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ABSTRACT

Many scientific and industrial applications require the joint optimization of multiple,
potentially competing objectives. Multi-objective Bayesian optimization (MOBO)
is a sample-efficient framework for identifying Pareto-optimal solutions. At the
heart of MOBO is the acquisition function, which determines the next candidate to
evaluate by navigating the best compromises among the objectives. Multi-objective
acquisition functions that rely on box decomposition of the objective space, such as
the expected hypervolume improvement (EHVI) and entropy search, scale poorly
to a large number of objectives. We begin by showing a natural connection be-
tween non-dominated solutions and the highest multivariate rank, which coincides
with the outermost level line of the joint cumulative distribution function (CDF).
Motivated by this link, we propose the CDF indicator, a Pareto-compliant metric
for evaluating the quality of approximate Pareto sets that complements the popular
hypervolume indicator. We then propose an acquisition function based on the CDF
indicator, called BOTIED. BOTIED can be implemented efficiently with copulas, a
statistical tool for modeling complex, high-dimensional distributions. We bench-
mark BOTIED against common acquisition functions, including EHVI, entropy
search, and random scalarization, in a series of synthetic and real-data experiments.
BOTIED performs on par with the baselines across datasets and metrics while being
computationally efficient.

1 INTRODUCTION

Bayesian optimization (BO) has demonstrated promise in a variety of scientific and industrial
domains where the goal is to optimize an expensive black-box function using a limited number
of potentially noisy function evaluations (Romero et al., 2013; Calandra et al., 2016; Kusne et al.,
2020; Shields et al., 2021; Zuo et al., 2021; Bellamy et al., 2022; Khan et al., 2023; Park et al.,
2022). In BO, we fit a probabilistic surrogate model on the available observations so far. Based
on the model, the acquisition function determines the next candidate to evaluate by balancing
exploration (evaluating highly uncertain candidates) with exploitation (evaluating designs believed to
maximize the objective). Often, applications call for the joint optimization of multiple, potentially
competing objectives (Marler & Arora, 2004; Jain et al., 2017; Tagasovska et al., 2022). Unlike
in single-objective settings, a single optimal solution may not exist and we must identify a set of
solutions that represents the best compromises among the multiple objectives. The acquisition
function in multi-objective Bayesian optimization (MOBO) navigates these trade-offs as it guides
the optimization toward regions of interest.

A computationally attractive approach to MOBO scalarizes the objectives with random preference
weights (Knowles, 2006; Paria et al., 2020) and applies a single-objective acquisition function.
The distribution of the weights, however, may be insufficient to encourage exploration when there
are many objectives with unknown scales. Alternatively, we may address the multiple objectives
directly by seeking improvement on a set-based performance metric, such as the hypervolume (HV)
indicator (Emmerich, 2005; Emmerich et al., 2011; Daulton et al., 2020; 2021) or the R2 indicator
(Deutz et al., 2019a;b). Improvement-based acquisition functions are sensitive to the rescaling of the
objectives, which may carry drastically different natural units. In particular, computing the HV has
time complexity that is super-polynomial in the number of objectives, because it entails computing the
volume of an irregular polytope (Yang et al., 2019). Despite the efficiency improvement achieved by
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Figure 1: (a) Conceptual summary of BOTIED: Here, the blue candidate is predicted to dominate
green with respect to both objectives. The HV indicator is consistent with this ordering; the area of
the box bounded by the blue candidate is bigger than that bounded by the green. Multivariate ranks
and CDF scores, used in BOTIED, also favor the blue. (b) The CDF scores closely trace HV.

box decomposition algorithms (Dächert et al., 2017; Yang et al., 2019), HV computation remains slow
when the number of objectives exceeds 4. Another class of acquisition strategies is entropy search,
which focuses on maximizing the information gain from the next observation (Hernández-Lobato
et al., 2014; 2016b; Shah & Ghahramani, 2015; Belakaria et al., 2019; Hoffman & Ghahramani,
2015; Tu et al., 2022). Computing entropy-based acquisition functions also involves computing
high-dimensional definite integrals, this time of an M -dimensional multivariate Gaussian, where
M is the number of objectives. They are commonly implemented in box decompositions as well,
but are even more costly to evaluate than HV.

Many bona fide MO acquisition functions without scalarization, such as EHVI or entropy searches,
involve high-dimensional integrals and scale poorly with increasing numbers of objectives. EHVI
and random scalarization are sensitive to non-informative transformations of the objectives, such as
rescaling of one objective relative to another or monotonic transformations of individual objectives.
To address these challenges, we propose BOTIED1, a novel acquisition function based on multivariate
ranks. We show that BOTIED has the desirable property of being invariant to relative rescaling or
monotonic transformations of the objectives. While it maintains the multivariate structure of the
objective space, its implementation has highly favorable time complexity and we report wall-clock
time competitive with random scalarization.

In Fig. 1(a), we present the intuition behind multivariate ranks. Consider a maximization setup
over two objectives where we seek to identify solutions on the true Pareto frontier (red curves),
hypothetical and inaccessible to us. Suppose we have many candidates, represented as circular
posterior blobs in the objective space, where the posteriors have been inferred from our probabilistic
surrogate model. For simplicity, assume the posterior widths (uncertainties) are comparable among
the candidates. Let us consider each candidate individually. How do we estimate each candidate’s
proximity to the true Pareto frontier? Our surrogate model predicts the candidate shaded in blue to
have high values in both objectives and, unbeknownst to us, it happens to lie on the true Pareto front.
On the other hand, the candidate shaded in green is predicted to be strictly dominated by the blue
counterpart. The areas of regions bounded from above by the candidates corroborate this ordering,
as shown in the leftmost panel; the HV dominated by the blue candidate is bigger than that of the
green. Alternatively, we can compute multivariate ranks of the candidates (middle panel). Consistent
with the HV ordering, the blue candidate is ranked higher, at 1, than the green candidate, at 3. Note
that, due to orthogonality, there may be a tie among the candidates.

