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ABSTRACT

Radiologists play a crucial role by translating medical images into actionable re-
ports. However, the field faces staffing shortages and increasing workloads. While
automated approaches using vision-language models (VLMs) show promise as
assistants, they require exceptionally high accuracy. Most current VLMs in ra-
diology rely solely on supervised fine-tuning (SFT). Meanwhile, in the general
domain, additional preference fine-tuning has become standard practice. The chal-
lenge in radiology lies in the prohibitive cost of obtaining radiologist feedback. To
address this challenge, we propose an automated pipeline for preference feedback,
focusing on chest X-ray (CXR) report generation. Our method leverages publicly
available datasets containing pairs of images and radiologist-written reference re-
ports with an LLM-as-a-Judge mechanism, eliminating the need for additional ra-
diologist feedback. We evaluate and benchmark five direct alignment algorithms.
Our results show up to a 57.4% improvement in average GREEN scores, a LLM-
based metric for evaluating CXR reports, compared to the SFT baseline. We study
reward overoptimization via length exploitation, with reports lengthening by up to
3.2x. To assess a potential alignment tax, we benchmark on six additional diverse
tasks, finding no significant degradations. A reader study involving four board-
certified radiologists indicates win rates of up to 0.62 over the SFT baseline, and
macro-averaged F1 scores improve by up to 6.7%, highlighting the utility of our
approach.

1 INTRODUCTION

X-rays are one of the most frequently collected imaging studies in clinical practice, with the advan-
tages of wide availability, cost-effectiveness, and low radiation dose. Chest X-rays (CXR) are used
for diverse purposes in clinical practice, with approximately 1.4 billion diagnostic X-ray examina-
tions collected per year in the world (PAHO, 2012; Organization et al., 2016; Cid et al., 2024). The
amount and significance of CXRs can pose a burden for radiologists and a potential negative impact
for patients without timely interpretation, especially for those containing critical lesions (Ruutiainen
et al., 2013; Hanna et al., 2017; Bruls & Kwee, 2020; Bhargavan et al., 2002; Lyon et al., 2015;
Rimmer, 2017).

Recent strides in generative vision-language models (VLMs) hold promising implications for this
high-stakes and low-data field (Liu et al., 2024; Radford et al., 2021). Typically pre-trained using
image-text contrastive learning and supervised fine-tuned using causal language modeling (a.k.a.
next-token prediction), recent VLMs have started to demonstrate promising performance in CXR
interpretation (Chen et al., 2024; Bannur et al., 2024). In high-stakes fields like radiology, where
accurate medical descriptions directly influence disease diagnosis and treatment decisions, the gen-
erated outputs must maintain high factual accuracy to ensure patient safety.

However, recent studies have shown that supervised fine-tuning (SFT) might be insufficient in
the post-training process. For example, Hong et al. (2024) illustrate the limitation of SFT
by training on a preference dataset, containing “good” and “bad” completions. By tracking
the log probabilities of each during the course of training, they show that the log probabil-
ities of the bad completions inadvertently increase alongside the good completions. Prefer-
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ence fine-tuning methods, such as reinforcement learning from human feedback (RLHF) (Ziegler
et al., 2020; Stiennon et al., 2020; Ouyang et al., 2022), using Proximal Policy Optimiza-
tion (PPO) (Schulman et al., 2017) or REINFORCE (Williams, 1992), and direct align-
ment algorithms (DAAs), effectively alleviate this problem by employing a negative gradi-
ent to lower probabilities of “bad” completions (Tajwar et al., 2024). In fact, most re-
cent LLMs (Ouyang et al., 2022; Bai et al., 2022a; Touvron et al., 2023; Jiang et al., 2024;
Team et al., 2024) include some form of preference fine-tuning in their post-training pipeline.
Yet, this approach has not yet been investigated within the medical vision-language domain.

Figure 1: Overview of our preference fine-tuning
pipeline. t0 = t1 and t0 ̸= t1 indicate whether a
comparison is made to a prior image.

The primary challenge hindering the appli-
cation of preference fine-tuning in the post-
training of VLMs in fields such as radiology
is the prohibitive cost of obtaining radiologist
preferences at scale. To overcome this obstacle,
we introduce an automated pipeline for gen-
erating preference data, focusing on the crit-
ical task of CXR report generation. Specifi-
cally, we leverage the availability of reference
reports written by radiologists in a clinical set-
ting within large, publicly available, datasets
such as MIMIC-CXR (Johnson et al., 2019),
and GREEN (Ostmeier et al., 2024), a recent
state-of-the-art LLM-based metric for evalu-
ating CXR reports, to annotate generated re-
ports in a factually grounded fashion. Our ap-
proach enables us to obtain high-quality prefer-
ence datasets in a fully automated and scalable
manner. Adding to previous works, we also in-
corporate information from prior images when
available, mirroring how radiologists use priors
to dictate the ground truth reports. Using our
proposed method, we systematically study how DAAs can be used to enhance the factual correct-
ness in generative VLMs without any additional radiologist feedback, by rigorously benchmarking
a representative subset of DAAs. An overview of our preference fine-tuning pipeline is available in
Fig. 1. To structure our paper, we formulate it around the following research questions: (i) How
do different alignment algorithms compare on the CXR report generation task? (ii) Are there any
degradations in performance, to tasks other than the one being aligned, as a result of the alignment
(i.e. an alignment tax (Askell et al., 2021; Ouyang et al., 2022))? (iii) How do the resultant policies
compare from a clinical perspective? Our contributions are as follows:

• We introduce an automated pipeline for preference data generation, focusing on CXR report gen-
eration, circumventing the prohibitively expensive task of obtaining preference feedback from
radiologist at scale.

• We systematically evaluate five representative DAAs on the CXR report generation task. To the
best of our knowledge, this is the first time that a systematic analysis of DAAs has been per-
formed in this setting. Our findings show significant performance gains, over the SFT baseline
(CheXagent (Chen et al., 2024)), in terms of average GREEN (Ostmeier et al., 2024), 26.4-42.3%
and 17.5-57.4% on the MIMIC-CXR (Johnson et al., 2019) and CheXpert Plus (Chambon et al.,
2024) datasets, respectively, with top performance achieved by Direct Preference Optimization
(DPO) (Rafailov et al., 2023).

