
Efficient Weighted Deduction Systems for Earley’s Algorithm

Anonymous ACL submission

Abstract

The parsing algorithm of Earley (1970),001
as presented, has a runtime complexity of002
O
(
N3|G||R|

)
where N is the length of the003

sentence, |G| is the size of the grammar, and004
|R| is the number of productions in the gram-005
mar. This is unworkable for the large gram-006
mars that arise in natural language process-007
ing. Fortunately, the dynamic programming008
algorithm can be improved to run in time009
O
(
N3|G|

)
, matching the complexity of run-010

ning CKY on a binarized version of G. Some011
of the necessary speed-ups have been pre-012
sented in part or in full in various parts of the013
literature. However, there has been no uni-014
fied, formal treatment that is written as a de-015
duction system1or covers the weighted case.016
We present such a treatment in terms of five017
proof rules that can be used in weighted deduc-018
tion, which refine Earley’s PREDICT, SCAN019
and COMPLETE actions. We also provide a020
generalization of Earley’s algorithm that uses021
a finite-state automaton to represent the gram-022
mar, and whose runtime is proportional to the023
size of the automaton (and the usual O

(
N3
)

024
term), or more precisely the size of the portion025
of the automaton that is reached while parsing026
the input sentence. Further speed-ups can then027
be achieved by minimizing the automaton so028
that similar productions share transitions.029

1 Introduction030

Earley’s algorithm (1970) was a landmark achieve-031

ment in theoretical computer science. It was the032

first algorithm that could directly parse under an033

arbitrary context-free grammar in timeO
(
N3
)

(N034

being the length of the input string). Also, since it035

exhaustively filters rules by left context, it parses036

unambiguous grammars inO
(
N2
)

time and a class037

of deterministic context-free grammars in O(N).038

Earley’s algorithm is well-known in computa-039

tional linguistics and NLP, and not only because of040

1That said, declarative formulations have been presented in
other formats in the dissertations of Barthélemy (1993), de la
Clergerie (1993), and Nederhof (1994).

its ability to directly handle unrestricted grammars 041

and exploit their structure for potential speedups. 042

Because it parses incrementally from left to right, 043

it can be used for online sentence processing, main- 044

taining a parse forest over the sentence prefix that 045

has been seen so far—which supports incremental 046

syntactic featurization and incremental semantic 047

interpretation—as well as the set of grammatical 048

next words.2 It can be attractively extended to com- 049

pute the probabilities of these next words (Stolcke, 050

1995), which is the standard way to compute au- 051

toregressive language model probabilities under a 052

PCFG to support cognitive modeling (Hale, 2001), 053

speech recognition (Roark, 2001), and neural gen- 054

eration of grammatical text (Shin et al., 2021). 055

The runtime of Earley’s algorithm is cubic in the 056

length of a sentence. However, an often overlooked 057

aspect in the algorithm’s analysis is the grammar 058

constant. Earley’s algorithm takes O
(
N3|G||R|

)
059

time where |G| is the size of the grammar (the total 060

length of all productions) and |R| is the number of 061

productions (Shieber et al., 1995; Stolcke, 1995; 062

Goodman, 1999). When the grammar is taken to be 063

constant, these terms are absorbed into the O oper- 064

ator. Indeed, Earley (1970)’s original paper did not 065

discuss the grammar constant in its runtime anal- 066

ysis. However, natural language grammars can be 067

very large (Dunlop et al., 2010). For example, the 068

Berkeley grammar (Petrov et al., 2006), a learned 069

grammar for the Penn Treebank (PTB) (Marcus 070

et al., 1993), contains over one million productions. 071

Grammars of such magnitude make the O(|G||R|) 072

factor an intimidating prospect. 073

Fortunately, some massaging of Earley’s dy- 074

namic program makes it run in O
(
N3|G|

)
. This 075

matches the runtime of the CKY parsing algorithm 076

on a binarized version of G (when G can be bi- 077

narized, i.e., it has no unary or nullary produc- 078

tions). However, the literature around Earley’s 079

2In a programming language editor, incremental interpreta-
tion can support syntax checking, syntax highlighting, and
tooltips; next-word prediction can support autocomplete.

1

often misses this bound or over-complicates the080

explanation of the necessary speed-ups:081

• Standard presentations of Earley’s algorithm082

(e.g., the textbook treatment of Jurafsky and Mar-083

tin, 2009, Section 13.4) typically give the run-084

time as O
(
N3
)
, eliding the grammar constant.085

• The Graham–Harrison–Ruzzo (GHR) algo-086

rithm, a well known variant of Earley’s, is087

a non-weighted recognizer that again runs in088

O
(
N3|G||R|

)
. The original exposition of Gra-089

ham et al. (1980) did provide implementation de-090

tails in their Section 3 that enables the algorithm091

to run in the improved O
(
N3|G|

)
, but these de-092

tails were not presented in the form of a deduc-093

tion system and were apparently lost in retellings094

of the algorithm (Sikkel, 1993, page 112).095

• Leermakers (1992) and Moore (2000) improve096

the efficiency of the COMPLETE rule, but not097

the PREDICT rule. This leads to an algorithm098

that runs in O
(
N3|G|+N2|G||R|

)
time. This099

is still unusable for large grammars.100

• Klein and Manning (2001a) propose an agenda-101

based Earley parser that distinguishes “active”102

and “passive” items (Gebhardt, 2015). This im-103

proves the runtime to O
(
N3|G||N |

)
where N104

is the set of non-terminals in the grammar. The105

extra factor of O(|N |) is still quite large and106

could have been dispensed with.107

In this paper, we provide a simple deduction sys-108

tem, EARLEY–FAST, that can be used to discover109

all parses and compute their total semiring weight110

in O
(
N3|G|

)
time.3 We compare EARLEY–FAST111

to the traditional deduction system, EARLEY. We112

discuss modifications in §5 and Apps. A and B that113

must be made to the grammar in order to avoid114

repeatedly deducing new proofs of an item (due115

to cyclic derivations of a string via unary and/or116

nullary rules), which can prevent the weighted ver-117

sion of Earley’s algorithm from terminating.118

We conduct a small empirical experiment using119

various grammars induced from the PTB and no120

pruning. For all of these grammars, EARLEY re-121

quires over 3 minutes to parse a single sentence122

from the PTB over 25 words, which is not practi-123

cal. Nevertheless, we are able to parse sentences124

under 40 words using EARLEY–FAST in 7 seconds125

3In the weighted case (§5), this G is a preprocessed version of
the grammar. Preprocessing takes additional time and may
enlarge the grammar. Also, our runtimes assume that the
semiring operations ⊕, ⊗, and ∗ take O(1) time each.

(again, without pruning). In §6, we additionally 126

present a generalization in which dotted produc- 127

tions (within items of the deduction system) are 128

replaced by states of a finite-state automaton (FSA). 129

This generalization, which we call EARLEY–FSA, 130

allows us to shrink the grammar constant further, 131

yielding a further 2.5× speed-up when using the 132

PTB-induced grammars. 133

2 Weighted Context-Free Grammars 134

A context-free grammar (CFG) G is a tuple 135

〈N ,Σ,R, S〉 where Σ is a finite set of terminal 136

symbols,N is a finite set of non-terminal symbols 137

with Σ ∩ N = ∅, R is a set of productions from 138

a non-terminal to a sequence of non-terminals and 139

terminals (i.e., R ⊆ N × (N ∪ Σ)∗), and S ∈ N 140

is the start symbol. We denote terminal symbols 141

by lower-case letters (a, b, . . .) and non-terminal 142

symbols by upper-case letters (A,B, . . .). We use 143

a Greek letter (ρ, µ, or ν) to denote a sequence of 144

non-terminals and terminals, i.e., an element of 145

(N ∪ Σ)∗. Therefore, a production has the form 146

A→ ρ. Note that ρ may be the empty sequence ε. 147

We refer to |ρ| ≥ 0 as the arity of the production 148

and |A→ ρ| def
= 1 + |ρ| as the size of the produc- 149

tion. Productions of arity 0, 1, and 2 are referred to 150

as nullary, unary, and binary productions respec- 151

tively. We write |G| def
=
∑

(A→ρ)∈R|ρ| for the total 152

size of the CFG. Therefore, if K is the maximum 153

arity of a production, |G| ≤ |R|(1 +K). 154

For a given G, we write µ ⇒ ν to denote that 155

µ ∈ (N ∪ Σ)∗ can be rewritten into ν by a single 156

production of G. For example, AB ⇒ ρB ex- 157

pands A into ρ using the production A→ ρ. The 158

reflexive transitive closure of this relation, ∗⇒, then 159

denotes rewriting by any sequence of zero or more 160

productions: for example, AB ∗⇒ρµ ν. 161

A derivation tree of G is a finite rooted ordered 162

tree T whose leaves are labeled with elements of Σ 163

and whose internal nodes are labeled with elements 164

ofN , such that (1) the root is labeled with S and (2) 165

if an internal node labeled with A has a sequence 166

of children labeled with ρ, then A→ ρ is in R. 167

Given an input sentence x ∈ Σ∗ of length N , we 168

write Tx for its set of derivation trees, that is, all 169

trees with leaf sequence x. Tx is countable and 170

possibly infinite. It is non-empty iff S ∗⇒x, with 171

each T ∈ Tx serving as a witness that S ∗⇒x. 172

We will also consider weighted CFGs, in which 173

each production A→ ρ is additionally equipped 174

with a weight w(A→ ρ) ∈ W where W is 175

2

EARLEY EARLEY–FAST

Domains i, j, k ∈ {0, . . . , N} A,B ∈ N ∪ {Ŝ} a ∈ Σ ρ, µ, ν ∈ (N ∪ Σ)∗

Items [i, j, A→ µ • ν] [j, k, a] A→ ρ
[i, j, A→ µ • ν] [j, k, a] A→ ρ
[i, j, A→ • ?] [i, j, A→ ? •]

Axioms
A→ ρ, ∀(A→ ρ) ∈ R
[k − 1, k, xk], ∀k∈{1, . . . , N}
[0, 0, Ŝ → •S]

A→ ρ,∀(A→ ρ) ∈ R
[k − 1, k, xk],∀k∈{1, . . . , N}
[0, 0, S → • ?]

