SΣ
x

−1 (
y − ΣyxΣ

−1
xxx

)
.

(C.47)
Then, denoting with p(x, y) and p(x) the probability density functions of z =

[
x⊤, y⊤

]⊤
and x

respectively, we get that the probability density function of y conditioned on x takes the form

p(y|x) = p(x, y)

p(x)

=

√
(2π)

d
det (Σxx)√

(2π)
2d

det (Σ)

exp
(
−
[
x⊤, y⊤

]
Σ−1

[
x⊤, y⊤

]⊤
/2
)

exp
(
−x⊤Σ−1

xxx/2
)

=
1√

(2π)
d
det (SΣ

x )
exp

(
−
[
x⊤, y⊤

]
Σ−1

[
x⊤, y⊤

]⊤
/2 + x⊤Σ−1

xxx/2
)

=
exp

(
−
(
y − ΣyxΣ

−1
xxx

)⊤
SΣ
x
−1 (

y − ΣyxΣ
−1
xxx

)
/2
)

√
(2π)

d
det (SΣ

x )
,

(C.48)

where we used Schur formula for the determinants in the third line, and (C.47) in the last step. Thus,
we have that p(y|x) describes the density of a multivariate Gaussian random variable, with covariance
SΣ
x .

Lemma C.3. Let Σ ∈ R2d×2d be a p.s.d., invertible matrix. Then, the Schur complement SΣ
x ∈ Rd×d

of Σ with respect to the top left block Σxx (see (4.1)) is such that

λmin

(
SΣ
x

)
≥ λmin (Σ) . (C.49)

Proof. Let Γ ∈ R2d×d be the rank-d matrix defined as

Γ =

(
Σ

1/2
xx

ΣyxΣ
−1/2
xx

)
, (C.50)

and S ∈ R2d×2d as the matrix containing SΣ
x in its bottom-right d× d block, and 0 everywhere else.

Then, we have that
Σ = S + ΓΓ⊤, (C.51)

where both S and ΓΓ⊤ are rank-d p.s.d. matrices.

Denoting by λk(S) the k-th largest eigenvalue of S, by the Courant–Fischer–Weyl min-max principle,
we can write

λk(S) = maxW, dim(W )=kminu∈W, ∥u∥2=1

(
u⊤Su

)
, (C.52)
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where with W we denote a generic k-dimensional subspace of R2d. Thus, the desired result follows
from

λmin (Σ) = λmin

(
S + ΓΓ⊤)

= min∥u∥2=1 u
⊤ (S + ΓΓ⊤)u

≤ minu∈ker(ΓΓ⊤), ∥u∥2=1 u
⊤ (S + ΓΓ⊤)u

= minu∈ker(ΓΓ⊤), ∥u∥2=1 u
⊤Su

≤ maxW, dim(W )=dminu∈W, ∥u∥2=1 u
⊤Su

= λd(S)

= λmin

(
SΣ
x

)
,

(C.53)

where the last step holds since the d smallest eigenvalues of S are equal to 0, and the d largest
correspond to the ones of SΣ

x .

C.2 REMARKS ON ASSUMPTION 1

Our results on linear regression rely on Assumption 1, and in particular on the training samples to be
normally distributed. This assumption is made for technical convenience, as the concentration results
in Theorem 1 and Proposition 4.2 still hold under the following milder requirement.
Assumption 2 (Data distribution). The input samples {zi}ni=1 are n i.i.d. samples from a mean-0,
sub-Gaussian distribution PXY , such that

1. its covariance Σ ∈ R2d×2d is invertible, with λmax (Σ) = O (1), λmin (Σ) = Ω(1), and
tr(Σ) = 2d;

2. for z ∼ PZ , the random variable Σ−1/2z has independent, mean-0, unit variance, sub-
Gaussian entries.

This assumption resembles the requirements A-B in Section 2.2 in Han & Xu (2023), where we also
included the scaling of the trace. To formally state the equivalent of Theorem 1 and Proposition 4.2,
one also has to enforce the following technical condition on the true parameter θ∗.
Assumption 3. Let δ = 1/72, then we assume that

θ∗ s.t.
∥∥∥Σ1/2τ(Σ + τI)−1θ∗

∥∥∥
∞

≤ Cdδ−1/2. (C.54)

In Proposition 10.3 in Han & Xu (2023), it is shown that this condition excludes a negligible fraction
(Ce−n

2δ/C) of the θ∗ on the unit ball. Since we set δ = 1/72, following the same arguments of the
proofs of Theorem 1 and Proposition 4.2, we have that Theorems 2.4 and 3.1 in Han & Xu (2023)
imply the results below.
Theorem 3. Let Assumptions 6 and 3 hold, and let n = Θ(d). Let θ̂LR(λ) be defined as in (3.2), and

let C(θ̂LR(λ)) be the amount of spurious correlations learned by the model fLR

(
θ̂LR(λ)

)
as defined

in (2.3). Then, for any λ > 0, we have that, for every t ∈ (0, 1/2),

PZ,G
(∣∣∣C(θ̂LR(λ))− CΣ(λ)

∣∣∣ ≥ t
)
≤ Ct−13d−1/8, (C.55)

where CΣ(λ) is defined in (3.3), and C is a an absolute constant.
Proposition C.4. Let Assumptions 6 and 3 hold, and let n = Θ(d). Let θ̂LR(λ) be defined as in (3.2),
and let L(θ̂LR(λ)) be the in-distribution test loss of the model fLR(θ̂LR(λ)) as defined in (3.1). Then, ,
for any λ > 0, we have that, for every t ∈ (0, 1/2),

PZ,G
(∣∣∣L(θ̂LR(λ))− LΣ(λ)

∣∣∣ ≥ t
)
≤ Ct−cd−1/6.5, (C.56)

where LΣ(λ) is defined in (4.3), and C and c are positive absolute constants.
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D PROOFS FOR RANDOM FEATURES

Assumption 4 (Activation function). The activation ϕ : R → R is a non-linear, odd, Lipschitz
function, such that its first Hermite coefficient µ1 ̸= 0.

This choice is motivated by theoretical convenience and is similar to the one considered in Hu & Lu
(2023). We believe that our result can be extended to a more general setting, as the ones in Mei &
Montanari (2022); Mei et al. (2022), with a more involved analysis. We refer to O’Donnell (2014) for
background on Hermite coefficients.
Assumption 5 (Over-parameterization). We let p grow s.t. p = ω

(
n log4 n

)
and log p = Θ(log n).

This requires the width of the model (and, hence, its number of parameters) to grow faster (by at least
a poly-log factor) than the number of training samples.

Finally, our requirements on the data are less restrictive than those coming from Assumption 1.
Assumption 6 (Data distribution, less restrictive). {zi}ni=1 are n i.i.d. samples from a mean-0,
Lipschitz concentrated distribution PXY , with covariance Σ s.t. tr(Σ) = 2d. Furthermore, the labels
gi are i.i.d. sub-Gaussian random variables.

