Efficient Weighted Deduction Systems for Earley’s Algorithm

Anonymous ACL submission

Abstract

The parsing algorithm of Earley (1970),
as presented, has a runtime complexity of
O(N®|G||R|) where N is the length of the
sentence, |G| is the size of the grammar, and
|R| is the number of productions in the gram-
mar. This is unworkable for the large gram-
mars that arise in natural language process-
ing. Fortunately, the dynamic programming
algorithm can be improved to run in time
O(N?3|G|), matching the complexity of run-
ning CKY on a binarized version of G. Some
of the necessary speed-ups have been pre-
sented in part or in full in various parts of the
literature. However, there has been no uni-
fied, formal treatment that is written as a de-
duction system'or covers the weighted case.
We present such a treatment in terms of five
proof rules that can be used in weighted deduc-
tion, which refine Earley’s PREDICT, SCAN
and COMPLETE actions. We also provide a
generalization of Earley’s algorithm that uses
a finite-state automaton to represent the gram-
mar, and whose runtime is proportional to the
size of the automaton (and the usual (’)(N 3)
term), or more precisely the size of the portion
of the automaton that is reached while parsing
the input sentence. Further speed-ups can then
be achieved by minimizing the automaton so
that similar productions share transitions.

1 Introduction

Earley’s algorithm (1970) was a landmark achieve-
ment in theoretical computer science. It was the
first algorithm that could directly parse under an
arbitrary context-free grammar in time O (N 3) (N
being the length of the input string). Also, since it
exhaustively filters rules by left context, it parses
unambiguous grammars in O (N?) time and a class
of deterministic context-free grammars in O(N).
Earley’s algorithm is well-known in computa-
tional linguistics and NLP, and not only because of
!"That said, declarative formulations have been presented in

other formats in the dissertations of Barthélemy (1993), de la
Clergerie (1993), and Nederhof (1994).

its ability to directly handle unrestricted grammars
and exploit their structure for potential speedups.
Because it parses incrementally from left to right,
it can be used for online sentence processing, main-
taining a parse forest over the sentence prefix that
has been seen so far—which supports incremental
syntactic featurization and incremental semantic
interpretation—as well as the set of grammatical
next words.” It can be attractively extended to com-
pute the probabilities of these next words (Stolcke,
1995), which is the standard way to compute au-
toregressive language model probabilities under a
PCFG to support cognitive modeling (Hale, 2001),
speech recognition (Roark, 2001), and neural gen-
eration of grammatical text (Shin et al., 2021).

The runtime of Earley’s algorithm is cubic in the
length of a sentence. However, an often overlooked
aspect in the algorithm’s analysis is the grammar
constant. Earley’s algorithm takes O(N?|G||R|)
time where |G| is the size of the grammar (the total
length of all productions) and |R| is the number of
productions (Shieber et al., 1995; Stolcke, 1995;
Goodman, 1999). When the grammar is taken to be
constant, these terms are absorbed into the O oper-
ator. Indeed, Earley (1970)’s original paper did not
discuss the grammar constant in its runtime anal-
ysis. However, natural language grammars can be
very large (Dunlop et al., 2010). For example, the
Berkeley grammar (Petrov et al., 2006), a learned
grammar for the Penn Treebank (PTB) (Marcus
et al., 1993), contains over one million productions.
Grammars of such magnitude make the O(|G||R|)
factor an intimidating prospect.

Fortunately, some massaging of Earley’s dy-
namic program makes it run in O(N?|G|). This
matches the runtime of the CKY parsing algorithm
on a binarized version of G (when G can be bi-
narized, i.e., it has no unary or nullary produc-
tions). However, the literature around Earley’s
Ina programming language editor, incremental interpreta-

tion can support syntax checking, syntax highlighting, and
tooltips; next-word prediction can support autocomplete.

often misses this bound or over-complicates the
explanation of the necessary speed-ups:

» Standard presentations of Earley’s algorithm
(e.g., the textbook treatment of Jurafsky and Mar-
tin, 2009, Section 13.4) typically give the run-
time as O (N?), eliding the grammar constant.

* The Graham—Harrison—-Ruzzo (GHR) algo-
rithm, a well known variant of Earley’s, is
a non-weighted recognizer that again runs in
O(N?|G||R|). The original exposition of Gra-
ham et al. (1980) did provide implementation de-
tails in their Section 3 that enables the algorithm
to run in the improved O (NN?3|G|), but these de-
tails were not presented in the form of a deduc-
tion system and were apparently lost in retellings
of the algorithm (Sikkel, 1993, page 112).

* Leermakers (1992) and Moore (2000) improve
the efficiency of the COMPLETE rule, but not
the PREDICT rule. This leads to an algorithm
that runs in O(N?|G| + N?|G||R|) time. This
is still unusable for large grammars.

* Klein and Manning (2001a) propose an agenda-
based Earley parser that distinguishes “active”
and “passive” items (Gebhardt, 2015). This im-
proves the runtime to O (N3|G||N]) where N/
is the set of non-terminals in the grammar. The
extra factor of O(|NV|) is still quite large and
could have been dispensed with.

In this paper, we provide a simple deduction sys-
tem, EARLEY-FAST, that can be used to discover
all parses and compute their total semiring weight
in O(N3|G|) time.> We compare EARLEY-FAST
to the traditional deduction system, EARLEY. We
discuss modifications in §5 and Apps. A and B that
must be made to the grammar in order to avoid
repeatedly deducing new proofs of an item (due
to cyclic derivations of a string via unary and/or
nullary rules), which can prevent the weighted ver-
sion of Earley’s algorithm from terminating.

We conduct a small empirical experiment using
various grammars induced from the PTB and no
pruning. For all of these grammars, EARLEY re-
quires over 3 minutes to parse a single sentence
from the PTB over 25 words, which is not practi-
cal. Nevertheless, we are able to parse sentences
under 40 words using EARLEY-FAST in 7 seconds

3In the weighted case (§5), this G is a preprocessed version of
the grammar. Preprocessing takes additional time and may
enlarge the grammar. Also, our runtimes assume that the
semiring operations @, ®, and * take O(1) time each.

(again, without pruning). In §6, we additionally
present a generalization in which dotted produc-
tions (within items of the deduction system) are
replaced by states of a finite-state automaton (FSA).
This generalization, which we call EARLEY-FSA,
allows us to shrink the grammar constant further,
yielding a further 2.5x speed-up when using the
PTB-induced grammars.

2 Weighted Context-Free Grammars

A context-free grammar (CFG) G is a tuple
(N,%,R,S) where X is a finite set of terminal
symbols, N is a finite set of non-terminal symbols
with X NN = (), R is a set of productions from
a non-terminal to a sequence of non-terminals and
terminals (i.e., R CN x (NUX)*),and S € N
is the start symbol. We denote terminal symbols
by lower-case letters (a, b, . ..) and non-terminal
symbols by upper-case letters (A, B, ...). We use
a Greek letter (p, i, or v) to denote a sequence of
non-terminals and terminals, i.e., an element of
(N U X)*. Therefore, a production has the form
A — p. Note that p may be the empty sequence e.
We refer to |p| > 0 as the arity of the production
and |A — p| = 1+ |p| as the size of the produc-
tion. Productions of arity 0, 1, and 2 are referred to
as nullary, unary, and binary productions respec-
tively. We write |G| < > (A= p)er|p| for the total
size of the CFG. Therefore, if K is the maximum
arity of a production, |G| < |R|(1 + K).

For a given G, we write u = v to denote that
i € (N UX)* can be rewritten into v by a single
production of G. For example, AB = p B ex-
pands A into p using the production A — p. The
reflexive transitive closure of this relation, =, then
denotes rewriting by any sequence of zero or more
productions: for example, A B=>p j,v.

A derivation tree of G is a finite rooted ordered
tree T whose leaves are labeled with elements of X
and whose internal nodes are labeled with elements
of V, such that (1) the root is labeled with .S and (2)
if an internal node labeled with A has a sequence
of children labeled with p, then A — p is in R.
Given an input sentence x € ¥* of length IV, we
write 7y for its set of derivation trees, that is, all
trees with leaf sequence x. 7Tx is countable and
possibly infinite. It is non-empty iff S = x, with
each T € Ty serving as a witness that S = x.