• We study reward overoptimization in terms of length exploitation in the context of CXR report
generation. Significant reward overoptimization, or hacking, is observed for some DAAs. The
average length of the generated reports increase by approximately a factor of 2.5 on the MIMIC-
CXR data and 3.2 on the CheXpert Plus data in the worse case (DPO).

• We benchmark our models post alignment on set of diverse tasks to assess whether there is an
alignment tax. We observe no performance degradations, that are statistically significant, on six
tasks: view classification, coarse-grained image classification, single disease identification, multi
disease identification, VQA, and image-text reasoning.
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• We study the aligned policies from a clinical perspective. First, we elicit feedback on our aligned
policies from human experts via a reader study including four board-certified radiologist. One
key finding is that verbosity, resulting from length exploitation, is significantly penalized. In
particular, DPO and Identity Preference Optimization (IPO) (Azar et al., 2023), the two DAAs
yielding the most significant length exploitation, received win rates well below 0.5. Odds-Ratio
Preference Optimization (ORPO) (Hong et al., 2024), on the other hand, achieves a win rate of
0.62. Second, we extract 14 categories using the CheXbert labeler (Smit et al., 2020) and compute
the F1 score. The clinical efficacy performance is well aligned with the reader study, clearly
emphasizing limitations of the policies aligned by DPO and IPO, while illustrating the clinically
relevant gains obtained by ORPO and Kahneman-Tversky optimization (KTO) (Ethayarajh et al.,
2024), with up to 8.4% and 6.7% increase in micro and macro averages, respectively.

2 PRELIMINARIES AND RELATED WORK

In this section, we provide an overview of vision-language models in both general and medical
domains, DAAs, and reward overoptimization.

2.1 VISION-LANGUAGE MODELS

Vision-language models (Radford et al., 2021; Li et al., 2021; 2022; 2023; Liu et al., 2024) are a
multi-modal extension to LLMs. In this setting, the prompt x contains images and/or text. Typical
tasks include Vision Question Answering (VQA) and image captioning (e.g., report generation in the
field of radiology). There are also a line of works to extend VLMs to the medical domain (Thawkar
et al., 2023; Hyland et al., 2023; Chaves et al., 2024) which mainly focus on CXR interpretation due
to the wide availability of public datasets (Johnson et al., 2019; Chambon et al., 2024). However,
even with strong LLMs and vision-backbones, VLMs have been observed to “hallucinate” and pro-
duce outputs that are not factually grounded in the image (Zhou et al., 2024). Such hallucinations
represent a significant risk in high-stakes healthcare fields such as radiology. Similar to Zhou et al.
(2024), we pose the problem of hallucinations as an alignment problem and propose tackling it via
preference fine-tuning.

2.2 DIRECT ALIGNMENT ALGORITHMS

RLHF (Ziegler et al., 2020; Stiennon et al., 2020; Ouyang et al., 2022) is based on the constrained
reward maximization objective

max
πθ

Ex∼D,y∼πθ(y|x)[Rψ(x, y)]− βDKL [πθ(y|x)||πref(y|x)] , (1)

where DKL is the Kullback-Leibler (KL) divergence and πref is the reference policy. Rψ is the proxy
reward model learned on a dataset of human preferences D = {x(n), y

(n)
c , y

(n)
r }Nn=1, where yc and

yr denote the chosen and rejected completions for the prompt x, such that yc ≻ yr|x.
Whilst extremely powerful, RLHF is computationally heavy, involves several steps, and can be
tricky to implement in practice. Relatively recently, a new class of algorithms called DAAs (Rafailov
et al., 2024) have become increasingly popular.1 This class of algorithms re-parameterize the reward
model via a change-of-variables using the closed-formed solution to the objective in equation 1,
effectively bypassing both the reward modeling and reinforcement learning (RL) stages. Resulting
in algorithms that remain performant yet computationally more light weight and easier to implement.
DPO (Rafailov et al., 2023) was the first in this category and remains one of the most popular
versions.

DPO exploits the closed-formed solution to equation 1, π(y|x) ∝ πref(y|x) exp(R(x, y)/β) and
the Bradley-Terry (BT) model (Bradley & Terry, 1952) of human preferences p∗(y1 ≻ y2|x) =
σ(exp(R∗(x, y1)) − exp(R∗(x, y2))), where R∗ is the latent reward model, exp is the exponential
function, and σ is the logistic function. The reward can be isolated and written as a function of
the policy R(x, y) = β log π(y|x)

πref(y|x) . This re-parametrization can be applied to the latent reward R∗

and substituted into the BT model, p∗(y1 ≻ y1|x) = σ
(
β log π∗(y1|x)

πref(y1|x) − β log π∗(y2|x)
πref(y2|x)

)
, where

1In this paper, we use this terminology more loosely than in Rafailov et al. (2024).
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π∗ is the optimal policy corresponding to the latent reward. Crucially, the probability of human
preferences is now in terms of the policy instead of the reward model. A parameterized policy πθ
can then be learned via a simple classification loss over the preference data

LDPO(θ) = − log σ

(
β log

πθ (yc | x)
πref (yc | x)

− β log
πθ (yr | x)
πref (yr | x)

)
.

Hence, this change-of-variables has transformed a loss over rewards into a loss over policies.

2.3 REWARD OVEROPTIMIZATION

The reward model in equation 1 is learned, and therefore an imperfect proxy of the ground truth
reward R∗. As this proxy is optimized, ground truth performance might saturate or even deteriorate.2
This reward overoptimization, or hacking, phenomena was first studied in Gao et al. (2023) for
RLHF. The KL divergence term in equation 1 is included explicitly to mitigate this issue, but has
proven insufficient (Gao et al., 2023). Despite not fitting an explicit reward model, similar behavior
has been observed empirically for DAAs (Rafailov et al., 2024).