Note that the labels gi are not required to follow a linear model gi = z⊤i θ
∗ + ϵi. The Lipschitz

concentration property (see Appendix A for details) corresponds to data having well-behaved tails,
it includes the distributions considered in Assumption 1, as well as the uniform distribution on the
sphere or the hypercube (Vershynin, 2018), and it is a common requirement in the related literature
(Nguyen et al., 2021; Bubeck & Sellke, 2021; Bombari et al., 2022).
Lemma D.1. We have that

∥V ∥op = O
(√

p

d

)
, (D.1)

∥Z∥op = O
(√

d
)
, (D.2)

with probability at least 1−2 exp (−cd) over V and Z, where c is an absolute constant. Furthermore,
for every i ∈ [n], we have ∥∥∥∥zi∥2 −√

2d
∥∥∥
ψ2

= O (1) . (D.3)

Proof. V has independent, mean-0, unit variance, sub-Gaussian entries. Then, the first statement is a
direct consequences of Theorem 4.4.5 of Vershynin (2018) and of the scaling d = o(p).

By Assumption 6, we have that Z has i.i.d. mean-0, Lipschitz concentrated rows. This property also
implies that the rows are i.i.d. sub-Gaussian. Thus, by Remark 5.40 in Vershynin (2012), we have that∥∥Z⊤Z − nΣ

∥∥
op = O

(
n
d

n

)
= O (d) , (D.4)

with probability at least 1 − 2 exp (−c1d). Then, conditioning on this high probability event, by
Weyl’s inequality, we have∥∥Z⊤Z

∥∥
op ≤ ∥nΣ∥op +

∥∥Z⊤Z − nΣ
∥∥

op = O (d) , (D.5)

where the last step follows from the argument used to prove ∥Σ∥op = O (1) in Lemma C.1 in Bombari
& Mondelli (2024).

For the last statement, we have

2d = tr(Σ) = tr
(
E
[
zz⊤

])
= E

[
tr
(
zz⊤

)]
= E

[
tr
(
z⊤z

)]
= E

[
∥z∥22

]
, (D.6)

where we used the cyclic property of the trace. Furthermore, we have

∥∥z∥2 − E [∥z∥2]∥ψ2
= O (1) , (D.7)

since z is Lipschitz concentrated. Then,

0 ≤ 2d− E [∥z∥2]
2
= E

[
(∥z∥2 − E [∥z∥2])

2
]
≤ C1, (D.8)
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for some absolute constant C1. Thus, as
√
1− x ≥ 1− x for x ∈ [0, 1], we obtain

1− C1

2d
≤
√

1− C1

2d
≤

E [∥z∥2]√
2d

≤ 1. (D.9)

Plugging this last result in (D.7) gives the desired claim.

Lemma D.2. We have that, denoting with µ̃2 =
∑
k≥2 µ

2
k, with µk denoting the k-th Hermite

coefficient of ϕ, ∥∥∥∥EV [ΦΦ⊤]− p

(
µ2
1

ZZ⊤

2d
+ µ̃2I

)∥∥∥∥
op

= O
(
p log3 d√

d

)
, (D.10)

with probability at least 1− 2 exp
(
−c log2 d

)
over Z, where c is an absolute constant.

Proof. For all i ∈ [n], we define the functions ϕ(i) : R → R as ϕ(i)(·) = ϕ(∥zi∥2 · /
√
2d). Note that

ϕ(i) is odd, since ϕ is odd by Assumption 4. Thus, denoting with µ
(i)
k the k-th Hermite coefficient of

ϕ(i), for every i ∈ [n], we have that µ(i)
k = 0 for all even k. This implies that, by denoting with v a

random vector distributed as the rows of V , i.e.,
√
2d v is a standard Gaussian vector, we have[

EV
[
ΦΦ⊤]]

ij
= pEv

[
ϕ(z⊤i v)ϕ(z

⊤
j v)

]
= pEv

[
ϕ(i)

(
z⊤i

∥zi∥2

√
2dv

)
ϕ(j)

(
z⊤j

∥zj∥2

√
2dv

)]

= p

+∞∑
k=0

µ
(i)
k µ

(j)
k

(
z⊤i zj

∥zi∥2 ∥zj∥2

)k

= pµ
(i)
1 µ

(j)
1

z⊤i zj
∥zi∥2 ∥zj∥2

+ p
∑
k≥3

µ
(i)
k µ

(j)
k

(
z⊤i zj

∥zi∥2 ∥zj∥2

)k
.

(D.11)

Then, denoting with Dk ∈ Rn×n the diagonal matrix containing µ
(i)
k / ∥zi∥k2 in its i-th entry, we can

write
EV
[
ΦΦ⊤] = pD1ZZ⊤D1 + p

∑
k≥3

Dk

(
ZZ⊤)◦kDk. (D.12)

Notice that, due to the last statement in Lemma D.1, we have that, jointly for all i ∈ [n],∣∣∣∣∥zi∥2√
2d

− 1

∣∣∣∣ = O
(
log d√

d

)
, (D.13)

with probability at least 1− 2 exp(−c1 log
2 d). Then, conditioning on such high probability event

and denoting with ρ a standard Gaussian random variable, for all i ∈ [n] we have∣∣∣µ(i)
1 − µ1

∣∣∣ = ∣∣∣Eρ [ρϕ(i)(ρ)
]
− Eρ [ρϕ(ρ)]

∣∣∣
=

∣∣∣∣Eρ [ρ(ϕ(∥zi∥2√
2d

ρ

)
− ϕ(ρ)

)]∣∣∣∣
=

∣∣∣∣Eρ [ρ(ϕ((∥zi∥2√
2d

− 1

)
ρ+ ρ

)
− ϕ(ρ)

)]∣∣∣∣
≤ Eρ

[
|ρ|
∣∣∣∣ϕ((∥zi∥2√

2d
− 1

)
ρ+ ρ

)
− ϕ(ρ)

∣∣∣∣]
≤ LEρ

[
|ρ|
∣∣∣∣∥zi∥2√

2d
− 1

∣∣∣∣ |ρ|]
= L

∣∣∣∣∥zi∥2√
2d

− 1

∣∣∣∣Eρ [ρ2]
= O

(
log d√

d

)
,

(D.14)
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where we used Jensen’s inequality in the fourth line, the L-Lipschitzness of ϕ in the fifth line, and
(D.13) in the last step. With a similar approach, denoting with ∥·∥L2 the L2 norm with respect to the
Gaussian measure, we have that for all i ∈ [n]∣∣∣∥∥∥ϕ(i)

∥∥∥
L2

− ∥ϕ∥L2

∣∣∣ ≤ ∥∥∥ϕ(i) − ϕ
∥∥∥
L2

= Eρ
[(

ϕ(i)(ρ)− ϕ(ρ)
)2]1/2

= Eρ

[(
ϕ

((
∥zi∥2√

2d
− 1

)
ρ+ ρ

)
− ϕ(ρ)