We will also consider weighted CFGs, in which
each production A — p is additionally equipped
with a weight w(A — p) € W where W is

EARLEY

EARLEY-FAST

Domains

Items [ivjaA%M.V} U7k7a}

A= p,V(A—p ER

A—=p

i,j,ke€{0,...,N} A BeNU{S} aeX puveNUD)*

[i,5, A = pev]
[i,5, A = o]

[j;k,a] A—p
[i,5, A — *e]

A—=pVA—=p ER

Axioms [k — 1,k], Vhe{l,..., N} [k—1,k 2], Vke{l,...,N}
[0,07S—> 'S] [OaOaS*> .*}
Goal [0,N,5 — S| [0,0,8 — o]
B—=p . PRED]: ——————— [i,j, A = pe* BV
PRED: m [i,5,A— pe By (7,7, B — o]
B
PRED2: i [4,4, B = o]
[4,5,B = <p]
‘7 b’AH ° b’ k7 b? 7A*> ° -7 k’
Rules ScaN: [i.J - peavl U,k d Scan: g - peavl Ukdl
[i,k, A = pasv] [i,k, A = paey]
i, k,B— pe
coupr; 2B B el
[j,k, B = xe]
[i,5,A— peBv] [j,k,B— pe] [i,5,A— peBv] [j,k,B— %]
Cowmp: ComP2:

[i,k, A — uBev]

[i,k, A = uBev]

Table 1: Deduction systems for Earley (1970)’s algorithm (EARLEY) and our faster algorithm (EARLEY-FAST).

the set of values of a closed semiring S =
(W, ®, ®,*,0@,D). A semiring S has two opera-
tors, @, which is associative and commutative, and
&, which is associative and distributes over ®. Ad-
ditionally, the semiring contains values @, D € W
such that © is an identity for ¢ and annihilator for
® and @ is an identity for ®. A closed semiring
additionally has an operator * satisfying the axiom
Vw e W) w* =Ddwew" =0Ddw* @w. The
interpretation is that w* returns the infinite sum
Qv (wdw) d(wWRIWwR W) ---

For any A and p, any derivation tree 1" that es-
tablishes A= p can be given a weight

w(T) = @ uw(A = p) (1

(A—p)eT

where A — p ranges over the productions associ-
ated with the internal nodes of 7".* We then write
w <A = p) for the total weight of all such deriva-
tions. In particular, the goal of a weighted recog-
nizer is to find the total weight of all derivation
trees of a given input sentence x:

7, w(S:*>x> =P uw(1))
TeTx

4“The productions appear in this product in the order of a prefix
traversal of 7'; this is important if ® is not commutative.

An ordinary unweighted recognizer is the spe-
cial case where W is the boolean semiring, so
Zy = true iff SSx iff T # (. A parser is
a recognizer that returns one or more derivation
trees—this can be achieved using the derivation
semiring (Goodman, 1999) or by storing the prove-
nance of each derived item.

3 Earley’s Algorithm

We describe Earley’s algorithm using a deduc-
tion system, which is effectively a version of the
sequent calculus (Pierce, 2002) that is often em-
ployed in the presentation of parsing algorithms
and other logic programs (Pereira and Shieber,
1987). Much is known about how to execute (Good-
man, 1999), transform (Eisner and Blatz, 2007),
and neuralize (Mei et al., 2020) deduction systems.
A deduction system derives items using deduc-
tive rules. Items represent propositions; the rules
are used to derive all propositions that are true. A
deductive rule is of the form

X Y

Z
where EXAMPLE is the name of the rule, the O or
more items above the bar are called antecedents,
and the single item below the bar is called a conse-
quent. Antecedents may also be written to the side

EXAMPLE:

of the bar; these are called side conditions and will

be handled differently for weighted parsing in §5.

Axioms are special rules that have no antecedents;

as a shorthand, we omit the bar in this case and

simply write the consequent.

Our unweighted recognizer will determine
whether a certain goal item is provable by a certain
set of deductive rules from axioms that encode
G and x. The deduction system is set up so that
this is the case iff S=x. The provability of an
item under a deduction system can be generically
solved through forward chaining. An unweighted
parser is a version of this method that does some
extra bookkeeping and thus is able to return one
or more actual proofs of the goal item, which
correspond to derivation trees. In general, a proof
tree (or just proof) d of an item is a tree-structured
proof of that item.

Pereira and Warren (1983) first presented Ear-
ley’s algorithm as a deduction system, shown as
EARLEY in Table 1. Some items have the form
[i,7, A — pev]. The span (i,) refers to a con-
tiguous segment X;.; < Ziy1---xj of the in-
put sentence x. A — pv is a production in G,
and ¢ marks a position in the production. The
item [i, j, A — p e v] is derivable only if the gram-
mar has a production A — v such that ;= x;. ;-
Therefore, « indicates the progress we have made
through the production. An item with nothing to the
right of », e.g., [i, 7, A — pe] is called completed.
The grammar G is encoded by axioms A= p that
correspond to the productions of the grammar. The
input sentence x is encoded by axioms of the form
[k —1,k,a] where a € X; this axiom is true iff
Xp—1k = Tp = a.°

While u:*>xz-;j is a necessary condition for
[i, 7, A — pev] to be provable, it is not sufficient.
For efficiency, the EARLEY deduction system is
cleverly constructed so that this item is provable
iff® it can appear in a proof of some string that
begins with x(.;, and thus might appear in a deriva-
tion of x.”

3 All methods in this paper can be also applied directly to lattice
parsing, in which 4, j, k range over states in an acyclic lattice
of possible input strings, and 0 and N refer to the unique
initial and final states. A lattice edge from j to k labeled with
terminal a is then encoded by the axiom [4, k, a].

®This characterization assumes that every non-terminal B €
N can be expanded by some rule B — p. If not, B is useless
and can be safely eliminated from the grammar, along with
any production in R that mentions B. This may create new
useless non-terminals that can be eliminated in turn.

"Earley (1970) also generalized the algorithm to prove this
item only if it can appear in a proof of some string that begins

Including [0,0,5 — «S] as an axiom in the sys-
tem effectively causes forward chaining to start
looking for a derivation at position 0. The system
has proved S=>x if it can derive the goal item
[0,N,S — Ss], where N' = |x|. These two items
conveniently pretend that the grammar has been
augmented with a new start symbol S that only
rewrites according to the single production S 8.

Earley’s algorithm has three deduction rules:
PREDICT, SCAN, and COMPLETE. We describe
each of these rules and their runtime in detail. Ad-
ditionally, we discuss how past work has improved
on the runtime of the different rules in §3.4. We
analyze the runtime of the deduction system fol-
lowing McAllester (2002): for each deduction rule,
we examine the domain size of its free variables.

3.1 Predict

To look for constituents of type B starting at po-
sition j, using the rule B — p, we need to de-
rive [j,j, B — ep|. Earley’s algorithm imposes
[i,7, A — pe Bv] as aside condition, so that we
only start looking if such a constituent B could be
combined with some item to its left.®

B—p
[7,3: B = *p]
Runtime analysis. PRED has four free variables:
indices ¢ and j with a domain size of NV + 1, dotted
production A — ¢ B v with domain size |G|, and

production rule B — p with a domain size of |R]|.
Therefore, its total runtime is O (N?|G||R]).

PRED: [i,7,A— pe BV

3.2 Scan

If we have derived an incomplete item
[i,5,A— peav], we can advance the dot
if the next terminal symbol is a:

[Z7J7A_>M.G/V:| [j7k7a]
[i,k, A — paev]
This makes progress toward completing the A.

SCAN:

Runtime analysis. SCAN has four free variables:
indices 7, 7, and k£ with a domain size of NV + 1, and
dotted production A — 1 » B v with domain size
|G|. However, since we consider terminal symbols
to have a span width of 1, it is the case that j = k—1
and so SCAN has a total runtime of O(N?|G]).

with X.(j 1), for a fixed A. This is lookahead of A tokens.
$Minnen (1996) and Eisner and Blatz (2007) explain that this
side condition is an instance of the “magic sets” technique
that filters some unnecessary work from a bottom-up algo-
rithm (Ramakrishnan, 1991).

3.3 Complete

Recall that having [i, j, A — p« Bv] allowed us
to start looking for a B at position 7 (PRED).
Once we have found a complete B by deriving
[7,k, B — pe], we can advance the dot in the for-
mer rule:

[i,j,A— peBv] [jk,B— pe]
[i,k, A — uBev|

Runtime analysis. COMP has five free variables:
indices i, j, and k with a domain size of N + 1,
dotted production A — 1« B v with domain size
|G|, and the completed production B — p with a
domain size of |R|. Therefore, COMP will have a
total runtime of O (N3|G||R|).

CowmpP:

3.4 Previous Speed-ups

Putting the above steps together, the total runtime
of the EARLEY algorithm is O(N?|G||R]). In
addition, the number of possible derived items is
O(N?|G|), which is a bound on the space needed
by the algorithm to store the items that have been
derived so far and index them for fast lookup
(McAllester, 2002; Eisner et al., 2005). We briefly
discuss past approaches used to improve the asymp-
totic efficiency.