Ranking in high dimensions is not a trivial task, as there is no natural ordering in Euclidean spaces
when M ≥ 2. To compute multivariate ranks, we propose to use the (joint) cumulative distribution
function (CDF) defined as the probability of a sample having greater function value than other
candidates, FY (y) = P (f(X) ≤ y), where y = f(x). The gray dashed lines indicate the level lines
of the CDF. The level line at F (·) = 1 is the Pareto frontier estimated by our CDF. As Fig. 1(b)
shows, the CDF scores themselves closely trace HV as well. Leveraging ranks has been explored
in the many-objective literature such as Kukkonen & Lampinen (2007), but limited to computing

1The name choice stems from non-dominated candidates considered as "tied".
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the ranks of individual objectives and combining them post-hoc by a simple aggregation function
(min, max, average) in order to obtain the overall fitness values. Similarly, Picheny et al. (2019)
propose Ordinal BO which accounts for the rankings of both solutions and objective values, but
their method is only suitable for discrete spaces. Differently, here, we propose a joint, multivariate
ranking approach for continuous data.

Motivated by the natural interpretation of multivariate ranks as a multi-objective indicator, we make
the following contributions: (i) We propose a new Pareto-compliant performance criterion, the CDF
indicator (Sec. 2); (ii) We propose a scalable and robust acquisition function based on the multirank,
BOTIED (Sec. 3); (iii) We release a benchmark dataset that explores an ideal case for BOTIED
ranking, in which we can specify the correct data-generating model when fitting the CDF of the
objectives (Sec. 4). The dataset probes particular dependency structures in the objectives and opens
the door to incorporating domain knowledge.

2 BACKGROUND

2.1 BAYESIAN OPTIMIZATION

Bayesian optimization (BO) is a popular technique for sample-efficient black-box optimization (see
Shahriari et al., 2015; Frazier, 2018, for a review). In a single-objective setting, suppose our objective
f : X → R is a black-box function of the design space X that is expensive to evaluate. Our goal
is to efficiently identify a design x⋆ ∈ X maximizing2 f . BO leverages two tools, a probabilistic
surrogate model and a utility function, to trade off exploration (evaluating highly uncertain designs)
and exploitation (evaluating designs believed to maximize f ) in a principled manner.

For each iteration t ∈ N, we have a dataset Dt = {(x(1), y(1)), · · · , (x(Nt), y(Nt))} ∈ Dt, where
each y(n) is a noisy observation of f(x(n)). First, the probabilistic model f̂ : X → R infers the
posterior distribution p(f |Dt), quantifying the plausibility of surrogate objectives f̂ ∈ F. Next, we
introduce a utility function u : X × F × Dt :→ R. The acquisition function a(x) is simply the
expected utility of x w.r.t. our current belief about f ,

a(x) =

∫
u(x, f̂ ,Dt)p(f̂ |Dt)df̂ . (2.1)

For example, we obtain the expected improvement (EI) acquisition function if we take uEI(x, f̂ ,D) =

[f̂(x)−max(x′,y′)∈D y′]+, where [·]+ = max(·, 0) (Močkus, 1975; Jones et al., 1998). Often the
integral is approximated by Monte Carlo (MC) with posterior samples f̂ (j) ∼ p(f |Dt). We select
a maximizer of a as the new design, evaluate f(a), and append the observation to the dataset. The
surrogate is then refit on the augmented dataset and the procedure repeats.

2.2 MULTI-OBJECTIVE OPTIMIZATION

When there are multiple objectives of interest, a single best design may not exist. Suppose there are
M objectives, f : X → RM . The goal of multi-objective BO is to identify the set of Pareto-optimal
solutions such that improving one objective within the set leads to worsening another. We say that x
dominates x′, or f(x) ≻ f(x′), if fm(x) ≥ fm(x′) for all m ∈ {1, . . . ,M} and fm(x) > fm(x′)
for some m. The set of non-dominated solutions X ∗ is defined in terms of the Pareto frontier (PF) P∗,

X ⋆ = {x : f(x) ∈ P⋆}, where P⋆ = {f(x) : x ∈ X, ∄ x′ ∈ X s.t. f(x′) ≻ f(x)}. (2.2)

Multi-objective BO algorithms typically aim to identify a finite subset of X ⋆, which may be infinite,
within a reasonable number of iterations.