)2
]1/2

≤ L

∣∣∣∣∥zi∥2√
2d

− 1

∣∣∣∣Eρ [ρ2]1/2
= O

(
log d√

d

)
,

(D.15)

which directly implies that, for all i ∈ [n],
∥∥ϕ(i)

∥∥
L2 =

∑
k≥0

(
µ
(i)
k

)2
= Θ(1), and that

∣∣∣∣∣∣
∑
k≥3

(
µ
(i)
k

)2
−
∑
k≥3

µ2
k

∣∣∣∣∣∣ ≤
∣∣∣∣∥∥∥ϕ(i)

∥∥∥2
L2

− ∥ϕ∥2L2

∣∣∣∣+ ∣∣∣∣(µ(i)
1

)2
− µ2

1

∣∣∣∣ = O
(
log d√

d

)
. (D.16)

Thus, we are ready to estimate the operator norm of the off-diagonal part of the second term on the
RHS of (D.12), specifically∥∥∥∥∥∥

∑
k≥3

Dk

(
ZZ⊤)◦kDk − diag

∑
k≥3

Dk

(
ZZ⊤)◦kDk

∥∥∥∥∥∥
op

≤
∑
k≥3

∥∥∥Dk

(
ZZ⊤)◦kDk − diag

(
Dk

(
ZZ⊤)◦kDk

)∥∥∥
F

≤
∑
k≥3

maxi ̸=j

( ∣∣z⊤i zj∣∣
∥zi∥2 ∥zj∥2

)k ∑
i∈[n],j∈[n]

(
µ
(i)
k µ

(j)
k

)21/2

≤ maxi ̸=j

( ∣∣z⊤i zj∣∣
∥zi∥2 ∥zj∥2

)3 n∑
i=0

∑
k≥3

(
µ
(i)
k

)2
= O

(
1

d3/2
log3 dn

)
= O

(
log3 d√

d

)
,

(D.17)

where in the first step we replaced the operator norm with the Frobenius norm, and used triangle
inequality; in the fifth line we used that ∥zi∥2 = Θ(

√
d) for all i ∈ [n] (true because of (D.13)),

and that jointly for all i ̸= j we have
∣∣z⊤i zj∣∣ / ∥zj∥2 = O (log d) with probability at least 1 −

2 exp(−c2 log
2 d) since the zi-s are independent sub-Gaussian vectors (since they are mean-0 and

Lipschitz concentrated). The diagonal part of the second term on the RHS of (D.12) respects∥∥∥∥∥∥diag
∑
k≥3

Dk

(
ZZ⊤)◦kDk

− µ̃2I

∥∥∥∥∥∥
op

= maxi∈[n]

∣∣∣∣∣∣
∑
k≥3

(
µ
(i)
k

)2
−
∑
k≥3

µ2
k

∣∣∣∣∣∣ = O
(
log d√

d

)
,

(D.18)
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because of (D.16). Lastly, notice that,∥∥∥∥D1ZZ⊤D1 − µ2
1

ZZ⊤

2d

∥∥∥∥
op

= sup
∥u∥2=1

∣∣∣∣u⊤D1ZZ⊤D1u− µ2
1u

⊤ZZ⊤

2d
u

∣∣∣∣
= sup

∥u∥2=1

∣∣∣∣∣∥∥Z⊤D1u
∥∥2
2
− µ2

1

∥∥∥∥ Z⊤
√
2d

u

∥∥∥∥2
2

∣∣∣∣∣
≤ sup

∥u∥2=1

(∥∥Z⊤D1u
∥∥
2
+ µ1

∥∥∥∥ Z⊤
√
2d

u

∥∥∥∥
2

)
sup

∥u∥2=1

(∥∥∥∥Z⊤D1u− µ1
Z⊤
√
2d

u

∥∥∥∥
2

)

≤

(∥∥Z⊤D1

∥∥
op + µ1

∥∥∥∥ Z⊤
√
2d

∥∥∥∥
op

)∥∥∥∥Z⊤D1 − µ1
Z⊤
√
2d

∥∥∥∥
op

≤

(
∥Z∥op ∥D1∥op + µ1

∥Z∥op√
2d

)
∥Z∥op

∥∥∥∥D1 −
µ1√
2d

∥∥∥∥
op
.

(D.19)
By Lemma D.1, we have that ∥Z∥op = O

(√
d
)

with probability at least 1−2 exp (−c2d), and since

∥zi∥2 = Θ(
√
d) and µ

(i)
1 = O (1) for all i ∈ [n] (true because of (D.13) and (D.14) respectively),

we have that ∥D1∥op = O
(
1/
√
d
)

. Furthermore, we have∥∥∥∥D1 −
µ1√
2d

∥∥∥∥
op

= maxi

∣∣∣∣∣ µ(i)
1

∥zi∥2
− µ1√

2d

∣∣∣∣∣
≤ maxi

1

∥zi∥2

(∣∣∣µ(i)
1 − µ1

∣∣∣+ µ1

∣∣∣∣1− ∥zi∥2√
2d

∣∣∣∣)
= O

(
log d

d

)
,

(D.20)

where the last step is a consequence of (D.13) and (D.14). Then, we have that (D.19) reads∥∥∥∥D1ZZ⊤D1 − µ2
1

ZZ⊤

2d

∥∥∥∥
op

= O
(
log d√

d

)
. (D.21)

A standard application of the triangle inequality to (D.17), (D.18) and (D.21) gives∥∥∥∥∥∥
D1ZZ⊤D1 +

∑
k≥3

Dk

(
ZZ⊤)◦kDk

−
(
µ2
1

ZZ⊤

2d
+ µ̃2I

)∥∥∥∥∥∥
op

= O
(
log3 d√

d

)
, (D.22)

with probability at least 1−2 exp
(
−c3 log

2 d
)

over Z (where we used µ2 = 0 since ϕ is odd), which
readily gives the thesis when plugged in (D.12).

Lemma D.3. We have that
∥Φ∥op = O (

√
p) , (D.23)∥∥ΦΦ⊤ − EV

[
ΦΦ⊤]∥∥

op = O
(√

pd
)
, (D.24)

λmin

(
ΦΦ⊤) = Ω(p) , (D.25)

with probability at least 1− 2 exp
(
−c log2 d

)
over Z and V , where c is an absolute constant.

Proof. Φ⊤ is a matrix with i.i.d. rows in the probability space of V . In particular, its i-th row takes
the form [

Φ⊤]
i:
= ϕ (ZVi:) = ϕ (ZVi:)− EV [ϕ (ZVi:)] , (D.26)

where the last step holds since the (Gaussian) distribution of Vi: is symmetric and ϕ is an odd function
by Assumption 4. Then, since

√
2d Vi: is a standard Gaussian (and hence Lipschitz concentrated)

random vector, and ϕ is a Lipschitz continuous function, we have that∥∥[Φ⊤]
i:

∥∥
ψ2

= O

(
∥Z∥op√

d

)
= O (1) , (D.27)
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where the ∥·∥ψ2
is meant on the probability space of V , and the second step holds with probability at

least 1− 2 exp (−c1d) over Z due to Lemma D.1. Conditioning on this high probability event, Φ⊤ is
a p× n matrix whose rows are i.i.d. mean-0 sub-Gaussian random vectors in Rn. Then, by Lemma
B.7 in Bombari et al. (2022), we have∥∥Φ⊤∥∥

op = O
(√

n+
√
p
)
= O (

√
p) , (D.28)

with probability at least 1− 2 exp(−c2n) over V , where the second step holds because n = o(p).