Leermakers (1992) noted that in an item of the
form [i, j, A — u V], the sequence p is irrelevant
to subsequent deductions. Therefore, he suggested
(in effect) replacing i with a generic placeholder
*. This merges items that had only differed
in their p values, so the algorithm processes
fewer items. This technique can also be seen in
Moore (2000) and Klein and Manning (2001a,b).
Importantly, this means that each non terminal
only has one completed state, [j, k, B — x+], for
each span. This improves the runtime of Earley’s
to O(N3|G||N| + N2|G||R|). Our §4.2 will give
a version of the trick that only gets this effect.
The full version of Leermakers (1992)’s trick is
subsumed by our generalized approach in §6.

While the GHR algorithm—a modified version
of Earley’s algorithm—is commonly known to be
O(N3|G||R]), Graham et al. (1980, Section 3) pro-
vide a detailed exploration of the low-level imple-
mentation of their algorithm that enables it to be
run in O(N?|G|) time. This explanation spans 20
pages and includes techniques similar to those men-
tioned in §4, as well as discussion of data structures.
To the best of our knowledge, these details have not
been carried forward in subsequent presentations
of GHR (Stolcke, 1995; Goodman, 1999).

4 An Improved Deduction System

Our EARLEY-FAST deduction system, shown in
the right column of Table 1, shaves a factor of
O(R) off the runtime of EARLEY. We introduce
items [i,j, A — %] and [i, j, A — *+] that will
be used to speed up PRED (§4.1) and CoMP (§4.2)
respectively. We can also use these items to replace
the goal item and the axiom that used S the extra
S symbol is no longer needed. In the remainder of
this section, we describe our new deduction rules
for COMP and PRED. (SCAN is unchanged.)

4.1 Predict

We split PRED into two rules: PRED1 and PRED2.
The first rule, PRED1, creates an item that gath-
ers together all requests to look for a given non-
terminal B starting at a given position j:

PREDI: [i,7,A— pe BV

43, B = +*]
There are three free variables in the rule: indices
7 and j, and dotted production A — « B v. There-
fore, PRED1 has a total runtime of O (N?|G|).

The second rule, PRED2, expands the item into
commitments to look for each specific kind of B:

4,5, B = +~]
43, B = *p]
PRED2 has two free variables: index j and pro-
duction B — p. Therefore, PRED2 has a runtime

of O(N|G|), leading to both and so the two rules
together have a runtime of O(N?|G|).

PRED2: B—peR

4.2 Complete

We speed up COMP in a similar fashion to PRED.
We split COMP into two rules: COMP1 and COMP2.
The first rule, COMP1, gathers all completed B
constituents over a given span into a single item:

.k, B — pe]

[4,k, B — %e]
We have three free variables: indices j and k, and
completed production B — p. Therefore, COMP1
has a total runtime of O (N?|G|).

The second rule, COMP2, attaches the result-

ing complete items to any incomplete items that
predicted them:

Cowmpl:

[i,5,A— peBv] [j,k,B — xe]
[i,k, A — uBev
We have four free variables: indices ¢, j, and k,
and dotted production A — p e Bv. Therefore,
COMP2 has a total runtime of O(N?|G|) and so

ComP2:

the two rules together have a runtime of O(N?3|G|).
This speed-up to the COMPLETE step is an instance
of the fold transform (Tamaki and Sato, 1984).

5 Semiring-Weighted Parsing

We have so far presented Earley’s algorithm and
our improved deduction system in the unweighted
case. This is equivalent to running a weighted
algorithm in the boolean semiring. However, we
are often interested in weighted recognition under
an arbitrary closed semiring (Mohri, 1997). In
weighted deduction, each axiom has a weight, and
the weight of a proof tree is the product under ®
of the weights of its axioms (which in our case
are input words and CFG productions), in the left-
to-right order in which they are encountered in
the proof tree. General algorithms for weighted
deduction (Goodman, 1999; Eisner et al., 2005)
can be used to find the total weight under & of all
proofs of the goal item (as in (2)).

To solve the weighted CFG recognition prob-
lem using weighted deduction, we can continue to
use the deduction systems in Table 1. Axioms
of the form A — p should inherit their weight
from the corresponding grammar production, i.e.,
w(A — p). All other axioms have weight . The
weight of a proof tree of the goal item (according to
the weighted deduction system) is now the weight
of the corresponding derivation tree (according to
the weighted CFG), so the total weight of all such
proofs is Zy as desired.

The deduction systems presented in §3 and
§4 work for any semiring-weighted CFG. Un-
fortunately, the forward-chaining algorithm for
weighted deduction (e.g., Eisner et al., 2005) may
not terminate if the system permits cyclic proofs,
where an item can participate in one of its own
proofs.” In this case, the algorithm will merely
approach the correct value of Zy as it discovers
deeper and deeper proofs of the goal item. Cyclic-
ity in our system can arise from sets of unary
productions such as {A — B, B — A} C R, or
equivalently, from {A - BC,B - A} C R
where C'=>¢ (which is possible if R contains
C — € or other nullary productions). We take
the approach of eliminating problematic unary and
nullary productions from the weighted grammar

°In general, even acyclic weighted deduction can fail to ter-
minate, if the deduction system can derive infinitely many
distinct items. But the number of derived items in our case is
O(N?|G|), as noted earlier, and therefore finite.

without changing Zx for any x. We provide meth-
ods to do this in App. A and App. B respectively.'”
The runtime of the weighted deduction systems is
then the same as in the unweighted case, where
|G| now refers to the size of the modified grammar.
The elimination of some productions can increase
|G|, but we explain how to limit this effect.

Once cyclic proofs are impossible, there exists
a topologically sorted order of the items. Visiting
the items in this order lets us compute Zx with the
same asymptotic complexity as unweighted parsing.
Goodman (1999, Section 5) discusses execution
strategies, including a generic method to dynami-
cally discover a topologically sorted order (though
we can specify one statically for our systems).

6 Earley’s Algorithm Using an FSA

In this section, we present a generalization of
EARLEY-FAST that can parse with any weighted
finite-state automaton (WFSA) grammar M in
O(N?|M|). Here M is a WFSA that encodes the
CFG productions as follows. For any p € (XUN)*
and any A € N, for M to accept the string p/T
with weight w € W is tantamount to having the
production A — p in the CFG with weight w.!!

This presentation has two advantages
over a standard CFG. First, M can be com-
piled from user-friendly specifications like
NP — Det? Adj* N™ PP*, which specifies in-
finitely many productions with unboundedly long
right-hand-sides p (although M still only describes
a context-free language). Second, productions with
similar right-hand-sides may share partial paths in
M, which means that a single item can efficiently
represent many dotted productions.

Our WFSA grammar is similar to a recursive
transition network or RTN grammar (Woods,
1970). Adapting Earley’s algorithm to RTNs was
discussed by Jr. and Brown (1981), Kochut (1983),
Leermakers (1989), and Perlin (1991). Klein and

9App. B may be a contribution of this paper, as we were
unable to find a correct construction in the literature.

"Unless ® is non-commutative (e.g., a derivation semiring).
In contrast to footnote 4, we must now interpret (1) as
multiplying the rule probabilities in a kind of infix order.

Suppose a derivation tree for A= x uses a WESA path at

the root that accepts BC'A with weight w. Recursively
let wp and wc be the weights of the child subderivations,
rooted at B and C. Then the overall weight of the derivation
of A will not be w ® wp ® we (prefix order), but rather
w1 ®wp @ w2 @wc @ ws. Here we have factored the path
weight w into w1 ® w2 ® ws, which are respectively the
weights of the subpath up through B, the subpath from there
up through C, and the subpath from there to the end.

Domains i,j,k€{0,...,.N} AeN a€X qqd €Q
Items [i,j,q] [i,j,q?] [i,j,a] [, A~ ex] [LjA—>xe] ¢5¢ qgoq qox ¢¥x
Axioms [0,0,q9],VgeT 7,7+ 1,zk],Vke{1,...,N} [0,0,S — o]
Goals [0,N,S — xe]
(4,7, q] ‘ i,
PREDI: ————————— 4 U, kg ¢a~qd ¢ €F
[, J, A= ox] g~ * ComP1: -
[7,k, A — xe]
€T i L Ti .
Rules PRED2: qi CoMP2: [2737 q] 14 [J’ k’ A —*]
33,47 li, k,q'7]
li,j,q] ¢*q [j,kd [i,j,q] ¢~ ik, q?) 15,5, A — 4]
SCAN: EpSILON; —————— — — FILTER: —(———

li,k,q'7]

.. . * A
[la]aq,?] [J7k7q] q ~~ x

Table 2: EARLEY-FSA, a variant of EARLEY-FAST in which FSA states replace dotted productions.

Manning (2001b) used a weighted version for PTB
parsing. None of them spelled out a deduction
system, however.

