
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

LAYERSHUFFLE: ENHANCING ROBUSTNESS IN VISION
TRANSFORMERS BY RANDOMIZING LAYER
EXECUTION ORDER

Anonymous authors
Paper under double-blind review

ABSTRACT

Due to their architecture and how they are trained, artificial neural networks are
typically not robust toward pruning, replacing, or shuffling layers at test time.
However, such properties would be desirable for different applications, such as
distributed neural network architectures where the order of execution cannot be
guaranteed or parts of the network can fail during inference. In this work, we ad-
dress these issues through a number of training approaches for vision transformers
whose most important component is randomizing the execution order of atten-
tion modules at training time. With our proposed approaches, vision transformers
are capable to adapt to arbitrary layer execution orders at test time assuming one
tolerates a reduction (about 20%) in accuracy at the same model size. We anal-
yse the feature representations of our trained models as well as how each layer
contributes to the models prediction based on its position during inference. Our
analysis shows that layers learn to contribute differently based on their position in
the network. Importantly, trained models can also be randomly merged with each
other resulting in functional (”Frankenstein”) models without loss of performance
compared to the source models. Finally, we layer-prune our models at test time
and find that their performance declines gracefully.

1 INTRODUCTION

While demonstrating impressive performance in many domains (Krizhevsky et al., 2012; Vaswani
et al., 2017; Radford et al., 2021; Rombach et al., 2022), deep learning systems demand both ex-
tensive computational resources and tight integration of their parts. For applications at scale, they
therefore increasingly require the construction of large data centers with thousands of dedicated
hardware accelerators. A paradigm shift from central to decentral model inference, where loosely
coupled neural networks are distributed over a number of edge devices that share the computational
load of the model (Gacoin et al., 2019) therefore seems ultimately desirable. Unfortunately, current
deep learning models lack the robustness necessary for such a paradigm shift.

In general, artificial neural networks (ANNs) are not robust toward pruning or replacing network
layers during deployment.Similarly, changing the order of execution in-between layers without fur-
ther training usually results in catastrophic losses in accuracy. Nevertheless, these properties would
be desirable e.g. in distributed setups as described above, where a model is executed on a number of
shared nodes in a network. This way, overloaded or malfunctioning nodes could simply be skipped
in favor of other available nodes. Furthermore, malfunctioning nodes or absent nodes could simply
be replaced by a similar (not the same) node, allowing for simple logistics when deploying models
in practice.

Augmenting models with these properties has historically been challenging. Due to the structure of
the most common types of ANNs and how they are trained through backpropagation (Linnainmaa,
1970; Werbos, 1982; Rumelhart et al., 1986), each neuron can only function by adapting to both its
connected input and output neurons as well as the overall desired output of the network at training
time. Furthermore, the hierarchical organization of explanatory factors is usually considered a nec-
essary prior in deep learning, i.e. one assumes that subsequent layers extract increasingly high-level
features (Bengio et al., 2013). Therefore, switching the execution orders of layers implies that layers

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

0 1 2 3 4

012 34

(a) LayerShuffle

3 6 9 12
Number of Layers

0

20

40

60

80

Va
lid

at
io

n
Ac

c.
 IL

SV
RC

20
12

Method
LayerDrop
LayerShuffle
ReducedRetrain

(b) Pruning, original layer sequence

3 6 9 12
Number of Layers

0

20

40

60

Va
lid

at
io

n
Ac

c.
 IL

SV
RC

20
12

Method
LayerDrop
LayerShuffle
ReducedRetrain

(c) Pruning, random layer sequence

Figure 1: LayerShuffle training results in robust vision transformers. (a) Illustration of the Layer-
Shuffle approach. The execution order of attention modules is randomly permuted during training.
(b) ImageNet2012 validation accuracy vs. number of pruned layers when executing layers in their
original sequence. LayerShuffle performs similarly to LayerDrop (p=0.2), despite no layers being
removed during training. (c) When additionally shuffling the layers at test time, all models fail ex-
cept for LayerShuffle, whose performance degrades gracefully as more layers are removed.

would need to adapt and extract either low-level or high-level features depending on their position in
the network. Unfortunately, network layers adapting in such a way to a changed order of execution
appears to be infeasible for most known network architectures. The above prior is therefore violated
and the overall performance of the network suffers beyond the point where the network successfully
executes the task it has been trained for.

The more recently discovered transformer architecture (Vaswani et al., 2017) has been shown to be
more flexible. Transformers, when trained accordingly, can be layer-pruned at test-time (Fan et al.,
2019), and recent work merges similar transformer-based language models (Akiba et al., 2024), all
with only moderate reduction or even an improvement in performance. We hypothesize that the
reason for the high adaptability of transformers can be found in self-attention modules being able
to adapt their output based on the received input. Thus it should be possible to train a transformer
network to not only adapt to the variation of its input features based on the overall network input but
also the variations caused by receiving input from different layers during test time.

We propose and evaluate three training approaches for vision transformers to address the robustness
issues laid out above. The most important component common to all approaches is randomizing
the execution order of the vision transformer’s stacked self-attention-and-feed-forward modules at
training time (Figure 1a). More precisely, the main contributions in this paper are:

• With LayerShuffle, the layers of a vision transformer (Dosovitskiy et al., 2020) are capable
of adapting to an arbitrary execution order at test time, assuming one tolerates a moderate
reduction in performance. Providing each layer additionally with its current position in the
network improves performance only slightly compared to a model without it, suggesting
that each attention layer is already capable of determining its role based on the incoming
data alone.

• A UMAP analysis reveals that layers of models trained with LayerShuffle adjust their out-
put depending on which position they hold in the network.