Goal [0, N, Ŝ → S •] [0, 0, S → ? •]

B → ρ
PRED: [i, j, A→ µ •B ν]

[j, j, B → • ρ]
PRED1: [i, j, A→ µ •B ν]

[j, j, B → • ?]

B → ρ
PRED2: [j, j, B → • ?]

[j, j, B → • ρ]

Rules
[i, j, A→ µ • a ν] [j, k, a]

SCAN:
[i, k, A→ µa • ν]

[i, j, A→ µ • a ν] [j, k, a]
SCAN:

[i, k, A→ µa • ν]

[j, k,B → ρ •]
COMP1:

[j, k,B → ? •]

[i, j, A→ µ •B ν] [j, k,B → ρ •]
COMP:

[i, k, A→ µB • ν]

[i, j, A→ µ •B ν] [j, k,B → ? •]
COMP2:

[i, k, A→ µB • ν]

Table 1: Deduction systems for Earley (1970)’s algorithm (EARLEY) and our faster algorithm (EARLEY–FAST).

the set of values of a closed semiring S def
=176

〈W,⊕,⊗, ∗, 0 , 1 〉. A semiring S has two opera-177

tors, ⊕, which is associative and commutative, and178

⊗, which is associative and distributes over ⊕. Ad-179

ditionally, the semiring contains values 0 , 1 ∈W180

such that 0 is an identity for ⊕ and annihilator for181

⊗ and 1 is an identity for ⊗. A closed semiring182

additionally has an operator ∗ satisfying the axiom183

(∀w ∈W) w∗ = 1 ⊕w⊗w∗ = 1 ⊕w∗⊗w. The184

interpretation is that w∗ returns the infinite sum185

1 ⊕ w ⊕ (w ⊗ w)⊕ (w ⊗ w ⊗ w)⊕ · · · .186

For any A and ρ, any derivation tree T that es-187

tablishes A ∗⇒ρ can be given a weight188

w(T)
def
=
⊗

(A→ρ)∈T

w(A→ ρ) (1)189

where A→ ρ ranges over the productions associ-190

ated with the internal nodes of T .4 We then write191

w
(
A
∗⇒ρ
)

for the total weight of all such deriva-192

tions. In particular, the goal of a weighted recog-193

nizer is to find the total weight of all derivation194

trees of a given input sentence x:195

Zx
def
= w

(
S
∗⇒x
)

=
⊕
T∈Tx

w(T) (2)196

4The productions appear in this product in the order of a prefix
traversal of T ; this is important if ⊗ is not commutative.

An ordinary unweighted recognizer is the spe- 197

cial case where W is the boolean semiring, so 198

Zx = true iff S ∗⇒x iff Tx 6= ∅. A parser is 199

a recognizer that returns one or more derivation 200

trees—this can be achieved using the derivation 201

semiring (Goodman, 1999) or by storing the prove- 202

nance of each derived item. 203

3 Earley’s Algorithm 204

We describe Earley’s algorithm using a deduc- 205

tion system, which is effectively a version of the 206

sequent calculus (Pierce, 2002) that is often em- 207

ployed in the presentation of parsing algorithms 208

and other logic programs (Pereira and Shieber, 209

1987). Much is known about how to execute (Good- 210

man, 1999), transform (Eisner and Blatz, 2007), 211

and neuralize (Mei et al., 2020) deduction systems. 212

A deduction system derives items using deduc- 213

tive rules. Items represent propositions; the rules 214

are used to derive all propositions that are true. A 215

deductive rule is of the form 216

X Y · · ·EXAMPLE:
Z

217

where EXAMPLE is the name of the rule, the 0 or 218

more items above the bar are called antecedents, 219

and the single item below the bar is called a conse- 220

quent. Antecedents may also be written to the side 221

3

of the bar; these are called side conditions and will222

be handled differently for weighted parsing in §5.223

Axioms are special rules that have no antecedents;224

as a shorthand, we omit the bar in this case and225

simply write the consequent.226

Our unweighted recognizer will determine227

whether a certain goal item is provable by a certain228

set of deductive rules from axioms that encode229

G and x. The deduction system is set up so that230

this is the case iff S ∗⇒x. The provability of an231

item under a deduction system can be generically232

solved through forward chaining. An unweighted233

parser is a version of this method that does some234

extra bookkeeping and thus is able to return one235

or more actual proofs of the goal item, which236

correspond to derivation trees. In general, a proof237

tree (or just proof) d of an item is a tree-structured238

proof of that item.239

Pereira and Warren (1983) first presented Ear-240

ley’s algorithm as a deduction system, shown as241

EARLEY in Table 1. Some items have the form242

[i, j, A→ µ • ν]. The span (i, j) refers to a con-243

tiguous segment xi:j
def
= xi+1 · · ·xj of the in-244

put sentence x. A→ µν is a production in G,245

and • marks a position in the production. The246

item [i, j, A→ µ • ν] is derivable only if the gram-247

mar has a production A→ µ ν such that µ ∗⇒xi:j .248

Therefore, • indicates the progress we have made249

through the production. An item with nothing to the250

right of •, e.g., [i, j, A→ ρ •] is called completed.251

The grammar G is encoded by axioms A ∗⇒ρ that252

correspond to the productions of the grammar. The253

input sentence x is encoded by axioms of the form254

[k − 1, k, a] where a ∈ Σ; this axiom is true iff255

xk−1:k = xk = a.5256

While µ
∗⇒xi:j is a necessary condition for257

[i, j, A→ µ • ν] to be provable, it is not sufficient.258

For efficiency, the EARLEY deduction system is259

cleverly constructed so that this item is provable260

iff6 it can appear in a proof of some string that261

begins with x0:j , and thus might appear in a deriva-262

tion of x.7263

5All methods in this paper can be also applied directly to lattice
parsing, in which i, j, k range over states in an acyclic lattice
of possible input strings, and 0 and N refer to the unique
initial and final states. A lattice edge from j to k labeled with
terminal a is then encoded by the axiom [j, k, a].

6This characterization assumes that every non-terminal B ∈
N can be expanded by some ruleB → ρ. If not,B is useless
and can be safely eliminated from the grammar, along with
any production inR that mentions B. This may create new
useless non-terminals that can be eliminated in turn.

7Earley (1970) also generalized the algorithm to prove this
item only if it can appear in a proof of some string that begins

Including [0, 0, Ŝ → •S] as an axiom in the sys- 264

tem effectively causes forward chaining to start 265

looking for a derivation at position 0. The system 266

has proved S
∗⇒x if it can derive the goal item 267

[0, N, Ŝ → S •], where N = |x|. These two items 268

conveniently pretend that the grammar has been 269

augmented with a new start symbol Ŝ that only 270

rewrites according to the single production Ŝ → S. 271

Earley’s algorithm has three deduction rules: 272

PREDICT, SCAN, and COMPLETE. We describe 273

each of these rules and their runtime in detail. Ad- 274

ditionally, we discuss how past work has improved 275

on the runtime of the different rules in §3.4. We 276

analyze the runtime of the deduction system fol- 277

lowing McAllester (2002): for each deduction rule, 278

we examine the domain size of its free variables. 279

3.1 Predict 280

To look for constituents of type B starting at po- 281

sition j, using the rule B → ρ, we need to de- 282

rive [j, j, B → • ρ]. Earley’s algorithm imposes 283

[i, j, A→ µ •B ν] as a side condition, so that we 284

only start looking if such a constituent B could be 285

combined with some item to its left.8 286

B → ρ
PRED: [i, j, A→ µ •B ν]

[j, j, B → • ρ]
287

Runtime analysis. PRED has four free variables: 288

indices i and j with a domain size of N + 1, dotted 289

production A→ µ •B ν with domain size |G|, and 290

production rule B → ρ with a domain size of |R|. 291

Therefore, its total runtime is O
(
N2|G||R|

)
. 292

3.2 Scan 293

If we have derived an incomplete item 294

[i, j, A→ µ • a ν], we can advance the dot 295

if the next terminal symbol is a: 296

[i, j, A→ µ • a ν] [j, k, a]
SCAN:

[i, k, A→ µa • ν]
297

This makes progress toward completing the A. 298

Runtime analysis. SCAN has four free variables: 299

indices i, j, and k with a domain size ofN+1, and 300

dotted production A→ µ •B ν with domain size 301

|G|. However, since we consider terminal symbols 302

to have a span width of 1, it is the case that j = k−1 303

and so SCAN has a total runtime of O
(
N2|G|

)
. 304

with x0:(j+∆), for a fixed ∆. This is lookahead of ∆ tokens.
8Minnen (1996) and Eisner and Blatz (2007) explain that this
side condition is an instance of the “magic sets” technique
that filters some unnecessary work from a bottom-up algo-
rithm (Ramakrishnan, 1991).