Also, an RTN is a collection of productions of
the form A — M 4, where for M 4 to accept p is
tantamount to having A — p in the CFG. Thus an
RTN uses one FSA per non-terminal. Our innova-
tion is to use one WFSA for the entire grammar,
specifying the left-hand-side non-terminal as a final
symbol. Thus, to allow productions A — p v and
B — p v/, our single WFSA can have paths v A
and p v/ B that share the w prefix. This allows our
EARLEY-FSA to match the p prefix only once, in
a way that could eventually result in completing ei-
ther an A or a B (or both). This concept of sharing
a left context was first introduced by Jr. and Brown
(1981).

We write | M| for the number of edges in M.
A traditional weighted CFG G can be easily en-
coded as a WESA M with |[M| = |G|, by creating
a weighted path of length k& and weight w for each
CFG production of size k£ and weight w, termi-
nating in a final state, and then merging the initial
states of these paths into a single state that becomes
the initial state of the resulting WFSA. The paths
are otherwise disjoint. Importantly, this WESA can
then be determinized and minimized (Mohri, 2002)
to potentially reduce the number of edges and thus
speed up parsing (Klein and Manning, 2001b).

In general, however, the grammar can be speci-
fied by any WFSA M—not necessarily determinis-
tic. This could be compiled from weighted regular
expressions, or an encoded Markov model trained
on observed productions (Collins, 1999), or be ob-

tained by merging states of another WFSA gram-
mar (Stolcke and Omohundro, 1994) in order to
smooth its weights and speed it up.

The WFSA has states V and weighted transitions
(or edges) &, over an alphabet A consisting of N'U
> together with hatted non-terminals like A. Tts
initial and final states are denoted by Z C V and
F C V, respectively. We denote an edge of the
WESA by (¢~ ¢') € £ where ¢,¢/ € Vanda €
AU {e}. This corresponds to an axiom with the
same weight as the edge. ¢ € Z corresponds to an
axiom whose weight is the initial-state weight of q.
The axiom g € F actually means (more generally)
that ¢ has an e-path to a final state; its weight is the
total weight of all such paths.

For a state ¢ € V and symbol a € N, the pre-

: . A :
computed side condition g ~» x is true iff there

. . A
exists a state ¢’ € V such that the transition ¢ ~ ¢’
exists in £. Additionally, the precomputed side con-

dition ¢ 2 & is true if there exists a path starting
from ¢ that will eventually read A.

The EARLEY-FSA deduction system is given in
Table 2 and has a runtime of O(N 3IM \) It is sim-
ilar to EARLEY=FAST, where the dotted rules have
been replaced by WESA states. However, unlike a
dotted rule, a state does not specify a PREDICTed
left-hand-side non-terminal. As a result, when we
“advance the dot” to a new state ¢, we build an item
[7, k, q7] that is annotated with a question mark.
This mark represents the fact that although ¢ is
compatible with several left hand sides A (those

. A .
for which ¢ 5 xis true), the left context xo.; might
not call for any of those non-terminals. If it does,

then the new FILTER rule will remove the question
mark, allowing further progress.

As before, we must eliminate unary and nullary
rules before parsing; App. C explains how to do
this with a WFSA grammar. In addition, although
Table 2 allows the WFSA to contain e-transitions,
App. C explains how to eliminate e-cycles in the
WESA, which could prevent us from converging,
for the usual reason that an item [i, 7, ¢] could par-
ticipate in its own derivation. Afterwards, there is
again a toposorted order in which the deduction en-
gine can attempt to build items (Goodman, 1999).

As noted above, we can speed up EARLEY-FSA
by reducing the size of the WFSA. Unfortunately,
minimization of general FSAs is NP-hard. How-
ever, we can at least seek the minimal determinis-
tic WESA M/’ such that |M'| < |[M], at least in
most semirings (Mohri, 2000; Eisner, 2003). The
determinization (Aho et al., 1986) and minimiza-
tion (Aho and Hopcroft, 1974; Revuz, 1992) al-
gorithms for the boolean semiring are particularly
well-known. Minimization merges states, which
results in merging items, much as when EARLEY—
FAST merged items that had different pre-dot sym-
bols (Leermakers, 1992; Moore, 2000).

Another advantage of the WFSA presentation
of Earley’s is that it makes it simple to express a
tighter bound on the runtime. Much of the grammar
size |G| or | M| is due to terminal symbols that are
not used at most positions of the input. Suppose
the input is an ordinary sentence (one word at each
position, unlike the lattice case in footnote 5), and
suppose c is a constant such that no state ¢ has
more than ¢ outgoing arcs labeled with the same
terminal symbol a € 3. Then when SCAN tries to
extend [, j, q], it considers at most ¢ arcs. Thus,
the O(|]M|) factor in our runtime (where |M| =
|€|) can be replaced with O(|V| - ¢ + |Ex|), where
En C & is the set of edges that are not labeled with
terminals.

7 Practical Runtime of Earley’s

We empirically measure the runtimes of EAR-
LEY, EARLEY-FAST, and EARLEY-FSA. We use
the tropical semiring to find the highest-weighted
derivation trees. We use two grammars that were
extracted from the PTB: Markov-order-2 (M2) and
Parent-annotated Markov-order-2 (PM2).!? For
12 Available at https://code.google.com/

archive/p/bubs-parser/. M2 contains 13,893
non-lexicon rules and 52,009 lexicon rules. PM2 contains

each grammar, we ran our parsers '3(using the
tropical semiring) on 100 randomly selected sen-
tences of 5 to 40 words from the PTB test-set (mean
21.4, stdev 10.7), although we omitted sentences
of length > 25 from the EARLEY graph as it was
too slow (> 3 minutes per sentence). The full re-
sults are displayed in App. D. The graph shows
that EARLEY=FAST is roughly 20x faster at all
sentence lengths. We obtain a further speed-up of
2.5x by switching to EARLEY-FSA.

8 Conclusion

In this pedagogical paper, we have shown how
the runtime of Earley’s algorithm is reduced to
O(N3|G|) from the naive O(N3|G||R|). We pre-
sented this dynamic programming algorithm as a
deduction system, which splits prediction and com-
pletion into two steps each, in order to share work
among related items. To further share work, we
generalized Earley’s algorithm to work with a gram-
mar specified by a weighted FSA. We showed how
to generalize these methods to semiring-weighted
grammars by correctly transforming the grammars
to eliminate cyclic derivations. We demonstrated
that these speedups are effective in practice.

We remark on two useful extensions. Stolcke
(1995)’s algorithm computes the total weight of all
sentences with a given prefix; this can be arranged
by augmenting our deduction system. We would
also like to recover parse trees under the original
grammar (before unary and nullary rules were elim-
inated). This can be done by constructing a deriva-
tion semiring such that Zy gives the best parse tree
along with its weight, or alternatively a representa-
tion of the possibly infinite forest of all parse trees.

We intend this work to serve as a clean refer-
ence for those who wish to efficiently implement
an Earley-style parser or develop related incremen-
tal parsing methods. For example, our deductive
systems could be used as the starting point for neu-
ral models of incremental processing (in which
an item’s vector-space representation is computed
from its derivations, along with its weight), or for
extensions to more powerful grammar formalisms.

25,919 non-lexicon rules and 52,009 lexicon rules. The
downloaded grammars did not have nullary rules or unary
chains.

We will release our Cython implementation upon publica-
tion. A fast implementation of Earley’s algorithm is reported
by Polat et al. (2016) but does not appear to be public.

https://code.google.com/archive/p/bubs-parser/
https://code.google.com/archive/p/bubs-parser/

References

Alfred V. Aho and John E. Hopcroft. 1974. The De-
sign and Analysis of Computer Algorithms. Pearson
Education.

Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman.
1986. Compilers: Principles, Techniques, and Tools.
Addison-Wesley series in computer science / World
student series edition. Addison-Wesley.

John Aycock and R. Nigel Horspool. 2002. Practical
Earley parsing. The Computer Journal, 45(6):620—
630.

Francois Barthélemy. 1993. Outils pour [Analyse Syn-
taxique Contextuelle. Ph.D. thesis, University of Or-
léans.

Eric V. de la Clergerie. 1993. Automates a piles et pro-
grammation dynamique DyAlog: une application a
la programmation en logique. Ph.D. thesis, Univer-
sity Paris VIL.

Michael J. Collins. 1999. Head-Driven Statistical Mod-
els for Natural Language Parsing. Ph.D. thesis, Uni-
versity of Pennsylvania.

Aaron Dunlop, Nathan Bodenstab, and Brian Roark.
2010. Reducing the grammar constant: an analysis
of CYK parsing efficiency. Technical report, Ore-
gon Health & Science University.

Jay Earley. 1970. An efficient context-free parsing al-
gorithm. Communications of the ACM, 13(2):94—
102.

Jason Eisner. 2003. Simpler and more general mini-
mization for weighted finite-state automata. In Pro-
ceedings of the 2003 Human Language Technology
Conference of the North American Chapter of the As-
sociation for Computational Linguistics, pages 64—
71.