• Trained models can be layer-pruned at test time similar to the models trained with the
techniques proposed in Fan et al. (2019), where their performance declines gracefully, i.e.
models with reduced amounts of layers still remain functional.

• In addition, vision transformers, which have been made robust to execution order, can
be merged with each other resulting in merged (”Frankenstein”) models without loss of
performance compared to the source models.

2 RELATED WORK

Zhu et al. (2020) find that for particular subsets of inputs, transformers perform better when changing
the execution order of layers to an input-specific sequence. They optimize the execution order per
sample in order to maximize the performance of the model for natural language processing tasks.
While the goal in their work is to find a layer sequence of a pre-trained model that is optimal for a

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

given input, our approach aims to make the model robust to any sequence of execution, where layers
might even be missing.

In parallel to our work on vision transformers, two groups have conducted similar experiments with
the aim to understand how language models (LLMs) process data. Lad et al. (2024) found that LLMs
are very robust to changing the positions of adjacent layers or ablating single layers from the model.
Sun et al. (2024) perform similar experiments, and find that transformers improve iteratively upon
their predictive output by subsequently refining the internal representation of the presented input.
The main difference to our work is that the authors of these works do not perform any refinement
on the models and switch and ablate layers locally with the aim of better understanding the inner
workings of LLMs. Here we focus on methods and training approaches to increase this innate
robustness of the transformer architecture to a point where models at test time function regardless of
their layer execution order, and respond gracefully to the ablation of several layers in any position
of the network.

Another related work is LayerDrop (Fan et al., 2019), where the authors focus on robust scalability
for models on edge devices. They propose dropping whole transformer layers during training and
show that this training approach allows models to still deliver acceptable (if somewhat reduced)
performance upon pruning layers at test time (e.g. for balancing computational load). The main
difference to our approach is that we randomly change the execution order during training, and,
contrary to LayerDrop, do not remove any layers. Also, LayerDrop focuses on entirely on load bal-
ancing in compute-limited production systems while our main focus is on arbitrary execution order
and the possibility to replace defective nodes by others on top of these issues in case of overloaded
or malfunctioning nodes in distributed systems.

Recent work improves the performance of LLMs on predefined tasks, by merging them using evolu-
tionary strategies (Akiba et al., 2024). Similar to Zhu et al. (2020), the authors’ overall aim is to in-
crease performance rather than robustness in distributed environments, so contrary to our approach,
layer execution order and scaling for reduced numbers of layers are in general not considered.

Work on introducing permutation invariance into neural networks has been conducted by Lee et al.
(2019), Tang & Ha (2021) as well as Pedersen & Risi (2022). The corresponding former two ap-
proaches exploit the permutation equivariance of attention, i.e. the fact that the order in which a
sequence of vectors gets presented to the attention module does not change its result, but merely
shuffles the sequence of output vectors. This equivariance is achieved by using a fixed-seed query
vector in order to obtain an permutation invariant latent code. This latent code stays the same no
matter in which order input tokens/patches are presented to the module. The main contrast to our
work here is that we exploit permutation invariance in the order of layer executions rather than the
order of tokens and patch embeddings and can therefore not make use of permutation equivariance
of the attention operation, as it does not apply to switching inputs and outputs.

Finally, the work of Gacoin et al. (2019), not unlike our own, is motivated by the observation that
a paradigm of distributed model inference over a number of loosely coupled compute nodes, edge
devices or swarm agents promises a positive impact on the ecological and economical footprint
of deep learning solutions. The authors propose a graph-theory-based framework to optimize the
distribution of model parts to individual devices and optimize the overall energy consumption of the
network. While our work sets out from the same motivation, it complements the approach of Gacoin
et al. (2019) as the the authors do not address robustness to adverse conditions in such distributed
setups while it is the entire focus of this paper. The exact distribution of our models on the other
hand, is beyond the scope of our work but combining our models with the approaches in (Gacoin
et al., 2019) seems a promising direction of future research.

3 METHODS

We investigate three approaches for arbitrary layer execution order in vision transformers (ViT;
Dosovitskiy et al., 2020): First, we simply permute the order of layers randomly during training,
such that every training batch is presented to the network’s layers in a different random order (Sec-
tion 3.1). Second, while randomly permuting the layer order as in the previous approach, we use
an layer-depth encoding inspired by learned word embedding approaches (Section 3.2) to test if this
additional information would further improve performance. Third, while randomly permuting layer
order as in the previous approaches, we try to predict from the output of every layer at which posi-

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

tion the layer is currently located in the network using a small layer position prediction network for
every layer (Section 3.3). A detailed overview on ViTs can be found in the appendix.

3.1 RANDOMLY PERMUTING LAYER ORDER DURING FORWARD PASS

During each forward pass, i.e. for each batch presented to the ViT, we randomly permute the exe-
cution order of layers during training. The intention here is to teach the layers to not only extract
meaningful intermediate representations when receiving input from a particular layer, but to be able
to process and encode information from and for all possible layers in the network. In terms of train-
ing, exchanging the order of layers does not require any changes in the basic error backpropagation
algorithm. For the forward path, the order how weight matrices are multiplied and activation and
attention functions applied changes for every batch and forward pass. This needs to be accounted in
the backward pass by propagating the gradients in the precise reverse order that has been set in the
forward pass, i.e. multiplying the computed per-layer gradient matrices in the correct order. As we
use Pytorch (Paszke et al., 2019) in all our experiments, this aspect is taken care of the framework’s
autogradient feature. We refer to this model as LayerShuffle. To further illustrate the approach, a
pseudo-code listing is given in Algorithm 1.

Algorithm 1 Executing the forward path of a vision transformer with random layer order.