4

3.3 Complete305

Recall that having [i, j, A→ µ •B ν] allowed us306

to start looking for a B at position j (PRED).307

Once we have found a complete B by deriving308

[j, k,B → ρ •], we can advance the dot in the for-309

mer rule:310

[i, j, A→ µ •B ν] [j, k,B → ρ •]
COMP:

[i, k, A→ µB • ν]
311

Runtime analysis. COMP has five free variables:312

indices i, j, and k with a domain size of N + 1,313

dotted production A→ µ •B ν with domain size314

|G|, and the completed production B → ρ with a315

domain size of |R|. Therefore, COMP will have a316

total runtime of O
(
N3|G||R|

)
.317

3.4 Previous Speed-ups318

Putting the above steps together, the total runtime319

of the EARLEY algorithm is O
(
N3|G||R|

)
. In320

addition, the number of possible derived items is321

O
(
N2|G|

)
, which is a bound on the space needed322

by the algorithm to store the items that have been323

derived so far and index them for fast lookup324

(McAllester, 2002; Eisner et al., 2005). We briefly325

discuss past approaches used to improve the asymp-326

totic efficiency.327

Leermakers (1992) noted that in an item of the328

form [i, j, A→ µ • ν], the sequence µ is irrelevant329

to subsequent deductions. Therefore, he suggested330

(in effect) replacing µ with a generic placeholder331

?. This merges items that had only differed332

in their µ values, so the algorithm processes333

fewer items. This technique can also be seen in334

Moore (2000) and Klein and Manning (2001a,b).335

Importantly, this means that each non terminal336

only has one completed state, [j, k,B → ? •], for337

each span. This improves the runtime of Earley’s338

to O
(
N3|G||N |+N2|G||R|

)
. Our §4.2 will give339

a version of the trick that only gets this effect.340

The full version of Leermakers (1992)’s trick is341

subsumed by our generalized approach in §6.342

While the GHR algorithm—a modified version343

of Earley’s algorithm—is commonly known to be344

O
(
N3|G||R|

)
, Graham et al. (1980, Section 3) pro-345

vide a detailed exploration of the low-level imple-346

mentation of their algorithm that enables it to be347

run in O
(
N3|G|

)
time. This explanation spans 20348

pages and includes techniques similar to those men-349

tioned in §4, as well as discussion of data structures.350

To the best of our knowledge, these details have not351

been carried forward in subsequent presentations352

of GHR (Stolcke, 1995; Goodman, 1999).353

4 An Improved Deduction System 354

Our EARLEY–FAST deduction system, shown in 355

the right column of Table 1, shaves a factor of 356

O(R) off the runtime of EARLEY. We introduce 357

items [i, j, A→ • ?] and [i, j, A→ ? •] that will 358

be used to speed up PRED (§4.1) and COMP (§4.2) 359

respectively. We can also use these items to replace 360

the goal item and the axiom that used Ŝ; the extra 361

Ŝ symbol is no longer needed. In the remainder of 362

this section, we describe our new deduction rules 363

for COMP and PRED. (SCAN is unchanged.) 364

4.1 Predict 365

We split PRED into two rules: PRED1 and PRED2. 366

The first rule, PRED1, creates an item that gath- 367

ers together all requests to look for a given non- 368

terminal B starting at a given position j: 369

PRED1: [i, j, A→ µ •B ν]
[j, j, B → • ?] 370

There are three free variables in the rule: indices 371

i and j, and dotted production A→ •B ν. There- 372

fore, PRED1 has a total runtime of O
(
N2|G|

)
. 373

The second rule, PRED2, expands the item into 374

commitments to look for each specific kind of B: 375

[j, j, B → • ?]
PRED2: B → ρ ∈ R

[j, j, B → • ρ]
376

PRED2 has two free variables: index j and pro- 377

duction B → ρ. Therefore, PRED2 has a runtime 378

of O(N |G|), leading to both and so the two rules 379

together have a runtime of O
(
N2|G|

)
. 380

4.2 Complete 381

We speed up COMP in a similar fashion to PRED. 382

We split COMP into two rules: COMP1 and COMP2. 383

The first rule, COMP1, gathers all completed B 384

constituents over a given span into a single item: 385

[j, k,B → ρ •]
COMP1:

[j, k,B → ? •]
386

We have three free variables: indices j and k, and 387

completed production B → ρ. Therefore, COMP1 388

has a total runtime of O
(
N2|G|

)
. 389

The second rule, COMP2, attaches the result- 390

ing complete items to any incomplete items that 391

predicted them: 392

[i, j, A→ µ •B ν] [j, k,B → ? •]
COMP2:

[i, k, A→ µB • ν]
393

We have four free variables: indices i, j, and k, 394

and dotted production A→ µ •B ν. Therefore, 395

COMP2 has a total runtime of O
(
N3|G|

)
and so 396

5

the two rules together have a runtime ofO
(
N3|G|

)
.397

This speed-up to the COMPLETE step is an instance398

of the fold transform (Tamaki and Sato, 1984).399

5 Semiring-Weighted Parsing400

We have so far presented Earley’s algorithm and401

our improved deduction system in the unweighted402

case. This is equivalent to running a weighted403

algorithm in the boolean semiring. However, we404

are often interested in weighted recognition under405

an arbitrary closed semiring (Mohri, 1997). In406

weighted deduction, each axiom has a weight, and407

the weight of a proof tree is the product under ⊗408

of the weights of its axioms (which in our case409

are input words and CFG productions), in the left-410

to-right order in which they are encountered in411

the proof tree. General algorithms for weighted412

deduction (Goodman, 1999; Eisner et al., 2005)413

can be used to find the total weight under ⊕ of all414

proofs of the goal item (as in (2)).415

To solve the weighted CFG recognition prob-416

lem using weighted deduction, we can continue to417

use the deduction systems in Table 1. Axioms418

of the form A→ ρ should inherit their weight419

from the corresponding grammar production, i.e.,420

w(A→ ρ). All other axioms have weight 1 . The421

weight of a proof tree of the goal item (according to422

the weighted deduction system) is now the weight423

of the corresponding derivation tree (according to424

the weighted CFG), so the total weight of all such425

proofs is Zx as desired.426

The deduction systems presented in §3 and427

§4 work for any semiring-weighted CFG. Un-428

fortunately, the forward-chaining algorithm for429

weighted deduction (e.g., Eisner et al., 2005) may430

not terminate if the system permits cyclic proofs,431

where an item can participate in one of its own432

proofs.9 In this case, the algorithm will merely433

approach the correct value of Zx as it discovers434

deeper and deeper proofs of the goal item. Cyclic-435

ity in our system can arise from sets of unary436

productions such as {A→ B,B → A} ⊆ R, or437

equivalently, from {A→ BC,B → A} ⊆ R438

where C
∗⇒ε (which is possible if R contains439

C → ε or other nullary productions). We take440

the approach of eliminating problematic unary and441

nullary productions from the weighted grammar442

9In general, even acyclic weighted deduction can fail to ter-
minate, if the deduction system can derive infinitely many
distinct items. But the number of derived items in our case is
O
(
N2|G|

)
, as noted earlier, and therefore finite.

without changing Zx for any x. We provide meth- 443

ods to do this in App. A and App. B respectively.10 444

The runtime of the weighted deduction systems is 445

then the same as in the unweighted case, where 446

|G| now refers to the size of the modified grammar. 447

The elimination of some productions can increase 448

|G|, but we explain how to limit this effect. 449

Once cyclic proofs are impossible, there exists 450

a topologically sorted order of the items. Visiting 451

the items in this order lets us compute Zx with the 452

same asymptotic complexity as unweighted parsing. 453

Goodman (1999, Section 5) discusses execution 454

strategies, including a generic method to dynami- 455

cally discover a topologically sorted order (though 456

we can specify one statically for our systems). 457

6 Earley’s Algorithm Using an FSA 458

In this section, we present a generalization of 459

EARLEY–FAST that can parse with any weighted 460

finite-state automaton (WFSA) grammar M in 461

O
(
N3|M|

)
. HereM is a WFSA that encodes the 462

CFG productions as follows. For any ρ ∈ (Σ∪N)∗ 463

and any A ∈ N , for M to accept the string ρ Â 464

with weight w ∈ W is tantamount to having the 465

production A→ ρ in the CFG with weight w.11 466

This presentation has two advantages 467

over a standard CFG. First, M can be com- 468

piled from user-friendly specifications like 469

NP→ Det? Adj∗ N+ PP∗, which specifies in- 470

finitely many productions with unboundedly long 471

right-hand-sides ρ (althoughM still only describes 472

a context-free language). Second, productions with 473

similar right-hand-sides may share partial paths in 474

M, which means that a single item can efficiently 475

represent many dotted productions. 476

Our WFSA grammar is similar to a recursive 477

transition network or RTN grammar (Woods, 478

1970). Adapting Earley’s algorithm to RTNs was 479

discussed by Jr. and Brown (1981), Kochut (1983), 480

Leermakers (1989), and Perlin (1991). Klein and 481

10App. B may be a contribution of this paper, as we were
unable to find a correct construction in the literature.

11Unless ⊗ is non-commutative (e.g., a derivation semiring).
In contrast to footnote 4, we must now interpret (1) as
multiplying the rule probabilities in a kind of infix order.
Suppose a derivation tree for A ∗⇒x uses a WFSA path at
the root that accepts BCÂ with weight w. Recursively
let wB and wC be the weights of the child subderivations,
rooted at B and C. Then the overall weight of the derivation
of A will not be w ⊗ wB ⊗ wC (prefix order), but rather
w1⊗wB ⊗w2⊗wC ⊗w3. Here we have factored the path
weight w into w1 ⊗ w2 ⊗ w3, which are respectively the
weights of the subpath up through B, the subpath from there
up through C, and the subpath from there to the end.

6

Domains i, j, k ∈ {0, . . . , N} A ∈ N a ∈ Σ q, q′ ∈ Q

Items [i, j, q] [i, j, q?] [i, j, a] [i, j, A→ • ?] [i, j, A→ ? •] q
a
 q′ q

A
 q′ q

A
 ? q

∗Â
 ?

