Under review as a conference paper at ICLR 2025

L.OSS IN THE CROWD: HIDDEN BREAKTHROUGHS IN
LLANGUAGE MODEL TRAINING

Anonymous authors
Paper under double-blind review

ABSTRACT

The training loss curves of a neural network are typically smooth. Any visible
discontinuities draw attention as discrete conceptual breakthroughs, while the rest
of training is less carefully studied. In this work we hypothesize that similar break-
throughs actually occur frequently throughout training, though their presence is
obscured when monitoring the aggregate train loss. To find these hidden transitions,
we introduce POLCA, a method for decomposing changes in loss along an arbitrary
basis of the low rank training subspace. We use our method to identify clusters
of samples that exhibit similar changes in loss through training, disaggregating
the overall loss into that of smaller groups of conceptually similar datapoints. We
validate our method on synthetic arithmetic and natural language, showing that
POLCA recovers clusters which represent easily interpretable breakthroughs in the
model’s capabilities whose existence would otherwise be lost in the crowd.

1 INTRODUCTION

Recent work on phase transitions during training has characterized the underlying development of
structures and mechanisms. These sudden drops in loss reveal the formation of induction heads
(Olsson et al., 2022b)), syntactic attention structure (Chen et al.||2024al)), hierarchical bias (Murty et al.|
2023)), and many other conceptual breakthroughs (McGrath et al.||2022; |Lovering et al., 2022} [Power
et al., [2022; |Abbe et al.,2021)). However, the loss curve as a whole remains stubbornly smooth. Phase
transitions and momentary conceptual breakthroughs are therefore treated as isolated curiosities; the
vast majority of training time is seen as predictable. This work will show that in fact, the model
undergoes many hidden abrupt breakthroughs that are concealed by aggregating all data and all
dimensions into a single loss curve.

We decompose the loss in two different ways simultaneously to find hidden breakthroughs. First, we
decompose the aggregate loss into loss over individual examples or homogeneous subsets of data.
By clustering the loss curves of individual examples, we identify subsets of data that experience
synchronized changes in loss stability, implying that they rely on the same conceptual breakthroughs.
However, any individual example might benefit from multiple conceptual breakthroughs; in such
cases, the example may undergo multiple changes that are synchronized with different subsets of
training data. In order to disentangle these breakthroughs, we must instead find different mechanisms
or internal changes that affect the loss curve for a given example. This requirement brings us to the
second axis of decomposition.

Because we need to disentangle multiple relevant concepts, our second decomposition transforms
changes in loss into a collection of responses to movement in specific directions during training. By
analyzing these loss curves along specific bases, we identify conceptual breakthroughs that rely on a
particular direction of movement. The latter analysis permits further granularity in clustering data, as
final performance on an individual example may rely on multiple conceptual breakthroughs, each
corresponding to a particular linear direction in training.

In summary:

* By clustering datapoints based on their loss changes during training, we discover that
concepts are learned at specific breakthrough times. Using changes in datapoint loss to
measure stability, we show that smooth aggregated loss curves can conceal momentary
inflections in datapoint loss, a scenario we describe as breakthrough elision.

Under review as a conference paper at ICLR 2025

* We introduce a modified form of Loss Change Allocation (Lan et al.,2020) called Projection
Oriented Loss Change Allocation (POLCA) to measure changes in loss due to parameter
adjustments in arbitrary directions during training. Using POLCA, we extend our cluster
analysis to identify conceptual breakthroughs that occur in a restricted gradient subspace.
We use this breakthrough clustering analysis to identify specific concepts that are learned at
a breakthrough, in both synthetic and natural language settings.

2 BACKGROUND

What can we learn from transitions in stability? Previous work has extensively documented
phase transitions in the stability and sharpness of the loss surface. Jastrzgbski et al.[(2020) point to a
clear phase transition in the gradient variance early in training, and Ma et al.|(2022) show that such
behavior could arise due to the existence of multiple different scales of loss.

Why disaggregate the aggregate loss? Individual samples often exhibit changes in loss that are out
of line with the monotonic average trend (Xia et al., 2023 |Rosenfeld & Risteskil 2024). In full-batch
gradient descent, Cohen et al.[(2022) identified non-monotonicity arising from oscillation about the
maximum Hessian eigenvector. Rosenfeld & Risteski|(2024)) gave evidence that these oscillations
occur across different axes for different samples, and they highlighted human-interpretable semantic
features of the data as a likely cause. We hypothesize that movement in these separate directions
signals the model’s acquisition of distinct capabilities (i.e. “skills” (Arora & Goyall 2023} |Chen et al.|
2024b))). To test this hypothesis, and to better identify the semantic meaning of each of these directions,
we propose to decompose this instability—defined as the magnitude of oscillation—according to a
basis derived from the full loss Hessian at various training checkpoints.

Why decompose the overall train loss? Similar to the quantization model of parameter scaling of
Michaud et al.| (2024), we aim to cluster datapoints according to the skills they rely on. However, our
POLCA decomposition also addresses what [Michaud et al.|(2024) call polygenic scaling effects—
samples which combine multiple skills and therefore exhibit breakthroughs at multiple scales. If we
assume that a specific skill is enabled by movement along a particular skill basis vector, then the loss
change attributed to movement along the skill basis vector will stabilize at the moment the skill is
acquired—for every sample that requires that skill. In this manner, the sample transitions from early
to late dynamics through a basis-specific loss phase transition. In other words, by monitoring changes
in directions corresponding to specific skills, we support the speculation of Nanda et al.|(2023) that
“phase transitions are everywhere.”

Why is linear decomposition sufficient? In practice, a conceptual breakthrough might not occur
in a single direction that persists throughout training. However, there is an abundance of evidence that
the linear bases of the low rank training subspace (Gur-Ari et al., |2018)) are conceptually meaningful.
In the late stages of training, linear interpolation between a pair of checkpoints yields a convex
path in the loss space (Frankle et al.| 2020). Although independently finetuned models with similar
generalization heuristics are also linearly connected, interpolations from a nonlinear connection
between a model pair with unmatched heuristics fail to generalize with either heuristic (Juneja et al.,
2023, ref Appendix D). These observations suggest that linear decomposition should give good
results, and our experiments show that the resulting clusters are interpretable in practice.

3 METHODS

The key to our approach is the separate consideration of how each individual example’s datapoint
loss changes throughout training. We contrast this individualized metric with the evaluation of
in-distribution performance simultaneously across the entire training or validation set, which we
call the aggregated loss. Using the datapoint loss, we can cluster individual examples on the basis
of their loss L(wy), change in loss L(w;) — L(w;_1), or magnitude of change |L(w;) — L(w;—1)|
during training.