For the second part of the proof, we again follow the argument in Lemma B.7 in Bombari et al.
(2022), which in turn exploits the discussion in Remark 5.40 in Vershynin (2012), and conclude that∥∥ΦΦ⊤ − EV

[
ΦΦ⊤]∥∥

op = O
(
p

√
n

p

)
= O (

√
pn) = O

(√
pd
)
, (D.29)

with probability at least 1− 2 exp(−c3n) over Z and V .

For the last statement, Lemma D.2 and Weyl’s inequality imply that, with probability at least
1− 2 exp

(
−c2 log

2 d
)

over Z we have

λmin

(
ΦΦ⊤) ≥ p λmin

(
µ2
1

ZZ⊤

2d
+ µ̃2I

)
−
∥∥∥∥EV [ΦΦ⊤]− p

(
µ2
1

ZZ⊤

2d
+ µ̃2I

)∥∥∥∥
op
−
∥∥ΦΦ⊤ − EV

[
ΦΦ⊤]∥∥

op

≥ pµ̃2 −O
(
p log3 d√

d

)
−O

(√
pd
)
= Ω(p),

(D.30)

where the last step is true since µ̃ ̸= 0, as ϕ is non-linear by Assumption 4.

Lemma D.4. Let ϕ̃ : R → R be defined as ϕ̃(·) := ϕ(·)− µ1(·), and set

n′ = min

(⌊
p

log4 p

⌋
,

⌊
d3/2

log3 d

⌋)
. (D.31)

Let {ẑi}n
′

i=1 be n′ i.i.d. random variables sampled from a distribution respecting Assumption 6, not
necessarily with the same covariance as PXY , and independent from V . Then, if Φ̃n′ ∈ Rn′×p is
defined as the matrix containing ϕ̃(V ẑi) in its i-th row, we have that∥∥∥Φ̃n′

∥∥∥
op

= O (
√
p) , (D.32)

with probability at least 1− 2 exp
(
−c log2 d

)
over {ẑi}n

′

i=1 and V , where c is an absolute constant.

Proof. The proof follows the same strategy as Lemma C.8 in Bombari & Mondelli (2024), with
the only difference that they work under their Assumption 1.2, i.e. that the data is normalized as
∥ẑi∥2 =

√
2d (in our notation). This difference, however, does not affect the result. We can in fact

condition on the high probability event that all ẑi are such that ∥ẑi∥2 = Θ(
√
d), which holds with

probability at least 1− 2 exp (−cd) by Lemma D.1, and proceed in the same way (as their Equation
(C.78) now holds) until their Equation (C.81), which requires their Lemma C.7, i.e. that∥∥∥EV [Φ̃n′Φ̃⊤

n′

]∥∥∥
op

= O (p) . (D.33)

This holds also in our case, as it can be proven following the argument in (D.17) and (D.18), where
now the n in the last line of (D.17) has to be replaced with n′, making the RHS there being O (1), as
n′ = O

(
d3/2

log3 d

)
by definition. Lastly, the normalization of the data is used one more time in their

Equation (C.91), but it is not critical to obtain the result, as ∥ẑi∥2 = Θ(
√
d) is sufficient. We remark

that Assumption 1.2 in Bombari & Mondelli (2024) also requires the covariance of the distribution
to be well-conditioned, which however is not required for the purposes of the above mentioned
lemmas.
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Lemma D.5. Let ϕ̃ : R → R be defined as ϕ̃(·) := ϕ(·) − µ1(·), and let z ∈ R2d be sampled
from a distribution respecting Assumption 6, not necessarily with the same covariance as PXY , and
independent from V . Then we have that∥∥∥Ez [ϕ̃(V z)ϕ̃(V z)⊤

]∥∥∥
op

= O
(
log4 d+

p log3 d

d3/2

)
, (D.34)

with probability at least 1− 2p2 exp
(
−c log2 d

)
over V , where c is an absolute constant.

Proof. The proof follows a similar path as the one in Lemma C.15 in Bombari & Mondelli (2024).
In particular, set

n′ = min

(⌊
p

log4 p

⌋
,

⌊
d3/2

log3 d

⌋)
, N = p2n′, (D.35)

and let Φ̃N ∈ RN×p be a matrix containing ϕ̃(V ẑi) in its i-th row, where every {ẑi}Ni=1 is sampled
independently from the same distribution of z. Thus, Φ̃N can be seen as the vertical stacking of
p2 matrices with size n′ × p. All these matrices respect the hypotheses of Lemma D.4, and hence
have their operator norm bounded by O

(√
p
)

with probability at least 1− 2 exp
(
−c1 log

2 d
)
. Thus,

performing a union bound over these p2 matrices, we get∥∥∥Φ̃⊤
N Φ̃N

∥∥∥
op

= O
(
p2 p

)
= O

(
Np

n′

)
= O

(
N log4 p+

Np log3 d

d3/2

)
, (D.36)

with probability at least 1− 2p2 exp
(
−c1 log

2 d
)

over V and {ẑi}Ni=1.

Via the same argument used for the last statement of Lemma D.1, denoting with vk ∈ R2d the k-th row
of V , we have that ∥vk∥2 = O (1) uniformly for every k with probability at least 1− 2p exp(−c2d).
Conditioning on such event, we have that each entry of ϕ̃(V ẑ1) is sub-Gaussian (with uniformly
bounded sub-Gaussian norm), since ẑ1 is sub-Gaussian (as it is mean-0 and Lipschitz concentrated)
and ϕ̃ is a Lipschitz function. Thus, we have that each entry of Eẑ1

[
ϕ̃(V ẑ1)

]
is O (1) (see Proposition

2.5.2 in Vershynin (2018)), and therefore that
∥∥∥Ez1 [ϕ̃(V ẑ1)

]∥∥∥
ψ2

= O
(∥∥∥Ez1 [ϕ̃(V ẑ1)

]∥∥∥
2

)
=

O
(√

p
)
. Then, conditioning on the high probability event ∥V ∥op = O

(√
p/d
)

given by Lemma
D.1, we have∥∥∥ϕ̃(V ẑ1)

∥∥∥
ψ2

≤
∥∥∥ϕ̃(V ẑ1)− Ez1

[
ϕ̃(V ẑ1)

]∥∥∥
ψ2

+
∥∥∥Ez1 [ϕ̃(V ẑ1)