Length exploitation, the tendency to learn to produce excessively verbose completions, is one
common dimension of reward overoptimization, observed in both RLHF and for DAAs. For in-
stance, Park et al. (2024) showed that DPO amplifies verbosity bias embedded in the preference
data. In this work, we explore this phenomenon in the context of preference fine-tuning of medical
VLMs.

3 EXPERIMENTAL SETUP

In this section, we present our experimental setup. We structure the paper around the following re-
search questions: (i) How do different alignment algorithms compare on the CXR report generation
task? (ii) To what extent is there an alignment tax? (iii) How does the aligned policy compare to the
SFT baseline from a clinical perspective?

3.1 DATASET AND BASELINE

Dataset We use the MIMIC-CXR (Johnson et al., 2019) dataset for training, validation and testing.
The image-report pairs consists of one or two CXRs and the corresponding free-text findings section.
The reports describe the findings in the image at a static timepoint (a single image or two images
from the same timepoint) or describe findings using also a prior image (two images from different
timepoints). Radiology reports usually include information from prior timepoints in the clinic, but
this remains understudied in the context of automated CXR report generations using VLMs.

To limit the computational burden, we randomly sample 80k examples as our training data. To test
robustness for the CXR report generation task, we additionally include test data from the CheXpert
Plus (Chambon et al., 2024) dataset. To evaluate whether there is an alignment tax, we additionally
evaluate our aligned models on six tasks different from CXR report generation: view classification,
coarse-grained image classification, single disease identification, multi disease identification, VQA,
and image-text reasoning, using test data from five additional datasets RSNA (Shih et al., 2019),
SIIM (American College of Radiology, 2019), OpenI (Demner-Fushman et al., 2016), SLAKE (Liu
et al., 2021), and Rad-Restruct (Pellegrini et al., 2023) datasets.

Baseline We adopt CheXagent (Chen et al., 2024) as a representative example of a state-of-the-art,
open source, VLM for CXR interpretation. It has been trained in the canonical way by first adapting
the LLM to medical text by continued pre-training. Second, a vision encoder was adapted via vision
pre-training, using contrastive learning on CXR image-text pairs. Third, the two modalities were
merged by training a vision-language bridger, or adapter network, keeping the LLM and vision
encoder frozen. Finally, the model was instruction tuned. In addition, CheXagent is of average size,
8B, for an open source model, providing a good balance between computational complexity and
performance.

2As per Goodhart’s law: “When a measure becomes a target, it ceases to be a good measure.” (Gao et al.,
2023).
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3.2 PREFERENCE DATA

Expert human feedback from radiologists is the gold standard for preference data generation and
evaluation in CXR report generation. However, scaling is impractical due to the limited availability
of radiologists for large-scale annotation tasks. In the general domain, leveraging LLMs for cost
effective preference data generation has been proposed (Bai et al., 2022b; Dubois et al., 2023; Lee
et al., 2024). Zheng et al. (2023), focusing on the related task of automated evaluation, introduced the
terminology of “LLM-as-a-Judge” and categorized evaluation methods into pairwise, single answer,
and reference-guided grading. In the general domain, pairwise grading is the most common both for
preference data generation Dubois et al. (2023); Lee et al. (2024) and evaluation Zheng et al. (2023);
Dubois et al. (2024).

These existing methods, however, are tailored for uni-modal, general-domain LLMs and do not
directly apply to our multi-modal setting, which involves both visual and textual data. Moreover,
factual grounding is essential in medical report generation to ensure clinical reliability. To overcome
these challenges, we propose using reference-guided grading, leveraging publicly available datasets
that contain paired prompts—including images—and radiologist-written reference reports. This
abundance of high-quality references allows us to provide factually grounded annotations without
the need for a multi-modal Judge, setting our approach apart from prior studies with multi-modal
Judges, or reward models, such as Sun et al. (2024).

GREEN (Ostmeier et al., 2024) is a state-of-the-art metric for radiology report evaluation, based on
a single answer reference-guided LLM-as-a-Judge mechanism. While no metric is perfect, GREEN
better reflect radiologist preferences than general domain metrics such as BLEU (Papineni et al.,
2002), ROUGE (Lin, 2004), and the BERTScore (Zhang et al., 2019), as well as radiology specific
metrics such as F1RadGraph (Jain et al., 2021). Hence, we treat GREEN as the silver standard,
employing it as a low-cost approximation of expert human judgment.

GREEN Reward Report Length
Subset Mean Median Std. Mean Median Std.
Chosen 0.629 0.600 0.248 56.3 54.0 20.2
Rejected 0.263 0.222 0.191 52.7 51.0 24.9

Table 1: Summary statistics of GREEN reward
and report length in the chosen and rejected sub-
sets.

We obtain our preference data as follows: 1) for
each example in the training data, we prompt
the SFT baseline N = 4 times; 2) we get a
GREEN reward for each of the generated re-
ports, compared with the corresponding singu-
lar reference; 3) we set the chosen and rejected
completions as the highest and lowest rewards,
omitting the observation if all N = 4 scores
are equivalent. This rejection rule results in the
rejection of 1,246 (1.6%) examples. Summary
statistics for the chosen and rejected subsets are
available in Table 1. We also report summary statistics of the length (in words) of the generated re-
ports as verbosity-bias is a well-known issue in preference fine-tuned LLMs evaluation (Park et al.,
2024; Dubois et al., 2024). Notably, there is a slight verbosity bias in the chosen subset. We addi-
tionally illustrate the distributions of GREEN reward and report length in Fig. 4 in the Appendix.