Jason Eisner and John Blatz. 2007. Program transfor-
mations for optimization of parsing algorithms and
other weighted logic programs. In Proceedings of
FG 2006: The 11th Conference on Formal Gram-
mar, pages 45-85. CSLI Publications.

Jason Eisner, Eric Goldlust, and Noah A. Smith.
2005. Compiling comp ling: Weighted dynamic
programming and the Dyna language. In Proceed-
ings of Human Language Technology Conference
and Conference on Empirical Methods in Natural
Language Processing, pages 281-290, Vancouver,
British Columbia, Canada. Association for Compu-
tational Linguistics.

Kilian Gebhardt. 2015. Training of hybrid gram-
mars for the generation of discontinuous phrase
structures and non-projective dependency structures.
Ph.D. thesis, Technische Universitit Dresden.

Joshua Goodman. 1999. Semiring parsing. Computa-
tional Linguistics, 25(4):573-606.

Susan L. Graham, Michael A. Harrison, and Walter L.
Ruzzo. 1980. An improved context-free recognizer.
ACM Transactions on Programming Languages and
Systems, 2(3):415-462.

John Hale. 2001. A probabilistic Earley parser as a psy-
cholinguistic model. In Second Meeting of the North
American Chapter of the Association for Computa-
tional Linguistics.

John E. Hopcroft, Rajeev Motwani, and Jeffrey D. Ull-
man. 2007. Introduction to Automata Theory, Lan-
guage, and Computation, 3 edition. Pearson interna-
tional edition. Addison-Wesley.

Mark Johnson. 2000.
gram).

Inside-outside (computer pro-

Paul Walton Purdom Jr. and Cynthia A. Brown. 1981.
Parsing extended LR(k) grammars. Acta Informat-
ica, 15:115-127.

Daniel Jurafsky and James H. Martin. 2009. Speech
and Language Processing, 2 edition. Prentice-Hall,
Inc., Upper Saddle River, NJ, USA.

Dan Klein and Christopher D. Manning. 2001a. Pars-
ing and hypergraphs. In Proceedings of the Sev-
enth International Workshop on Parsing Technolo-
gies, pages 123—134, Beijing, China.

Dan Klein and Christopher D. Manning. 2001b. Pars-
ing with treebank grammars: Empirical bounds, the-
oretical models, and the structure of the Penn Tree-
bank. In Proceedings of the 39th Annual Meeting
of the Association for Computational Linguistics,
pages 338-345, Toulouse, France. Association for
Computational Linguistics.

Krzysztof Kochut. 1983. Towards the elastic ATN im-
plementation. In The Design of Interpreters, Com-
pilers, and Editors for Augmented Transition Net-
works, pages 175-214. Springer.

René Leermakers. 1989. How to cover a grammar. In
27th Annual Meeting of the Association for Com-
putational Linguistics, pages 135-142, Vancouver,
British Columbia, Canada. Association for Compu-
tational Linguistics.

René Leermakers. 1992. A recursive ascent Earley
parser. Information Processing Letters, 41(2):87—
91.

Daniel J. Lehmann. 1977. Algebraic structures for

transitive closure. Theoretical Computer Science,
4(1):59-76.

Mitchell P. Marcus, Beatrice Santorini, and Mary Ann
Marcinkiewicz. 1993. Building a large annotated
corpus of English: The Penn treebank. Computa-
tional Linguistics, 19(2):313-330.

David A. McAllester. 2002.
analysis of static analyses.
49(4):512-537.