Input: Input image pre-processed as a sequence z0,
Sequence of L vision transformer attention modules m1,m2, . . . ,mL

Create a new sequence n1, n2, . . . , nL by randomly permuting m1,m2, . . . ,mL,
for i = 1 to L do
zi = ni(zi−1),

end for
Return zL to be post-processed by the transformer’s output layer.

3.2 LAYER POSITION ENCODING

Positional
Embedding

Projection
Network

Multi-Head
Attention

Feed Forward

Input Layer Index

Figure 2: Attention
module with layer posi-
tion encoding.

In the second approach, LayerShuffle-position, we provide each layer
with its current position in the network. Through this variation we aim
to test if each layer can already adapt sufficiently by itself to information
coming from different layers during test time or if giving it the current
position can help further. In more detail, jointly with permuting the layer
execution order, each layer learns a vector embedding elayer

p ∈ RF for
each possible index position p ∈ [1, L] of the layer during training, where
L is the number of layers and F = 32 is our chosen embedding dimen-
sion. The layer’s current index p in the network is presented together
with the input to the layer zt−1 (Figure 2). The layer fetches the embed-
ding vector elayer

p associated with the passed index p and concatenates it
to the input vector zt−1: ht = concat(zt−1, repeat(elayer

p, N + 1)). N
is the number of patches extracted form the input image, the functions
concat and repeat respectively concatenate and repeat tensors along their
last (most varying) dimension. A projection network, which consists of
a LayerNorm (LN) (Ba et al., 2016) module, a single linear layer Wproj,
a GELU (Hendrycks & Gimpel, 2016) activation function as well as a
Dropout (Srivastava et al., 2014) module, is then used to combine input
and embedding and reduce it again to the used latent dimension D of the
transformer. To ensure gradient flow during training, a residual connec-
tion is added as well:

z′′t = Dropout(GELU(LN(ht)Wproj)) + zt−1

The resulting output z′′t is passed on to a regular multi-head-attention-and-feed-forward structure as
described in Equations 1 and 2.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

3.3 PREDICTING CURRENT LAYER POSITION

Multi-Head
Attention

Feed Forward

Output Predicted Index

Position
Prediction

Figure 3: Attention module
with layer position prediction.

To determine if the incoming information to each attention layer is
indeed sufficient for it to figure out its role, we specifically test for
this ability with the LayerShuffle-predict variant. We equip each
layer of the network with a simple position prediction module that
takes the current layer output as an input and seeks to predict the
current position of the layer in the network (Figure 3). The module
consists of a single linear layer Wpred ∈ RD×L receiving layer-
normalized (LN)input. u = LN(zt)Wpred.

Each of these layer order prediction modules optimizes a cross-
entropy loss where then the overall network optimizes the loss
Lout +

∑∀i Li. Here, Lout is the regular cross-entropy loss of the
output layer, and Li is the layer position prediction loss of layer i,
which is also a cross-entropy loss:

Li = − log

(
exp(up)∑∀l∈L

exp(ul)

)
,

where L is the number of layers in the network, u is the L-
dimensional output of the position prediction network of layer i,
and ul denotes the l-th dimension of the vector. up is the output logit denoting the network’s pre-
dicted confidence that the layer currently is deployed at its actual position with index p.

4 EXPERIMENTS

We conduct our experiments on the ILSVRC2012 dataset (Russakovsky et al., 2015), more com-
monly termed ImageNet2012, as well as the CIFAR-100 dataset Krizhevsky et al.. We use the origi-
nal ViT-B/16 (Dosovitskiy et al., 2020) vision transformer, as well the DeiT-B distilled data-efficient
image transformer Touvron et al. (2021). Pre-trained weights for ImageNet2012 are publicly avail-
able for both models (Dosovitskiy et al., 2020; Wu et al., 2020; Touvron et al., 2021).

The ViT-B/16 has been pre-trained on ImageNet21k (Deng et al., 2009; Ridnik et al., 2021) at an
224×224 input image resolution and refined on ImageNet2012 at the same resolution. DeiT-B has
the same architecture as ViT-B/16, but uses an additional destillation token during training, which
is used to distill the inductive bias of a large convolutional network into the transformer in order to
require less training data. It is pre-trained exclusively on ImageNet2012.

Both models are again refined on both ImageNet2012 and CIFAR-100 at the same resolution, but
using the training processes as described in Section 3. That is, layer execution order is randomly
permuted while refining the model. To establish a baseline, on ImageNet2012, we refine the original
models for one more epoch on without changing the layer order. Any longer training was found
unlikely to bring additional improvement in preliminary experiments since our networks are already
pretrained on ImageNet. For CIFAR-100, we refine our baseline for 20 epochs. For each approach,
including the baselines, we train 5 networks and compare their average validation accuracy.

All models are refined using Adam (Kingma & Ba, 2014) (β1 = 0.9, β2 = 0.999, ϵ = 10−6), where
an initial learning rate of 10−4 was empirically found to work best. In terms of batch size, we eval-
uate training batch sizes of 640 images, which is the maximum multiple of 8 that can fit in the video
memory of our used GPU, as well as 128 images for models that benefit from a smaller batch size.
Even smaller batch sizes do not yield any improvement in performance for our models. Inspecting
training curves shows that for ImageNet2012 the performance of models plateaus at 20 epochs the
latest, which is therefore set as the maximum number of training epochs. For CIFAR-100 we use
100 epochs since the models were pretrained on a different dataset, i.e. ImageNet. We use a form of
early stopping by evaluating the model achieving the lowest crossentropy loss on the validation set
after the maximum amount of training epochs. All models have been trained on a single NVIDIA
H100 Tensor Core GPU with 80GB of memory. Training a single model on ImageNet2012 for 20
epochs takes about 7 hours whereas CIFAR-100 training times are significantly shorter due to the
smaller train set.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