3.3 ALIGNMENT ALGORITHMS

Due to compute constraints, we only consider offline DAAs and leave their online counterpart as
well as on-policy RL algorithms to future work. However, even when restricting the focus to offline
DAAs, there are more methods available than would be feasible to include. Hence, we choose
representative algorithms from different categories. DPO is the original DAA and serves as our
baseline. In addition to DPO, we consider:

• Identity Preference Optimization (IPO) (Azar et al., 2023) as an example of a DAA with gener-
alized preference, relaxing the assumption of the Bradley-Terry model. The authors argue that
this helps mitigate over-fitting issues observed in DPO even when preferences are transitive. Rel-
atively recent work has shown that IPO indeed seems to be less prone to reward overoptimiza-
tion (Rafailov et al., 2024).

• Kahneman-Tversky optimization (KTO) (Ethayarajh et al., 2024) as an example of a DAA that
does not require preference pairs, but instead only binary feedback on whether a completion is
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desirable or undesirable. This type of data is much more ubiquitous in practice. In addition, for
any given dataset of preference pairs KTO provides twice the number of examples.

• SimPO (Meng et al., 2024) as an example of a DAA that does not require a reference policy,
meaning that it is computationally lighter weight. SimPO suggests directly using the average
log probabilities as implicit reward function, as this is what is relevant for generation. Taking
the average over the generated tokens means that the objective is “length controlled” and has the
potential of mitigating length exploitation.

• Odds-Ratio Preference Optimization (ORPO) (Hong et al., 2024), almost outside of the definition
of DAAs, is not based on the RLHF objective and instead appends an additional penalty directly
to the negative log likelihood used in SFT. This adds a “negative gradient”, using the terminology
in Tajwar et al. (2024), which will help reduce the log probabilities of rejected completions.

These algorithms also differ in their dependence of a strong SFT baseline, capable of producing high
quality completions. For instance, DPO require a strong baseline, whereas KTO has been shown to
work well even without a prior SFT phase (Ethayarajh et al., 2024). ORPO takes this to the extreme
as it in principle combines the SFT and alignment phases. An overview of all DAAs considered in
this paper is available in Table 2. Implementation details are available in §A.2.

Algorithm Objective Preference Reference Length Relative
pairs controlled wall-clock time

DPO − log σ
(
β log πθ(yc|x)

πref (yc|x) − β log πθ(yl|x)
πref (yl|x)

)
✓ ✓ × 1.0

KTO −λcσ
(
β log πθ(yc|x)

πref(yc|x) − zref

)
+ λrσ

(
zref − β log πθ(yr|x)

πref(yr|x)

)
, × ✓ × 2.2

where zref = E(x,y)∼D[βDKL (πθ(y|x)||πref(y|x))]

IPO
(
log πθ(yc|x)

πref(yc|x) − log πθ(yr|x)
πref(yr|x) −

1
2τ

)2

✓ ✓ × 1.0

SimPO log σ
(

β
|yc| log πθ (yc | x)−

β
|yr| log πθ (yr | x)− γ

)
✓ × ✓ 0.7

ORPO − log pθ(yc|x)− λ log σ
(
log pθ(yc|x)

1−pθ(yc|x) − log pθ(yr|x)
1−pθ(yr|x)

)
, ✓ × × 0.7

where pθ(y|x) = exp
(

1
|y| log πθ(y|x)

)
Table 2: Overview of the DAAs considered in this paper. Preference pairs indicates whether the
method requires paired data of accepted/rejected or only binary feedback indicating whether a com-
pletion is desirable/undesirable. Reference indicates whether an additional reference model is loaded
during training. Length controlled indicates whether the objective directly controls for the length
of the completions in order to mitigate over-optimization/reward hacking via verbosity bias. Wall-
clock time, measured as total time to train one epoch, is relative to DPO.

4 EMPIRICAL ANALYSIS

In this section, we present our empirical analysis. We examine the performance on the CXR report
generation tasks using five different DAAs (Question 1), investigate the presence of an alignment
tax (Question 2), and explore our aligned policies from a clinical perspective (Question 3). Code
to run all experiments, as well as all the examples in the reader study and their preference, will be
made publicly available.

4.1 QUESTION 1: ALIGNMENT ALGORITHM

We report results for GREEN (Ostmeier et al., 2024), F1RadGraph (Jain et al., 2021), and the
BERTScore (Zhang et al., 2019) on the MIMIC-CXR and CheXpert Plus test datasets in Table
3. Additional metrics are available in Table 11. DPO provides substantially higher GREEN scores
on the MIMIC-CXR data yielding an improvement over the SFT baseline of 42.3%. In addition,
the aligned policy generalizes well to data unseen in the preference fine-tuning stage, achieving an
improvement of 57.4% on the CheXpert Plus data. However, according to the BERTScore, DPO
is actually worse than the SFT baseline. IPO follows similar trends as DPO, with slightly lower
improvements over the baseline. Only KTO and ORPO improve all metrics on both datasets. Be-
tween those, KTO is better in terms of GREEN: leading to a 36.7% improvement on the MIMIC-
CXR data and 37.1% on the CheXpert Plus dataset, compared to 29.4% and 31.4% for ORPO. In
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addition, KTO is the top performer according to F1RadGraph, leading to a 20.6% and a 19.4%
improvement on the MIMIC-CXR and CheXpert Plus datasets, respectively. ORPO also yields sub-
stantial improvements in F1RadGraph, 13.2% and 11.6% on the two datasets respectively. SimPO
yields smaller improvements, achieving a 26.4% and a 17.5% increase in average GREEN on the
MIMIC-CXR and CheXpert Plus datasets, respectively. Notably, we see very similar trends in two
datasets despite representing two different distributions: MIMIC-CXR was collected in a emergency
department (ED) and CheXpert Plus was collected from in- and out-patient centers.