Hypervolume One way to measure the quality of an approximate PF P is to compute the hyper-
volume (HV) HV(P|rref) of the polytope bounded from above by P and from below by rref , where

2For simplicity, we define the task as maximization in this paper without loss of generality. For minimizing
f , we can negate f , for instance.
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rref ∈ RM is a user-specified reference point. More specifically, the HV indicator for a set A is

IHV(A) =

∫
RM

I[rref ⪯ y ⪯ A]dy. (2.3)

We obtain the expected hypervolume improvement (EHVI) acquisition function if we take

uEHVI(x, f̂ ,D) = HVI(P′,P|rref) = [IHV(P
′|rref)− IHV(P|rref)]+, (2.4)

where P′ = P ∪ {f̂(x)} (Emmerich, 2005; Emmerich et al., 2011).
Noisy observations In the noiseless setting, the observed baseline PF is the true baseline PF, i.e.
Pt = {y : y ∈ Yt, ∄ y′ ∈ Yt s.t. y′ ≻ y}, where Yt := {y(n)}Nt

n=1. This does not, however, hold
in many practical applications, where measurements carry noise. For instance, given a zero-mean
Gaussian measurement process with noise covariance Σ, the feedback for a candidate x is y ∼
N (f(x),Σ), not f(x) itself. The noisy expected hypervolume improvement (NEHVI) acquisition
function marginalizes over the surrogate posterior at the previously observed points Xt = {x(n)}Nt

n=1,

uNEHVI(x, f̂ ,D) = HVI(P̂′
t, P̂t|rref), (2.5)

where P̂t = {f̂(x) : x ∈ Xt, ∄ x′ ∈ Xt s.t. f̂(x′) ≻ f̂(x)} and P̂′ = P̂ ∪ {f̂(x)} (Daulton
et al., 2021).

3 MULTI-OBJECTIVE BO WITH TIED MULTIVARIATE RANKS

In MOBO, it is common to evaluate the quality of an approximate Pareto set X by computing its
distance from the optimal Pareto set X∗ in the objective space, or d(f(X), f(X∗)). The distance
metric d : 2Y×2Y → R quantifies the difference between the sets of objectives, where 2Y is the power
set of the objective space Y. Existing work in MOBO mainly focuses on the difference in HV, or HVI.
One advantage of HV is its sensitivity to any type of improvement, i.e., whenever an approximation
set A dominates another approximation set B, then the measure yields a strictly better quality
value for the former than for the latter set (Zitzler et al., 2003). Although HV is the most common
metric of choice in MOBO, it suffers from sensitivity to transformations of the objectives and scales
super-polynomially with the number of objectives, which hinders its practical value. An alternative
approach is to use distance-based indicators (Miranda & Von Zuben, 2016; Wang et al., 2016b) that
assign scores for the solutions based on a signed distance from each point to an estimated Pareto
front, which is again computationally expensive. On the other hand, multivariate ranks inherently
approximate the distance to the Pareto front as explained in Sec. 1, Fig. 1. Methods such as (Miranda
& Von Zuben, 2016; Wang et al., 2016b) can be considered as precursors to our multivariate indicator.

In the following, the (weak) Pareto-dominance relation is used as a preference relation ≽ on the
search space X indicating that a solution x is at least as good as a solution y (x ≽ y) if and only
if ∀1 ≤ i ≤ M : fi(x) ≥ fi(y). This relation can be canonically extended to sets of solutions
where a set A ⊆ X weakly dominates a set B ⊆ X(A ≽ B) iff ∀y ∈ B ∃x ∈ A : x ≽ y (Zitzler
et al., 2003). Given the preference relation, we consider the optimization goal of identifying a set
of solutions that approximates the set of Pareto-optimal solutions and ideally this set is not strictly
dominated by any other approximation set.

Since the generalized weak Pareto dominance relation defines only a partial order on Y, there may
be incomparable sets in Y which may cause difficulties with respect to search and performance
assessment. These difficulties become more serious as M increases (see Fonseca et al. (2005) for
details). One way to circumvent this problem is to define a total order on Y which guarantees that
any two objective vector sets are mutually comparable. To this end, quality indicators have been
introduced that assign, in the simplest case, each approximation set a real number, i.e., a (unary)
indicator I is a function I : Y → R (Zitzler et al., 2003). One important feature an indicator should
have is Pareto compliance Fonseca et al. (2005), i.e., it must not contradict the order induced by
the Pareto dominance relation.

In particular, this means that whenever A ≽ B ∧ B ⪰̸ A, then the indicator value of A must
not be worse than the indicator value of B. A stricter version of compliance would be to require
that the indicator value of A is strictly better than the indicator value of B (if better means a
higher indicator value):

A ≽ B ∧B ⪰̸ A ⇒ I(A) > I(B). (3.1)
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3.1 CDF INDICATOR

Here we suggest using the CDF as an indicator for measuring the quality of Pareto approximations.

Definition 1 (Cumulative distribution function). The CDF of a real-valued random variable Y is
the function given by:

FY (y) = P (Y ≤ y) =

∫ y

−∞
pY (t)dt. (3.2)

i.e. it represents the probability that the r.v. Y takes on a value less than or equal to y.

For more then two variables, the joint CDF is given by:

FY1,...,YM
= P (Y1 ≤ y1, . . . , YM ≤ ym) =

∫ (y1,...,yM )

(−∞,...,−∞)

pY (s)ds. (3.3)

Properties of the CDF Every multivariate CDF is (i) monotonically non-decreasing for each of its
variables, (ii) right-continuous in each of its variables and (iii) 0 ≤ FY1,...,YM

(y1, . . . , ym) ≤ 1. The
monotonically non-decreasing property means that FY(a1, . . . , aM ) ≥ FY(b1, . . . , bM ) whenever
a1 ≥ b1, . . . , aK ≥ bM . We leverage these properties to define our CDF indicator.

Definition 2 (CDF Indicator). The CDF indicator IF is defined as the maximum multivariate rank
IFY

(A) := maxy∈AFY(y), (3.4)
where A is an approximation set in Ω.