Axioms [0, 0, q],∀q ∈ I [j, j + 1, xk], ∀k∈{1, . . . , N} [0, 0, S → • ?]

Goals [0, N, S → ? •]

PRED1:
[i, j, q]

q
A
 ?[j, j, A→ • ?]

[j, k, q] q
Â
 q′ q′ ∈ F

COMP1:
[j, k, A→ ? •]

Rules
q ∈ I

PRED2:
[j, j, q?]

[i, j, q] q
A
 q′ [j, k, A→ ? •]

COMP2:
[i, k, q′?]

[i, j, q] q
a
 q′ [j, k, a]

SCAN:
[i, k, q′?]

[i, j, q] q
ε
 q′

EPSILON:
[i, j, q′?]

[j, k, q?]
FILTER:

[j, j, A→ • ?]

q
∗Â
 ?[j, k, q]

Table 2: EARLEY–FSA, a variant of EARLEY–FAST in which FSA states replace dotted productions.

Manning (2001b) used a weighted version for PTB482

parsing. None of them spelled out a deduction483

system, however.484

Also, an RTN is a collection of productions of485

the form A→MA, where forMA to accept ρ is486

tantamount to having A→ ρ in the CFG. Thus an487

RTN uses one FSA per non-terminal. Our innova-488

tion is to use one WFSA for the entire grammar,489

specifying the left-hand-side non-terminal as a final490

symbol. Thus, to allow productions A→ µ ν and491

B → µ ν ′, our single WFSA can have paths µ ν Â492

and µ ν ′ B̂ that share the µ prefix. This allows our493

EARLEY–FSA to match the µ prefix only once, in494

a way that could eventually result in completing ei-495

ther an A or a B (or both). This concept of sharing496

a left context was first introduced by Jr. and Brown497

(1981).498

We write |M| for the number of edges in M.499

A traditional weighted CFG G can be easily en-500

coded as a WFSAM with |M| = |G|, by creating501

a weighted path of length k and weight w for each502

CFG production of size k and weight w, termi-503

nating in a final state, and then merging the initial504

states of these paths into a single state that becomes505

the initial state of the resulting WFSA. The paths506

are otherwise disjoint. Importantly, this WFSA can507

then be determinized and minimized (Mohri, 2002)508

to potentially reduce the number of edges and thus509

speed up parsing (Klein and Manning, 2001b).510

In general, however, the grammar can be speci-511

fied by any WFSAM—not necessarily determinis-512

tic. This could be compiled from weighted regular513

expressions, or an encoded Markov model trained514

on observed productions (Collins, 1999), or be ob-515

tained by merging states of another WFSA gram- 516

mar (Stolcke and Omohundro, 1994) in order to 517

smooth its weights and speed it up. 518

The WFSA has states V and weighted transitions 519

(or edges) E , over an alphabetA consisting ofN ∪ 520

Σ together with hatted non-terminals like Â. Its 521

initial and final states are denoted by I ⊆ V and 522

F ⊆ V , respectively. We denote an edge of the 523

WFSA by (q
a
 q′) ∈ E where q, q′ ∈ V and a ∈ 524

A ∪ {ε}. This corresponds to an axiom with the 525

same weight as the edge. q ∈ I corresponds to an 526

axiom whose weight is the initial-state weight of q. 527

The axiom q ∈ F actually means (more generally) 528

that q has an ε-path to a final state; its weight is the 529

total weight of all such paths. 530

For a state q ∈ V and symbol a ∈ N , the pre- 531

computed side condition q
A
 ? is true iff there 532

exists a state q′ ∈ V such that the transition q A
 q′ 533

exists in E . Additionally, the precomputed side con- 534

dition q ∗Â ? is true if there exists a path starting 535

from q that will eventually read Â. 536

The EARLEY–FSA deduction system is given in 537

Table 2 and has a runtime of O
(
N3|M|

)
. It is sim- 538

ilar to EARLEY–FAST, where the dotted rules have 539

been replaced by WFSA states. However, unlike a 540

dotted rule, a state does not specify a PREDICTed 541

left-hand-side non-terminal. As a result, when we 542

“advance the dot” to a new state q, we build an item 543

[j, k, q?] that is annotated with a question mark. 544

This mark represents the fact that although q is 545

compatible with several left hand sides A (those 546

for which q ∗Â ? is true), the left context x0:j might 547

not call for any of those non-terminals. If it does, 548

7

then the new FILTER rule will remove the question549

mark, allowing further progress.550

As before, we must eliminate unary and nullary551

rules before parsing; App. C explains how to do552

this with a WFSA grammar. In addition, although553

Table 2 allows the WFSA to contain ε-transitions,554

App. C explains how to eliminate ε-cycles in the555

WFSA, which could prevent us from converging,556

for the usual reason that an item [i, j, q] could par-557

ticipate in its own derivation. Afterwards, there is558

again a toposorted order in which the deduction en-559

gine can attempt to build items (Goodman, 1999).560

As noted above, we can speed up EARLEY–FSA561

by reducing the size of the WFSA. Unfortunately,562

minimization of general FSAs is NP-hard. How-563

ever, we can at least seek the minimal determinis-564

tic WFSAM′ such that |M′| ≤ |M|, at least in565

most semirings (Mohri, 2000; Eisner, 2003). The566

determinization (Aho et al., 1986) and minimiza-567

tion (Aho and Hopcroft, 1974; Revuz, 1992) al-568

gorithms for the boolean semiring are particularly569

well-known. Minimization merges states, which570

results in merging items, much as when EARLEY–571

FAST merged items that had different pre-dot sym-572

bols (Leermakers, 1992; Moore, 2000).573

Another advantage of the WFSA presentation574

of Earley’s is that it makes it simple to express a575

tighter bound on the runtime. Much of the grammar576

size |G| or |M| is due to terminal symbols that are577

not used at most positions of the input. Suppose578

the input is an ordinary sentence (one word at each579

position, unlike the lattice case in footnote 5), and580

suppose c is a constant such that no state q has581

more than c outgoing arcs labeled with the same582

terminal symbol a ∈ Σ. Then when SCAN tries to583

extend [i, j, q], it considers at most c arcs. Thus,584

the O(|M|) factor in our runtime (where |M| =585

|E|) can be replaced withO(|V| · c+ |EN |), where586

EN ⊆ E is the set of edges that are not labeled with587

terminals.588

7 Practical Runtime of Earley’s589

We empirically measure the runtimes of EAR-590

LEY, EARLEY–FAST, and EARLEY–FSA. We use591

the tropical semiring to find the highest-weighted592

derivation trees. We use two grammars that were593

extracted from the PTB: Markov-order-2 (M2) and594

Parent-annotated Markov-order-2 (PM2).12 For595

12Available at https://code.google.com/
archive/p/bubs-parser/. M2 contains 13,893
non-lexicon rules and 52,009 lexicon rules. PM2 contains

each grammar, we ran our parsers 13(using the 596

tropical semiring) on 100 randomly selected sen- 597

tences of 5 to 40 words from the PTB test-set (mean 598

21.4, stdev 10.7), although we omitted sentences 599

of length > 25 from the EARLEY graph as it was 600

too slow (> 3 minutes per sentence). The full re- 601

sults are displayed in App. D. The graph shows 602

that EARLEY–FAST is roughly 20× faster at all 603

sentence lengths. We obtain a further speed-up of 604

2.5× by switching to EARLEY–FSA. 605

8 Conclusion 606

In this pedagogical paper, we have shown how 607

the runtime of Earley’s algorithm is reduced to 608

O
(
N3|G|

)
from the naive O

(
N3|G||R|

)
. We pre- 609

sented this dynamic programming algorithm as a 610

deduction system, which splits prediction and com- 611

pletion into two steps each, in order to share work 612

among related items. To further share work, we 613

generalized Earley’s algorithm to work with a gram- 614

mar specified by a weighted FSA. We showed how 615

to generalize these methods to semiring-weighted 616

grammars by correctly transforming the grammars 617

to eliminate cyclic derivations. We demonstrated 618

that these speedups are effective in practice. 619

We remark on two useful extensions. Stolcke 620

(1995)’s algorithm computes the total weight of all 621

sentences with a given prefix; this can be arranged 622

by augmenting our deduction system. We would 623

also like to recover parse trees under the original 624

grammar (before unary and nullary rules were elim- 625

inated). This can be done by constructing a deriva- 626

tion semiring such that Zx gives the best parse tree 627

along with its weight, or alternatively a representa- 628

tion of the possibly infinite forest of all parse trees. 629

We intend this work to serve as a clean refer- 630

ence for those who wish to efficiently implement 631

an Earley-style parser or develop related incremen- 632

tal parsing methods. For example, our deductive 633

systems could be used as the starting point for neu- 634

ral models of incremental processing (in which 635

an item’s vector-space representation is computed 636

from its derivations, along with its weight), or for 637

extensions to more powerful grammar formalisms. 638

25,919 non-lexicon rules and 52,009 lexicon rules. The
downloaded grammars did not have nullary rules or unary
chains.

13We will release our Cython implementation upon publica-
tion. A fast implementation of Earley’s algorithm is reported
by Polat et al. (2016) but does not appear to be public.