MIMIC-CXR CheXpert
Method GREEN (↑) F1RadGraph (↑) BERTScore(↑) GREEN (↑) F1RadGraph (↑) BERTScore(↑)
CheXagent 0.249 0.215 0.856 0.248 0.222 0.851
+DPO 0.354 (0.105) 0.247 (0.032) 0.830 (-0.026) 0.391 (0.142) 0.246 (0.024) 0.821 (-0.030)
+KTO 0.340 (0.091) 0.260 (0.045) 0.862 (0.006) 0.340 (0.092) 0.265 (0.043) 0.859 (0.008)
+IPO 0.349 (0.100) 0.252 (0.037) 0.846 (-0.010) 0.358 (0.110) 0.248 (0.026) 0.844 (-0.007)
+SimPO 0.315 (0.066) 0.225 (0.010) 0.854 (-0.002) 0.292 (0.043) 0.205 (-0.017) 0.844 (-0.006)
+ORPO 0.322 (0.073) 0.244 (0.029) 0.862 (0.006) 0.326 (0.078) 0.248 (0.026) 0.856 (0.005)

Table 3: Results on the MIMIC-CXR and CheXpert Plus test sets (with ∆ compared to SFT baseline
in brackets). Green shades for improvements and red shades for degradations. Shades are separated
into bins of 10%, running from > 0% and ≤ 10% up to > 50%. Best results in bold.

MIMIC-CXR CheXpert
Method Mean Relative verbosity Mean Relative verbosity
CheXagent 63.2 (23.5) 1.00 56.1 (28.2) 1.00
+DPO 157.6 (84.0) 2.50 176.5 (68.5) 3.15
+KTO 77.7 (33.0) 1.23 83.6 (46.4) 1.49
+IPO 113.2 (62.4) 1.79 105.3 (56.0) 1.88
+SimPO 63.6 (23.4) 1.01 51.0 (25.4) 0.91
+ORPO 69.0 (27.6) 1.09 82.8 (43.4) 1.48

Reference 66.2 (23.4) 58.4 (24.9)

Table 4: Average length (with standard deviation
in brackets). Relative verbosity is relative to the
SFT baseline.

One possible reason for the deteriorating per-
formance observed in the BERTScore is ver-
bosity bias, a common form of reward overop-
timizaiton. The mean and standard deviation of
report length, in addition to the relative added
verbosity are available in Table 4. Indeed, DPO
and IPO are both excessively verbose, result-
ing in an increase of average length by a factor
2.50 and 1.79 on the MIMIC-CXR dataset and
3.15 and 1.88 on the CheXpert dataset, respec-
tively. KTO and ORPO also increase the aver-
age length, but significantly less so. SimPO,
which is the only length controlled method
considered, stays very close to the average length of the SFT baseline, or even decreases it.

Figure 2: Scatter plot of average lengths against
average GREEN.

We plot average lengths against average
GREEN for all aligned policies in Fig. 2. There
is a very clear positive correlation. As was
shown in Park et al. (2024) for DPO, we sur-
mise that excessively verbose completions are
a result of reward overoptimization in the form
of length exploitation, due to verbosity biases
embedded in the preference dataset. More re-
sults on verbosity are available in §A.4.

The GREEN metric reported in Table 3 is an
aggregate over six subcategories: (a) False re-
port of a finding in the candidate, (b) Missing a
finding present in the reference, (c) Misidentifi-
cation of a finding’s anatomic location/position,
(d) Misassessment of the severity of a finding,
(e) Mentioning a comparison absent in the ref-
erence, (f) Omitting a comparison detailing a change from a prior study. We report average error
counts, considering clinically significant errors, for each of these subcategories in Table 5 on the
MIMIC-CXR data. Interestingly, across all methods, only the first four subcategories (a-d) decrease
on average, whereas for the last two (e-f), the frequency of errors actually increases compared to the
SFT baseline. Since both (e) and (f) pertain to “comparisons”, these errors may have been exacer-
bated by our setup, which treated both the task of generating reports for exams at a static timepoint
(a single image or two images from the same timepoint) and exams using a prior image (images

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

from different timepoints). This may have led to forgetting, resulting in more errors of type (e) and
(f).

Error subcategories in GREEN (↓)
Method (a) (b) (c) (d) (e) (f)
CheXagent 1.82 2.40 0.241 0.342 0.071 0.040
+DPO 1.16 (-0.668) 2.43 (0.030) 0.140 (-0.100) 0.286 (-0.056) 0.123 (0.052) 0.053 (0.013)
+KTO 1.47 (-0.353) 2.07 (-0.328) 0.190 (-0.051) 0.385 (0.043) 0.093 (0.022) 0.055 (0.016)
+IPO 1.23 (-0.592) 2.37 (-0.025) 0.157 (-0.084) 0.292 (-0.050) 0.114 (0.043) 0.059 (0.019)
+SimPO 1.28 (-0.547) 2.39 (-0.013) 0.172 (-0.068) 0.302 (-0.040) 0.087 (0.016) 0.066 (0.026)
+ORPO 1.46 (-0.369) 2.14 (-0.256) 0.207 (-0.034) 0.378 (0.036) 0.092 (0.021) 0.054 (0.014)

Table 5: Average error counts for each subcategory in GREEN on the MIMIC-CXR test set (with
∆ compared to SFT baseline in brackets). The subcategories are: (a) False report of a finding in the
candidate, (b) Missing a finding present in the reference, (c) Misidentification of a finding’s anatomic
location/position, (d) Misassessment of the severity of a finding, (e) Mentioning a comparison that
isn’t in the reference, (f) Omitting a comparison detailing a change from a prior study. Green shades
for improvements and red shades for degradations. Shades are separated into bins of 10%, running
from > 0% and ≤ 10% up to > 50%. Best results in bold.

4.2 QUESTION 2: ALIGNMENT TAX

While RLHF is powerful, it has been observed that it might lead to performance degradations or,
forgetting (Askell et al., 2021; Ouyang et al., 2022). Any degradations in performance due to align-
ment is loosely referred to as an alignment tax. Ouyang et al. (2022) assessed such an alignment
tax by evaluating the aligned policies on several NLP benchmarks. Inspired by this, we benchmark
the SFT baseline and the aligned policies on six different tasks: view classification, coarse-grained
image classification, single disease identification, multi disease identification, VQA, and image-text
reasoning using datasets listed in §3.1. Interestingly, despite fairly large gains in the CXR report
generation tasks, there are no statistically significant degradations in these additional tasks.