On the complexity
Journal of the ACM,

https://doc.lagout.org/science/0_Computer%20Science/2_Algorithms/The%20Design%20and%20Analysis%20of%20Computer%20Algorithms%20%5BAho,%20Hopcroft%20&%20Ullman%201974-01-11%5D.pdf
https://doc.lagout.org/science/0_Computer%20Science/2_Algorithms/The%20Design%20and%20Analysis%20of%20Computer%20Algorithms%20%5BAho,%20Hopcroft%20&%20Ullman%201974-01-11%5D.pdf
https://doc.lagout.org/science/0_Computer%20Science/2_Algorithms/The%20Design%20and%20Analysis%20of%20Computer%20Algorithms%20%5BAho,%20Hopcroft%20&%20Ullman%201974-01-11%5D.pdf
https://www.worldcat.org/oclc/12285707
https://doi.org/10.1093/comjnl/45.6.620
https://doi.org/10.1093/comjnl/45.6.620
https://doi.org/10.1093/comjnl/45.6.620
https://watermark.silverchair.com/089120103322753356.pdf?token=AQECAHi208BE49Ooan9kkhW_Ercy7Dm3ZL_9Cf3qfKAc485ysgAAAtQwggLQBgkqhkiG9w0BBwagggLBMIICvQIBADCCArYGCSqGSIb3DQEHATAeBglghkgBZQMEAS4wEQQMwG2ngpiDb6k53a44AgEQgIIChy5_BKKBl-prto3AIAMuvRzjlehZgRREGpkXqmQ44Qj2w_e7qssGN1rCpaW955RjknVa_1USD5BspsZaSF56zzOsw0cdLxU_AXqVtYuSsWclpsf28UAAcnDaZCOay23dDOGqMjKzWO4rqQ0nkw9IrDxGTBdD2R-doERXaIS2rLb7tzxdLRcgwp1V4K_Qkunlxnsel6AzRJomHnwworTZdc27DdIPvYIdMfca7V0JECDiuZZyahCdALPL-HFrfmXOJwZ88sDJoeOlyW1ZAVYclMBJkyMt-K3Y3PTbnpLLFtp77Dvt6Yj0FL0l-hUnGkiCzhIc3Oi29GueuABK3q_F0NYDmld9CmKuFxAY_XF2uhsB9vwdNwL5oCrYuJDNuqsnxjbbjHeJJYAjV31X3K_QgSdnPFAjAqji84IKkxu_d15QRezG9q4GOSAmH8_eGLY1EKqN--EUSdia4foXae_naXKmfV_W4hP-CNpp0QydovxxNvRsL0mxzTx36OtIytnQVjLja0wHk1Y-A69g1mkVwOcoRXTvm5MbZY3v1VxY_RHu_w3lft092FiE7cjQw8gAhX8SoBQ12Z6BTE4FS8UEodNA-Th4bj6LgjyofR0Ks45BYEqw1YGpFnzK2TT9ClMLIaiN3Pqk2pit6FE3HbffZ3T2w9J_tFbw9LhWmRxDI2K1oAdC2JYrB1IvzEhlNWh-Ocki8mB4mNnzuapLVk-6SJrpFMujDCk6PZCgL0YYGI7Scb0DpZCnJTOUVzOEQotN9SFYK51dlQw6ZK92-AUKvTgNZCnayjpoi4DRSPu93CE4ixmiUHeKdFyZacr0hda7ADzswzEqB2oJJexjDQSNUnW0rrTvz_0I
https://watermark.silverchair.com/089120103322753356.pdf?token=AQECAHi208BE49Ooan9kkhW_Ercy7Dm3ZL_9Cf3qfKAc485ysgAAAtQwggLQBgkqhkiG9w0BBwagggLBMIICvQIBADCCArYGCSqGSIb3DQEHATAeBglghkgBZQMEAS4wEQQMwG2ngpiDb6k53a44AgEQgIIChy5_BKKBl-prto3AIAMuvRzjlehZgRREGpkXqmQ44Qj2w_e7qssGN1rCpaW955RjknVa_1USD5BspsZaSF56zzOsw0cdLxU_AXqVtYuSsWclpsf28UAAcnDaZCOay23dDOGqMjKzWO4rqQ0nkw9IrDxGTBdD2R-doERXaIS2rLb7tzxdLRcgwp1V4K_Qkunlxnsel6AzRJomHnwworTZdc27DdIPvYIdMfca7V0JECDiuZZyahCdALPL-HFrfmXOJwZ88sDJoeOlyW1ZAVYclMBJkyMt-K3Y3PTbnpLLFtp77Dvt6Yj0FL0l-hUnGkiCzhIc3Oi29GueuABK3q_F0NYDmld9CmKuFxAY_XF2uhsB9vwdNwL5oCrYuJDNuqsnxjbbjHeJJYAjV31X3K_QgSdnPFAjAqji84IKkxu_d15QRezG9q4GOSAmH8_eGLY1EKqN--EUSdia4foXae_naXKmfV_W4hP-CNpp0QydovxxNvRsL0mxzTx36OtIytnQVjLja0wHk1Y-A69g1mkVwOcoRXTvm5MbZY3v1VxY_RHu_w3lft092FiE7cjQw8gAhX8SoBQ12Z6BTE4FS8UEodNA-Th4bj6LgjyofR0Ks45BYEqw1YGpFnzK2TT9ClMLIaiN3Pqk2pit6FE3HbffZ3T2w9J_tFbw9LhWmRxDI2K1oAdC2JYrB1IvzEhlNWh-Ocki8mB4mNnzuapLVk-6SJrpFMujDCk6PZCgL0YYGI7Scb0DpZCnJTOUVzOEQotN9SFYK51dlQw6ZK92-AUKvTgNZCnayjpoi4DRSPu93CE4ixmiUHeKdFyZacr0hda7ADzswzEqB2oJJexjDQSNUnW0rrTvz_0I
https://watermark.silverchair.com/089120103322753356.pdf?token=AQECAHi208BE49Ooan9kkhW_Ercy7Dm3ZL_9Cf3qfKAc485ysgAAAtQwggLQBgkqhkiG9w0BBwagggLBMIICvQIBADCCArYGCSqGSIb3DQEHATAeBglghkgBZQMEAS4wEQQMwG2ngpiDb6k53a44AgEQgIIChy5_BKKBl-prto3AIAMuvRzjlehZgRREGpkXqmQ44Qj2w_e7qssGN1rCpaW955RjknVa_1USD5BspsZaSF56zzOsw0cdLxU_AXqVtYuSsWclpsf28UAAcnDaZCOay23dDOGqMjKzWO4rqQ0nkw9IrDxGTBdD2R-doERXaIS2rLb7tzxdLRcgwp1V4K_Qkunlxnsel6AzRJomHnwworTZdc27DdIPvYIdMfca7V0JECDiuZZyahCdALPL-HFrfmXOJwZ88sDJoeOlyW1ZAVYclMBJkyMt-K3Y3PTbnpLLFtp77Dvt6Yj0FL0l-hUnGkiCzhIc3Oi29GueuABK3q_F0NYDmld9CmKuFxAY_XF2uhsB9vwdNwL5oCrYuJDNuqsnxjbbjHeJJYAjV31X3K_QgSdnPFAjAqji84IKkxu_d15QRezG9q4GOSAmH8_eGLY1EKqN--EUSdia4foXae_naXKmfV_W4hP-CNpp0QydovxxNvRsL0mxzTx36OtIytnQVjLja0wHk1Y-A69g1mkVwOcoRXTvm5MbZY3v1VxY_RHu_w3lft092FiE7cjQw8gAhX8SoBQ12Z6BTE4FS8UEodNA-Th4bj6LgjyofR0Ks45BYEqw1YGpFnzK2TT9ClMLIaiN3Pqk2pit6FE3HbffZ3T2w9J_tFbw9LhWmRxDI2K1oAdC2JYrB1IvzEhlNWh-Ocki8mB4mNnzuapLVk-6SJrpFMujDCk6PZCgL0YYGI7Scb0DpZCnJTOUVzOEQotN9SFYK51dlQw6ZK92-AUKvTgNZCnayjpoi4DRSPu93CE4ixmiUHeKdFyZacr0hda7ADzswzEqB2oJJexjDQSNUnW0rrTvz_0I
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.725.801&rep=rep1&type=pdf
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.725.801&rep=rep1&type=pdf
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.725.801&rep=rep1&type=pdf
https://doi.org/10.1145/362007.362035
https://doi.org/10.1145/362007.362035
https://doi.org/10.1145/362007.362035
https://www.aclweb.org/anthology/N03-1009
https://www.aclweb.org/anthology/N03-1009
https://www.aclweb.org/anthology/N03-1009
http://cs.jhu.edu/~jason/papers/#eisner-blatz-2007
http://cs.jhu.edu/~jason/papers/#eisner-blatz-2007
http://cs.jhu.edu/~jason/papers/#eisner-blatz-2007
http://cs.jhu.edu/~jason/papers/#eisner-blatz-2007
http://cs.jhu.edu/~jason/papers/#eisner-blatz-2007
https://www.aclweb.org/anthology/H05-1036
https://www.aclweb.org/anthology/H05-1036
https://www.aclweb.org/anthology/H05-1036
https://www.orchid.inf.tu-dresden.de/gdp/diploma_theses/Diplomarbeit_Gebhardt.pdf
https://www.orchid.inf.tu-dresden.de/gdp/diploma_theses/Diplomarbeit_Gebhardt.pdf
https://www.orchid.inf.tu-dresden.de/gdp/diploma_theses/Diplomarbeit_Gebhardt.pdf
https://www.orchid.inf.tu-dresden.de/gdp/diploma_theses/Diplomarbeit_Gebhardt.pdf
https://www.orchid.inf.tu-dresden.de/gdp/diploma_theses/Diplomarbeit_Gebhardt.pdf
https://www.aclweb.org/anthology/J99-4004
https://doi.org/10.1145/357103.357112
https://www.aclweb.org/anthology/N01-1021
https://www.aclweb.org/anthology/N01-1021
https://www.aclweb.org/anthology/N01-1021
http://ce.sharif.edu/courses/94-95/1/ce414-2/resources/root/Text%20Books/Automata/John%20E.%20Hopcroft,%20Rajeev%20Motwani,%20Jeffrey%20D.%20Ullman-Introduction%20to%20Automata%20Theory,%20Languages,%20and%20Computations-Prentice%20Hall%20(2006).pdf
http://ce.sharif.edu/courses/94-95/1/ce414-2/resources/root/Text%20Books/Automata/John%20E.%20Hopcroft,%20Rajeev%20Motwani,%20Jeffrey%20D.%20Ullman-Introduction%20to%20Automata%20Theory,%20Languages,%20and%20Computations-Prentice%20Hall%20(2006).pdf
http://ce.sharif.edu/courses/94-95/1/ce414-2/resources/root/Text%20Books/Automata/John%20E.%20Hopcroft,%20Rajeev%20Motwani,%20Jeffrey%20D.%20Ullman-Introduction%20to%20Automata%20Theory,%20Languages,%20and%20Computations-Prentice%20Hall%20(2006).pdf
http://web.science.mq.edu.au/~mjohnson/Software.htm
http://web.science.mq.edu.au/~mjohnson/Software.htm
http://web.science.mq.edu.au/~mjohnson/Software.htm
https://doi.org/10.1007/BF00288959
https://www.pearson.com/us/higher-education/program/Jurafsky-Speech-and-Language-Processing-2nd-Edition/PGM181706.html
https://www.pearson.com/us/higher-education/program/Jurafsky-Speech-and-Language-Processing-2nd-Edition/PGM181706.html
https://www.pearson.com/us/higher-education/program/Jurafsky-Speech-and-Language-Processing-2nd-Edition/PGM181706.html
https://www.aclweb.org/anthology/W01-1812
https://www.aclweb.org/anthology/W01-1812
https://www.aclweb.org/anthology/W01-1812
https://doi.org/10.3115/1073012.1073056
https://doi.org/10.3115/1073012.1073056
https://doi.org/10.3115/1073012.1073056
https://doi.org/10.3115/1073012.1073056
https://doi.org/10.3115/1073012.1073056
https://doi.org/10.3115/1073012.1073056
https://doi.org/10.3115/1073012.1073056
https://link.springer.com/chapter/10.1007/978-3-642-82122-6_4
https://link.springer.com/chapter/10.1007/978-3-642-82122-6_4
https://link.springer.com/chapter/10.1007/978-3-642-82122-6_4
https://doi.org/10.3115/981623.981640
https://doi.org/10.1016/0020-0190(92)90260-3
https://doi.org/10.1016/0020-0190(92)90260-3
https://doi.org/10.1016/0020-0190(92)90260-3
https://doi.org/10.1016/0304-3975(77)90056-1
https://doi.org/10.1016/0304-3975(77)90056-1
https://doi.org/10.1016/0304-3975(77)90056-1
https://www.aclweb.org/anthology/J93-2004/
https://www.aclweb.org/anthology/J93-2004/
https://www.aclweb.org/anthology/J93-2004/
https://doi.org/10.1145/581771.581774
https://doi.org/10.1145/581771.581774
https://doi.org/10.1145/581771.581774

Hongyuan Mei, Guanghui Qin, Minjie Xu, and Jason
Eisner. 2020. Neural Datalog through time: In-
formed temporal modeling via logical specification.
In Proceedings of the 37th International Conference
on Machine Learning.

Guido Minnen. 1996. Magic for filter optimization
in dynamic bottom-up processing. In Proceedings
of the 34th conference on Association for Computa-
tional Linguistics, pages 247-254.

Mehryar Mohri. 1997. Finite-state transducers in lan-
guage and speech processing. Computational Lin-
guistics, 23(2):269-311.

Mehryar Mohri. 2000. Minimization algorithms for se-
quential transducers. Theoretical Computer Science,
324:177-201.

Mehryar Mohri. 2002. Generic e-removal and input &-
normalization algorithms for weighted transducers.
International Journal of Foundations of Computer
Science, 13(1):129-143.

Robert C. Moore. 2000. Improved left-corner chart
parsing for large context-free grammars. In Proceed-
ings of the Sixth International Workshop on Parsing
Technologies, pages 171-182, Trento, Italy. Associa-
tion for Computational Linguistics.