Under review as a conference paper at ICLR 2025

3.1 PROJECTION ORIENTED L0OSS CHANGE ALLOCATION (POLCA)

Our next objective is to decompose the loss itself into specific directions in the weight space, motivated
by several considerations: First, while we have moved from an aggregated loss metric to a more
granular datapoint loss metric, we are still only considering breakthroughs that are general enough to
be perceived in loss curves. Second, an individual datapoint may benefit from a variety of conceptual
breakthroughs, but will not be clustered on the breakthroughs individually. Finally, once we have
identified a subset of the data as benefiting from a particular conceptual breakthrough, decomposing
into individual weight directions allows us to locate where in the weights the breakthrough occurs
and to thereby identify the mechanism involved.

Next we break this loss down by directional movement during training, allowing us to discover
breakthroughs that are specific to a given direction. Our procedure, Projection Oriented Loss
Change Allocation (POLCA), comprises two steps: first, the selection of the basis, followed by the
decomposition of the loss according to that basis.

3.1.1 FINDING THE BASIS

Algorithm 1 Finding the POLCA basis

input: Training set X, Model checkpoints {6;}7_,.
B+) € R™Y,
fort=1...T do
I, «I-BB'B)™'BT
H <« ViL(X,0).
Define B+ € R* as the top k eigenvectors of I, H (e.g., via the Lanczos method).
B« [B,B™].
end for
return B

We focus on a restricted subspace when decomposing the loss, selecting the basis of this subspace
from the maximum eigenvectors of the Hessian matrix. We posit this basis to be interpretable because
each basis vector expresses a high gradient covariance and therefore represents a potential decision
boundary.

This basis is constructed as follows. Given 7" intermediate checkpoints throughout training of a
model with weights in R? and a number k of eigenvectors to compute at each checkpoint, we seek
a low rank T'k-dimensional subspace which captures most of the movement during optimization
(Gur-Ari et al., [2018). We construct this basis iteratively, starting with B = (): at each checkpoint
t we project the model’s loss Hessian onto the nullspace of B € R =1k We then identify the
top k eigenvectors of the resulting projection and append these to B, expanding the dimension. We
compute the eigenvectors using Hessian-vector products to avoid explicitly constructing the full
Hessian matrix. The resulting basis is designed to include directions of highest curvature at each
checkpoint so that it will capture synchronized loss behavior throughout training. Note that the very
top eigenvectors are likely to reflect oscillation, rather than conceptually meaningful movement (Song
et al., 2024), but as we continue to add to the low rank basis, we include more directions of stable
movement as well.

3.1.2 DECOMPOSING THE LOSS

To decompose the loss along our basis, we propose a modified version of Loss Change Allocation
(LCA; |[Lan et al.,|2020). LCA is an interpretability tool for analyzing changes in aggregated loss
on dataset X between two checkpoints. The output of LCA is the empirical loss change between
a pair of checkpoints which can be attributed to the motion of each individual weight unit. Given
two consecutive checkpoints with parameters 6; and 6,1, LCA reformulates the change in loss as its
first-order Taylor approximation, a sum of components which each attribute some loss change to the

Under review as a conference paper at ICLR 2025

movement of a single parameter unit §(7):

d
L(X;0041) — L(X:0) ~ D (VoL(X;0,))9 (0}, — 0,”)) (1)
3=0
d .
= Y Lcax; o) @)
j=0

The POLCA decomposition differs from LCA in three key ways. First, we do not restrict each
direction to correspond to a single unit #7), instead permitting an arbitrary basis vector b € B to
replace the axis-aligned basis vectors in LCA; we project onto this basis vector using the dot product
(b, -). Second, we are interested in changes in the loss on each individual example = € X, not the
entire dataset X'. These first two modifications provide the following reformulation of LCA.

L(X;0i41) — L(X;01) = > L(x30,41) — L(236;) A3)
reX
~ YD (b, VoL(w:00)) (b, 041 — 0r))
zeX beB

The third key difference is that we must use a second order approximation because this basis is
constructed explicitly from the Hessian eigenvectors. To understand why this choice of basis requires
a second order approximation, recall that each basis vector b is an eigenvector of the Hessian matrix
Hy (X)) at some timestep ¢', where b is chosen because it has the largest eigenvalue Ay (X, b) over
the whole dataset. If we assume that the top eigenvectors of the aggregate Hessian maintain high
curvature at other points in training and on individual datapoints, then the scaling factor in the second
order Taylor term will be very large even at the datapoint level. Limiting the approximation to only
the first order term gives poor guarantees on error, as the second order term could be expected to
dominate. We find that empirically, the difference between the first and second order values is small
(Appendix [F)), but compute the second-order approximation to achieve a better estimate.

Exact computation of the second order term would be intractable, requiring computation of the top
eigenvalues/vectors for each individual datapoint x. Instead, we can approximate it by substituting
the true eigenvalue, denoted \; (X, b) := b' H;(X)b, with the curvature of the individual loss in the
direction b, i.e. \¢(w,b) = b" H;(x)b. If the aggregate Hessian eigenvector b is close to the span of
the top eigenvectors of the datapoint-specific Hessian for x, this provides a reasonable estimate while
reducing calculation to a single Hessian-vector product per eigenvector. We therefore approximate
the basis projection of the datapoint Hessian h(x, b, 8;) as detailed in Appendix

h(z,b,0;) = w (Bi1 — 0,,0)°
Au(X, D) > (L(#;041) — L(x;6,),b) 5)
~———= (0 — 0,0
5 O =0 X e T (X 0).)
= }Nl(.’lf, b, 925)

Equipped with this second order approximation of the basis projection of the datapoint Hessian, we
account for the high curvature and possible domination of the second order term over the first order
term by modifying Equation] into the second order Taylor expansion using the approximation from
Equation 5]

L(X;0t+1) — L(X,Gt) ~ ZxEX ZbEB <b, VQL((E;Qt)><b,9t+1 _0t> +?L(£L,b, 0[) (6)
— Y.exYen POLCA(x,b;6,) @)

4 ARITHMETIC LANGUAGE MODELING

We validate our method in a synthetic setting and find that breakthrough clustering can, in fact, reveal
concepts of discrete and natural kinds within the data, even when those kinds are not discoverable by
clustering directly on loss curves.

Under review as a conference paper at ICLR 2025

MAXIMUM LOSS CLUSTER POLCA VECTORS WITH >90%

OUTPUT TOKEN "\ pRY HOMOGENEITY CARRY HOMOGENEITY CLUSTERS
0 0.18 [0]
1 1.00 [0-19]
2 031 [0-6, 11, 12]
3 0.35 [4]
4 043 [4. 10, 12, 16]
5 0.64 [4.5.12. 15, 17]
6 0.45 (8. 15]
7 0.53 [0.1,4.6,8]
8 0.49 [2.6.7.8. 13, 14]
9 0.41 (10, 12]

Table 1: Clustering recovers information about the arithmetic carry skill. For each output token type,
we report the maximum fraction of token instances requiring the carry skill in the loss breakthrough
clustering and the set of POLCA vectors with breakthrough clusters containing at least 90% carry
skill instances. Clustering based on loss only results in a homogeneous cluster for token 1 whereas
POLCA recovers homogeneous carry clusters for all output tokens.