4.1 SEQUENTIAL VS. ARBITRARY EXECUTION ORDER

The average accuracy for all approach on all vision transformer architectures and datasets is shown
in Table 1. We make the following observations across all models and datasets:

On both the CIFAR-100 and the ImageNet2012 dataset, our baselines refined from pre-trained ViT-
B/16 and DeiT-B models perform very much as expected. For a classic sequential execution order
of the model layers, on ImageNet2012 the trained models achieve an average validation accuracy
very close to the performance of the respective original pretrained models (Dosovitskiy et al., 2020;
Touvron et al., 2021). Our refined baseline ViT-B/16 obtains an average accuracy of 82.61% with
a standard deviation of 0.08. The DeiT-B model attains a slightly lower accuracy of 81.16% with
a standard deviation of 0.06. Baseline results CIFAR-100 look similar with ViT-B/16 and DeiT-B
achieving 89.62% (standard deviation: 0.26) and 87.31% (standard deviation: 0.25) respectively.
Not surprisingly, for an arbitrary layer execution order, the average model accuracy declines catas-
trophically to below 1% for all trained models on both datasets. Our original assertion that in general,
ANNs are not robust to changing the execution order of their layers, is in line with these results.

Our LayerShuffle approaches show slightly lower performance than the baselines when executing
layers in their original order. On ImageNet2012, our trained ViT-B/16 models obtain average ac-
curacies of 75.22, 75.28, and 74.41 respectively for our LayerShuffle, LayerShuffle-position and
LayerShuffle-predict approaches. Average accuracies for DeiT-B models are in a similar range with
76.57, 76.18, and 75.08 for our respective LayerShuffle, LayerShuffle-position and LayerShuffle-
predict approaches. On CIFAR-100 on the other hand the gap between baseline and LayerShuffle
models is somewhat larger for the trained ViT-B/16 models. These models merely achieve 64.43,
61.98 and 60.88 with slightly higher standard deviations for LayerShuffle, LayerShuffle-position and
LayerShuffle-predict approaches. For DeiT-B models on the other hand, these approaches perform
similarly well to the models trained on ImageNet with scores of 75.04, 72.13 and 66.94 for the above
mentioned techniques. A possible explanation for these discrepancies could be found in ViT-B/16
models requiring more and more diverse training data compared to DeiT-B models, which has been
pre-trained with the aim to reduce the amount of required training data.

Despite being outperformed by the baseline in a sequential execution order setting, all models im-
prove dramatically over their corresponding baseline models in an arbitrary execution order setting.
Taking a closer look at LayerShuffle model performance in that setting, we find that the simplest ap-
proach performs very well across both architectures and datasets. For both ImageNet2012 as well as
CIFAR-100 validation sets DeiT-B trained on LayerShuffle yields the best performance with average
accuracies of 66.62 and 64.99 respectively, narrowly outperforming LayerShuffle-position, which
receives information about the layer position. LayerShuffle-position achieves scores of 66.62 and
64.99 on these datasets. For ViT-B/16 models on the other hand, LayerShuffle-position outperforms
LayerShuffle. The former achieves scores of 63.61 and 55.47 of ImageNet2012 and CIFAR-100,
with the latter performing only slightly worse with 62.77 and 54.34. The most likely explanation
for models of the ViT-B/16 architecture achieving significantly lower accuracies on CIFAR-100 than
DeiT-B models can again be found in the former requiring less training data than the latter.

We find that the position prediction approach, LayerShuffle-predict is outperformed by both our
remaining approaches on all datasets and architectures. On ImageNet2012, refined ViT-B/16 models
achieve average accuracies of 61.18 whereas DeiT-B models attain 64.51. On CIFAR-100 the former
score 53.53, the latter 58.77. A possible explanation might be that due to optimization of multiple
objectives (fitting both the output labels as well as predicting the current position of the layer) this
approach requires more careful hyperparameter tuning.

A further interesting observation is to be made when comparing the performance for sequential and
arbitrary execution order for each approach respectively. For all approaches, using the original layer
order for sequential execution still performs better than an arbitrary order. This is most likely a
consequence of fine-tuning from a sequentially trained model.

For the layer position prediction approach, we measure the average accuracy of layer position pre-
dictions over all five trained LayerShuffle-predict models, and find that the layer position is predicted
correctly in 99.99% of all cases. These results demonstrate that each layer has enough information
coming from its inputs alone to predict where it is in the network, providing the basis to adapt to its
current position. We investigate this further when analyzing intermediate network representations
in Section 4.3. In conclusion, refining a pre-trained model while randomly permuting the execution

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

order of the network layers can make a model more robust towards such arbitrary execution orders
at test time. On the other hand, Dropout and LayerNorm by themselves do not have the same effect
and fail to produce networks robust against layer shuffling.