]∥∥∥
ψ2

= O
(√

p

d
+

√
p

)
= O (

√
p) ,

(D.37)
where the second step holds because ẑ1 is Lipschitz concentrated and ϕ̃ is Lipschitz. Since the rows
of Φ̃N are identically distributed, this also holds jointly for all other ẑi-s, for i ∈ [N ]. Then, Φ̃N/

√
p

is a matrix with independent sub-Gaussian rows, and by Theorem 5.39 in Vershynin (2012) (see their
Remark 5.40 and Equation (5.25)), we have that

1

p

∥∥∥∥∥ Φ̃⊤
N Φ̃N
N

− Ez
[
ϕ̃(V z)ϕ̃(V z)⊤

]∥∥∥∥∥
op

= O
(√

p

N

)
, (D.38)

with probability at least 1− 2 exp (−c3p) over {ẑi}Ni=1. Then, we have∥∥∥Ez [ϕ̃(V z)ϕ̃(V z)⊤
]∥∥∥

op
≤

∥∥∥∥∥ Φ̃⊤
N Φ̃N
N

− Ez
[
ϕ̃(V z)ϕ̃(V z)⊤

]∥∥∥∥∥
op

+

∥∥∥Φ̃⊤
N Φ̃N

∥∥∥
op

N

= O
(
p

√
p

N

)
+O

(
log4 p+

p log3 d

d3/2

)

= O

√
p

√
log4 p

p
+

√
p

√
log3 d

d3/2

+O
(
log4 p+

p log3 d

d3/2

)

= O
(
log4 p+

p log3 d

d3/2

)
,

(D.39)
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where the first step follows from the triangle inequality, the second step is a consequence of (D.38)
and (D.36), and the third step follows from the definition of N .

Taking the intersection between the high probability events in (D.36), (D.37) and (D.38), the previous
equation then holds with probability at least 1 − 2p2 exp

(
−c4 log

2 d
)

over V and {ẑi}Ni=1. Also
note that its LHS does not depend on {ẑi}Ni=1, which were introduced as auxiliary random variables.
Thus, the high probability bound holds restricted to the probability space of V , and the desired result
follows.

Lemma D.6. Let ϕ̃ : R → R be defined as ϕ̃(·) := ϕ(·) − µ1(·) and Φ̃ ∈ Rn×p as the matrix
containing ϕ̃(V zi) in its i-th row. Then, we have∥∥∥Φ̃V ∥∥∥

op
= O

(
√
p log d+

p log d

d

)
, (D.40)

with probability at least 1− 2 exp
(
−c log2 d

)
over Z and V , where c is an absolute constant.

Proof. Note that ϕ̃ is Lipschitz (since ϕ is Lipschitz by Assumption 4). During all the proof, we
condition on the event ∥Z∥op = O

(√
d
)

and ∥zi∥2 = Θ
(√

d
)

for all i ∈ [n], which holds with
probability at least 1 − 2 exp (−c1d) by Lemma D.1. During the proof we also use the shorthand
v ∈ R2d to denote a random vector such that

√
2d v is a standard Gaussian vector, i.e., it has the same

distribution as the rows of V . This implies

Ev
[∥∥∥ϕ̃ (Zv)

∥∥∥
2

]
= O

(√
n
)
,

∥∥∥∥∥∥ϕ̃ (Zv)
∥∥∥
2
− Ev

[∥∥∥ϕ̃ (Zv)
∥∥∥
2

]∥∥∥
ψ2

= O (1) , (D.41)

and

Ev [∥v∥2] = O (1) , ∥∥v∥2 − Ev [∥v∥2]∥ψ2
= O

(
1√
d

)
, (D.42)

where both sub-Gaussian norms are meant on the probability space of v, and where the very first
equation follows from the discussion in Lemma C.3 in Bombari et al. (2022). Then, there exists an
absolute constant C1 such that we jointly have∥∥∥ϕ̃ (Zv)

∥∥∥
2
≤ C1

√
d, ∥v∥2 ≤ C1 (D.43)

with probability at least 1− 2 exp (−c2d) over v.

Let Ek be the indicator defined on the high probability event above with respect to the random
variable vk := V:k (the k-th row of V ), i.e.

Ek := 1
(
∥vk∥2 ≤ C1 and

∥∥∥ϕ̃ (Zvk)
∥∥∥
2
≤ C1

√
d
)
, (D.44)

and we define E ∈ Rp×p as the diagonal matrix containing Ek in its k-th entry. Notice that we have
∥I − E∥op = 0 with probability at least 1− 2p exp (−c2d), and EV

[
∥I − E∥op

]
≤ 2p exp (−c2d).

Thus, we have∥∥∥EV [Φ̃ (I − E)V
]∥∥∥

op
≤ EV

[∥∥∥Φ̃∥∥∥
op
∥1− E∥op ∥V ∥op

]
≤ EV

[∥∥∥Φ̃∥∥∥2
op
∥V ∥2op

]1/2
EV
[
∥I − E∥2op

]1/2
≤ EV

[∥∥∥Φ̃∥∥∥4
op

]1/4
EV
[
∥V ∥4op

]1/4
(2p exp (−c2d))

1/2

≤ EV
[∥∥∥Φ̃∥∥∥4

F

]1/4
EV
[
∥V ∥4F

]1/4
(2p exp (−c2d))

1/2

= o(1),

(D.45)
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where the last step holds because of our initial conditioning on Z: the first two terms are the sum of
finite powers of sub-Gaussian random variables (the entries of Φ̃ and V ), and thus (see Proposition
2.5.2 in Vershynin (2018)) the first two factors in the third line of the previous equation will be O (pα)
for some finite α, which gives the last line due to Assumption 5.

As in Lemma D.2, we introduce the notation (for all i ∈ [n]) ϕ̃(i) : R → R such that ϕ̃(i)(·) =

ϕ̃(∥zi∥2 · /
√
2d). Thus, denoting with v ∈ R2d a random vector such that

√
2dv is standard Gaussian

(i.e., distributed as the rows of V ), we can write[
EV
[
Φ̃V
]]
ij
= p

[
Ev
[
ϕ̃(Zv)v⊤

]]
ij
=

p√
2d

Ev
[
ϕ̃(i)

(
z⊤i

∥zi∥2

√
2dv

)(
e⊤j

(√
2dv
))]

=
p√
2d

µ̃
(i)
1 z⊤i ej
∥zi∥2

,

(D.46)
where µ̃(i)

1 is the first Hermite coefficient of ϕ̃(i). Then, denoting with D̃ ∈ Rn×n the diagonal matrix
containing µ̃

(i)
1 / ∥zi∥2 in its i-th entry, we can write∥∥∥EV [Φ̃V ]∥∥∥

op
=

p√
2d

∥∥∥D̃Z
∥∥∥

op
≤ p√

2d

∥∥∥D̃∥∥∥
op
∥Z∥op . (D.47)

Then, since we conditioned on ∥zi∥2 = Θ
(√

d
)

for all i ∈ [n], following the same argument as in

(D.14), and since the first Hermite coefficient of ϕ̃ is 0 by definition, we have∥∥∥EV [Φ̃V ]∥∥∥
op

= O
(

p√
d

log d

d

√
d

)
= O

(
p log d

d

)
, (D.48)

with probability at least 1 − 2 exp
(
−c3 log

2 d
)

over Z. A standard application of the triangle
inequality to this last equation and (D.45) then gives∥∥∥EV [Φ̃EV

]∥∥∥
op

≤
∥∥∥EV [Φ̃V ]∥∥∥

op
+
∥∥∥EV [Φ̃ (I − E)V

]∥∥∥
op

= O
(
p log d

d

)
, (D.49)

with probability at least 1− 2 exp
(
−c4 log

2 d
)

over Z.