8

https://code.google.com/archive/p/bubs-parser/
https://code.google.com/archive/p/bubs-parser/

References639

Alfred V. Aho and John E. Hopcroft. 1974. The De-640
sign and Analysis of Computer Algorithms. Pearson641
Education.642

Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman.643
1986. Compilers: Principles, Techniques, and Tools.644
Addison-Wesley series in computer science / World645
student series edition. Addison-Wesley.646

John Aycock and R. Nigel Horspool. 2002. Practical647
Earley parsing. The Computer Journal, 45(6):620–648
630.649

François Barthélemy. 1993. Outils pour lÁnalyse Syn-650
taxique Contextuelle. Ph.D. thesis, University of Or-651
léans.652

Eric V. de la Clergerie. 1993. Automates a piles et pro-653
grammation dynamique DyAlog: une application a654
la programmation en logique. Ph.D. thesis, Univer-655
sity Paris VII.656

Michael J. Collins. 1999. Head-Driven Statistical Mod-657
els for Natural Language Parsing. Ph.D. thesis, Uni-658
versity of Pennsylvania.659

Aaron Dunlop, Nathan Bodenstab, and Brian Roark.660
2010. Reducing the grammar constant: an analysis661
of CYK parsing efficiency. Technical report, Ore-662
gon Health & Science University.663

Jay Earley. 1970. An efficient context-free parsing al-664
gorithm. Communications of the ACM, 13(2):94–665
102.666

Jason Eisner. 2003. Simpler and more general mini-667
mization for weighted finite-state automata. In Pro-668
ceedings of the 2003 Human Language Technology669
Conference of the North American Chapter of the As-670
sociation for Computational Linguistics, pages 64–671
71.672

Jason Eisner and John Blatz. 2007. Program transfor-673
mations for optimization of parsing algorithms and674
other weighted logic programs. In Proceedings of675
FG 2006: The 11th Conference on Formal Gram-676
mar, pages 45–85. CSLI Publications.677

Jason Eisner, Eric Goldlust, and Noah A. Smith.678
2005. Compiling comp ling: Weighted dynamic679
programming and the Dyna language. In Proceed-680
ings of Human Language Technology Conference681
and Conference on Empirical Methods in Natural682
Language Processing, pages 281–290, Vancouver,683
British Columbia, Canada. Association for Compu-684
tational Linguistics.685

Kilian Gebhardt. 2015. Training of hybrid gram-686
mars for the generation of discontinuous phrase687
structures and non-projective dependency structures.688
Ph.D. thesis, Technische Universität Dresden.689

Joshua Goodman. 1999. Semiring parsing. Computa-690
tional Linguistics, 25(4):573–606.691

Susan L. Graham, Michael A. Harrison, and Walter L. 692
Ruzzo. 1980. An improved context-free recognizer. 693
ACM Transactions on Programming Languages and 694
Systems, 2(3):415–462. 695

John Hale. 2001. A probabilistic Earley parser as a psy- 696
cholinguistic model. In Second Meeting of the North 697
American Chapter of the Association for Computa- 698
tional Linguistics. 699

John E. Hopcroft, Rajeev Motwani, and Jeffrey D. Ull- 700
man. 2007. Introduction to Automata Theory, Lan- 701
guage, and Computation, 3 edition. Pearson interna- 702
tional edition. Addison-Wesley. 703

Mark Johnson. 2000. Inside-outside (computer pro- 704
gram). 705

Paul Walton Purdom Jr. and Cynthia A. Brown. 1981. 706
Parsing extended LR(k) grammars. Acta Informat- 707
ica, 15:115–127. 708

Daniel Jurafsky and James H. Martin. 2009. Speech 709
and Language Processing, 2 edition. Prentice-Hall, 710
Inc., Upper Saddle River, NJ, USA. 711

Dan Klein and Christopher D. Manning. 2001a. Pars- 712
ing and hypergraphs. In Proceedings of the Sev- 713
enth International Workshop on Parsing Technolo- 714
gies, pages 123–134, Beijing, China. 715

Dan Klein and Christopher D. Manning. 2001b. Pars- 716
ing with treebank grammars: Empirical bounds, the- 717
oretical models, and the structure of the Penn Tree- 718
bank. In Proceedings of the 39th Annual Meeting 719
of the Association for Computational Linguistics, 720
pages 338–345, Toulouse, France. Association for 721
Computational Linguistics. 722

Krzysztof Kochut. 1983. Towards the elastic ATN im- 723
plementation. In The Design of Interpreters, Com- 724
pilers, and Editors for Augmented Transition Net- 725
works, pages 175–214. Springer. 726

René Leermakers. 1989. How to cover a grammar. In 727
27th Annual Meeting of the Association for Com- 728
putational Linguistics, pages 135–142, Vancouver, 729
British Columbia, Canada. Association for Compu- 730
tational Linguistics. 731

René Leermakers. 1992. A recursive ascent Earley 732
parser. Information Processing Letters, 41(2):87– 733
91. 734

Daniel J. Lehmann. 1977. Algebraic structures for 735
transitive closure. Theoretical Computer Science, 736
4(1):59–76. 737

Mitchell P. Marcus, Beatrice Santorini, and Mary Ann 738
Marcinkiewicz. 1993. Building a large annotated 739
corpus of English: The Penn treebank. Computa- 740
tional Linguistics, 19(2):313–330. 741

David A. McAllester. 2002. On the complexity 742
analysis of static analyses. Journal of the ACM, 743
49(4):512–537. 744