Table 1: Approach accuracy for sequential and arbitrary execution order of layers on the Ima-
geNet2012 (IN2012) and CIFAR-100 (CIFAR) validation sets. The baseline models perform best
when executed sequentially but fail catastrophically when the layers are executed in an arbitrary
order. Even the simplest LayerShuffle variant, in which the model does not have any information
about its current position, reaches accuracies above 60 percent. All of our proposed training ap-
proaches permit the models to be executed with arbitrary layer execution order at test time, while
still delivering good performance for the original model execution order.

model layer order baseline LS LS-pos LS-pred

IN2012 ViT-B/16 sequential 82.61±0.08 75.22±0.28 75 .28±0.18 74.41±0.20

IN2012 ViT-B/16 arbitrary 0.13±0.03 62 .77±0.41 63.61±0.23 61.18±1.06

IN2012 DeiT-B dist. sequential 81.16±0.06 76 .57±0.12 76.18±0.46 75.08±0.27

IN2012 DeiT-B dist. arbitrary 0.12±0.05 66.62±0.4 65 .89±1.28 64.51±0.85

CIFAR ViT-B/16 sequential 89.62±0.26 64 .43±0.95 61.98±0.49 60.88±0.76

CIFAR ViT-B/16 arbitrary 0.64±0.13 54 .34±2.64 55.47±1.41 53.53±1.45

CIFAR DeiT-B dist. sequential 87.31±0.25 75 .04±0.83 72.13±1.5 66.94±0.6

CIFAR DeiT-B dist. arbitrary 0.53±0.16 64.99±0.76 64 .31±1.70 58.77±1.18

4.2 REMOVING LAYERS DURING TEST TIME

To determine how neural networks trained with LayerShuffle would perform when several devices in
a (distributed) model become unavailable, we further investigate the effect of pruning an increasing
amount of layers during test time. We evaluate its average validation accuracy over 5 models when
only using 3, 6, or 9 layers. In addition, we refine the original ViT-B/16 transformer using LayerDrop
(Fan et al., 2019) with a drop probability of 0.2 (as recommended by the authors) and compare it as
a baseline to our approach under identical conditions. Note that whenever we evaluate the accuracy
of our proposed approaches as well as the baseline, we do so two times: Once, for the original
”sequential” layer order as originally intended and trained for the ViT-B/16 transformer, and once
with arbitrary layer execution order where we change the order randomly for every forward path.

For sequential execution (Figures 1b), LayerDrop with a drop rate of 0.2 behaves similarly to Lay-
erShuffle, with the exception that our approach performs better for a small number (3) of layers with
an average accuracy of approximately 18% vs. close to 0% for LayerDrop. While for 6 layers, both
approaches are roughly on par, for 9 layers LayerShuffle is slightly outperformed by LayerDrop as
both approaches show an average accuracy in the 70− 80% range. At the full amount of 12 layers,
this gap in average accuracy stays roughly the same as the LayerDrop-refined model closes in on
the full accuracy of the original model, while our LayerShuffle approach achieves slightly lower
accuracies (see also Table 1). For comparison, we also visualize models where we refined a re-
duced number of 3, 6, and 9 layers: while delivering similar performance as LayerDrop for 9 and 12
layers, these models perform significantly better than the previously discussed approaches at lower
numbers, i.e. 3 and 6 layers. They do however, bear the drawback that for each specific amount of
layers a new model must be refined from the original model, whereas for both LayerDrop and our
LayerShuffle approach, only a single full-size model needs to be refined and the number of layers
can be configured at will at test time.

For arbitrary execution (Figure 1c), LayerShuffle is the only approach that succeeds, with the av-
erage accuracy improving as the number of layers is increased. LayerDrop does not perform well
regardless of the number of layers in the model. A noteworthy detail is the comparable high average
accuracy of the fully retrained baseline with 3 layers. Given the low performance of the refined mod-
els with 6 and 9 layers, as well as that there are only 6 possible permutations for 3 layers, the most
likely explanation is that one of the 5 random permutations evaluated for the model was the original
layer execution order the model has been trained for, i.e. [1,2,3] therefore skewing the achieved ac-
curacy in this case. In conclusion, we find that our proposed approach has similar test-time scaling
capabilities as LayerDrop, while still ensuring robustness towards arbitrary layer execution orders.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

4.3 ANALYSIS OF INTERMEDIATE NETWORK REPRESENTATIONS

10 12 14 16
x

4

6

8

10

12

y

0
2
4
6
8
10

(a) Baseline

5 0 5 10 15
x

2

3

4

5

6

7

8

9

y

0
2
4
6
8
10

(b) Refined w. LayerShuffle

0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2
Normalized L2 Norm

Position Index
0
1
2
3
4
5
6
7
8
9
10
11

(c) Baseline

0.0 0.2 0.4 0.6 0.8 1.0 1.2
Normalized L2 Norm

Position Index
0
1
2
3
4
5
6
7
8
9
10
11

(d) Refined w. LayerShuffle

Figure 4: UMAP-projected embeddings and contributions to model prediction (estimated distribu-
tion of normalized L2 norms of class token) of layer outputs trained with shuffling execution order,
baseline for comparison. Contrary to the baseline (a), the layer for a LayerShuffle-trained network
(b) produces outputs in different subspaces of the latent space depending on their current position in
the network. Darker colors indicate layer positions closer to the input; layer positions close to the
output are shown in light colors. While layers in the baseline model overall contribute equally to the
predictive output of the model, regardless of their current position in the network (c), the contribu-
tion of layers in the LayerShuffle-trained model’s prediction (d) varies based on the distance to it’s
original position in the networks. Refinement of the model conditions its layers to only contribute
to the overall predictive output if the received input lies within the layers learned distributions of
inputs.

To gain a deeper insight into how information is encoded in the models, we conduct two experiments.
First, we compute Uniform Manifold Approximation and Projection (UMAP) (McInnes et al., 2018)
embeddings of the entire output of a particular attention module (i.e. combined self-attention and
feed-forward layers), where we color-code all output vectors based on the position the module held
in the network when producing this output. In more detail, we concatenate all patch tokens of
a single image together with the class token as a single vector, and use this representation as a
single state vector in our compression. To extract a sufficient number of these state vectors, we
present 1,000 randomly sampled images from the ImageNet2012 validation set to a LayerShuffle-
trained model. While we use an evaluation batch size of 1 image and record all outputs of a single,
previously selected layer, we randomly permute the execution order of layers such that the selected

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

layer changes position in the network during every forward path. After the layer’s output vectors for
all 1,000 images have been recorded, a UMAP reduction of the output space to 2D is performed.