Next we show that this indicator is compliant with the concept of Pareto dominance.
Theorem 1 (Pareto compliance). For any arbitrary approximation sets A ∈ Ω and B ∈ Ω, it holds

A ≽ B ∧B ⪰̸ A ⇒ IF (A) ≥ IF (B). (3.5)

The proof can be found in Appendix A.

Remark 1. Note that IFY
in Eq. 3.4 only depends on the best element in the FY rank ordering.

One consequence of this is that IFY
does not discriminate sets with the same best element.

3.2 ESTIMATION OF THE CDF INDICATOR WITH COPULAS

Computing a multivariate joint distribution FY is a challenging task. A naive approach involves
estimating the multivariate density function and then computing the integral, which is computationally
intensive. We turn to copulas Nelsen (2007); Bedford & Cooke (2002a), statistical tool for flexible
density estimation in higher dimensions.
Theorem 2 (Sklar’s theorem Sklar (1959)). The continuous random vector Y = (Y1, . . . , YM ) has a
joint distribution F and marginal distributions Y1, . . . , FM if and only if there exist a unique copula
C, which is the joint distribution of U = (U1, . . . , UM ) = F1(Y1), . . . , Fd(YM ).

From Sklar’s theorem, we note that a copula is a multivariate distribution function C : [0, 1]M → [0, 1]
that joins (couples) uniform marginal distributions:

F (y1, . . . , yM ) = C (F1(y1), . . . , Fd(yM )) . (3.6)
By computing the copula function, we also obtain access to the multivariate CDF and, by construction,
to the multivariate ranking.

It is important to note that, to be able to estimate a copula, we need to transform the variables of interest
to uniform marginals. We do so by the so-called probability integral transform (PIT) of the marginals.

Definition 3 (Probability integral transform). PIT of a random variable Y with distribution FY is
the random variable U = FY (y), which is uniformly distributed: U ∼ Unif([0, 1]).

The benefits of using copulas as estimators for the CDF indicator are threefold: (i) Scalability and flex-
ible estimation in higher dimensional objective spaces, (ii) Scale invariance wrt different objectives,
(iii) Invariance under monotonic transformations of the objectives. These three properties suggest that
our indicator is more robust than the widely used HV indicator, as we will empirically show in the fol-
lowing section. Sklar’s theorem, namely the requirement of uniform marginals, immediately implies
the following corollary which characterizes the invariance of the CDF indicator to different scales.
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Figure 2: The CDF indicator is invariant to arbitrary monotonic transformations of the objectives
(here transforming property y2 via arctan), whereas the HV indicator is highly sensitive to them. The
color gradient corresponds to the value of the indicator at each data point. Gray circles are overlaid
on the five solutions with the top indicator scores. CDF chooses the same five solutions, but HV
prefers solutions with high y1 after y2 becomes squashed via arctan.

Corollary 1 (Scale invariance). A copula based estimator for the CDF indicator is scale-invariant.

Corollary 2 (Invariance under monotonic transformations). Let Y1, Y2 be continuous random
variables with copula CY1,Y2

. If α, β : R → R are strictly increasing functions, then:
Cα(Y1),β(Y2) = CY1,Y2

(3.7)
where Cα(Y1),β(Y2) is the copula function corresponding to variables α(Y1) and β(Y2).

Corollary 1 follows from the PIT required for copula estimation. The proof for invariance under
monotonic transformations based on Haugh (2016) can be found in Sec. A.2 and, without loss of
generality, can be extended to more than two dimensions. We empirically validate the robustness
properties of the copula-based estimator in Fig. 2.

The scale-invariance benefit of the copula transformation has been exploited in other works in the
context of optimization. Namely, Binois et al. (2020) leverage the copula space when finding a
solution to their game-theoretic MO approach, while Eriksson & Poloczek (2021) use Gaussian copula
transformations to magnify values at the end of the observed ranges (suitable for their constraint-
oriented objective function). A detailed overview and positioning of our multivariate approach with
regards to related work can be found in Appendix D, Table 2.

3.3 CDF-BASED ACQUISITION FUNCTION: BOTIED

Suppose we fit a CDF on y(1),y(2), . . . ,y(Nt), the Nt measurements acquired so far. Denote the
resulting CDF as F̂ (·;Dt), where we have made explicit the dependence on the dataset up to time
t. The utility function of our BOTIED acquisition function is as follows:

u(x, f̂ ,Dt) = F̂ (f̂(x);Dt). (3.8)

3.4 ESTIMATING HIGH-DIMENSIONAL CDFS WITH VINE COPULAS

As with the CDF indicator, our CDF-based acquisition function has an efficient implementation that
makes use of copulas. For a more complete, self-contained description of how a copula acquisition
function fits within a single round of MOBO, we include Algorithm 1 in Appendix E. The copula
score can be found between lines 10 and 13.

A copula can be modeled following a parametric family depending on the shape of the dependence
structure (e.g., Clayton copula with lower tail dependence, Gumbel copula with upper tail, Gaussian,
no tail dependence but full covariance matrix). For additional flexibility and scalability, Bedford &
Cooke (2002b) has proposed vine copulas, a pair-copula construction that allows the factorization
of any joint distribution into bivariate copulas. In this construction, the copula estimation problem
decomposes into two steps. First, we specify a graphical model, structure called vine consisting
of M(M − 1)/2 number of trees. Second, we choose a parametric or nonparametric estimator for
each edge in the tree representing a bivariate copula. Aas (2016) propose efficient algorithms to
organize the trees. For completeness, we add an example decomposition in Appendix C as well as the
steps involved in fitting a copula. For more details on these algorithms and convergence guarantees,
please see Bedford & Cooke (2002b) and references therein.
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4 EMPIRICAL RESULTS

Experimental Setup To empirically evaluate the sample efficiency of BOTIED, we execute simulated
BO rounds on a variety of problems. See Appendix F for more details about our experiments. Our
codebase is available in the supplementary material and at anonymous.link.