Loss Trajectories Loss Cluster Histogram
3.04 Cluster 600
1 —
2,54 I
2 g 500
4 o
20 £ 400
)
815 £
S £ 300
1.0 5
£ 200
0.5 1 £
Z 100
0.0 1
. ; . : 0
0 250 500 750 1000 1250 1500 1750 2000 0 1
Iteration Cluster
(a) Token <1> cluster mean loss trajectories. (b) Token <1> cluster labels and their counts.
Loss Trajectories Loss Cluster Histogram
331 Cluster
N 200
3.0 -
— 2 2
]
2,514 E
=]
g 150
2.0 n
@ £
S1s £ 100
‘s
1.0 @
o
0.5 4 E 50
0.0
. : ; , : 0
0 250 500 750 1000 1250 1500 1750 2000 0 1 2
lteration Cluster
(c) Token <3> cluster mean loss trajectories. (d) Token <3> cluster labels and their counts.

Figure 1: Clusters on the arithmetic task associated with output tokens <1 > and <3> .
Clusters are labeled with a set of digit places if over 90% of the token instances in the cluster belong
to the set of digit places. Clusters are labeled with carry or no carry if over 90% of the token instances
in the cluster require an arithmetic carry to the target token.

4.1 THE DATA

Our synthetic experiments use data from the arithmetic addition setting in [Chen et al] (2024b),
where the model is trained to compute the sum of two 3-digit numbers. This setting has 4 skills
corresponding to each of the digits in the output sum. Note that the digit in the 1000s place is always

Under review as a conference paper at ICLR 2025

g

Loss Trajectories POLCA Vector 0 Trajectories POLCA Vector 0 Cluster Histogram
Cluster 175
3.0 1
— 2 0.02 150
25 g
o © 125
20 5 £
2 o000 2 100
o 8
g1s 4 5
9 5 75
10 2 -0.02 2
£ g
2
€
5
2

N
&

—-0.04 1
0.0 5

"
i MMW%WMN 'W“Wh " WUW .

o

0 250 500 750 1000 1250 1500 1750 2000 0 250 500 750 1000 1250 1500 1750 2000 0 1 2
Iteration Iteration Cluster

(a) POLCA vector 0 token <2> (b) POLCA vector O token <2> (c) POLCA vector O token <2>
cluster mean loss trajectories. cluster mean trajectories. cluster label bar plot.

Loss Trajectories POLCA Vector 6 Trajectories POLCA Vector 6 Cluster Histogram

w
8
8

Cluster 0.03 1 Cluster
3.0 1 1

- 002{
25 2 2
0.01
20
P 0.00
£1s
I
1.0 '\W\‘ oo
05 ~0.02
~0.03

0 250 500 750 1000 1250 1500 1750 2000 0 250 500 750 1000 1250 1500 1750 2000 h 0
Iteration Iteration Cluster

N
I+
s

N
8
8

POLCA Vector 6

Number of Points in Cluster
e e
5 &
s 3

@
g

(d) POLCA vector 6 token <2> (e) POLCA vector 6 token <2> (f) POLCA vector 6 token <2>

cluster mean loss trajectories. cluster mean trajectories. cluster label bar plot.
Loss Trajectories POLCA Vector 12 Trajectories POLCA Vector 12 Cluster Histogram
120
10 C\uslelr 0.06 C\uslelr
@ 100
25 | * § 00— § %
* N 0021 s}
2.0 = £
" g o0]
g 2 002 €
g 5
1.0 Q2 —0.04]
05 ~0.06 5
0.0 B -0.08
0 250 500 750 1000 1250 1500 1750 2000 o 250 500 750 1000 1250 1500 1750 2000

1
Iteration Iteration Cluster

(g) POLCA vector 12 token <2> (h) POLCA vector 12 token <2> (i) POLCA vector 12 token <2>
cluster mean loss trajectories. cluster mean trajectories. cluster label bar plot.

Figure 2: Arithmetic language modeling breakthrough clustering case study. For output token <2>,
we report average cluster loss curves, POLCA trajectories, and cluster label bar plots for breakthrough
clustering on POLCA vector 0 (Za}2c), vector 6 (Zd{21), and vector 12 (2g}iZi). Bar plots are labeled
with a given set of digits if over 90% of the token instances in the cluster belong to the set and are
labeled with carry (or no carry) if over 90% of the token instances in the cluster belong to the carry
(or no carry) category. The breakthrough clustering on POLCA trajectories (the vector of POLCA
values for a token instances throughout training) recovers different versions of the carrying concept
for different basis vectors.

a <0> or <1> token since the two input summants are 3 digits long. As shown in Appendix Figure
(3] and [Chen et al| (2024b)), the skills corresponding to the digits have different loss curves, so the
digit skill categories may be recoverable by clustering the loss curves. We also consider an additional
skill: arithmetic carries to the output token. The digit is a simple skill that can be clustered using the
overall loss, whereas the carries represent skills that are not necessarily clear from the overall loss
(see Appendix Figure[d), potentially requiring the POLCA decomposition.

Experimental setup We train a 2-layer transformer model with embedding dimension 512, 4
attention heads per layer, and an MLP dimension of 2048. We choose this model size to align with
prior work [Olsson et al.| (2022a)) and to maximize the granularity at which we can feasibly compute
the POLCA values. For a validation set with 1250 data points and 5000 output tokens, we compute
the loss and POLCA values for each token at intervals of 5 iterations throughout training. We choose
the training steps between each POLCA computation to achieve as fine-grained analysis as possible
without exploding the compute time. We compute the POLCA basis using the eigenvectors of the
Hessian estimated using a 1250 data point sample of the training set as detailed in Algorithm|[I] We

Under review as a conference paper at ICLR 2025

compute one new basis vector every 100 iterations for a total of 30 basis vectors since we did not
observe significantly different results from adding more basis vectors in our preliminary experiments.

We then analyze breakthrough clustering on the loss and POLCA trajectories in [d.2]and 4.3] For
each possible output token [<0>, <1>, <2>, <3>, <4>, <5>, <6>, <7>, <8>, <9>], we cluster the
loss trajectories for all of the instances of that token in the validation set. Here, a trajectory is the
vector of loss (or POLCA) values computed for a specific token instance throughout training. By
clustering these trajectories, we can discover skills learned for each output token. We use Hierarchical
Density-Based Spatial Clustering of Applications with Noise (HDBSCAN) Campello et al.|(2013)
as the clustering algorithm since we are interested in discovering clusters with various densities (i.e.
with curves that are close together or farther apart) and since it can identify outliers. Outlier selection
is very important in this setting, as we seek to identify which data points are not relevant to a skill
being learned in a specific direction. We set the minimum cluster size to be at least 20% of the total
number of trajectories to ensure that the clusters are significant. This results in 2-3 clusters for each
output token. The HDBSCAN outliers are labeled and shown as cluster O in the bar plots but excluded
from the remaining analysis in[4.2]and[4.3]

4.2 RECOVERING CONCEPTS FROM THE EXACT LOSS

In our clustering experiments on arithmetic addition skills, we first consider whether directional
decomposition is necessary for identifying individual concepts. To this end, we cluster solely on
the exact per-token loss curves for successive timesteps, rather than estimating the loss decomposed
along a low rank basis. In Figure[I] which shows a sample of the loss cluster labels, we do find that
it is possible to recover, to a substantial degree, the digit skill by clustering only on the loss, likely
because the digits have very different loss trajectories.