Second, in order to investigate how much each layer contributes to the final classifier output when
deployed in different positions within the model, we compute the L2-Norm of the class-token of
each layer output. We correct for the contribution of previous layers by subtracting the class token
of the previous layer before computing the token’s norm. That way, we consider solely the additive
contribution of the layer to the class prediction of the model. We collect these token norms for all
network layers as we shuffle their position while presenting 1000 randomly sampled input images
in an identical manner as in the previous experiment.

Finally, to establish a baseline, we extract both representations for the original ViT-B/16 weights
Dosovitskiy et al. (2020) as well. Figure 4b shows the obtained visualizations for the original ViT-
B/16 model acting as a baseline as well as our model refined with LayerShuffle. In more detail,
Figures 4a and 4b show the UMAP embeddings of a single layer’s output for both the baseline and
our model. The current position of the layer in the network when producing a given output is color-
coded from dark (position close to the input) to light (position close to the output). Note that this
information about the layer position has not been presented to the UMAP algorithm. Apart from
rough trends, no clear ordering of the space is visible for the baseline (Figure 4a). For LayerShuffle,
while there is no sharp separation between outputs generated at different positions in the network,
the layer clearly adapts to its current position and extracts different features for different positions
in the network (Figure 4b).

A further interesting observation is the very distinct collection of points for layer positions close
to the input, which are detached from the remaining manifold of points. This results suggests that
extracting low-level features, requires special treatment. Figures 4c and 4d show the distributions
on the normalized L2-norm of additive contributions to class tokens for different layer positions in
the transformer for both the baseline and our model. Each x-axis in the plot corresponds to a single
layer of the network, where position of the layer in the network is color-coded again from close to
the input (dark) to close to the output (light). x-axes are also ordered corresponding to the layer’s
original position in the pre-trained model, where the order of layers is top to bottom. We can see that
for the baseline model norms are basically spread out over the whole range. This implies that layers
in the baseline model overall contribute evenly to the predictive output of the model, regardless of
their current position in the network.

On the other hand, the ridge plot gathered from layer outputs of the model refined with our method
paints a different picture. The norm of attention modules output and therefore it’s contribution to
the model’s prediction varies based on the distance to it’s original position in the networks. Modules
which were originally closer to the input (x-axes on top of the plot) often show larger contributions
to the predictive output of the model when on positioned closer to the input and vice versa. This
indicates that our refinement of the model conditions its layers to contribute to the overall predictive
output if the received input lies within the layers learned distributions of inputs (i.e. the layer is
close at a position assigned to it in the original pre-trained network), and withhold or reduce their
output otherwise. This is also in line with recent work conducted in parallel Sun et al. (2024), which
frames transformer layers as incrementally refining a rough sketch of the model’s output, an iterative
process which is enabled by the transformer’s extensive utilization of skip-connections.

In conclusion, our analysis indicates that refining networks with LayerShuffle makes vision trans-
formers robust to arbitrary execution orders as it trains the layers to solely add to the models con-
tribution if the layer input is in-distribution and reduce their output otherwise, in which case the
model’s skip-connection forwards the out-of-distribution output to the subsequent layer.

4.4 MERGING MODELS WITH ARBITRARY EXECUTION ORDER

Being robust against permuting the layer execution order, opens interesting other possibilities such
as model merging, i.e. creating a new model from the layers of several identically trained models.
The underlying rationale is that such merged models could also occur in a distributed setting, where
compute nodes, whose layers have been trained as part of distinct models, but with the same training
process, could form ad-hoc models together.

To construct merged models, where each layer stems from a different model, we require 12 models
for the 12 layers of the ViT-B/16. We therefore train 7 more networks for our LayerShuffle approach
and the baseline. Subsequently, we create 100 merged models (out of 12! possible combinations) by

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

randomly sampling from these models for our proposed approach as well as the baseline respectively
(models are not mixed between approaches). As mentioned previously, layers are sampled in such
a way that no two layers in a merged model stem from the same model. We then evaluate the
validation accuracy of all 100 models for both approaches.

Table 2 summarises the results. The merged baseline model ViT-B/16 deteriorates from 82.61%
average accuracy to 1.87% (despite sequential layer execution as required by the model) making
the resulting merged model effectively unusable. The merged LayerShuffle models, on the other
hand, perform slightly below the original model with an average accuracy of 59.68% as opposed
to the 62.77% of the latter. Less surprisingly, merged models show a higher standard deviation at
1.15 percentage points for the merged models vs. 0.41 percentage points for the original ones as
merged models do not contain any two layers that have been trained together, which makes their
performance vary more. We can further improve performance by ensembling the 12 models trained
with LayerShuffle, using the average of their output logit vectors. Such neural network ensembles
often reach a better performance (Hansen & Salamon, 1990), which is also the case here with a
significant improvement and an accuracy of 69.26% for LayerShuffle Ensemble.

In conclusion, we find that permuting layer order during training enables the construction of merged
(or ”Frankenstein”) vision transformers, where each layer of the transformer can be taken from a
different model, as long as all models have been refined from the same base model on the same data.

Table 2: Validation accuracy of merged ViTs on ImageNet2012. Merged LayerShuffle achieve an
accuracy close to the average accuracy of the original models, while for the baseline, the merged
model exhibits very low accuracy. Ensembles of LayerShuffle models show clear improvement over
single models.