9

https://doc.lagout.org/science/0_Computer%20Science/2_Algorithms/The%20Design%20and%20Analysis%20of%20Computer%20Algorithms%20%5BAho,%20Hopcroft%20&%20Ullman%201974-01-11%5D.pdf
https://doc.lagout.org/science/0_Computer%20Science/2_Algorithms/The%20Design%20and%20Analysis%20of%20Computer%20Algorithms%20%5BAho,%20Hopcroft%20&%20Ullman%201974-01-11%5D.pdf
https://doc.lagout.org/science/0_Computer%20Science/2_Algorithms/The%20Design%20and%20Analysis%20of%20Computer%20Algorithms%20%5BAho,%20Hopcroft%20&%20Ullman%201974-01-11%5D.pdf
https://www.worldcat.org/oclc/12285707
https://doi.org/10.1093/comjnl/45.6.620
https://doi.org/10.1093/comjnl/45.6.620
https://doi.org/10.1093/comjnl/45.6.620
https://watermark.silverchair.com/089120103322753356.pdf?token=AQECAHi208BE49Ooan9kkhW_Ercy7Dm3ZL_9Cf3qfKAc485ysgAAAtQwggLQBgkqhkiG9w0BBwagggLBMIICvQIBADCCArYGCSqGSIb3DQEHATAeBglghkgBZQMEAS4wEQQMwG2ngpiDb6k53a44AgEQgIIChy5_BKKBl-prto3AIAMuvRzjlehZgRREGpkXqmQ44Qj2w_e7qssGN1rCpaW955RjknVa_1USD5BspsZaSF56zzOsw0cdLxU_AXqVtYuSsWclpsf28UAAcnDaZCOay23dDOGqMjKzWO4rqQ0nkw9IrDxGTBdD2R-doERXaIS2rLb7tzxdLRcgwp1V4K_Qkunlxnsel6AzRJomHnwworTZdc27DdIPvYIdMfca7V0JECDiuZZyahCdALPL-HFrfmXOJwZ88sDJoeOlyW1ZAVYclMBJkyMt-K3Y3PTbnpLLFtp77Dvt6Yj0FL0l-hUnGkiCzhIc3Oi29GueuABK3q_F0NYDmld9CmKuFxAY_XF2uhsB9vwdNwL5oCrYuJDNuqsnxjbbjHeJJYAjV31X3K_QgSdnPFAjAqji84IKkxu_d15QRezG9q4GOSAmH8_eGLY1EKqN--EUSdia4foXae_naXKmfV_W4hP-CNpp0QydovxxNvRsL0mxzTx36OtIytnQVjLja0wHk1Y-A69g1mkVwOcoRXTvm5MbZY3v1VxY_RHu_w3lft092FiE7cjQw8gAhX8SoBQ12Z6BTE4FS8UEodNA-Th4bj6LgjyofR0Ks45BYEqw1YGpFnzK2TT9ClMLIaiN3Pqk2pit6FE3HbffZ3T2w9J_tFbw9LhWmRxDI2K1oAdC2JYrB1IvzEhlNWh-Ocki8mB4mNnzuapLVk-6SJrpFMujDCk6PZCgL0YYGI7Scb0DpZCnJTOUVzOEQotN9SFYK51dlQw6ZK92-AUKvTgNZCnayjpoi4DRSPu93CE4ixmiUHeKdFyZacr0hda7ADzswzEqB2oJJexjDQSNUnW0rrTvz_0I
https://watermark.silverchair.com/089120103322753356.pdf?token=AQECAHi208BE49Ooan9kkhW_Ercy7Dm3ZL_9Cf3qfKAc485ysgAAAtQwggLQBgkqhkiG9w0BBwagggLBMIICvQIBADCCArYGCSqGSIb3DQEHATAeBglghkgBZQMEAS4wEQQMwG2ngpiDb6k53a44AgEQgIIChy5_BKKBl-prto3AIAMuvRzjlehZgRREGpkXqmQ44Qj2w_e7qssGN1rCpaW955RjknVa_1USD5BspsZaSF56zzOsw0cdLxU_AXqVtYuSsWclpsf28UAAcnDaZCOay23dDOGqMjKzWO4rqQ0nkw9IrDxGTBdD2R-doERXaIS2rLb7tzxdLRcgwp1V4K_Qkunlxnsel6AzRJomHnwworTZdc27DdIPvYIdMfca7V0JECDiuZZyahCdALPL-HFrfmXOJwZ88sDJoeOlyW1ZAVYclMBJkyMt-K3Y3PTbnpLLFtp77Dvt6Yj0FL0l-hUnGkiCzhIc3Oi29GueuABK3q_F0NYDmld9CmKuFxAY_XF2uhsB9vwdNwL5oCrYuJDNuqsnxjbbjHeJJYAjV31X3K_QgSdnPFAjAqji84IKkxu_d15QRezG9q4GOSAmH8_eGLY1EKqN--EUSdia4foXae_naXKmfV_W4hP-CNpp0QydovxxNvRsL0mxzTx36OtIytnQVjLja0wHk1Y-A69g1mkVwOcoRXTvm5MbZY3v1VxY_RHu_w3lft092FiE7cjQw8gAhX8SoBQ12Z6BTE4FS8UEodNA-Th4bj6LgjyofR0Ks45BYEqw1YGpFnzK2TT9ClMLIaiN3Pqk2pit6FE3HbffZ3T2w9J_tFbw9LhWmRxDI2K1oAdC2JYrB1IvzEhlNWh-Ocki8mB4mNnzuapLVk-6SJrpFMujDCk6PZCgL0YYGI7Scb0DpZCnJTOUVzOEQotN9SFYK51dlQw6ZK92-AUKvTgNZCnayjpoi4DRSPu93CE4ixmiUHeKdFyZacr0hda7ADzswzEqB2oJJexjDQSNUnW0rrTvz_0I
https://watermark.silverchair.com/089120103322753356.pdf?token=AQECAHi208BE49Ooan9kkhW_Ercy7Dm3ZL_9Cf3qfKAc485ysgAAAtQwggLQBgkqhkiG9w0BBwagggLBMIICvQIBADCCArYGCSqGSIb3DQEHATAeBglghkgBZQMEAS4wEQQMwG2ngpiDb6k53a44AgEQgIIChy5_BKKBl-prto3AIAMuvRzjlehZgRREGpkXqmQ44Qj2w_e7qssGN1rCpaW955RjknVa_1USD5BspsZaSF56zzOsw0cdLxU_AXqVtYuSsWclpsf28UAAcnDaZCOay23dDOGqMjKzWO4rqQ0nkw9IrDxGTBdD2R-doERXaIS2rLb7tzxdLRcgwp1V4K_Qkunlxnsel6AzRJomHnwworTZdc27DdIPvYIdMfca7V0JECDiuZZyahCdALPL-HFrfmXOJwZ88sDJoeOlyW1ZAVYclMBJkyMt-K3Y3PTbnpLLFtp77Dvt6Yj0FL0l-hUnGkiCzhIc3Oi29GueuABK3q_F0NYDmld9CmKuFxAY_XF2uhsB9vwdNwL5oCrYuJDNuqsnxjbbjHeJJYAjV31X3K_QgSdnPFAjAqji84IKkxu_d15QRezG9q4GOSAmH8_eGLY1EKqN--EUSdia4foXae_naXKmfV_W4hP-CNpp0QydovxxNvRsL0mxzTx36OtIytnQVjLja0wHk1Y-A69g1mkVwOcoRXTvm5MbZY3v1VxY_RHu_w3lft092FiE7cjQw8gAhX8SoBQ12Z6BTE4FS8UEodNA-Th4bj6LgjyofR0Ks45BYEqw1YGpFnzK2TT9ClMLIaiN3Pqk2pit6FE3HbffZ3T2w9J_tFbw9LhWmRxDI2K1oAdC2JYrB1IvzEhlNWh-Ocki8mB4mNnzuapLVk-6SJrpFMujDCk6PZCgL0YYGI7Scb0DpZCnJTOUVzOEQotN9SFYK51dlQw6ZK92-AUKvTgNZCnayjpoi4DRSPu93CE4ixmiUHeKdFyZacr0hda7ADzswzEqB2oJJexjDQSNUnW0rrTvz_0I
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.725.801&rep=rep1&type=pdf
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.725.801&rep=rep1&type=pdf
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.725.801&rep=rep1&type=pdf
https://doi.org/10.1145/362007.362035
https://doi.org/10.1145/362007.362035
https://doi.org/10.1145/362007.362035
https://www.aclweb.org/anthology/N03-1009
https://www.aclweb.org/anthology/N03-1009
https://www.aclweb.org/anthology/N03-1009
http://cs.jhu.edu/~jason/papers/#eisner-blatz-2007
http://cs.jhu.edu/~jason/papers/#eisner-blatz-2007
http://cs.jhu.edu/~jason/papers/#eisner-blatz-2007
http://cs.jhu.edu/~jason/papers/#eisner-blatz-2007
http://cs.jhu.edu/~jason/papers/#eisner-blatz-2007
https://www.aclweb.org/anthology/H05-1036
https://www.aclweb.org/anthology/H05-1036
https://www.aclweb.org/anthology/H05-1036
https://www.orchid.inf.tu-dresden.de/gdp/diploma_theses/Diplomarbeit_Gebhardt.pdf
https://www.orchid.inf.tu-dresden.de/gdp/diploma_theses/Diplomarbeit_Gebhardt.pdf
https://www.orchid.inf.tu-dresden.de/gdp/diploma_theses/Diplomarbeit_Gebhardt.pdf
https://www.orchid.inf.tu-dresden.de/gdp/diploma_theses/Diplomarbeit_Gebhardt.pdf
https://www.orchid.inf.tu-dresden.de/gdp/diploma_theses/Diplomarbeit_Gebhardt.pdf
https://www.aclweb.org/anthology/J99-4004
https://doi.org/10.1145/357103.357112
https://www.aclweb.org/anthology/N01-1021
https://www.aclweb.org/anthology/N01-1021
https://www.aclweb.org/anthology/N01-1021
http://ce.sharif.edu/courses/94-95/1/ce414-2/resources/root/Text%20Books/Automata/John%20E.%20Hopcroft,%20Rajeev%20Motwani,%20Jeffrey%20D.%20Ullman-Introduction%20to%20Automata%20Theory,%20Languages,%20and%20Computations-Prentice%20Hall%20(2006).pdf
http://ce.sharif.edu/courses/94-95/1/ce414-2/resources/root/Text%20Books/Automata/John%20E.%20Hopcroft,%20Rajeev%20Motwani,%20Jeffrey%20D.%20Ullman-Introduction%20to%20Automata%20Theory,%20Languages,%20and%20Computations-Prentice%20Hall%20(2006).pdf
http://ce.sharif.edu/courses/94-95/1/ce414-2/resources/root/Text%20Books/Automata/John%20E.%20Hopcroft,%20Rajeev%20Motwani,%20Jeffrey%20D.%20Ullman-Introduction%20to%20Automata%20Theory,%20Languages,%20and%20Computations-Prentice%20Hall%20(2006).pdf
http://web.science.mq.edu.au/~mjohnson/Software.htm
http://web.science.mq.edu.au/~mjohnson/Software.htm
http://web.science.mq.edu.au/~mjohnson/Software.htm
https://doi.org/10.1007/BF00288959
https://www.pearson.com/us/higher-education/program/Jurafsky-Speech-and-Language-Processing-2nd-Edition/PGM181706.html
https://www.pearson.com/us/higher-education/program/Jurafsky-Speech-and-Language-Processing-2nd-Edition/PGM181706.html
https://www.pearson.com/us/higher-education/program/Jurafsky-Speech-and-Language-Processing-2nd-Edition/PGM181706.html
https://www.aclweb.org/anthology/W01-1812
https://www.aclweb.org/anthology/W01-1812
https://www.aclweb.org/anthology/W01-1812
https://doi.org/10.3115/1073012.1073056
https://doi.org/10.3115/1073012.1073056
https://doi.org/10.3115/1073012.1073056
https://doi.org/10.3115/1073012.1073056
https://doi.org/10.3115/1073012.1073056
https://doi.org/10.3115/1073012.1073056
https://doi.org/10.3115/1073012.1073056
https://link.springer.com/chapter/10.1007/978-3-642-82122-6_4
https://link.springer.com/chapter/10.1007/978-3-642-82122-6_4
https://link.springer.com/chapter/10.1007/978-3-642-82122-6_4
https://doi.org/10.3115/981623.981640
https://doi.org/10.1016/0020-0190(92)90260-3
https://doi.org/10.1016/0020-0190(92)90260-3
https://doi.org/10.1016/0020-0190(92)90260-3
https://doi.org/10.1016/0304-3975(77)90056-1
https://doi.org/10.1016/0304-3975(77)90056-1
https://doi.org/10.1016/0304-3975(77)90056-1
https://www.aclweb.org/anthology/J93-2004/
https://www.aclweb.org/anthology/J93-2004/
https://www.aclweb.org/anthology/J93-2004/
https://doi.org/10.1145/581771.581774
https://doi.org/10.1145/581771.581774
https://doi.org/10.1145/581771.581774

Hongyuan Mei, Guanghui Qin, Minjie Xu, and Jason745
Eisner. 2020. Neural Datalog through time: In-746
formed temporal modeling via logical specification.747
In Proceedings of the 37th International Conference748
on Machine Learning.749

Guido Minnen. 1996. Magic for filter optimization750
in dynamic bottom-up processing. In Proceedings751
of the 34th conference on Association for Computa-752
tional Linguistics, pages 247–254.753

Mehryar Mohri. 1997. Finite-state transducers in lan-754
guage and speech processing. Computational Lin-755
guistics, 23(2):269–311.756

Mehryar Mohri. 2000. Minimization algorithms for se-757
quential transducers. Theoretical Computer Science,758
324:177–201.759

Mehryar Mohri. 2002. Generic ε-removal and input ε-760
normalization algorithms for weighted transducers.761
International Journal of Foundations of Computer762
Science, 13(1):129–143.763

Robert C. Moore. 2000. Improved left-corner chart764
parsing for large context-free grammars. In Proceed-765
ings of the Sixth International Workshop on Parsing766
Technologies, pages 171–182, Trento, Italy. Associa-767
tion for Computational Linguistics.768

Mark J. Nederhof. 1994. Linguistic Parsing and Pro-769
gram Transformations. Ph.D. thesis, University of770
Nijmegen.771