Metrics We use the HV indicator presented in Sec. 3, the standard evaluation metric for MOBO, as
well as our CDF indicator. We rely on efficient algorithms for HV computation based on hyper-cell
decomposition as described in (Fonseca et al., 2006; Ishibuchi et al., 2011) and implemented in
BoTorch (Balandat et al., 2020).

Baselines We compare BOTIED with popular acquisition functions. We assume noisy function
evaluations, so implement noisy versions of all the acquisition functions. The baseline acquisition
strategies include NEHVI (noisy EHVI) Daulton et al. (2020) described in Eq. 2.5; NParEGO (noisy
ParEGO) Knowles (2006) which uses random augmented Chebyshev scalarization and noisy expected
improvement; multiple entropy search baselines, Joint entropy search (JES) (Hvarfner et al., 2022)
, Maximum Entropy Search (MES) (Belakaria et al., 2019) and Predictive Entropy Search (PES)
(Hernández-Lobato et al., 2016a), the difference between the three being the whether the entropy of
inputs or objectives or both is being considered. Finally, we add the random selection baseline. For
BOTIED we have two implementations, v1 and v2, both based on the joint CDF estimation with the
only difference being the method of incorporating the variance from the Monte Carlo (MC) predictive
posterior samples, either fitting the copula on all of them (v1) or on the means (v2). The algorithms
for both versions can be found in Appendix E, Algorithm 1.

Datasets As a numerical testbed, we begin with toy test functions commonly used as BO benchmarks:
Branin-Currin (Daulton et al., 2022a) (d = 2, M = 2) and DTLZ (Deb & Gupta, 2005) (d = 9,
M ∈ {4, 6, 8}). The Penicillin test function (Liang & Lai, 2021) (d = 7, M = 3) simulates the
penicillin yield, time to production, and undesired byproduct for various parameters of the production
process. All of these tasks allow for a direct evaluation of f .

To emulate a real-world drug design setup, we modify the permeability dataset Caco-2 Wang et al.
(2016a) from the Therapeutics Data Commons database (Huang et al., 2021; 2022). Permeability
is a key property in the absorption, distribution, metabolism, and excretion (ADME) profile of
drugs. The Caco-2 dataset consists of 906 drug molecules annotated with experimentally measured
rates of passing through a human colon epithelial cancer cell line. We represent each molecule as
a concatenation of fingerprint and fragment feature vectors, known as fragprints (Thawani et al.,
2020). We augment the dataset with five additional properties using RDKit (Landrum et al., 2023),
including the drug-likeness score QED (Bickerton et al., 2012; Wildman & Crippen, 1999) and
topological polar surface area (TPSA) and refer to the resulting M = 6 dataset as Caco-2+. In many
cases, subsets of these properties (e.g., permeability and TPSA) will be inversely correlated and
thus compete with one another during optimization. In late-state drug optimization, the trade-offs
become more dramatic and as more properties are added (Sun et al., 2022). Demonstrating effective
sampling of Pareto-optimal solutions in this setting is thus of great value.

Figure 3: (a). Regardless of the distributions of the marginals, the CDF score from a copula is the
same. (b) An example of explicitly encoding domain knowledge in a BO procedure by imposing the
blue tree structure (specifying the matrix representation of the vine) and pink selection of pairwise
dependencies (choice of parametric/non-parametric family).
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Figure 4: (a, b): HV metric vs. iterations. (c, d): CDF metric vs. iterations. Values shown are
averages over five random seeds.

4.1 COPULAS IN BO

In the low-data regime, empirical Pareto frontiers tend to be noisy. When we have access to domain
knowledge about the objectives, we can use it to construct a model-based Pareto frontier using vine
copulas. This section describes how to incorporate (1) the known correlations among the objectives
to specify the tree structure (vine) and (2) the pairwise joint distributions (including the tail behavior),
approximately estimated from domain knowledge, when specifying the copula models.

The advantages of integrating copula-based estimators for our metric and acquisition function are
threefold: (i) scalability from the convenient pair copula construction of vines, (ii) robustness wrt
marginal scales and transformations thanks to inherent copula properties 3.2 and Eq. 2, and (iii)
domain-aware copula structures from the explicit encoding of dependencies in the vine copula matrix,
including choice of dependence type (e.g., low or high tail dependence).

Fig. 3 illustrates the use of copulas in the context of optimizing multiple objectives in drug discovery,
where data tends to be sparse. In panel (a) we see that, thanks to the separate estimation of marginals
and dependence structure, different marginal distributions have the same Pareto front in the PIT
space, in which we evaluate our CDF scores. Hence, with copula-based estimators, we can guarantee
robustness without any overhead for scalarization or standardization of the data as required by other
counterparts. In panel (b) we show how we can encode domain knowledge of the interplay between
different molecular properties in the Caco2+ dataset. Namely, permeability is often highly correlated
with ClogP and TPSA, with positive and negative correlation, respectively, which is even more
notable at the tails of the data (see panel (a) and Appendix F). Such dependence can be encoded in
the vine copula structure and in the choice of copula family for each pair. For example, we specified
a rotated Clayton copula so that the tail dependence between TPSA and permeability is preserved.