Model View Classification Binary Image Single Disease Multi Disease Visual Question Image-Text Avg.Classification Identification Identification Answering Reasoning
CheXagent 98.6[97.7,99.4] 83.1[79.7,86.6] 61.1[57.9,64.2] 67.8[65.2,70.2] 62.4[59.8,64.8] 66.6[61.8,71.1] 73.3

+DPO 98.4[97.6,99.3] 82.4[78.8,85.9] 61.2[58.1,64.6] 67.3[64.7,69.8] 61.8[59.2,64.2] 66.1[61.3,70.5] 72.9
+KTO 98.6[97.7,99.4] 82.1[78.5,85.7] 61.8[58.6,64.9] 68.3[65.8,70.8] 62.5[60.0,65.1] 66.6[61.6,71.6] 73.3
+IPO 98.4[97.4,99.3] 82.3[78.7,85.7] 61.1[58.0,64.4] 67.4[64.9,69.8] 61.8[59.3,64.4] 66.7[61.8,71.3] 73.0
+SimPO 98.4[97.4,99.3] 82.0[78.5,85.9] 60.8[57.5,64.0] 67.1[64.7,69.6] 62.1[59.5,64.8] 65.2[60.5,69.5] 72.6
+ORPO 98.3[97.3,99.1] 83.2[79.7,86.8] 61.3[58.1,64.4] 67.5[64.8,70.0] 61.8[59.1,64.0] 65.3[60.5,69.7] 72.9

Table 6: Performance on six tasks CheXagent is capable of other than CXR report generation, the
task used for alignment. 95% confidence intervals in subscripts.

4.3 QUESTION 3: CLINICAL PERSPECTIVE

Method Win rate SEP
CheXagent
+DPO 0.17 0.05
+KTO 0.55 0.06
+IPO 0.23 0.05
+SimPO 0.48 0.06
+ORPO 0.62 0.06

Table 7: Win rates against the SFT baseline and
standard error of a proportions (SEP). Win rates
are according to human experts (radiologist).

Finally, we ask board-certified radiologists to
analyze the generated reports both qualitatively
and quantitatively. The key thing we strive
for with the qualitative analysis is to under-
stand how the verbosity materializes, and how
this relates to GREEN. We found a particu-
larly interesting example, where both DPO and
SimPO achieve GREEN=1 but DPO is sig-
nificantly more verbose. We show this ex-
ample in Fig. 3. For brevity, we show
only DPO and SimPO here. Results for all
DAAs are available in §A.5. The generated
text has been color coded as correct, incor-
rect, and repeated (i.e. exact repetition or semantically equivalent repetition). There is an
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uncompleted sentence for DPO due to truncation. Both DPO and SimPO achieve an sig-
nificant improvement over the SFT baseline. However, the difference in verbosity is stark.
In addition, the added verbosity is mainly in terms of repetitions. This example empha-
size the need for length regularization, currently employed in SimPO and but not DPO.

Figure 3: Qualitative results on one example from the MIMIC-CXR test set. The text in the gener-
ated reports is color coded as correct, incorrect, and repeated (i.e. exact repetitions or semantically
equivalent).

Win rates, with respect to the SFT baseline, were obtained from a random subset of 60 examples
in the MIMIC-CXR test data, yielding a total of 300 cases due to the five DAAs considered. These
examples were read by four radiologist who were asked to indicate a preference between the SFT
baseline and a generated report by one of the DAAs. We opted to elicit preferences instead of
rankings using a Likert scale due to the higher variance of the latter. In addition to preferences, the
ranker can also optionally give a reason why the choice is made. One stark difference in Table 7
compared to Table 3 is that DPO and IPO are now the worst performing alternatives. As shown in
Table 8, the two most common reasons for preferring the SFT baseline over DPO and IPO were:
Selected report contains LESS repeated Information and Selected report is of a MORE preferable
length. Hence, the excessive verbosity produced by DPO and IPO was heavily penalized by the
radiologists. KTO, SimPO, and ORPO, all of which maintain average lengths close to the reference,
fared considerably better. With ORPO showing an improvement over the SFT baseline with a win
rate of 0.62. Now, if we consider why ORPO and KTO were chosen over the SFT baseline, then the
most common reason, by far, was Selected report contains LESS false information. In other words,
factuality was improved.

Aligned preferred Baseline preferred
Method (a) (b) (c) (d) (a) (b) (c) (d)
CheXagent
+DPO 7 1 2 4 18 34 24 4
+KTO 22 3 8 3 10 9 8 5
+IPO 8 1 3 3 15 29 20 1
+SimPO 18 2 12 3 20 4 10 7
+ORPO 27 3 12 7 12 6 8 4

Table 8: Counts of why a preferred report was
chosen in the reader study. The categories are: (a)
Selected report contains LESS false information,
(b) Selected report contains LESS repeated infor-
mation, (c) Selected report is of a MORE prefer-
able length, (d) Other. Note that indicting why
report was preferred was optional.

To further evaluate the generated reports from
a clinical perspective, we consider clinical effi-
cacy by extracting labels (14 categories) using
the CheXbert labeler (Smit et al., 2020) from
the generated and reference reports. We then
compute the F1 score. Results are available in
Table 9. These results seem to correlate well
with the reader study, as the macro averages for
DPO and IPO are actually worse than for the
SFT baseline. Moreover, KTO and ORPO are
the top performer in terms of micro and macro
averages. For F1, we observe 8.4% and 5.9%
increase in micro and macro averages, for KTO
and a 8.1% and 6.7% increase for ORPO. While
we observe an overall improvement in macro
and micro averages for KTO and ORPO, we
also observe deteriorating performance in cer-
tain categories, for instance Facture, indicating
that performance is not improved uniformly across categories.