As shown in Table|[T] (and Appendix Figure[3)), clustering on the loss alone does not recover homo-
geneous clusters with respect to the carrying skill except for the output token <1>. For <1>, the
carrying skill is likely recovered because of the digit skill, as the carry cluster for <1> consists of
token instances in the 1000s place (Figure[I). For the 1000s place, the output can only be <1> if
there is a carry to it due to the construction of the three digit arithmetic task. We will demonstrate a
clear improvement in the recovery of the carry skill and the interpretability of clusters after POLCA
decomposition.

4.3 RECOVERING CONCEPTS WITH POLCA

Due to the shortcomings of clustering solely on the loss, we instead cluster on the loss changes
decomposed by POLCA, separately considering each basis vector. The POLCA value for a given
token and basis vector represents the loss change attributed to movement along that vector. We find
that for all possible output tokens, there is at least one POLCA vector with homogeneous clusters
corresponding to carrying skills (Table[I]). Thus, POLCA is able to recover complex skills such as
carries that are challenging to cluster using the exact loss changes alone. We conclude that arithmetic
carries rely on breakthroughs along specific dimensions during training, but these breakthroughs
may be elided in the exact loss curve computed across all dimensions.

Figure 2] shows an example of the POLCA breakthrough clusters for output token <2> (see Appendix
[E] for clusters for other tokens). Note that the construction of the POLCA basis (Algorithm [T assigns
larger indices to the eigenvectors added from later points in training, which are also likely to have
smaller eigenvalues across training. These later basis vectors tend to cluster on compositions of the
digit and carry skills rather than solely the carry skill. For example, they separate the digit that is
being carried to (Figure [2f) or split the no carry tokens into multiple clusters (Figure[2i). This finding
indicates that these lower eigenvalue directions are important for more fine-grained versions of skills
than the higher eigenvalue directions earlier in training. The trend of fine-grained skills corresponding
to lower eigenvalue directions is especially clear from POLCA vector 12, where the LCA value is
extremely small for all of the clusters in the beginning of training (Figure 2h). In addition, for all of
the POLCA basis vectors in Figure[2| the average magnitude of the LCA value for the carry cluster
increases sharply at some point in training. As the POLCA vector number increases, this sharp
increase occurs at later iterations. This indicates that there are phase transitions at different iterations
for the carry skill along different directions, which are obscured when only looking at the loss.

Under review as a conference paper at ICLR 2025

Thus, the clusters for different POLCA vectors recover skills that are difficult to find by clustering
only on the loss and can be used to understand which directions are important for learning a specific
skill and when these directions emerge as top eigenvectors in the Hessian. As a result, we have shown
that breakthrough clustering on the POLCA vectors can be used to find which directions complex
skills are learned along and to better understand how they are learned.

5 NATURAL LANGUAGE MODELING

We apply our approach to a real-world causal language modeling task and show that POLCA
breakthrough clustering recovers interpretable conceptual skills in the natural language setting.

5.1 EXPERIMENTAL SETUP

For the language modeling setting, we use the Wikipedia dataset (Wikimedia Foundation, [2022]),
which consists of the clean English language Wikipedia dump from March 2022. We use the same
setup that we validate in the arithmetic case. We train a 2-layer transformer model with embedding
dimension 512, 4 attention heads, and an MLP dimension of 2048. We compute the loss and POLCA
values for each token in a validation set with 6350 output tokens at intervals of 100 iterations
throughout training. We compute the POLCA basis using the eigenvectors of the Hessian estimated
using a 1000 data point sample of the training set as detailed in Algorithm[[|with k& = 1. We compute
a new basis vector every 200 iterations.

We then analyze breakthrough clustering on the loss and POLCA trajectories in Similarly to the
arithmetic setting, for each output token type that we are interested in analyzing and each POLCA
vector, we perform clustering on all of the POLCA trajectories corresponding to instances of that
token. We use HDBSCAN clustering to cluster the instances of that token and ignore trajectories
marked as outliers by HDBSCAN. We set the minimum cluster size to be at least 20% of the total
number of trajectories so that the clusters are of significant size.

5.2 RECOVERING NATURAL LANGUAGE CONCEPTS WITH POLCA

We apply the clustering approach validated in[4.3]to the natural language setting and use POLCA
to analyze the learned skills related to specific output tokens. As there are too many unique output
tokens to analyze individually, we focus on a case study of the frequently occurring output tokens
< and> and <, >. We find relevant skills by manually inspecting the context (or 20 preceding
tokens) of instances of these two tokens with high magnitude LCA values. We label each instance of
these tokens with the skills in their context. We then perform breakthrough clustering for each token
and POLCA vector combination. We label each cluster with a given skill if over 85% of the top 10%
of trajectories closest to the centroid of the cluster represent instances of the output token that involve
the skill.

We report a selection of clusters corresponding to specific skills in Table 2] Using breakthrough
clustering on POLCA vectors, we find subsets of instances of each output token that correspond to
skills such as predicting the token < and> in a list (POLCA vector O cluster 2), predicting the token
<, > after a number (POLCA vector O cluster 2), , and predicting the token < and> after a comma
(POLCA vector 7 cluster 1). In other words, it appears that concepts related to lists are learned along
specific directions at particular times, allowing them to be clustered separately from predictions of
the same token under different conditions. We note that in contrast to the POLCA analysis, out of
the two tokens analyzed, clustering on the loss trajectories only results in one homogeneous cluster
corresponding to the list skill for the < and> token.

The skill labels show which subsets of POLCA vectors the given skill is learned along for each output
token. We note that many of the skills (such as predicting the token after a capitalized word and
after a newline) occur in clusters for the same POLCA vector for both output tokens, indicating that
similar skills are learned for different tokens along similar sets of basis vectors. As a result, we have
shown that POLCA breakthrough clustering can be used to better understand how different skills are
learned during training in the natural language setting.

Under review as a conference paper at ICLR 2025

Table 2: Natural language clusters recovered using POLCA. Using POLCA, we find multiple contexts
for each target token that decompose onto different basis vectors. We report the top 3 contexts (20
tokens before the output token instance) closest to each cluster centroid. The reported loss cluster is
the only homogeneous cluster for any of the tokens analyzed.