Mark J. Nederhof. 1994. Linguistic Parsing and Pro-
gram Transformations. Ph.D. thesis, University of
Nijmegen.

Mark-Jan Nederhof and Giorgio Satta. 2008. Comput-
ing partition functions of PCFGs. Research on Lan-
guage and Computation, 6(2):139-162.

Fernando C. N. Pereira and Stuart M. Shieber. 1987.
Prolog and Natural-Language Analysis. Number 10
in CSLI Lecture Notes. Center for the Study of Lan-
guage and Information.

Fernando C. N. Pereira and David H. D. Warren. 1983.
Parsing as deduction. In 21st Annual Meeting of the
Association for Computational Linguistics, pages
137-144, Cambridge, Massachusetts, USA. Associ-
ation for Computational Linguistics.

Mark Perlin. 1991. LR recursive transition networks
for Earley and Tomita parsing. In 29th Annual Meet-
ing of the Association for Computational Linguistics,
pages 98105, Berkeley, California, USA. Associa-
tion for Computational Linguistics.

Slav Petrov, Leon Barrett, Romain Thibaux, and Dan
Klein. 2006. Learning accurate, compact, and inter-
pretable tree annotation. In Proceedings of the 21st
International Conference on Computational Linguis-
tics and 44th Annual Meeting of the Association for
Computational Linguistics, pages 433-440, Sydney,
Australia. Association for Computational Linguis-
tics.

Benjamin C. Pierce. 2002. Types and Programming
Languages. MIT Press.

10

Sinan Polat, Merve Selcuk-Simsek, and Ilyas Cicekli.
2016. A modified earley parser for huge natural lan-
guage grammars. Res. Comput. Sci., 117:23-35.

Raghu Ramakrishnan. 1991. Magic templates: A spell-
binding approach to logic programs. Journal of
Logic Programming, 11(3-4):189-216.

Dominique Revuz. 1992. Minimisation of acyclic de-
terministic automata in linear time. Theoretical
Computer Science, 92(1):181-189.

Brian Roark. 2001. Probabilistic top-down parsing
and language modeling. Computational Linguistics,
27(2):249-276.

Stuart M. Shieber, Yves Schabes, and Fernando C. N.
Pereira. 1995. Principles and implementation of
deductive parsing. Journal of Logic Programming,
24(1&2):3-36.

Richard Shin, Christopher H. Lin, Sam Thomson,
Charles Chen, Subhro Roy, Emmanouil Antonios
Platanios, Adam Pauls, Dan Klein, Jason Eisner, and
Benjamin Van Durme. 2021. Constrained language
models yield few-shot semantic parsers. In Proceed-
ings of the 2021 Conference on Empirical Methods
in Natural Language Processing, Punta Cana.

Klaas Sikkel. 1993. Parsing Schemata. Ph.D. thesis,
University of Twente, Enschede, Netherlands.

Andreas Stolcke. 1995. An efficient probabilis-
tic context-free parsing algorithm that computes
prefix probabilities. = Computational Linguistics,
21(2):165-201.

Andreas Stolcke and Stephen M. Omohundro. 1994.
Best-first model merging for hidden Markov model
induction. Technical Report ICSI TR-94-003, ICSI,
Berkeley, CA.

Hisao Tamaki and Taisuke Sato. 1984. Unfold/fold
transformation of logic programs. In Proceedings of
the Second International Logic Programming Con-
ference, Uppsala University, Uppsala, Sweden, July
2-6, 1984, pages 127-138.

Robert Endre Tarjan. 1981a. Fast algorithms for solv-
ing path problems. Journal of the ACM, 28(3):594—
614.

Robert Endre Tarjan. 1981b. A unified approach to
path problems. Journal of the ACM, 28(3):577-593.

William A. Woods. 1970. Transition network gram-
mars for natural language analysis. Communica-
tions of the ACM, 13(10):591-606.

https://proceedings.mlr.press/v119/mei20a.html
https://proceedings.mlr.press/v119/mei20a.html
https://proceedings.mlr.press/v119/mei20a.html
https://arxiv.org/pdf/cmp-lg/9604019.pdf
https://arxiv.org/pdf/cmp-lg/9604019.pdf
https://arxiv.org/pdf/cmp-lg/9604019.pdf
https://aclanthology.org/J97-2003
https://aclanthology.org/J97-2003
https://aclanthology.org/J97-2003
https://www.sciencedirect.com/science/article/pii/S0304397598001157
https://www.sciencedirect.com/science/article/pii/S0304397598001157
https://www.sciencedirect.com/science/article/pii/S0304397598001157
https://doi.org/10.1142/S0129054102000996
https://doi.org/10.1142/S0129054102000996
https://doi.org/10.1142/S0129054102000996
https://www.aclweb.org/anthology/2000.iwpt-1.18
https://www.aclweb.org/anthology/2000.iwpt-1.18
https://www.aclweb.org/anthology/2000.iwpt-1.18
https://mjn.host.cs.st-andrews.ac.uk/publications/thesis.pdf
https://mjn.host.cs.st-andrews.ac.uk/publications/thesis.pdf
https://mjn.host.cs.st-andrews.ac.uk/publications/thesis.pdf
https://mjn.host.cs.st-andrews.ac.uk/publications/2008d.pdf
https://mjn.host.cs.st-andrews.ac.uk/publications/2008d.pdf
https://mjn.host.cs.st-andrews.ac.uk/publications/2008d.pdf
http://www.mtome.com/Publications/PNLA/pnla.html
https://doi.org/10.3115/981311.981338
https://doi.org/10.3115/981344.981357
https://doi.org/10.3115/981344.981357
https://doi.org/10.3115/981344.981357
https://doi.org/10.3115/1220175.1220230
https://doi.org/10.3115/1220175.1220230
https://doi.org/10.3115/1220175.1220230
https://mitpress.mit.edu/books/types-and-programming-languages
https://mitpress.mit.edu/books/types-and-programming-languages
https://mitpress.mit.edu/books/types-and-programming-languages
http://rcs.cic.ipn.mx/2016_117/A%20Modified%20Earley%20Parser%20for%20Huge%20Natural%20Language%20Grammars.pdf
http://rcs.cic.ipn.mx/2016_117/A%20Modified%20Earley%20Parser%20for%20Huge%20Natural%20Language%20Grammars.pdf
http://rcs.cic.ipn.mx/2016_117/A%20Modified%20Earley%20Parser%20for%20Huge%20Natural%20Language%20Grammars.pdf
https://doi.org/http://dx.doi.org/10.1016/0743-1066(91)90026-L
https://doi.org/http://dx.doi.org/10.1016/0743-1066(91)90026-L
https://doi.org/http://dx.doi.org/10.1016/0743-1066(91)90026-L
https://doi.org/10.1016/0304-3975(92)90142-3
https://doi.org/10.1016/0304-3975(92)90142-3
https://doi.org/10.1016/0304-3975(92)90142-3
https://doi.org/10.1162/089120101750300526
https://doi.org/10.1162/089120101750300526
https://doi.org/10.1162/089120101750300526
https://doi.org/10.1016/0743-1066(95)00035-I
https://doi.org/10.1016/0743-1066(95)00035-I
https://doi.org/10.1016/0743-1066(95)00035-I
https://arxiv.org/abs/2104.08768
https://arxiv.org/abs/2104.08768
https://arxiv.org/abs/2104.08768
http://purl.utwente.nl/publications/64273
https://www.aclweb.org/anthology/J95-2002/
https://www.aclweb.org/anthology/J95-2002/
https://www.aclweb.org/anthology/J95-2002/
https://www.aclweb.org/anthology/J95-2002/
https://www.aclweb.org/anthology/J95-2002/
https://www.icsi.berkeley.edu/icsi/node/2604
https://www.icsi.berkeley.edu/icsi/node/2604
https://www.icsi.berkeley.edu/icsi/node/2604
https://ci.nii.ac.jp/naid/10000035006/
https://ci.nii.ac.jp/naid/10000035006/
https://ci.nii.ac.jp/naid/10000035006/
https://doi.org/10.1145/322261.322273
https://doi.org/10.1145/322261.322273
https://doi.org/10.1145/322261.322273
https://doi.org/10.1145/322261.322272
https://doi.org/10.1145/322261.322272
https://doi.org/10.1145/322261.322272
https://doi.org/10.1145/355598.362773
https://doi.org/10.1145/355598.362773
https://doi.org/10.1145/355598.362773

A Eliminating Unary Cycles

Stolcke (1995, Section 4.5) addresses the problem
of unary production cycles by modifying the deduc-
tion rules.'* He assumes use of the real semiring,
where @& = + and ® = x. Here, inverting a sin-
gle |V| x |N| matrix suffices to compute the total
weight of all rewrite sequences A= B, known as
unary chains, for each ordered pair A, B € N/ 2,
His modified rules then ignore the original unary
productions and refer to these weights instead.