New flexible test function We design a dataset named CopulaBC to explore an ideal case for
BOTIED ranking, in which we do not incur error from specifying an incorrect CDF model. The
objectives follow a known joint distribution, recoverable using the true data-generating model for
the marginals and for the copula. For particular copula families, this dataset also enables analyses of
the dependency structure of the objectives out to the tails. We set d = 2, M = 2 for simplicity but a
higher dimensional dataset can be generated with an analogous approach. See Appendix B for details.

4.2 RESULTS AND DISCUSSION

We compare the performance of BOTIED with baselines in terms of both the HV and the CDF
indicators Table 1 and Fig. 4. Although there is no single best method across all the datasets, the
best numbers are consistently achieved by either BOTIED v1 or v2 with NParEGO being a close
competitor. The NEHVI performance visibly degrades as M increases and it becomes increasingly
slow. From the entropy baselines only JES has competitive CDF score but only in the BC data. As
with EHVI, performance degrades as M increases. In addition to being on par with commonly used
acquisition functions, BOTIED is significantly faster than NEHVI and JES (Fig. 5).

There are two main benefits to using the CDF metric rather than HV for evaluation. First, the CDF is
bounded between 0 and 1, with scores close to 1 corresponding to the discovered solutions closest to
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Table 1: HV indicators (computed in the original units) and CDF indicators across synthetic datasets.
Higher is better and best per column is marked in bold. We report the average metric across five
random seeds along with their standard deviations in parentheses.

BC (M=2) DTLZ (M=4) DTLZ (M=6) DTLZ (M=8)
CDF HV CDF HV CDF HV CDF HV

BOTIED v1 0.76 (0.06) 1164.43 (174.37) 0.2 (0.1) 0.42 (0.03) 0.33 (0.09) 0.52 (0.02) 0.2 (0.08) 0.93 (0.02)
BOTIED v2 0.74 (0.08) 1205.3 (120.46) 0.24 (0.2) 0.45 (0.05) 0.32 (0.08) 0.58 (0.03) 0.19 (0.1) 0.91 (0.03)
NParEGO 0.73 (0.09) 993.31 (178.16) 0.20 (0.07) 0.4 (0.03) 0.29 (0.03) 0.69 (0.02) 0.13 (0.07) 1.05 (0.02)
NEHVI 0.73 (0.07) 1196.37 (98.72) 0.21 (0.02) 0.44 (0.04) – – – –
Random 0.71 (0.11) 1204.99 (69.34) 0.1 (0.05) 0.22 (0.03) 0.10 (0.03) 0.55 (0.02) 0.13 (0.07) 0.96 (0.02)

Caco2+ (M=3) Penicillin (M=3) CopulaBC (M=2)
CDF HV CDF HV CDF HV

BOTIED v1 0.58 (0.06) 11645.63 (629.0) 0.48 (0.02) 319688.6 (17906.2) 0.9 (0.03) 1.08 (0.03)
BOTIED v2 0.60 (0.06) 11208.57(882.21) 0.49 (0.02) 318687.7 (17906.2) 0.9 (0.01) 1.09 (0.02)
NParEGO 0.56 (0.05) 12716.2 (670.12) 0.28 (0.09) 332203.6 (15701.52) 0.87 (0.01) 1.1 (0.01)
NEHVI 0.54 (0.06) 13224.7 (274.6) 0.24 (0.05) 318748.9 (2868.64) 0.88 (0.02) 1.1 (0.01)
Random 0.57 (0.07) 11425.6 (882.4) 0.32 (0.02) 327327.9 (17036) 0.88 (0.02) 1.08 (0.01)

our approximate Pareto front.3 Unlike with HV, for which the scales do not carry information about
the internal ordering, the CDF values have an interpretable scale. Second, applying the CDF metric
for different tasks (datasets), we can easily assess how the acquisition performance varies with the
specifics of the data, assuming the GP and copula have been properly fit.

BC (M=2) DTLZ (M=6) DTLZ (M=8)
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Figure 5: Wall-clock time per single call of
acquisition function. Error bars are standard
deviations across five repeated calls.

We stress-test BOTIED in a series of ablation studies
in Appendix G. In particular, we vary the number
of MC posterior samples and find that BOTIED v1 is
robust to the number of posterior samples, i.e., the
multivariate ranks associated with the best-fit cop-
ula model do not change significantly with varying
numbers of samples. When the posterior shape is
complex such that many MC samples are required to
fully characterize the posterior, BOTIED v2 (in which
the copula is fit on the mean of the posterior samples)
is more appropriate than v1.

Limitations There is a trade-off between flexibility
and complexity when fitting the copula model. As
the number of objectives grow, so does the number of modeling choices that need to be made (pair
copulas, parameters etc). For efficiency, in experiments we always pre-select the copula family
(Gaussian or KDE), which reduces time complexity without impacting BOTIED’s performance.

5 CONCLUSION

We introduce a new perspective on MOBO based on the multivariate CDF. We view the role of
the multi-objective acquisition function as producing multivariate ranks in the presence of noise
(surrogate uncertainties). To obtain the ranks, we fit a multivariate CDF on the surrogate predictions
and extract the ranks associated with the CDF scores. The CDF can be fit efficiently using copulas.
We propose a new Pareto-compliant CDF indicator as well as a CDF-based multi-objective acquisition
function. We have demonstrated that our CDF-based estimation of the non-dominated regions allows
for greater flexibility, robustness, and scalability compared to existing acquisition functions.