TOKEN VECTOR CLUSTER SKILL CONTEXTS CLOSEST TO CLUSTER CENTROID

’

metric system, having the unit symbol kg. It is a
widely used measure in science, engineering and’,
figure in GermanBroke may refer to:\n\nArts,

< and> Loss 1 List entertainment, and media\n\nFilm and’,
', 1848March 28, 1905), courtesy name Gongdu (), was a
Chinese official, scholar, and’
. It had six other UK offices in Croydon, York,
Birmingham, Crawley, Swanley and’

< and> 0 2 List ‘.che unit symbol.kg. It is a widely usgd measm,:e in
science, engineering and commerce worldwide, and
’ School in Jonesville, South Carolina, where he was
all-conference in football, basketball, and’
’Chamber of Deputies in 1873, and President of the Senate
in 1892. He became Vice President in 1894,

<> 0 2 Token after ’ at "De la Brooke Manor" in St. Mary\’s County, Maryland
4 number on March 11, 1785,'

’ president when Luis Cordero left office.\n\nHe was
Minister of Finance in 1873, 1883,’

’ Telugu and two films in Hindi.\n\nSince 2001, he has won
6 Filmfare Awards South and’

! gecko, a lizard in the family Gekkonidae. The species
is endemic to India and’

’ primarily located on the western half of the East
Frisian peninsula, to the east of West Frisia and’

Token after
< and> 4 1 capitalized
word

’ The anchor stores are JCPenney, Shoe Carnival, Barnes &
Noble, Planet Fitness,’

Token after ’running newspaper strip Funky Winkerbean.\n\nCareer\nBorn

<, > 4 2 caplctlahzed in Akron, Ohio,’
wor ’ Catholic Church) in Kerala, India.\n\nBorn in
Thanneermukkom, Kerala,’
71895 and 1 September 1895.\n\nSalazar was Presidents of
the Chamber of Deputies in 1873, and’
< and> 7 1 Token after ' As well as the granite-built house, the complex includes

comma numerous outbuildings and greenhouses, and’
’ later in the same place. His important contributions to
China made him a recognised figure of his time, and’

’Telugu and two films in Hindi.\n\nSince 2001, he has won
Token after 6 Filmfare Awards South and’
capitalized ' as president of the Poetry Society (UK) and Poetry

< and> 7 2 word and Editor at The New Yorker.\n\nLife and’
newline ’\n Thomas WalterTrevor Ricardo Nelson, MBE (born 7
January 1964) is a British DJ and’
’, and a park.\n\nKultaranta’s original owner was the
businessman AlfredIn chemistry,’
<> 7 2 Token after ’ordero left office.\n\nHe was Minister of Finance in 1873,

newline 1883, 1884-1887,"
’ from 2006 until 2008.\n\nEarly life\nMcKillop was born
in Dreghorn,’

6 CONCLUSIONS AND FUTURE WORK

In this work, we have introduced POLCA, a method to compute changes in loss due to parameter
changes in arbitrary basis vector directions during training. POLCA decomposes the loss on two levels:
individual datapoints and specific directions in the weight space. We show that this decomposition
can be used to find breakthroughs in training that are hidden by the aggregate loss. To do so, we
perform clustering on POLCA trajectories and demonstrate that this recovers complex skills that are
obscured when analyzing the loss alone. We use POLCA to identify and analyze skills learned at
breakthroughs during training in synthetic and natural language data.

Future work Our method of constructing a basis is inspired by the existing literature on training
in restricted subspaces. However, a limitation of this approach is that the top eigenvectors of the
Hessian, like the axis-aligned basis, are likely to represent many concepts in superposition. Therefore,
we expect that there are gradient directions that represent interpretable concepts more cleanly but

Under review as a conference paper at ICLR 2025

may exhibit dependencies due to superposition. In addition, the top Hessian eigenvectors result in
a basis with changes in oscillation magnitude rather than movement in POLCA value, so we may
obtain more useful clusters by finding directions that have less oscillation. As a result, future work
exploring different bases for POLCA computation may yield improved results. Alternatively, as many
of the skills (such as carries in the synthetic setting and predicting the token after a capitalized word
in the natural language setting) are recovered when clustering on the POLCA trajectories for more
than one basis vector, another useful approach could be to combine these polysemantic orthogonal
basis vectors to cluster on their shared concepts.

A limitation of the experiments in this work is that they are computed with small models. We use
small models so that we can have very fine-grained checkpoints for POLCA computation. One
extension of this work is to explore extending it to larger models, which may require using a basis
that is less computationally expensive to compute than Hessian eigenvectors.

A separate direction of future work involves using insights from POLCA to improve other methods.
For example, as POLCA elucidates how different skills are learned in training, insights from POLCA
analysis could be used to improve optimization. POLCA analysis could also be combined with model
editing methods to better remove abilities learned by the model.

REFERENCES

Emmanuel Abbe, Enric Boix-Adsera, Matthew Brennan, Guy Bresler, and Dheeraj Nagaraj. The
staircase property: How hierarchical structure can guide deep learning, 2021.

Sanjeev Arora and Anirudh Goyal. A theory for emergence of complex skills in language models.
arXiv preprint arXiv:2307.15936, 2023.

Ricardo J. G. B. Campello, Davoud Moulavi, and Joerg Sander. Density-based clustering based on
hierarchical density estimates. In Jian Pei, Vincent S. Tseng, Longbing Cao, Hiroshi Motoda, and
Guandong Xu (eds.), Advances in Knowledge Discovery and Data Mining, pp. 160-172, Berlin,
Heidelberg, 2013. Springer Berlin Heidelberg. ISBN 978-3-642-37456-2.

Angelica Chen, Ravid Shwartz-Ziv, Kyunghyun Cho, Matthew L. Leavitt, and Naomi Saphra. Sudden
drops in the loss: Syntax acquisition, phase transitions, and simplicity bias in mlms, 2024a.

Mayee Chen, Nicholas Roberts, Kush Bhatia, Jue Wang, Ce Zhang, Frederic Sala, and Christopher Ré.
Skill-it! a data-driven skills framework for understanding and training language models. Advances
in Neural Information Processing Systems, 36, 2024b.

Jeremy M. Cohen, Simran Kaur, Yuanzhi Li, J. Zico Kolter, and Ameet Talwalkar. Gradient descent
on neural networks typically occurs at the edge of stability, 2022.

Jonathan Frankle, Gintare Karolina Dziugaite, Daniel Roy, and Michael Carbin. Linear mode
connectivity and the lottery ticket hypothesis. In International Conference on Machine Learning,
pp. 3259-3269. PMLR, 2020.

Guy Gur-Ari, Daniel A. Roberts, and Ethan Dyer. Gradient descent happens in a tiny subspace, 2018.