Let’s now look at

Φ̃EV − EV
[
Φ̃EV

]
=

p∑
k=1

ϕ̃(Zvk)Ekv
⊤
k − Evk

[
ϕ̃(Zvk)Ekv

⊤
k

]
=:

p∑
k=1

Wk, (D.50)

where we defined the shorthand Wk = ϕ̃(Zvk)Ekv
⊤
k − Evk

[
ϕ̃(Zvk)Ekv

⊤
k

]
. (D.50) is the sum of p

i.i.d. mean-0 random matrices Wk (in the probability space of V ), such that

sup
vk

∥∥∥ϕ̃(Zvk)Ekv
⊤
k − Evk

[
ϕ̃(Zvk)Ekv

⊤
k

]∥∥∥
op

≤ 2 sup
vk

∥∥∥ϕ̃(Zvk)Ekv
⊤
k

∥∥∥
op

= 2 sup
vk

∥∥∥ϕ̃(Zvk)
∥∥∥
2
∥vk∥2 Ek

≤ 2C2
1

√
d,

(D.51)

because of (D.44). Then, by matrix Bernstein’s inequality for rectangular matrices (see Exercise
5.4.15 in Vershynin (2018)), we have that

PV
(∥∥∥Φ̃EV − EV

[
Φ̃EV

]∥∥∥
op

≥ t

)
≤ (n+ d) exp

(
− t2/2

σ2 + 2C2
1

√
dt/3

)
, (D.52)

where σ2 is defined as

σ2 = pmax
(∥∥Evk [WkW

⊤
k

]∥∥
op ,
∥∥Evk [W⊤

k Wk

]∥∥
op

)
. (D.53)
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For every matrix A, we have E
[
(A− E[A]) (A− E[A])

⊤
]
= E

[
AA⊤]− E[A]E[A]⊤ ⪯ E

[
AA⊤].

Thus, ∥∥Evk [WkW
⊤
k

]∥∥
op ≤

∥∥∥Evk [ϕ̃(Zvk)Ekv
⊤
k vkEkϕ̃(Zvk)

⊤
]∥∥∥

op

≤
∥∥∥Evk [ϕ̃(Zvk)ϕ̃(Zvk)

⊤
]∥∥∥

op
sup
vk

(
Ek ∥vk∥22

)
≤ C2

1

∥∥∥Evk [ϕ̃(Zvk)ϕ̃(Zvk)
⊤
]∥∥∥

op

= O (1) ,

(D.54)

where the last step is a direct consequence of Lemma D.2, applied to Φ̃ instead of to Φ, and holds
with probability at least 1− 2 exp

(
−c5 log

2 d
)

over Z. For the other argument in the max in (D.53)
we similarly have ∥∥E [W⊤

k Wk

]∥∥
op ≤

∥∥∥Evk [vkEkϕ̃(Zvk)
⊤ϕ̃(Zvk)Ekv

⊤
k

]∥∥∥
op

≤
∥∥Evk [vkv⊤k ]∥∥op sup

vk

(
Ek

∥∥∥ϕ̃(Zvk)
∥∥∥2
2

)
≤ 1

d
C2

1d

= O (1) .

(D.55)

Then, plugging these last two equations in (D.52) we get

PV
(∥∥∥Φ̃EV − EV

[
Φ̃EV

]∥∥∥
op

≥ √
p log d

)
≤ (n+ d) exp

(
− p log2 d/2

C2p+ 2C2
1

√
d
√
p log d/3

)
≤ 2 exp

(
−c6 log

2 d
)
,

(D.56)
where we used Assumption 5. Then, applying a triangle inequality and using (D.49) and (D.56), we
get ∥∥∥Φ̃EV

∥∥∥
op

= O
(
√
p log d+

p log d

d

)
, (D.57)

with probability at least 1 − 2 exp
(
−c7 log

2 d
)

over Z, V . Then, since E = I with probability at
least 1− 2p exp (−c3d), using Assumption 5 we get the desired result.

Lemma D.7. Let z ∈ R2d be sampled from a distribution respecting Assumption 6, not necessarily
with the same covariance as PXY , independent from everything else, and let fRF(z, θ̂RF(λ)) be the
RF model defined in (5.1).Then, we have that∣∣∣∣fRF(z, θ̂RF(λ))− µ2

1p
z⊤Z⊤

2d

(
ΦΦ⊤ + nλI

)−1
G

∣∣∣∣ = O

(
d1/4 log d

p1/4
+

log3/2 d

d1/8

)
= o(1),

(D.58)
with probability 1− C

√
d log2 d/

√
p− C log3 d/d1/4 over Z, G, V and z, where C is an absolute

constant

Proof. Let ϕ̃ : R → R be defined as ϕ̃(·) := ϕ(·)−µ1(·), and let Φ̃ ∈ Rn×p be defined as the matrix
containing ϕ̃ (V zi) in its i-th row. Then, introducing the shorthand Ĝ =

(
ΦΦ⊤ + nλI

)−1
G, we can

write

fRF(z, θ̂RF(λ)) =
(
µ1V z + ϕ̃ (V z)

)⊤ (
µ1V Z⊤ + Φ̃⊤

)
Ĝ

= µ2
1p

z⊤Z⊤

2d
Ĝ+ µ2

1z
⊤
(
V ⊤V − p

2d
I
)
Z⊤Ĝ+ µ1z

⊤V ⊤Φ̃⊤Ĝ+ ϕ̃ (V z)
⊤
ΦĜ.