This method is general and lends itself to a number of immediate extensions. First, we can en-
code dependencies between objectives, estimated from domain knowledge, into the graphical vine
model. Second, we can accommodate discrete-valued objectives, e.g., by introducing continuous
relaxations of the discrete objectives. Finally, as many applications carry noise in the input as well
as the function of interest, accounting for input noise through the established connection between
copulas and multivariate value-at-risk (MVaR) estimation will be of great practical interest. Finally,
whereas we have focused on gradient-free evaluations of our BOTIED score, the computation of our
acquisition function is differentiable for many parametric copula families and admits gradient-based
optimization over the input space.

3Binois et al. (2015) shows that the zero level lines F (·) = 0 correspond to the estimated Pareto front in a
minimization setting, which are equivalent to the one level lines F (·) = 1 in the maximization setting.
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A PROPERTIES OF THE CDF INDICATOR

A.1 THEOREM 1: PARETO COMPLIANCE OF THE CDF INDICATOR

We state Theorem 1 again and provide the proof here.

Theorem 1: For any arbitrary approximation sets A ∈ X and B ∈ X where X ⊂ Rd, the following holds:
A ≽ B ∧B ⪰̸ A⇒ IF (A) ≥ IF (B).

Proof. If we have A ≽ B ∧ B ⪰̸ A, then the following two conditions hold: ∀x′ ∈ B ∃x ∈ A : x ≽ x′

and ∃x ∈ A s.t. ∄x′ ∈ B : x′ ≽ x. Recall that the weak Pareto dominance x ≽ x′ implies that ∀i ∈ [M ] :
fi(x) ≥ fi(x

′). From the definition and fundamental property of the CDF being a monotonic non-decreasing
function, it follows that ∀i ∈ [M ] : fi(x) ≥ fi(x

′)⇒ FY(x) ≥ FY(x′).

Define the set of non-dominated solutions in B, PB := {x ∈ B,∀x′ ∈ B : x ⪰ x′}. Note that IF (B) =
IF (PB) = IF ({z}) for any z ∈ PB . Now let xB ∈ PB . There is xA ∈ A such that xA ⪰ xB , and
we have that FY(xA) ≥ FY(xB). By definition, IF (A) ≥ IF ({xA}) so we have IF (A) ≥ IF ({xA}) ≥
IF ({xB}) = IF (B) as desired.

A.2 COROLLARY 2: INVARIANCE UNDER MONOTONIC TRANSFORMATIONS

This proof closely follows the one in (Haugh, 2016).

Corollary 2: Let Y1, Y2 be continuous random variables with copula CY1,Y2 . If α, β : R → R are strictly
increasing functions, then:

Cα(Y1),β(Y2) = CY1,Y2 (A.1)
where Cα(Y1),β(Y2) is the copula function corresponding to variables α(Y1) and β(Y2).

Proof. We first note that for the distribution function of α(Y1) it holds that

Fα(Y1) = P (α(Y1) ≤ y1) = P (Y1 ≤ α−1(y1)) = FY1(α
−1(y1)) (A.2)

and analogously,

Fβ(Y1)(y1) = FY1(β
−1(y1)) (A.3)

From Sklar’s theorem, we have that for all y1, y2 ∈ R

Cα(Y1)β(Y2)(Fα(Y1)(y1), Fβ(Y2)(y2)) = Fα(Y1)β(Y2)(y1, y2)

= P (α(Y1) ≤ y1, β(Y2) ≤ y2)

= P (Y1 ≤ α−1(y1), Y2 ≤ β−1(y2))

= FY1,Y2(α
−1(y1), β

−1(y2)))

= CY1,Y2(FY1(α
−1(y1)), FY2(β

−1(y2)))

= CY1,Y2(Fα(Y1)(y1), Fβ(Y2)(y2))

Equalities one and five follow from Sklar’s theorem. In the third equality we make use of fact that α and β are
increasing functions. The last equality follows from Eq. A.2 and Eq. A.2.

B COPULABC TEST FUNCTION

We design and release a dataset named CopulaBC for MOBO benchmarking. CopulaBC explores an ideal case
for BOTIED ranking, in which we do not incur error from specifying an incorrect CDF model. The objectives
follow a known joint distribution. The generation process is as follows:

U ∼ C (B.1)

∀i ∈ [M ] : Yi = F−1
i (Ui) (B.2)

X = g−1(Y ), (B.3)

where C is the assigned copula model and g is the function mapping inputs in X ⊂ Rd to outputs in RM .
In words, we first sample the uniform marginals in RM from a copula model of choice in Eq. B.1. We
may impose the correlation structure of interest in the copula model; for instance, we may assign a flipped
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Clayton copula if we want to emulate a heavy right tail behavior, as is common in biophysical properties (Jain
et al., 2017). The uniform marginals are then converted into the observation space via the marginal quantile
functions F−1

i for each dimension i ∈ [M ]. Lastly, the resulting Y ∈ RM are mapped back to the input
X ∈ X ⊂ Rd via the inverse model g−1.

For CopulaBC, we use the flipped Clayton copula with one parameter for C. Choosing within the Archimedean
copula family offers the advantage of analytic expressions of the Pareto front, as their level lines admit an analytic
form. We specifically opt for the Branin-Currin function for g−1 (hence the “BC” in the name CopulaBC), but
other functions with bigger d and M may be used as long as the support of Fi is consistent with the image of
g (i.e., the space of Y is matched between Fi and g). Because we restrict the domain of Branin-Currin (the
image of our g) to [0, 1]d, we chose Fi(·) = Beta(·;α = 2, β = 2) for all i ∈ [M ]. We can also choose
from a number of parametric families (e.g., exponential, Gaussian, Student’s t) because, thanks to the nature
of copulas, the marginals have no impact on the dependence structure.