Stanistaw Jastrzebski, Maciej Szymczak, Stanislav Fort, Devansh Arpit, Jacek Tabor, Kyunghyun
Cho*, and Krzysztof Geras*. The break-even point on optimization trajectories of deep neural
networks. In International Conference on Learning Representations, 2020.

Jeevesh Juneja, Rachit Bansal, Kyunghyun Cho, Jodo Sedoc, and Naomi Saphra. Linear connec-
tivity reveals generalization strategies. In The Eleventh International Conference on Learning
Representations, 2023. URL https://openreview.net/forum?id=hY6MOJHI13uL.

Janice Lan, Rosanne Liu, Hattie Zhou, and Jason Yosinski. Lca: Loss change allocation for neural
network training, 2020.

Charles Lovering, Jessica Forde, George Konidaris, Ellie Pavlick, and Michael Littman. Evaluation
beyond task performance: Analyzing concepts in alphazero in hex. Advances in Neural Information
Processing Systems, 35:25992-26006, 2022.

10

https://openreview.net/forum?id=hY6M0JHl3uL

Under review as a conference paper at ICLR 2025

Chao Ma, Daniel Kunin, Lei Wu, and Lexing Ying. Beyond the quadratic approximation: the
multiscale structure of neural network loss landscapes. arXiv preprint arXiv:2204.11326, 2022.

Thomas McGrath, Andrei Kapishnikov, Nenad TomaSev, Adam Pearce, Martin Wattenberg, Demis
Hassabis, Been Kim, Ulrich Paquet, and Vladimir Kramnik. Acquisition of chess knowledge in
alphazero. Proceedings of the National Academy of Sciences, 119(47):€2206625119, 2022.

Eric J. Michaud, Ziming Liu, Uzay Girit, and Max Tegmark. The quantization model of neural
scaling, 2024.

Shikhar Murty, Pratyusha Sharma, Jacob Andreas, and Christopher D Manning. Grokking of
hierarchical structure in vanilla transformers. arXiv preprint arXiv:2305.18741, 2023.

Neel Nanda, Lawrence Chan, Tom Lieberum, Jess Smith, and Jacob Steinhardt. Progress measures
for grokking via mechanistic interpretability, 2023. URL https://arxiv.org/abs/2301,
05217.

Catherine Olsson, Nelson Elhage, Neel Nanda, Nicholas Joseph, Nova DasSarma, Tom Henighan,
Ben Mann, Amanda Askell, Yuntao Bai, Anna Chen, Tom Conerly, Dawn Drain, Deep Ganguli,
Zac Hatfield-Dodds, Danny Hernandez, Scott Johnston, Andy Jones, Jackson Kernion, Liane
Lovitt, Kamal Ndousse, Dario Amodei, Tom Brown, Jack Clark, Jared Kaplan, Sam McCandlish,
and Chris Olah. In-context learning and induction heads, 2022a. URL https://arxiv.org/
abs/2209.11895.

Catherine Olsson, Nelson Elhage, Neel Nanda, Nicholas Joseph, Nova DasSarma, Tom Henighan,
Ben Mann, Amanda Askell, Yuntao Bai, Anna Chen, et al. In-context learning and induction heads.
arXiv preprint arXiv:2209.11895, 2022b.

Alethea Power, Yuri Burda, Harri Edwards, Igor Babuschkin, and Vedant Misra. Grokking: Gen-
eralization beyond overfitting on small algorithmic datasets. arXiv preprint arXiv:2201.02177,
2022.

Elan Rosenfeld and Andrej Risteski. Outliers with opposing signals have an outsized effect on neural
network optimization. In The Twelfth International Conference on Learning Representations,
2024.

Minhak Song, Kwangjun Ahn, and Chulhee Yun. Does SGD really happen in tiny subspaces? In
High-dimensional Learning Dynamics 2024: The Emergence of Structure and Reasoning, 2024.
URLhttps://openreview.net/forum?id=1ITzMuv9sLl

Wikimedia Foundation. Wikimedia downloads, 2022. URL https://dumps.wikimedia.org.

Mengzhou Xia, Mikel Artetxe, Chunting Zhou, Xi Victoria Lin, Ramakanth Pasunuru, Danqi Chen,
Luke Zettlemoyer, and Ves Stoyanov. Training trajectories of language models across scales, 2023.

11

https://arxiv.org/abs/2301.05217
https://arxiv.org/abs/2301.05217
https://arxiv.org/abs/2209.11895
https://arxiv.org/abs/2209.11895
https://openreview.net/forum?id=iITzMuv9sL
https://dumps.wikimedia.org

Under review as a conference paper at ICLR 2025

A DERIVATION OF APPROXIMATE SECOND ORDER TERM

We can approximate the difference between the gradient at time ¢ and ¢ + 1 as

gr+1(X) —ge(X) =~ Hy(X)(Or41 — 0r) (3)
(ge41(X) — ge(X),0) &~ b H(X)b(b,0ps1 — 0r) ©)
= M(X)(b, 041 — 04) (10

If we assume b to also be an eigenvector of the datapoint Hessians #}(x), we can apply a similar
argument for the gradient on the datapoint level.

(gri1(x) — gi(x),b) ~ b Hj(x)b(b, 01 — Or) (11)

Note that the assumption above (of matching Hessians between data points and their aggregate) is
unlikely to be correct. If this assumption is violated, then the scaling factor in the following second
order Taylor term will be minuscule on the datapoint level. In practice, we have found that the second
order term has limited impact at the datapoint level (see Appendix [F)), but we nonetheless use it to
improve our approximation. Then we may approximate it as:

(G141(7) — gy (), b) ~ b Hi(x)b(b, 0111 — 0y) (12)
(941(X) — 9:(X),) At (X, 0)(b, 041 — Or)
(9t+1(x) — g4(x),b) ~ (), b) (b, Or1 — 0r) (13)
(g14+1(X) — g:(X), b) At (X, b)(b, 01 — 04)
<g£+1($) - gg(x), b> ~ / T

M gy @b (9

B HYPERPARAMETERS

In the tables below, we provide the hyperparameters used during training of the models in the synthetic
arithmetic and language modeling settings.

Table 3: Hyperparameters for training the synthetic arithmetic model

HYPERPARAMETER VALUE
Number of Parameters 6323210
Iterations 3000
Epochs 1
Batch size 64
Number of training tokens 768000
Optimizer AdamW
Learning rate le-5
Weight decay 0.1
Betas (0.9,0.95)
LR Schedule min(¢/100, 1.0)

12

Under review as a conference paper at ICLR 2025

Table 4: Hyperparameters for training the natural language model

HYPERPARAMETER VALUE
Number of Parameters 37122353
Iterations 2500
Epochs 1
Batch size 64
Number of training tokens 20480000
Optimizer AdamW
Learning rate le-5
Weight decay 0.1
Betas (0.9,0.95)
LR Schedule min(¢/100, 1.0)

C UNDECOMPOSED TRAJECTORIES FOR THE DIGIT AND CARRY SKILLS

Figure 4:

Loss Trajectories

3.0 4

2.5

2.0 4

1.0+

0.5

0.0 q

Digit
—— 1000s place
100s place
10s place
—— 1s place

Figure 3: Mean and standard deviation of the loss trajectories for each digit.