In sum, GREEN appears somewhat susceptible to length exploitation—a weakness that DPO and
IPO heavily exploited, leading to no clinical improvements just increased verbosity. ORPO and
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MIMIC-CXR
F1 (↑) ECm. Cmgl. LOpac. LLes. Edema Cnsl. Pna. Atel. Pmtx. PEff. POth Frac. SuDev. noF. Micro Macro
CheXagent 0.347 0.620 0.461 0.171 0.493 0.158 0.227 0.453 0.444 0.655 0.092 0.240 0.787 0.304 0.509 0.389
+DPO 0.383 0.688 0.257 0.144 0.352 0.254 0.087 0.349 0.268 0.625 0.149 0.219 0.815 0.333 0.500 0.352
+KTO 0.400 0.683 0.425 0.240 0.554 0.167 0.164 0.441 0.500 0.724 0.130 0.158 0.840 0.340 0.552 0.412
+IPO 0.423 0.675 0.307 0.178 0.433 0.189 0.111 0.335 0.261 0.643 0.185 0.146 0.819 0.326 0.513 0.359
+SimPO 0.381 0.668 0.398 0.150 0.320 0.167 0.178 0.332 0.456 0.669 0.152 0.078 0.812 0.351 0.506 0.365
+ORPO 0.348 0.684 0.479 0.201 0.492 0.224 0.247 0.475 0.511 0.698 0.072 0.177 0.835 0.365 0.550 0.415

Table 9: F1 scores on the MIMIC-CXR test set using 14 categories from the CheXbert labeler Smit
et al. (2020): Enlarged Cardiomediastinum (ECm.), Cardiomegaly (Cmgl.), Lung Lesion (LLes.),
Lung Opacity (LOpac.), Edema, Consolidation (Cnsl.), Pneumonia (Pna.), Atelectasis (Atel.), Pneu-
mothorax (Pmtx.), Pleural Effusion (PEff.), Pleural Other (POth.), Fracture (Frac.), Support Devices
(SuDev.), no Findings (NoF.). Best results in bold.

KTO, on the other hand, seem less prone to this bias, leading to clinical improvements by reducing
the prevalence of false information and thus enhancing factual accuracy.

5 LIMITATIONS AND DISCUSSION

Due to compute constraints, our work focuses on a single model, CheXagent (Chen et al., 2024).
Other VLMs, from different families and sizes, may behave differently. For example, it is possible
that DPO yielded nonsensical results, increased verbosity with no clinical utility, due to a insuffi-
ciently strong baseline–despite being a state-of-the-art model. We do counteract this point, however,
by including a range of DAAs with varying sensitivity to the strength of the SFT baseline. Nonethe-
less, to further validate the results in this study, evaluating another VLM is warranted.

Moreover, based on previous work (Ostmeier et al., 2024), we treat GREEN as the silver standard,
effectively a low-cost approximation of expert human judgment. However, we have observed that
verbosity bias is a significant issue. Thus, further work, including considering length-controlled
metrics, is necessary. One simple updated to the GREEN metric worth exploring is as follows:
GREEN-LC = GREEN / max(length of generated report/length of reference report,1). Where LC
refers to it being length-controlled. Intuitively, this down weights GREEN when the length of the
generated report is larger than that of the reference. If this is not the case, then the correction does
nothing. Although very simplistic, such a correction will allow us to deal with the apparent trade off
between average GREEN and verbosity. In addition, further investigation of length-controlled align-
ment algorithms, such as length-controlled DPO (Park et al., 2024), would be helpful to decouple
length and quality of the generated reports. The issue of potential biases extends beyond verbosity,
as there might be other societal biases, with regards to for instance race and sex, embedded in the
data or the Judge. These biases should be carefully studied and mitigated.

In addition, our hyperparameter search in non-exhaustive and it is possible that the relative ranking
of the methods considered would change with a more extensive search. Finally, we restrict ourselves
to only offline DAAs. This leaves out a range of very competitive alignment algorithms, including
on-policy RL algorithms, such as PPO (Schulman et al., 2017) and REINFORCE Williams (1992),
as well as the online, or iterative, counterparts to the DAAs considered.

6 CONCLUSION

Our study highlights the significant potential of including preference fine-tuning in the post-training
pipeline of medical VLMs. Using our approach to preference data generation, we have shown that
DAAs can substantially improve AI-generated reports in clinically meaningful ways without addi-
tional radiologist feedback. Results indicate maintained performance on diverse tasks, suggesting
no alignment tax. The preference of aligned policies by board-certified radiologists and improve-
ments in clinical efficacy metrics, highlight the clinical value of our method. Our systematic analysis
yields actionable insights for preference alignment of medical VLMs, paving the way for more ac-
curate AI assistance in radiology, potentially addressing workforce shortages and improving patient
care.
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A APPENDIX

A.1 REWARD AND LENGTH DISTRIBUTIONS

The distributions of reward and length for the chosen and rejected subsets are available in Fig. 4.

Figure 4: Distribution of GREEN reward and report length in the chosen and rejected subsets.

A.2 IMPLEMENTATION DETAILS

All models are trained using either a machine with 4xA100 GPUs or 4xA6000 GPUs using a global
batch size of 32 and learning rate 10−6. Each model is trained for one epoch. The image encoder
is frozen while we train the LLM. Hyperparameters are important in DAAs. However, tuning large
models is very expensive. Due to compute constraints, we only tune hyperparameters that are spe-
cific of the DAAs considered while keeping everything else fixed. An overview is given in Table
10. We do a non-exhaustive search, based on previous work and initial experiments, and we only
consider GREEN as metrics for hyperparameter tuning. For each λ ∈ [0.5, 1.0, 4.0, 5.0], ORPO re-
sulted in a model which produced a special token at odd places, leading to a crash of our evaluation
pipeline. We address this by catching the error and set the special token to the padding token.