(D.59)
Notice that since every entry of G is sub-Gaussian and independent by Assumption 6, Theorem
3.1.1 in Vershynin (2018) readily gives ∥G∥2 = O (

√
n) = O

(√
d
)

with probability at least
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1− 2 exp(−c1d) over G. Then, conditioning on the high probability event described by Lemma D.3,
we get∥∥∥Ĝ∥∥∥

2
≤
(
λmin

(
ΦΦ⊤ + nλI

))−1 ∥G∥2 ≤
(
λmin

(
ΦΦ⊤))−1 ∥G∥2 = O

(√
d

p

)
, (D.60)

with probability at least 1 − 2 exp
(
−c2 log

2 d
)

over V , Z and G. We will condition on this high
probability event until the end of the proof. Let’s then investigate the last 3 terms on the RHS of
(D.59) separately:

(i) A direct application of Theorem 5.39 of Vershynin (2012) (see their Equation 5.23) gives∥∥∥∥2dp V ⊤V − I

∥∥∥∥
op

= O

(√
d

p

)
, (D.61)

with probability at least 1 − 2 exp (−c3d) over V . Then, since z is sub-Gaussian and
independent from everything else, with probability 1 − 2 exp

(
−c4 log

2 d
)

over itself we
have∣∣∣µ2

1z
⊤
(
V ⊤V − p

2d
I
)
Z⊤Ĝ

∣∣∣ ≤ log d
∥∥∥(V ⊤V − p

2d
I
)
Z⊤Ĝ

∥∥∥
2

≤ log d
∥∥∥V ⊤V − p

2d
I
∥∥∥

op
∥Z∥op

∥∥∥Ĝ∥∥∥
2

= O

(
log d

√
p

d

√
d

√
d

p

)
= O

(√
d log d
√
p

)
,

(D.62)

where the third step holds with probability at least 1− 2 exp (−c5d) over Z due to Lemma
D.1.

(ii) As before, since z is sub-Gaussian and independent from everything else, with probability
1− 2 exp

(
−c4 log

2 d
)

we have∣∣∣µ1z
⊤V ⊤Φ̃⊤Ĝ

∣∣∣ ≤ log d
∥∥∥V ⊤Φ̃⊤

∥∥∥
op

∥∥∥Ĝ∥∥∥
2

= O

(
log d

(
√
p log d+

p log d

d

) √
d

p

)
= O

(
log2 d

(√
d

p
+

1√
d

))
,

(D.63)
where the second step holds because of Lemma D.6, and holds with probability at least
1− 2 exp

(
−c6 log

2 d
)

over Z and V .

(iii) For the last term of the RHS of (D.59), its second moment in the probability space of z reads

Ez
[
Ĝ⊤Φ⊤ϕ̃ (V z) ϕ̃ (V z)

⊤
ΦĜ
]
≤
∥∥∥Ez [ϕ̃ (V z) ϕ̃ (V z)

⊤
]∥∥∥

op
∥Φ∥2op

∥∥∥Ĝ∥∥∥2
2

= O

((
log4 d+

p log3 d

d3/2

)√
d

√
d

p

)

= O
(
d log4 d

p
+

log3 d√
d

)
,

(D.64)

where the second step follows from Lemmas D.5 and D.3, and holds with probability at
least 1− 2 exp

(
−c7 log

2 d
)

over Z and V . Then, by Markov inequality, we have that there
exists a constant C1 such that(

ϕ̃ (V z)
⊤
ΦĜ
)2

< C1

(
d log4 d

p
+

log3 d√
d

)
t, (D.65)

with probability at least 1− 1/t over z. Setting

t = min

( √
p

√
d log2 d

, d1/4
)

= ω(1), (D.66)
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since p = ω
(
d log4 d

)
by Assumption 5, we have∣∣∣ϕ̃ (V z)

⊤
ΦĜ
∣∣∣ = O

(
d1/4 log d

p1/4
+

log3/2 d

d1/8

)
, (D.67)

with probability at least 1−
√
d log2 d/

√
p− log3 d/d1/4.

Then, plugging (i), (ii) and (iii) in (D.59) gives∣∣∣∣fRF(z, θ̂RF(λ))− µ2
1p

z⊤Z⊤

2d
Ĝ

∣∣∣∣ = O

(
d1/4 log d

p1/4
+

log3/2 d

d1/8

)
, (D.68)

with probability at least 1− c8
√
d log2 d√

p − c8
log3 d
d1/4

, which gives the desired result.

Proof of Theorem 2 Let E ∈ Rn×n be the matrix defined as

E = ΦΦ⊤ − p

(
µ2
1

ZZ⊤

2d
+ µ̃2I

)
. (D.69)

Note that

∥E∥op ≤
∥∥ΦΦ⊤ − EV

[
ΦΦ⊤]∥∥

op+
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(
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ZZ⊤

2d
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op

= O

(
p

(√
d

p
+

log3 d√
d
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,

(D.70)
with probability at least 1 − 2 exp

(
−c1 log

2 d
)

over Z, V due to Lemmas D.2 and D.3. By the
Woodbury matrix identity (or Hua’s identity), we have

(
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(
p

(
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2d
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I
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(D.71)
which gives∣∣∣∣∣µ2
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Figure 4: Out-of-distribution test loss L(θ̂LR/RF(λ)) (black) and spurious correlations C(θ̂LR/RF(λ) (red) as a
function of λmax (Σyy) (first panel) and λmin

(
SΣ
x

)
(second panel) on a Gaussian synthetic dataset, and for

the CIFAR-10 experiment (third panel). We consider the same set-up as Figures 5 and 3, for Gaussian and
CIFAR-10 data, respectively.

Here, the second step holds with probability at least 1− 2 exp
(
−c2 log

2 d
)

since z is sub-Gaussian
and independent from everything else; the fourth step is a consequence of Lemma D.1, (D.70),
Lemma D.3, and ∥G∥2 = O

(√
d
)

(see the argument prior to (D.60)), and as a whole holds with

probability 1− 2 exp
(
−c3 log

2 d
)

over Z, G, and V .

Note that the second term in the LHS of (D.72) can be written as
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(D.73)

where the second line is due to the classical identity A⊤ (AA⊤ + κI
)−1

=
(
A⊤A+ κI

)−1
A⊤, and

the third line uses the definition in (3.1), with θ̂LR(λ̃) defined in (3.2) and

λ̃ =
2µ̃2d

µ2
1n

+
2d

µ2
1p

λ. (D.74)

Furthermore, the first term of the LHS of (D.72) satisfies∣∣∣∣µ2
1p

z⊤Z⊤

2d

(
ΦΦ⊤ + nλI

)−1
G− fRF(z, θ̂RF(λ))

∣∣∣∣ = O

(
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)
, (D.75)

with probability 1 − C1

√
d log2 d/

√
p − C1 log

3 d/d1/4 over Z, G, V and z, due to Lemma D.7.
Thus, an application of the triangle inequality together with (D.72), (D.73) and (D.75) gives the
desired result.

E CONNECTION WITH OUT-OF-DISTRIBUTION LOSS

Our definition of C(θ̂) in (2.3) formalizes to the regression setting the definition in the survey Ye et al.
(2024) and the fairness metric in Zliobaite (2015) (when interpreting y as the protected variable).
Furthermore, in the context of classification, it can connected to the worst group accuracy Sagawa
et al. (2020a;b). In fact, our definition (2.3) is also related to the out-of-distribution test loss. To show
this, let x̃ and [x⊤, y⊤]⊤ be sampled independently from PX and PXY respectively. For simplicity,
assume that E

[
f(θ̂, [x̃⊤, y])2

]
= E

[
f∗
x(x̃)

2
]
= 1 and E

[
f(θ̂, [x̃⊤, y])

]
= E [f∗

x(x̃)] = 0. Thus, for
the quadratic loss, we readily get

Ex̃,y
[(

f(θ̂, [x̃⊤, y])− f∗
x(x̃)

)2]
= 2−2Ex̃,y

[
f(θ̂, [x̃⊤, y])f∗

x(x̃)
]
= 2−2Cov

(
f(θ̂, [x̃⊤, y]), f∗

x(x̃)
)
.