Model Top-1 Acc. Top-5 Acc. layer order

ViT-B/16 merged 1.87± 6.51% 4.53± 11.82% sequential
LayerShuffle merged 59.68± 1.15% 82.16± 1.03% arbitrary
LayerShuffle Ensemble 69.26% 88.76% arbitrary

5 DISCUSSION AND FUTURE WORK

This paper presented a new approach called LayerShuffle, which enabled vision transformers to be
robust to arbitrary order execution, pruning at test time, as well as adhoc-construction of merged
models. For sequential execution, LayerShuffle performs on average only slightly worse than the
LayerDrop approach but is the only method that works when the layer execution is arbitrary. Our
analysis confirmed that layers of models trained with LayerShuffle adjust their output depending on
which position they hold in the network. Furthermore, our results indictate that refining networks
with LayerShuffle trains the layers to only contribute to the model’s class prediction if the layer
input is in-distribution and reduce their output otherwise, in which case the layer’s skip-connection
forwards the barely modified out-of-distribution embedding to the subsequent layer.

Finally, we investigated whether it is possible to build merged models from the models trained with
LayerShuffle and found the performance of the built merged models to be only slightly less than
the performance of our trained models, contrary to the baseline, where virtually all merged models
delivered very poor performance.

In the future, these properties could make LayerShuffle-trained models ideal candidates to be dis-
tributed over a number of very loosely coupled compute nodes to share the computational load of
model inference. Given the enormous engineering, financial and logistical effort as well as the envi-
ronmental impact (Strubell et al., 2020) of building and maintaining datacenters for state-of-the-art
deep learning approaches on the one hand, as well as the large amount of available, but scattered
compute through existing smartphones, laptop computers, smart appliances and other edge devices
on the other hand, approaches that allow ad-hoc neural networks performing inference together could
be of great impact. We therefore consider the deployment and orchestration of our trained models
onto an actual set of edge devices and the practical implementation of the inference process on a
network of such devices, likely by combining our approach with previously proposed frameworks
to address this issue (Gacoin et al., 2019), a very promising direction of future research.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Takuya Akiba, Makoto Shing, Yujin Tang, Qi Sun, and David Ha. Evolutionary optimization of
model merging recipes. arXiv preprint arXiv:2403.13187, 2024.

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization. arXiv preprint
arXiv:1607.06450, 2016.

Y. Bengio, A. Courville, and P. Vincent. Representation learning: A review and new perspectives.
IEEE transactions on pattern analysis and machine intelligence, 35(8):1798–1828, 2013.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hi-
erarchical image database. In 2009 IEEE conference on computer vision and pattern recognition,
pp. 248–255. Ieee, 2009.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An
image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint
arXiv:2010.11929, 2020.

Angela Fan, Edouard Grave, and Armand Joulin. Reducing transformer depth on demand with
structured dropout. In Proceedings of the International Conference on Learning Representations
(ICLR), 2019.

Victor Gacoin, Anthony Kolar, Chengfang Ren, and Regis Guinvarc’h. Distributing deep neural
networks for maximising computing capabilities and power efficiency in swarm. In 2019 IEEE
International Symposium on Circuits and Systems (ISCAS), pp. 1–5. IEEE, 2019.

Lars Kai Hansen and Peter Salamon. Neural network ensembles. IEEE transactions on pattern
analysis and machine intelligence, 12(10):993–1001, 1990.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770–778, 2016.

Dan Hendrycks and Kevin Gimpel. Gaussian error linear units (gelus). arXiv preprint
arXiv:1606.08415, 2016.

D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. In Proceedings of the
International Conference on Learning Representations (ICLR), 2014.

Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton. Cifar-100 (canadian institute for advanced
research). URL http://www.cs.toronto.edu/˜kriz/cifar.html.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convo-
lutional neural networks. Advances in neural information processing systems, 25, 2012.

Vedang Lad, Ves Gurnee, and Max Tegmark. The remarkable robustness of llms:stages of inference?
arXiv preprint arXiv:2406.19384v1, 2024.

Juho Lee, Yoonho Lee, Jungtaek Kim, Adam R Kosiorek, Seungjin Choi, and Yee Whye Teh. Set
transformer. In International Conference on Machine Learning, volume 4, 2019.

S. Linnainmaa. The representation of the cumulative rounding error of an algorithm as a taylor
expansion of the local rounding errors. Master’s thesis, University of Helsinki, 1970.

Leland McInnes, John Healy, and James Melville. Umap: Uniform manifold approximation and
projection for dimension reduction. arXiv preprint arXiv:1802.03426, 2018.

A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin, N. Gimelshein,
L. Antiga, et al. Pytorch: An imperative style, high-performance deep learning library. In Ad-
vances in Neural Information Processing Systems, pp. 8024–8035, 2019.

11

http://www.cs.toronto.edu/~kriz/cifar.html

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Joachim Winther Pedersen and Sebastian Risi. Minimal neural network models for permutation
invariant agents. In Proceedings of the Genetic and Evolutionary Computation Conference, pp.
130–138, 2022.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In Proceedings of the International Conference on
Machine Learning (ICML), pp. 8748–8763. PMLR, 2021.

Tal Ridnik, Emanuel Ben-Baruch, Asaf Noy, and Lihi Zelnik-Manor. Imagenet-21k pretraining for
the masses. arXiv preprint arXiv:2104.10972, 2021.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
resolution image synthesis with latent diffusion models. In Proceedings of Computer Vision and
Pattern Recognition (CVPR), pp. 10684–10695, 2022.

D. E. Rumelhart, G. E. Hinton, and R.J. Williams. Learning representations by back-propagating
errors. nature, 323(6088):533–536, 1986.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng
Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, et al. Imagenet large scale visual
recognition challenge. International Journal of Computer Vision, 115(3):211–252, 2015.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov.
Dropout: a simple way to prevent neural networks from overfitting. The journal of machine
learning research, 15(1):1929–1958, 2014.