We take a similar approach, but instead describe
it as a transformation of the weighted grammar,
leaving the deduction system unchanged. We also
generalize to other closed semirings. Finally, we
do not collapse all unary chains as Stolcke (1995)
does, but only those subchains that can appear on
cycles. This prevents the grammar size from blow-
ing up more than necessary (recall that the parser’s
runtime is proportional to grammar size). For exam-
ple, if the unary productions are A; — A;, 1 for all
1 <4 < K, then there is no cycle and our transfor-
mation leaves these K — 1 productions unchanged,
rather than replacing them with K (K — 1)/2 new
unary productions that correspond to the possible
chains A; = A, for1 <i < j<K.

Given a weighted CFG G = (N, X, R, S, w),
consider the weighted graph whose vertices are A/
and whose weighted edges A — B are given by
the unary productions A — B. (This graph may
include self-loops such as A — A.) Its strongly
connected components (SCCs) can be found in lin-
ear time and thus in O(|G|) time. For any A and B
in the same SCC, w(A = B) € W denotes the total
weight of all rewrite sequences of the form A= B
(including the O-length sequence with weight @,
if A = B). For an SCC of size K, there are
K? such weights and they can be found in total
time O (K 3) by the Kleene—Floyd—Warshall algo-
rithm (Lehmann, 1977; Tarjan, 1981b,a). In the
real semiring, this algorithm corresponds to using
Gauss-Jordan elimination to invert I — F/, where £
is the weighted adjacency matrix of the SCC (rather
than of the whole graph as in Stolcke (1995)). In
the general case, it computes the infinite matrix
sum [@ E® (E® E) @ --- in closed form, with
the help of the * operator of the closed semiring.

We now construct a new grammar G’
(N',%,R/,S,w') that has no unary cycles, as fol-

“Johnson (2000) provides an implementation of CKY (and
the inside-outside algorithm) that allows unary productions
and handles unary cycles in a similar way.

11

lows. For each A € N, our N contains two non-
terminals, A and A. For each ordered pair of non-
terminals A, B € N/ that fall in the same SCC, R’
contains a production A — B with w’(4A — B) =

w(A= B). For every rule A — p in R that is not

of the form A — B where A and B fall in the same
SCC, R’ also contains a production A — p with
w'(A — p) = w(A — p), where p is a version of
p in which each non-terminal B has been replaced
by B. Finally, as a constant-factor optimization, A
and A may be merged back together if A formed a
trivial SCC with no self-loop: that is, remove the
weight-D production A — A from R’ and replace
all copies of A and A with A throughout G'.

B Eliminating Nullary Productions

We eliminate nullary productions from the
weighted grammar in order to avoid cycles. This
must be done before eliminating unary cycles
(App. A), since eliminating nullary productions
can create new unary productions. Hopcroft et al.
(2007, Chapter 7.1.3) explain how to do this in the
unweighted case. Stolcke (1995, Section 4.7.4)
sketches a generalization to the probability semir-
ing, but it also uses the non-semiring operations of
division and subtraction (and is not clearly correct).
We therefore give an explicit general construction.

While we provide a method that handles nullary
productions by modifying the grammar, it is also
possible to instead modify the algorithm to allow
advancing the dot over nullable non-terminals, i.e.,
non-terminals A such that the grammar allows
A= e (Aycock and Horspool, 2002).

Our first step, like Stolcke’s, is to compute the

“null weight” e 4 = w(A:*>e for each A € N.
Although a closed semiring does not provide an
operator for this summation, these values are a so-
lution to the system of |A/| polynomial equations'”

eA:@w(A%Bl---
(A—B1--By)eR

B.) @ Qe ()
i=1

A solution should exist for the sum in (2) to be
well-defined in the first place. If so, a solution can
normally be found in practice by initializing all
e4 = (@ and then iteratively recomputing them,
using the equations above, until numerical conver-
gence. Nederhof and Satta (2008) review some
other methods for the case of the real semiring.

5If (A — €) € R, it will be covered by the case n = 0.

We now modify the grammar as follows. We
adopt the convention that for a production A — p
that is not yet in ‘R, we consider its weight to be
w(A — p) = ©, and increasing this weight by any
non-0) amount adds it to R. For each non-terminal
B such that ep # (), let us assume the existence
of an auxiliary non-terminal B, ¢ N such that
B#%}e but Vx # e, w(B¢E$X) = w(B:*>x>.
We iterate this step: as long as we can find a produc-
tion A — 4 Bvin R such that eg € N, we mod-
ify it to the more restricted version A — p B4, v
(keeping its weight), but to preserve the possibility
that B = ¢, we also increase the weight of the short-
ened production A — pv by w(A — uBr)Rep.

A production A — p where p includes k£ non-
terminals will be gradually split up by the above
procedure into 2* productions, in which each non-
terminal B has been either specialized to B, or
removed. In particular, we can see from (3) that
w(A — €) ea. So far we have preserved all

weights w(A:*>x>, provided that the auxiliary

non-terminals behave as assumed. But for each
A we now remove A — ¢ from R, and since A
can no longer rewrite as €, we rename all other
rules A — pto A, — p. This closes the loop by
defining the auxiliary non-terminals as desired.

Finally, since S is the start symbol, we add back
S — € (with weight eg) as well as adding the new
rule S — S, (with weight @). Thus (as in Chom-
sky Normal Form), the only nullary rule is now
S — €, which may be needed to generate the O-
length sentence. We now have a new grammar with
non-terminals N/ = {S} U{Byc : B € N'}. To
simplify the names, we can rename the start symbol
S to S and then drop the -, subscripts.'©

C Handling Nullary and Unary
Productions in an FSA

We can handle nullary productions by directly
adapting the construction of App. B to the WFSA
case. Indeed, the WFSA version is simpler to ex-
press. For each arc ¢ 5 ¢’ such that B € N and
ep # (), we replace the B label of that arc with
B (preserving the arc’s weight), and add a new
arc ¢ ~ ¢’ of weight eg. We then define a new
WEFSA M" = (M N = Mypaq) U Mggod, Where
Myaq is an unweighted FSA that accepts exactly
1*We can also iteratively remove any useless non-terminals

(footnote 6), which correspond to non-terminals that only
rewrote as e in the original grammar.

12

those strings of the form A (i.e., nullary produc-
tions), — takes the unweighted complement, and
Mood is a WFSA that accepts exactly strings of
the form S (with weight eg) and S5 (with weight
@). As this construction introduces new ¢ arcs, it
should precede the elimination of e-cycles.

Notice that in the example of App. B where a
production A — p was replaced with up to 2% — 1
variants, the WFSA construction efficiently shares
structure among these variants. It adds at most k
edges at the first step and at most doubles the total
number of states through intersection with =My, 4.

Similarly, we can handle unary productions by
directly adapting the construction of App. A to the
WESA case. We first extract all weighted unary
rules by intersecting M with the unweighted lan-
guage {BA : A, B € N} (and determinizing the
result so as to combine duplicate rules). Exactly as
in App. A, we construct the unary rule graph and
compute its SCCs along with weights w(A= B
for all A, B in the same SCC. We modify the
WEFSA by underlining all hatted non-terminals A
and overlining all non-terminals B. Finally, we
define our new WFSA grammar (M N = My,q) U
Miood- Here My,q is an unweighted FSA that
accepts exactly those strings of the form EE and
Miood is a WFSA that accepts exactly strings of

the form B A such that A, B are in the same SCC,
with weight w <A = B) .

Following each construction, non-terminal
names can again be simplified as in Apps. A and B.

Finally, §6 mentioned that we must eliminate
e-cycles from the FSA. The algorithm for doing
so (Mohri, 2002) is fundamentally the same as our
method for eliminating unary rule cycles from a
CFG (App. A), but now it operates on the graph
whose edges are e-transitions of the FSA, rather

than the graph whose edges are unary rules of the
CFG.

D Runtime Experiment Results

10 4

10' 4

10” 4

EARLEY
EARLEY-FAST
EARLEY-FSA

Average parse time (seconds)

107"

6 10° 10! 2% 10! 3% 100 4x 10!
Sentence length (N)

10' 4

100_

EARLEY

Average parse time (seconds)

EARLEY-FAST
107" EARLEY-FSA

6x10° 10' 2x 10! 3x 100 4x10'
Sentence length (N)

Figure 1: Average parse time per sentence for 100 ran-
domly selected sentences of 5-40 words on the M2
grammar (left) and PM2 grammar (right). As all these
algorithms are worst-case cubic in N, each curve on
these log-log plots is bounded above by a line of slope
3, but the lower lines have better grammar constants.
The experiment was conducted using a Cython imple-
mentation on an Intel(R) Core(TM) i7-7500U proces-
sor with 16GB RAM.

13