3.5

250 500 750 1000 1250 1500 1750 2000

Iteration

Loss Trajectories

3.0

2.5

2.0

Loss

1.59

1.04

0.5

Cluster

—— No carry 1000s place

Carry 1000s place

No carry 100s place
—— Carry 100s place

No carry 10s place
—— Carry 10s place
No carry 1s place

0.0

Mean and standard deviation of the loss trajectories for each digit and carry combination.

0 250 500 750 1000 1250

1500 1750 2000
Iteration

13

Under review as a conference paper at ICLR 2025

D COMPARISON OF BREAKTHROUGH CLUSTERING FOR THE CARRIES SKILL

Loss Trajectories Loss Trajectories for Carry POLCA Clusters Loss Trajectories

3.0 3.0

25 25

2.0 20
a \ a
9159 | 915

104 | 1.0

\
05 \ 05
™
0.0 D ———— 0.0
0 250 500 750 1000 1250 1500 1750 2000 0 250 500 750 1000 1250 1500 1750 2000 0 250 500 750 1000 1250 1500 1750 2000

Iteration Iteration Iteration

(a) Homogeneous carry loss clusters (b) Homogeneous carry POLCA (c) Ground truth mean loss curves
colored by output token. clusters colored by output token. clustered by carry and output token.

Figure 5: Average cluster loss curves for different breakthrough clustering methods on the skill-
it addition dataset, and for the ground truth subsets that correspond to each cluster’s dominant
set of skills. Using POLCA and visualizing the clusters with over 90% carries, we find clusters
corresponding to the carrying skill for each output token, which are challenging to recover using only
the loss.

14

Under review as a conference paper at ICLR 2025

E ADDITIONAL ARITHMETIC CLUSTER EXAMPLES

Loss Trajectories

3.0 Cluster
1
25 — 2

1.0
05 ,

0 250 500 750 1000 1250 1500 1750 2000
Iteration

(a) POLCA vector 4 token <4>
cluster mean loss trajectories.

Loss Trajectories

Cluster

0 250 500 750 1000 1250 1500 1750 2000
Iteration

(d) POLCA vector 10 token <4>
cluster mean loss trajectories.

Loss Trajectories

3.0 Cluster
1
25 — 2

1.0
0.5

0 250 500 750 1000 1250 1500 1750 2000
Iteration

(g) POLCA vector 16 token <4>
cluster mean loss trajectories.

POLCA Vector 4 Trajectories

Cluster
0.10 1
— 2

0.00 M”‘""""""’W

POLCA Vector 4

0 250 500 750 1000 1250 1500 1750 2000
Iteration

(b) POLCA vector 4 token <4>
cluster mean trajectories.

POLCA Vector 10 Trajectories
0.0751 Cluster

0.050 :
—2

0.025{ — 3
0.000
-0.025 |

~0.050

POLCA Vector 10

-0.075

-0.100

-0.125

0 500 1000 1500 2000
Iteration

(e) POLCA vector 10 token <4>
cluster mean trajectories.

POLCA Vector 16 Trajectories

00751 Cluster

1
— 2

0.050

0.025

0.000
—0.025

~0.050

POLCA Vector 16

-0.075

-0.100

[500 1000 1500 2000
Iteration

(h) POLCA vector 16 token <4>
cluster mean trajectories.

POLCA Vector 4 Cluster Histogram

200

-

50

=

00

Number of Points in Cluster

1
Cluster

(c) POLCA vector 4 token <4>
cluster label bar plot.

POLCA Vector 10 Cluster Histogram

-
5
3

-
5
8

3

Number of Points in Cluster
5 3

20

Cluster

(f) POLCA vector 10 token <4>
cluster label bar plot.

POLCA Vector 16 Cluster Histogram

Number of Points in Cluster
e
S
8

Cluster

(i) POLCA vector 16 token <4>
cluster label bar plot.

Figure 6: Arithmetic language modeling breakthrough clustering case study. For output token <4>,
we report average cluster loss curves, POLCA trajectories, and cluster label bar plots for breakthrough
clustering on POLCA vector 4, vector 10, and vector 16. Bar plots are labeled with a given set of
digits if over 90% of the token instances in the cluster belong to the set and are labeled with carry (or
no carry) if over 90% of the token instances in the cluster belong to the carry (or no carry) category.
The breakthrough clustering recovers different versions of the carrying concept for different basis

vectors.

15

Under review as a conference paper at ICLR 2025

Loss Trajectories

Cluster

1
— 2
— 3

0 250 500 750 1000 1250 1500 1750 2000
Iteration

(a) POLCA vector 0 token <7>
cluster mean loss trajectories.

Loss Trajectories

Cluster
1
— 2

0 250 500 750 1000 1250 1500 1750 2000
Iteration

(d) POLCA vector 4 token <7>
cluster mean loss trajectories.

Loss Trajectories

Cluster

1
— 2
— 3

0 250 500 750 1000 1250 1500 1750 2000
Iteration

(g) POLCA vector 8 token <7>
cluster mean loss trajectories.

POLCA Vector 0 Trajectories

0.075

0.050

0.025

0.000

-0.025

POLCA Vector 0

—0.0501 cluster
1

-0.075
— 2
-0.100{ — 3

0 500 1000 1500 2000
Iteration

(b) POLCA vector 0 token <7>
cluster mean trajectories.

POLCA Vector 4 Trajectories

0.00

-0.02

POLCA Vector 4

Cluster
1
— 2

-0.04

~0.06
0 250 500 750 1000 1250 1500 1750 2000
Iteration

(e) POLCA vector 4 token <7>

cluster mean trajectories.

POLCA Vector 8 Trajectories

Cluster

0.10 1
— 2

0051 — 3
| 1
0.00
-0.05

-0.10

POLCA Vector 8

-0.15

0 250 500 750 1000 1250 1500 1750 2000
Iteration

(h) POLCA vector 8 token <7>

cluster mean trajectories.

POLCA Vector 0 Cluster Histogram

Number of Points in Cluster

Cluster

(c) POLCA vector O token <7>
cluster label bar plot.

POLCA Vector 4 Cluster Histogram

Number of Points in Cluster

0 1 2
Cluster

(f) POLCA vector 4 token <7>
cluster label bar plot.

POLCA Vector 8 Cluster Histogram

-
I
8

Number of Points in Cluster
N 5 8
8 8 8 8 8 8

o

1 2

Cluster

(i) POLCA vector 8 token <7>
cluster label bar plot.