(E.1)
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Figure 5: Test loss L(θ̂LR/RF(λ)) (black) and spuri-
ous correlations C(θ̂LR/RF(λ) (red) as a function of
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(right) on a synthetic

Gaussian dataset, for both linear regression and random
features, with λ = 1 (additional details in Appendix
F).
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of λ. Left: 2-layer fully connected ReLU network,
trained on the binary color(C)-MNIST and CIFAR-10
(boats and trucks). Right: RF model with tanh and
ϕ1 = h1 + 0.1h3 activation.

Denoting with S the covariance matrix of the three random variables f(θ̂, [x̃⊤, y]), f∗
x(x̃), and f∗

x(x),
we have

S =

(
1 ρ C
ρ 1 0
C 0 1

)
, (E.2)

where we introduced the shorthands C = Cov
(
f(θ̂, [x̃⊤, y]), f∗

x(x)
)

and ρ =

Cov
(
f(θ̂, [x̃⊤, y]), f∗

x(x̃)
)

. Since S is p.s.d., its determinant has to be non-negative, hence

1− ρ2 − C2 ≥ 0, (E.3)

which, when plugged in (E.1), gives

Ex̃,y
[(

f(θ̂, [x̃⊤, y])− f∗
x(x̃)

)2]
≥ 2− 2

√
1− C(θ̂)2. (E.4)

This implies that an increase in C(θ̂) hurts the performance of the model when core and spurious
features are sampled independently (and, thus, the model is tested out-of-distribution). This bound
suggests the close connection between C and the out-of-distribution test loss. In Figure 4, we repeat
the same experiments of Figures 5-3 connecting C to λmin

(
SΣ
x

)
and λmax (Σyy), and report in black

the out-of-distribution test loss. The plots clearly show that C and the out-of-distribution test loss
follow a similar trend, for both linear regression and random features.

We conclude the section by noting that learning spurious correlations can be beneficial to minimize
the (in-distribution) test loss. In fact, the spurious features in y are effectively correlated with the
labels, due to their correlation with the core feature x, and hence they can be helpful at prediction
time. This phenomenon is numerically supported by Figures 5 and 3, where for a fixed value of λ,
easier spurious features (or higher correlations) generate both higher values of C(θ̂LR(λ)) and lower
values of L(θ̂LR(λ)). In words, while a blue background cannot strictly predict the label “boat”, it is
a useful feature in prediction as long as the boats in the test data tend to have a blue background.

F EXPERIMENTAL DETAILS

All the plots in the figures report the average over 10 independent trials, with a shaded area describing
a confidence interval of 1 standard deviation. For the Gaussian and Color-MNIST datasets, every iter-
ation involves re-generating (or re-coloring) the data, while for the CIFAR-10 dataset the randomness
comes from the model and the training algorithm.

Effect of over-parameterization and activation. The right panel of Figure 6 presents the test loss
L(θ̂RF(λ)) (in black) and the spurious correlations C(θ̂RF(λ)) (in red) for two activation functions:
tanh and ϕ1 = h1 + 0.1h3, where h1 and h3 denote the first and third Hermite polynomials,
respectively. Notice that this gives µ̃2/µ2

1 ∼ 0.1 for tanh, µ̃2/µ2
1 ∼ 0.01 for ϕ1, and we take

d = 400 and n = 2000. As expected, C(θ̂RF(0)) > 0 for the tanh activation function, since λ̃ ∼ 0.05
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(which matches the corresponding value in Figure 2). On the other hand, C(θ̂RF(0)) ∼ 0 for the
activation ϕ1, since λ̃ ∼ 0.005. As λ grows, C(θ̂RF(λ)) goes to 0 faster for the tanh activation
function (which has higher λ̃), as predicted by the second upper bound in Proposition 4.1.

Synthetic Gaussian data generation. This follows the same model across all the numerical experi-
ments presented in the paper. In particular, we fix d = 400 and set Σxx = I . Σyy is a diagonal matrix,
such that its first entry equals λmax (Σyy) and all the other entries equal (d− λmax (Σyy)) /(d− 1).
In this way, tr(Σ) = 2d. Then, we set the off-diagonal blocks Σxy and Σyx to the same diagonal
matrix, so that

Σxy = Σyx = (Σyy − βI)1/2, (F.1)

which implies that the Schur complement SΣ
x = βI and, therefore, λmin

(
SΣ
x

)
= β. To conclude, we

set the ground truth θ∗x = e1, i.e., the first element of the canonical basis in Rd. This design choice
is motivated by our interest in capturing the role of λmax (Σyy) and to have an easy control on the
Schur complement SΣ

x (which is therefore chosen to be proportional to the identity).

Unless differently stated in the figure, n = 2000, λmax (Σyy) = 2, β = 0.5, and λ = 1. Furthermore,
to generate the labels, we add an independent noise with variance σ2 = 0.25, and we subtract this
quantity from the test loss, so that the optimal predictor θ∗ has a test loss equal to 0.

When we use an RF model, on every dataset, unless differently stated in the figure, we use tanh as
activation function, with p = 20000 neurons.

Binary color MNIST. This dataset is graphically shown in Figure 1. To generate it, we take a
subset of the MNIST training dataset (n = 1000 samples as default, unless differently specified)
made only of zeros and ones. Then, for every training image, we color the white portion in blue
(red) with probability (1 + α)/2 if the digit is a zero (one), and red (blue) otherwise. For the test
set, we proceed in the same way, but setting α = 0, to make the core feature (the digit) effectively
independent from the spurious one (the color). For all the experiments, we set β = 1− α2 = 0.25.

CIFAR-10. For the experiments on CIFAR-10, we implicitly suppose that the middle 22×22 square
contains the core, predictive feature x. Thus, we sum to all the channels of the outer region white
noise with increasing variance, and we later clamp the pixels to ensure their value is between 0 and 1.
Increasing the variance of the noise, this progressively makes the outer portion being dominated by
random noise, thus reducing its value of λmax (Σyy) / tr(Σyy) when estimating the covariance on the
perturbed training set. At test time, we take the images from the CIFAR-10 test set, and we add the
same level of noise. To compute C, we create an out-of-distribution dataset where the core features
are randomly permuted across different backgrounds. We always consider the subset of boats and
trucks, which contains n = 10000 images.

2-layer neural network. In the experiments shown in Figure 6, we consider a 2-layer neural
network trained with gradient descent and quadratic loss on the Color-MNIST and CIFAR-10 datasets.
For both datasets, we train for 1000 epochs, with learning rate 0.003, and batch size 1000.
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