Algorithm Objective Hyperparameters

DPO (Rafailov et al., 2023) − log σ
(
β log πθ(yc|x)

πref (yc|x) − β log πθ(yr|x)
πref (yr|x)

)
β ∈ [0.01, 0.05, 0.1]

KTO (Ethayarajh et al., 2024) −λcσ
(
β log πθ(yc|x)

πref(yc|x) − zref

)
+ λrσ

(
zref − β log πθ(yr|x)

πref(yr|x)

)
β ∈ [0.01, 0.05, 0.1], λc = λr

where zref = E(x,y)∼D[βDKL (πθ(y|x)||πref(y|x))]

IPO (Azar et al., 2023)
(
log πθ(yc|x)

πref(yc|x) − log πθ(yr|x)
πref(yr|x) −

1
2τ

)2

τ ∈ [0.1, 0.5, 1.0]

ORPO (Hong et al., 2024) − log pθ(yc|x)− λ log σ
(
log pθ(yc|x)

1−pθ(yc|x) − log pθ(yr|x)
1−pθ(yr|x)

)
, λ ∈ [0.5, 1.0, 4.0, 5.0]

where pθ(y|x) = exp
(

1
|y| log πθ(y|x)

)
SimPO (Meng et al., 2024) log σ

(
β

|yc| log πθ (yc | x)−
β

|yr| log πθ (yr | x)− γ
)

β ∈ [2.5, 4.0, 5.0, 10.0], γ = 0.1

Table 10: Hyperparameter search for all direct alignment algorithms (DAAs) considered in this
paper.

A.3 ALIGNMENT ALGORITHM: ADDITIONAL METRICS

For a more holistic approach, we consider some additional metric to what was included in Table.
3. In particular, we also include the lexical, general domain, metrics BLEU (Papineni et al., 2002)
and ROUGE (Lin, 2004). In addition, to obtain a “biomedical” metric, we extract the contextual
embeddings from BioMedML (Bolton et al., 2024), a 2.7B model trained on biomedical text, and
compute the cosine similarity to produce a scalar score–exactly as what is done for BERTScore. We
call this metric the BioMedMLScore. Results for the MIMIC-CXR and CheXpert Plus datasets are
available in Table 11.
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MIMIC-CXR
Radiology BioMedical General

Method GREEN (↑) F1RadGraph (↑) BioMedMLScore(↑) BERTScore (↑) BLEU-4 (↑) ROUGE-L (↑) Avg. (↑)
CheXagent 0.249 0.215 0.712 0.856 0.041 0.274 0.391
+DPO 0.354 (0.105) 0.247 (0.032) 0.724 (0.012) 0.830 (-0.026) 0.042 (0.001) 0.237 (-0.037) 0.406 (0.015)
+KTO 0.340 (0.091) 0.260 (0.045) 0.735 (0.023) 0.862 (0.006) 0.054 (0.013) 0.297 (0.023) 0.425 (0.034)
+IPO 0.349 (0.100) 0.252 (0.037) 0.736 (0.024) 0.846 (-0.010) 0.051 (0.010) 0.267 (-0.007) 0.417 (0.026)
+SimPO 0.315 (0.066) 0.225 (0.010) 0.711 (-0.001) 0.854 (-0.002) 0.041 (0.000) 0.270 (-0.004) 0.403 (0.012)
+ORPO 0.322 (0.073) 0.244 (0.029) 0.727 (0.015) 0.862 (0.006) 0.053 (0.012) 0.290 (0.016) 0.416 (0.025)

CheXpert
Radiology BioMedical General

Method GREEN (↑) F1RadGraph (↑) BioMedMLScore(↑) BERTScore (↑) BLEU-4 (↑) ROUGE-L (↑) Avg. (↑)
CheXagent 0.248 0.222 0.702 0.851 0.038 0.274 0.389
+DPO 0.391 (0.142) 0.246 (0.024) 0.726 (0.024) 0.821 (-0.030) 0.030 (-0.008) 0.217 (-0.057) 0.405 (0.016)
+KTO 0.340 (0.092) 0.265 (0.043) 0.734 (0.032) 0.859 (0.008) 0.050 (0.013) 0.301 (0.027) 0.425 (0.036)
+IPO 0.358 (0.110) 0.248 (0.026) 0.734 (0.032) 0.844 (-0.007) 0.041 (0.003) 0.274 (0.000) 0.416 (0.027)
+SimPO 0.292 (0.043) 0.205 (-0.017) 0.693 (-0.009) 0.844 (-0.006) 0.035 (-0.002) 0.269 (-0.005) 0.390 (0.001)
+ORPO 0.326 (0.078) 0.248 (0.026) 0.728 (0.026) 0.856 (0.005) 0.046 (0.008) 0.287 (0.013) 0.415 (0.026)

Table 11: Results on the MIMIC-CXR and CheXpert Plus test sets (with ∆ compared to SFT base-
line in brackets). Green shades for improvements and red shades for degradations. Shades are
separated into bins of 10%, running from > 0% and ≤ 10% up to > 50%. Best results in bold.

A.4 ALIGNMENT ALGORITHM: ADDITIONAL RESULTS FOR VERBOSITY BIAS

To further build intuition, we illustrate the resulting distributions of length in Fig. 5. Consistent
with the results in Table 4, we can see that the SFT baseline, KTO, SimPO, and ORPO maintain a
distribution similar to that for the reference reports. DPO and IPO, on the other hand, results in a
significant shift towards more verbose reports. In particular, the distributions of length is bimodal.
Closer inspection indicate that the extra verbosity is due to repetition of words or entire sentences.
This can be exact repetition or semantically equivalent repetitions. In the mode to the right, almost
all examples have exact repeats of sentences. Whereas in the mode to the left this is far less common.
Simple heuristics to filter the outputs could be explored in future work.

Figure 5: Kernel density of length in the generated and reference reports.

A.5 CLINICAL PERSPECTIVE: QUALITATIVE ANALYSIS

Color coded version of the generated reports for a particular case are available in Fig. 6. This
particular example was chosen to build intuition on the length exploitation issue. DPO and SimPO
both achieve GREEN=1, but DPO is significantly more verbose than SimPO. ORPO is also very
verbose for this partiuclar example.
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Figure 6: Qualitative results on one example from the MIMIC-CXR test set. The text in the gener-
ated reports is color-coded as correct, incorrect, and repeated (i.e. exact repetitions or semantically
equivalent).
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