Emma Strubell, Ananya Ganesh, and Andrew McCallum. Energy and policy considerations for
modern deep learning research. In Proceedings of the AAAI conference on artificial intelligence,
volume 34, pp. 13693–13696, 2020.

Qi Sun, Marc Pickett, Aakash Kumar Nain, and Llion Jones. Transformer layers as painters. arXiv
preprint arXiv:2407.09298, 2024.

Yujin Tang and David Ha. The sensory neuron as a transformer: Permutation-invariant neu-
ral networks for reinforcement learning. Advances in Neural Information Processing Systems
(NeurIPS), 34:22574–22587, 2021.

Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles, and
Hervé Jégou. Training data-efficient image transformers & distillation through attention. In
International conference on machine learning, pp. 10347–10357. PMLR, 2021.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in Neural Infor-
mation Processing Systems (NeurIPS), 2017.

Qiang Wang, Bei Li, Tong Xiao, Jingbo Zhu, Changliang Li, Derek F Wong, and Lidia S Chao.
Learning deep transformer models for machine translation. arXiv preprint arXiv:1906.01787,
2019.

P. Werbos. Applications in advances in nonlinear sensitivity analysis. In Proceedings of the Inter-
national Federation for Information Processing Conference, 1982.

Bichen Wu, Chenfeng Xu, Xiaoliang Dai, Alvin Wan, Peizhao Zhang, Zhicheng Yan, Masayoshi
Tomizuka, Joseph Gonzalez, Kurt Keutzer, and Peter Vajda. Visual transformers: Token-based
image representation and processing for computer vision, 2020.

Jinhua Zhu, Lijun Wu, Yingce Xia, Shufang Xie, Tao Qin, Wengang Zhou, Houqiang Li, and Tie-
Yan Liu. Iot: Instance-wise layer reordering for transformer structures. In Proceedings of the
International Conference on Learning Representations (ICLR), 2020.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

VISION TRANSFORMERS

Dosovitskiy et al. (2020) have successfully adapted the transformer architecture to computer vision
by introducing a preprocessing step that converts images to suitable sequences. They do so by
splitting an image x ∈ RH×W×C into a sequence of N flattened patches xp ∈ RN×(P 2C), and then
pass each patch through a linear embedding layer E ∈ R(P 2C)×D. H ,W and C are here the height,
width and number of channels of the image respectively and P is the patch size. D is the internal
latent dimension of the transformer which remains constant throughout the network and can be set
as a hyperparameter.

After converting the image into a sequence that can be processed by a transformer encoder, inspired
by BERT (Devlin et al., 2018), the authors prepend a class token to xp in which the class infor-
mation of the input image can be aggregated by the transformer. To encode position information
into the embedding, a positional embedding tensor Epos ∈ R(N+1)×D is added. Both the class
token as well as the positional embeddings are learnable embeddings, which are trained jointly with
the rest of the network. The resulting input sequence presented to the transformer network can be
expressed as

z0 = [xclass; x
1
pE; x2

pE; . . . ; xN
p E] +Epos.

This sequence is presented to a standard transformer architecture of stacked attention modules. Each
attention module consists of a multi-head self-attention (MSA) layer and a feedforward layer or mul-
tilayer perceptron (MLP) layer. MSA layers utilize self-attention (SA) (Vaswani et al., 2017), a pow-
erful concept that allows transformers to relate and combine its feature embeddings with each other.
Self-attention extracts features from the input sequence z, which in turn preforms a transformation
of the input vector sequence.

Specifically, self-attention extracts query, key and value sequences q, k and v from the input se-
quence using a linear projection Uqkv ∈ RD×3Dh : [q,k,v] = zUqkv. The q and k sequences are
then used to compute a Softmax-normalized transformation matrix A indicating how to incorpo-
rate information of the whole sequence (i.e. in our case all image patches) for every single vector
of the sequence: A = Softmax(qk⊺

√
Dh

). Scaling the dot-product product by
√
Dh here ensures a

balanced distribution of the Softmax output. After obtaining A, the output of SA is computed as
SA(z) = Av.

A multi-head self-attention (MSA) layer (Vaswani et al., 2017) performs several attention operations
in parallel, concatenates the result and projects it back to the internally used latent dimension of the
transformer:

MSA(z) = [SA1(z); SA2(z); . . . ; SAk(z)]Umsa

In an attention module the multi-head self-attention layer is followed by a multi-layer-perceptron
(MLP) layer transforming the recently combined embeddings to extract new feature representations.
Before presenting z to each layer in the module, the embeddings are normalized using LayerNorm
(Ba et al., 2016). To ensure consistent gradient flow during training, residual connections (He et al.,
2016) are behind both the MSA and the MLP layers (Wang et al., 2019). Furthermore, as a regu-
larization measure, Dropout (Srivastava et al., 2014) is applied after every MSA and MLP layer. In
summary, given the sequence zt−1 from a previous attention module as input, we first compute the
intermediate representation

z′t = MSA(LN(zt−1)) + zt−1, (1)
which is the presented to the MLP layer to compute the final output of the module

zt = MLP(LN(z′t)) + z′t. (2)

Finally, after N attention modules, the first vector of the sequence (corresponding to the class-
token in the preprocessed input) is handed to a linear layer Wout ∈ RD×C to predict the final class
of the image: y = argmax(z0LWout). C denotes the number of classes.

13

	Introduction
	Related work
	Methods
	Randomly permuting layer order during forward pass
	Layer position encoding
	Predicting current layer position

	Experiments
	Sequential vs. arbitrary execution order
	Removing layers during test time
	Analysis of intermediate network representations
	Merging models with arbitrary execution order

	Discussion and Future Work