Mark-Jan Nederhof and Giorgio Satta. 2008. Comput-772
ing partition functions of PCFGs. Research on Lan-773
guage and Computation, 6(2):139–162.774

Fernando C. N. Pereira and Stuart M. Shieber. 1987.775
Prolog and Natural-Language Analysis. Number 10776
in CSLI Lecture Notes. Center for the Study of Lan-777
guage and Information.778

Fernando C. N. Pereira and David H. D. Warren. 1983.779
Parsing as deduction. In 21st Annual Meeting of the780
Association for Computational Linguistics, pages781
137–144, Cambridge, Massachusetts, USA. Associ-782
ation for Computational Linguistics.783

Mark Perlin. 1991. LR recursive transition networks784
for Earley and Tomita parsing. In 29th Annual Meet-785
ing of the Association for Computational Linguistics,786
pages 98–105, Berkeley, California, USA. Associa-787
tion for Computational Linguistics.788

Slav Petrov, Leon Barrett, Romain Thibaux, and Dan789
Klein. 2006. Learning accurate, compact, and inter-790
pretable tree annotation. In Proceedings of the 21st791
International Conference on Computational Linguis-792
tics and 44th Annual Meeting of the Association for793
Computational Linguistics, pages 433–440, Sydney,794
Australia. Association for Computational Linguis-795
tics.796

Benjamin C. Pierce. 2002. Types and Programming797
Languages. MIT Press.798

Sinan Polat, Merve Selcuk-Simsek, and Ilyas Cicekli. 799
2016. A modified earley parser for huge natural lan- 800
guage grammars. Res. Comput. Sci., 117:23–35. 801

Raghu Ramakrishnan. 1991. Magic templates: A spell- 802
binding approach to logic programs. Journal of 803
Logic Programming, 11(3-4):189–216. 804

Dominique Revuz. 1992. Minimisation of acyclic de- 805
terministic automata in linear time. Theoretical 806
Computer Science, 92(1):181–189. 807

Brian Roark. 2001. Probabilistic top-down parsing 808
and language modeling. Computational Linguistics, 809
27(2):249–276. 810

Stuart M. Shieber, Yves Schabes, and Fernando C. N. 811
Pereira. 1995. Principles and implementation of 812
deductive parsing. Journal of Logic Programming, 813
24(1&2):3–36. 814

Richard Shin, Christopher H. Lin, Sam Thomson, 815
Charles Chen, Subhro Roy, Emmanouil Antonios 816
Platanios, Adam Pauls, Dan Klein, Jason Eisner, and 817
Benjamin Van Durme. 2021. Constrained language 818
models yield few-shot semantic parsers. In Proceed- 819
ings of the 2021 Conference on Empirical Methods 820
in Natural Language Processing, Punta Cana. 821

Klaas Sikkel. 1993. Parsing Schemata. Ph.D. thesis, 822
University of Twente, Enschede, Netherlands. 823

Andreas Stolcke. 1995. An efficient probabilis- 824
tic context-free parsing algorithm that computes 825
prefix probabilities. Computational Linguistics, 826
21(2):165–201. 827

Andreas Stolcke and Stephen M. Omohundro. 1994. 828
Best-first model merging for hidden Markov model 829
induction. Technical Report ICSI TR-94-003, ICSI, 830
Berkeley, CA. 831

Hisao Tamaki and Taisuke Sato. 1984. Unfold/fold 832
transformation of logic programs. In Proceedings of 833
the Second International Logic Programming Con- 834
ference, Uppsala University, Uppsala, Sweden, July 835
2-6, 1984, pages 127–138. 836

Robert Endre Tarjan. 1981a. Fast algorithms for solv- 837
ing path problems. Journal of the ACM, 28(3):594– 838
614. 839

Robert Endre Tarjan. 1981b. A unified approach to 840
path problems. Journal of the ACM, 28(3):577–593. 841

William A. Woods. 1970. Transition network gram- 842
mars for natural language analysis. Communica- 843
tions of the ACM, 13(10):591–606. 844

10

https://proceedings.mlr.press/v119/mei20a.html
https://proceedings.mlr.press/v119/mei20a.html
https://proceedings.mlr.press/v119/mei20a.html
https://arxiv.org/pdf/cmp-lg/9604019.pdf
https://arxiv.org/pdf/cmp-lg/9604019.pdf
https://arxiv.org/pdf/cmp-lg/9604019.pdf
https://aclanthology.org/J97-2003
https://aclanthology.org/J97-2003
https://aclanthology.org/J97-2003
https://www.sciencedirect.com/science/article/pii/S0304397598001157
https://www.sciencedirect.com/science/article/pii/S0304397598001157
https://www.sciencedirect.com/science/article/pii/S0304397598001157
https://doi.org/10.1142/S0129054102000996
https://doi.org/10.1142/S0129054102000996
https://doi.org/10.1142/S0129054102000996
https://www.aclweb.org/anthology/2000.iwpt-1.18
https://www.aclweb.org/anthology/2000.iwpt-1.18
https://www.aclweb.org/anthology/2000.iwpt-1.18
https://mjn.host.cs.st-andrews.ac.uk/publications/thesis.pdf
https://mjn.host.cs.st-andrews.ac.uk/publications/thesis.pdf
https://mjn.host.cs.st-andrews.ac.uk/publications/thesis.pdf
https://mjn.host.cs.st-andrews.ac.uk/publications/2008d.pdf
https://mjn.host.cs.st-andrews.ac.uk/publications/2008d.pdf
https://mjn.host.cs.st-andrews.ac.uk/publications/2008d.pdf
http://www.mtome.com/Publications/PNLA/pnla.html
https://doi.org/10.3115/981311.981338
https://doi.org/10.3115/981344.981357
https://doi.org/10.3115/981344.981357
https://doi.org/10.3115/981344.981357
https://doi.org/10.3115/1220175.1220230
https://doi.org/10.3115/1220175.1220230
https://doi.org/10.3115/1220175.1220230
https://mitpress.mit.edu/books/types-and-programming-languages
https://mitpress.mit.edu/books/types-and-programming-languages
https://mitpress.mit.edu/books/types-and-programming-languages
http://rcs.cic.ipn.mx/2016_117/A%20Modified%20Earley%20Parser%20for%20Huge%20Natural%20Language%20Grammars.pdf
http://rcs.cic.ipn.mx/2016_117/A%20Modified%20Earley%20Parser%20for%20Huge%20Natural%20Language%20Grammars.pdf
http://rcs.cic.ipn.mx/2016_117/A%20Modified%20Earley%20Parser%20for%20Huge%20Natural%20Language%20Grammars.pdf
https://doi.org/http://dx.doi.org/10.1016/0743-1066(91)90026-L
https://doi.org/http://dx.doi.org/10.1016/0743-1066(91)90026-L
https://doi.org/http://dx.doi.org/10.1016/0743-1066(91)90026-L
https://doi.org/10.1016/0304-3975(92)90142-3
https://doi.org/10.1016/0304-3975(92)90142-3
https://doi.org/10.1016/0304-3975(92)90142-3
https://doi.org/10.1162/089120101750300526
https://doi.org/10.1162/089120101750300526
https://doi.org/10.1162/089120101750300526
https://doi.org/10.1016/0743-1066(95)00035-I
https://doi.org/10.1016/0743-1066(95)00035-I
https://doi.org/10.1016/0743-1066(95)00035-I
https://arxiv.org/abs/2104.08768
https://arxiv.org/abs/2104.08768
https://arxiv.org/abs/2104.08768
http://purl.utwente.nl/publications/64273
https://www.aclweb.org/anthology/J95-2002/
https://www.aclweb.org/anthology/J95-2002/
https://www.aclweb.org/anthology/J95-2002/
https://www.aclweb.org/anthology/J95-2002/
https://www.aclweb.org/anthology/J95-2002/
https://www.icsi.berkeley.edu/icsi/node/2604
https://www.icsi.berkeley.edu/icsi/node/2604
https://www.icsi.berkeley.edu/icsi/node/2604
https://ci.nii.ac.jp/naid/10000035006/
https://ci.nii.ac.jp/naid/10000035006/
https://ci.nii.ac.jp/naid/10000035006/
https://doi.org/10.1145/322261.322273
https://doi.org/10.1145/322261.322273
https://doi.org/10.1145/322261.322273
https://doi.org/10.1145/322261.322272
https://doi.org/10.1145/322261.322272
https://doi.org/10.1145/322261.322272
https://doi.org/10.1145/355598.362773
https://doi.org/10.1145/355598.362773
https://doi.org/10.1145/355598.362773