Figure 7: Arithmetic language modeling breakthrough clustering case study. For output token <7>,
we report average cluster loss curves, POLCA trajectories, and cluster label bar plots for breakthrough
clustering on POLCA vector 0, vector 4, and vector 8. Bar plots are labeled with a given set of digits
if over 90% of the token instances in the cluster belong to the set and are labeled with carry (or no
carry) if over 90% of the token instances in the cluster belong to the carry (or no carry) category. The
breakthrough clustering recovers different versions of the carrying concept for different basis vectors.

16

Under review as a conference paper at ICLR 2025

Loss Trajectories

Cluster

3.0 1
— 2
25 i — 3

0 250 500 750 1000 1250 1500 1750 2000
Iteration

(a) POLCA vector 2 token <8>
cluster mean loss trajectories.

Loss Trajectories

Cluster

1
— 2
— 3

0 250 500 750 1000 1250 1500 1750 2000
Iteration

(d) POLCA vector 8 token <8>
cluster mean loss trajectories.

Loss Trajectories

Cluster
3.0 1
— 2
25 — 3

0 250 500 750 1000 1250 1500 1750 2000
Iteration

(g) POLCA vector 14 token <8>
cluster mean loss trajectories.

POLCA Vector 2 Trajectories

Cluster

1
— 2
— 3

POLCA Vector 2

0 250 500 750 1000 1250 1500 1750 2000
Iteration

(b) POLCA vector 2 token <8>
cluster mean trajectories.

POLCA Vector 8 Trajectories

0.15{ Cluster
1
0.10 2

0.05 3)
-0.05

0 250 500 750 1000 1250 1500 1750 2000
Iteration

POLCA Vector 8

(e) POLCA vector 8 token <8>
cluster mean trajectories.

POLCA Vector 14 Trajectories

Cluster
0.050 1

0025 2
—3
0.000
-0.025

~0.050

POLCA Vector 14

-0.075

-0.100

-0.125

0 500 1000 1500 2000
Iteration

(h) POLCA vector 14 token <8>

cluster mean trajectories.

POLCA Vector 2 Cluster Histogram

Number of Points in Cluster

Cluster

(c) POLCA vector 2 token <8>
cluster label bar plot.

POLCA Vector 8 Cluster Histogram

Number of Points in Cluster

2

Cluster

(f) POLCA vector 8 token <8>
cluster label bar plot.

POLCA Vector 14 Cluster Histogram

o
=
3

Number of Points in Cluster
N 5 8
8 &8 8 8 8 8

o

1 2
Cluster

(i) POLCA vector 14 token <8>
cluster label bar plot.

Figure 8: Arithmetic language modeling breakthrough clustering case study. For output token <8>,
we report average cluster loss curves, POLCA trajectories, and cluster label bar plots for breakthrough
clustering on POLCA vector 2, vector 8, and vector 14. Bar plots are labeled with a given set of digits
if over 90% of the token instances in the cluster belong to the set and are labeled with carry (or no
carry) if over 90% of the token instances in the cluster belong to the carry (or no carry) category. The
breakthrough clustering recovers different versions of the carrying concept for different basis vectors.

17

Under review as a conference paper at ICLR 2025

F SECOND VERSUS FIRST ORDER POLCA APPROXIMATION

Table 5: Empirical comparison of second and first order POLCA values. For the arithmetic setting,
we compute the average cosine similarity and L2 norm of the difference between the second (Eq[5)
and first (Eq[4) order POLCA trajectory vectors. The first and second order approximations of the
POLCA trajectories are very similar on average.

COSINE SIMILARITY L2NORM
5.4891 E-4 0.99987

G CHOICE OF BASIS

In this section, we analyze the choice of POLCA basis. To do so, we compute the cosine similarity
between the original basis constructed using the top Hessian eigenvectors and a variety of other
choices of basis vectors.

Cosine Similarity Between Hessian and SVD Bases R Cosine Similarity Between Hessian and Normalized SVD Bases “osine Similarity Between Hessian and Sliding Window SVD Bases

1.00 “T.oo
-0.75 -0.75
050 050
025 025
0.00) 0.00
-0.25 E -0.25
-0.50 -0.50
-0.75 -0.75
pyas -1.00 -1.00

ccc

Hessian Basis Vector

Hessian Basis Vector

Sliding Window SVD Basis Vector

(a) SVD of matrix of stacked gra- (b) SVD of stacked L2-normalized (c) SVD of stacked gradients aver-
dients gradients aged over 5 iterations

Figure 9: Pairwise cosine similarity between the vectors in the Hessian eigenbasis and vectors in
various bases constructed using the singular value decomposition (SVD) of the matrix of stacked
individual gradients. The Hessian basis vectors are similar to the basis vectors computed using the
SVD in all cases, especially for the lower vector numbers, which tend to have higher eigenvalues.
However, there is lower similarity between the vectors with the higher numbers (and lower eigenval-
ues), especially in the normalized case.

18

Under review as a conference paper at ICLR 2025

Cosine Similarity Between Hessian and Randomly Shuffled Bases o

-1.0

-0.75
0.50
0.25
0.00
-0.25
-0.50
-0.75
-1.00

OHNMINONODOANMIINONDNO—HNMNIOIONOD
A A A A A A A NNN NN NSNS

Randomly Shuffled Basis Vector

-
I}
2
b
>
o
u
©
o
c
o
a
n
4}
T

[
1
2
3
3
5
[
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

Figure 10: Comparison of Hessian basis to randomly shuffled Hessian basis. We report the cosine
similarity between the Hessian basis vectors and a set of Hessian basis vectors computed by randomly
shuffling the order of the checkpoints used to construct the basis. The vectors are re-ordered after
computation so that the vector number corresponds to the original ordering. The corresponding
eigenvectors have relatively high cosine similarity, especially for smaller vector numbers (which tend
to have larger eigenvalues).

Cosine Similarity Between Hessian and Random Basis Vectors. 00

1
-0.75
0.50
0.25
0.00
-0.25
-0.50
-0.75
-1.00

OHANMINONODO—ANMINONDD
A e A e

Hessian Basis Vector Number

[
1
2
3
2
5
[
7
8
9
0
1
2
3
2
5
6
7
8
9
0
1
2
3
2
5
6
7
8
9

1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
2
2
2
2
2

Figure 11: Comparison of Hessian basis to random orthonormal basis. The cosine similarity is very
low for all of the vectors in the random orthonormal basis and much lower than the highest values in

Figures [and

19

	Introduction
	Background
	Methods
	Projection Oriented Loss Change Allocation (POLCA)
	Finding the basis
	Decomposing the loss

	Arithmetic language modeling
	The data
	Recovering concepts from the exact loss
	Recovering concepts with POLCA

	Natural language modeling
	Experimental setup
	Recovering natural language concepts with POLCA

	Conclusions and Future Work
	Derivation of approximate second order term
	Hyperparameters
	Undecomposed trajectories for the digit and carry skills
	Comparison of breakthrough clustering for the carries skill
	Additional arithmetic cluster examples
	Second versus first order POLCA approximation
	Choice of basis