A Eliminating Unary Cycles845

Stolcke (1995, Section 4.5) addresses the problem846

of unary production cycles by modifying the deduc-847

tion rules.14 He assumes use of the real semiring,848

where ⊕ = + and ⊗ = ×. Here, inverting a sin-849

gle |N | × |N | matrix suffices to compute the total850

weight of all rewrite sequences A ∗⇒B, known as851

unary chains, for each ordered pair A,B ∈ N 2.852

His modified rules then ignore the original unary853

productions and refer to these weights instead.854

We take a similar approach, but instead describe855

it as a transformation of the weighted grammar,856

leaving the deduction system unchanged. We also857

generalize to other closed semirings. Finally, we858

do not collapse all unary chains as Stolcke (1995)859

does, but only those subchains that can appear on860

cycles. This prevents the grammar size from blow-861

ing up more than necessary (recall that the parser’s862

runtime is proportional to grammar size). For exam-863

ple, if the unary productions are Ai → Ai+1 for all864

1 ≤ i < K, then there is no cycle and our transfor-865

mation leaves these K − 1 productions unchanged,866

rather than replacing them with K(K − 1)/2 new867

unary productions that correspond to the possible868

chains Ai
∗⇒Aj for 1 ≤ i ≤ j ≤ K.869

Given a weighted CFG G = 〈N ,Σ,R, S, w〉,870

consider the weighted graph whose vertices are N871

and whose weighted edges A→ B are given by872

the unary productions A→ B. (This graph may873

include self-loops such as A→ A.) Its strongly874

connected components (SCCs) can be found in lin-875

ear time and thus in O(|G|) time. For any A and B876

in the same SCC,w(A
∗⇒B) ∈W denotes the total877

weight of all rewrite sequences of the form A
∗⇒B878

(including the 0-length sequence with weight 1 ,879

if A = B). For an SCC of size K, there are880

K2 such weights and they can be found in total881

time O
(
K3
)

by the Kleene–Floyd–Warshall algo-882

rithm (Lehmann, 1977; Tarjan, 1981b,a). In the883

real semiring, this algorithm corresponds to using884

Gauss-Jordan elimination to invert I−E, where E885

is the weighted adjacency matrix of the SCC (rather886

than of the whole graph as in Stolcke (1995)). In887

the general case, it computes the infinite matrix888

sum I ⊕ E ⊕ (E ⊗ E)⊕ · · · in closed form, with889

the help of the ∗ operator of the closed semiring.890

We now construct a new grammar G′ =891

〈N ′,Σ,R′, S, w′〉 that has no unary cycles, as fol-892

14Johnson (2000) provides an implementation of CKY (and
the inside-outside algorithm) that allows unary productions
and handles unary cycles in a similar way.

lows. For each A ∈ N , our N ′ contains two non- 893

terminals, A and A. For each ordered pair of non- 894

terminalsA,B ∈ N 2 that fall in the same SCC,R′ 895

contains a productionA→ B with w′
(
A→ B

)
= 896

w
(
A
∗⇒B

)
. For every rule A→ ρ inR that is not 897

of the formA→ B whereA andB fall in the same 898

SCC, R′ also contains a production A→ ρ with 899

w′(A→ ρ) = w(A→ ρ), where ρ is a version of 900

ρ in which each non-terminal B has been replaced 901

by B. Finally, as a constant-factor optimization, A 902

and A may be merged back together if A formed a 903

trivial SCC with no self-loop: that is, remove the 904

weight- 1 production A→ A fromR′ and replace 905

all copies of A and A with A throughout G′. 906

B Eliminating Nullary Productions 907

We eliminate nullary productions from the 908

weighted grammar in order to avoid cycles. This 909

must be done before eliminating unary cycles 910

(App. A), since eliminating nullary productions 911

can create new unary productions. Hopcroft et al. 912

(2007, Chapter 7.1.3) explain how to do this in the 913

unweighted case. Stolcke (1995, Section 4.7.4) 914

sketches a generalization to the probability semir- 915

ing, but it also uses the non-semiring operations of 916

division and subtraction (and is not clearly correct). 917

We therefore give an explicit general construction. 918

While we provide a method that handles nullary 919

productions by modifying the grammar, it is also 920

possible to instead modify the algorithm to allow 921

advancing the dot over nullable non-terminals, i.e., 922

non-terminals A such that the grammar allows 923

A
∗⇒ε (Aycock and Horspool, 2002). 924

Our first step, like Stolcke’s, is to compute the 925

“null weight” eA
def
= w

(
A
∗⇒ε
)

for each A ∈ N . 926

Although a closed semiring does not provide an 927

operator for this summation, these values are a so- 928

lution to the system of |N | polynomial equations15 929930

eA =
⊕

(A→B1···Bn)∈R

w(A→ B1 · · ·Bn)⊗
n⊗
i=1

eBi (3) 931

A solution should exist for the sum in (2) to be 932

well-defined in the first place. If so, a solution can 933

normally be found in practice by initializing all 934

eA = 0 and then iteratively recomputing them, 935

using the equations above, until numerical conver- 936

gence. Nederhof and Satta (2008) review some 937

other methods for the case of the real semiring. 938

15If (A→ ε) ∈ R, it will be covered by the case n = 0.

11

We now modify the grammar as follows. We939

adopt the convention that for a production A→ ρ940

that is not yet in R, we consider its weight to be941

w(A→ ρ) = 0 , and increasing this weight by any942

non- 0 amount adds it toR. For each non-terminal943

B such that eB 6= 0 , let us assume the existence944

of an auxiliary non-terminal B 6=ε /∈ N such that945

B 6=ε 6 ∗⇒ε but ∀x 6= ε, w
(
B6=ε

∗⇒x
)

= w
(
B
∗⇒x
)

.946

We iterate this step: as long as we can find a produc-947

tion A→ µB ν inR such that eB ∈ N , we mod-948

ify it to the more restricted version A→ µB6=ε ν949

(keeping its weight), but to preserve the possibility950

thatB ∗⇒ε, we also increase the weight of the short-951

ened production A→ µ ν by w(A→ µB ν)⊗eB .952

A production A→ ρ where ρ includes k non-953

terminals will be gradually split up by the above954

procedure into 2k productions, in which each non-955

terminal B has been either specialized to B 6=ε or956

removed. In particular, we can see from (3) that957

w(A→ ε) = eA. So far we have preserved all958

weights w
(
A
∗⇒x
)

, provided that the auxiliary959

non-terminals behave as assumed. But for each960

A we now remove A→ ε from R, and since A961

can no longer rewrite as ε, we rename all other962

rules A→ ρ to A 6=ε → ρ. This closes the loop by963

defining the auxiliary non-terminals as desired.964

Finally, since S is the start symbol, we add back965

S → ε (with weight eS) as well as adding the new966

rule S → S 6=ε (with weight 1). Thus (as in Chom-967

sky Normal Form), the only nullary rule is now968

S → ε, which may be needed to generate the 0-969

length sentence. We now have a new grammar with970

non-terminals N ′ = {S} ∪ {B 6=ε : B ∈ N}. To971

simplify the names, we can rename the start symbol972

S to Ŝ and then drop the 6=ε subscripts.16973

C Handling Nullary and Unary974

Productions in an FSA975

We can handle nullary productions by directly976

adapting the construction of App. B to the WFSA977

case. Indeed, the WFSA version is simpler to ex-978

press. For each arc q B
 q′ such that B ∈ N and979

eB 6= 0 , we replace the B label of that arc with980

B 6=ε (preserving the arc’s weight), and add a new981

arc q ε
 q′ of weight eB . We then define a new982

WFSA M′ = (M ∩ ¬Mbad) ∪ Mgood, where983

Mbad is an unweighted FSA that accepts exactly984

16We can also iteratively remove any useless non-terminals
(footnote 6), which correspond to non-terminals that only
rewrote as ε in the original grammar.

those strings of the form Â (i.e., nullary produc- 985

tions), ¬ takes the unweighted complement, and 986

Mgood is a WFSA that accepts exactly strings of 987

the form Ŝ (with weight eS) and S6=εŜ (with weight 988

1). As this construction introduces new ε arcs, it 989

should precede the elimination of ε-cycles. 990

Notice that in the example of App. B where a 991

production A→ ρ was replaced with up to 2k − 1 992

variants, the WFSA construction efficiently shares 993

structure among these variants. It adds at most k 994

edges at the first step and at most doubles the total 995

number of states through intersection with ¬Mbad. 996

Similarly, we can handle unary productions by 997

directly adapting the construction of App. A to the 998

WFSA case. We first extract all weighted unary 999

rules by intersectingM with the unweighted lan- 1000

guage {BÂ : A,B ∈ N} (and determinizing the 1001

result so as to combine duplicate rules). Exactly as 1002

in App. A, we construct the unary rule graph and 1003

compute its SCCs along with weights w
(
A
∗⇒B

)
1004

for all A,B in the same SCC. We modify the 1005

WFSA by underlining all hatted non-terminals Â 1006

and overlining all non-terminals B. Finally, we 1007

define our new WFSA grammar (M∩¬Mbad) ∪ 1008

Mgood. Here Mbad is an unweighted FSA that 1009

accepts exactly those strings of the form BÂ and 1010

Mgood is a WFSA that accepts exactly strings of 1011

the form BÂ such that A,B are in the same SCC, 1012

with weight w
(
A
∗⇒B

)
. 1013

Following each construction, non-terminal 1014

names can again be simplified as in Apps. A and B. 1015

Finally, §6 mentioned that we must eliminate 1016

ε-cycles from the FSA. The algorithm for doing 1017

so (Mohri, 2002) is fundamentally the same as our 1018

method for eliminating unary rule cycles from a 1019

CFG (App. A), but now it operates on the graph 1020

whose edges are ε-transitions of the FSA, rather 1021

than the graph whose edges are unary rules of the 1022

CFG. 1023

12

D Runtime Experiment Results1024

1016×100 2×101 3×101 4×101

Sentence length (N)

10−1

100

101

102

A
ve

ra
ge

pa
rs

e
tim

e
(s

ec
on

ds
)

EARLEY

EARLEY–FAST

EARLEY–FSA

1016×100 2×101 3×101 4×101

Sentence length (N)

10−1

100

101

102

A
ve

ra
ge

pa
rs

e
tim

e
(s

ec
on

ds
)

EARLEY

EARLEY–FAST

EARLEY–FSA

Figure 1: Average parse time per sentence for 100 ran-
domly selected sentences of 5–40 words on the M2
grammar (left) and PM2 grammar (right). As all these
algorithms are worst-case cubic in N , each curve on
these log-log plots is bounded above by a line of slope
3, but the lower lines have better grammar constants.
The experiment was conducted using a Cython imple-
mentation on an Intel(R) Core(TM) i7-7500U proces-
sor with 16GB RAM.

13