Our copula dataset ensures that the objective Y follows a distribution that can be fit easily using the true
data-generating model for the marginals and for the copula (e.g., beta and Clayton, respectively, for CopulaBC).
However, this copula-based test function is general and allows for “mimicking” a variety of scenarios in stress
tests or ablation studies, depending on the application. A practitioner can control for the following:

1. choice of dependence structure, high or low tail dependence (very common in finance for example)

2. choice of distribution Fi for each of the marginals (for example, drug-related properties often follow
zero-inflated distributions with upper tails)

3. choice of the vine structure; as illustrated in Fig. 3, we can decide on the pairwise factorization and
enforce dependencies between properties via the vine copula matrix.

C (VINE) COPULA OVERVIEW AND EXAMPLE

According to Sklar’s theorem Sklar (1959), the joint density of any bivariate random vector (X1, X2), can
be expressed as

f(x1, x2) = f1(x1)f2(x2)c (F1(x1), F2(x2)) (C.1)

where fi
4 are the marginal densities, Fi the marginal distributions, and c the copula density.

That is, any bivariate density is uniquely described by the product of its marginal densities and a copula density,
which is interpreted as the dependence structure. For self-containment of the manuscript, we borrow an example
from Tagasovska et al. (2023). Fig. C.7 illustrates all of the components representing the joint density. As a
benefit of such factorization, by taking the logarithm on both sides, one can estimate the joint density in two steps,
first for the marginal distributions, and then for the copula. Hence, copulas provide a means to flexibly specify the
marginal and joint distribution of variables. For further details, please refer to Aas et al. (2009); Joe et al. (2010).

marginals copula+joint distribution

Figure 6: Expressing joint densities with
copulas.

There exist many parametric representations through different
copula families, however, to leverage even more flexibility, in
this paper, we focus on the kernel-based nonparametric copulas
of Geenens et al. (2017). Eq. C.1 can be generalized and holds
for any number of variables. To be able to fit densities of more
than two variables, we make use of the pair copula constructions,
namely vines; hierarchical models, constructed from cascades of
bivariate copula blocks Nagler et al. (2017). According to Joe
(1997); Bedford & Cooke (2002a), any M -dimensional copula
density can be decomposed into a product of M(M−1)

2
bivariate

(conditional) copula densities. Although such factorization may
not be unique, it can be organized in a graphical model, as a
sequence of M − 1 nested trees, called vines. We denote a tree as Tm = (Vm, Em) with Vm and Em the
sets of nodes and edges of tree m for m = 1, . . . ,M − 1. Each edge e is associated with a bivariate copula.
An example of a vine copula decomposition is given in Fig. 7.

In practice, in order to construct a vine, one chooses two components:

1. the structure, the set of trees Tm = (Vm, Em) for m ∈ [M − 1]

2. the pair-copulas, the models for cje,ke|De for e ∈ Em and m ∈ [M − 1].

4In this section, we use the standard notations for densities (f ) and distributions (F ) as commonly done in
the copula literature.
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Corresponding algorithms exist for both of those steps and in the rest of the paper, we assume consistency
of the vine copula estimators for which we use the implementation by Nagler & Czado (2016), namely its
Python version -pyvinecopulib.
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Figure 7: Multivariate joint density factorized with a vine copula.

C.1 COMPLEXITY OF THE COPULA ESTIMATION

The complexity for fitting the vine copulas as currently implemented scales as O(numberofpointsMvinedepth)
in the case of density estimation. Both estimation and sampling involve a double loop over M and vinedepth
with an internal step scaling linearly with numberofpoints. As the reviewer appropriately pointed out, the
computational complexity is highly impacted by L (number of predictive samples). For BOtied v1, this
translates to O(nLMvine depth), where n is the number of query candidates, while for BOtied v2, we use
the expectation of the posterior samples only, so the complexity remains as O(n×M × vinedepth). We have
evaluated the impact of varying L and the q batch size in ??.

D RELATED WORK

Table 2: Comparison of BOtied with related work
Type of
groundwork

Scoring
method

MO
criteria

Scalability
with M

Scale
invariance

Bayesian
optimization

Non GP
surrogates

Multivariate ranks/CDF,
Copula, Copula space

BOtied
(this work) ✓ ✓ ✓ ✓ ✓

Copula space,
Game theory Kalai-Smorodinsky MO (Binois et al., 2020) ✓ ✓ ✓ ✓ ✗

Multivariate
ranks

Aggregate Rank (Kukkonen & Lampinen, 2007) ✓ ✓ ✓ ✗ ✗
Ordinal BO (Picheny et al., 2019) ✓ ✗ ✗ ✓ ✓

Information
Theoretic

Joint Entropy Search
(Tu et al., 2022; Hvarfner et al., 2022) ✓ ✗ ✓ ✓ ✗

Predictive Entropy Search (Hernández-Lobato et al., 2016a) ✓ ✗ ✗ ✓ ✗
Max-Value Entropy Search (Belakaria et al., 2019) ✓ ✗ ✗ ✓ ✗

Hypervolume EHVI variants (Daulton et al., 2021; 2022b) ✓ ✗ ✗ ✓ ✓

Random
scalarization ParEGO (Knowles, 2006) ✓ ✓ ✗ ✓ ✓

Boundary
distance SVM-variants (Miranda & Von Zuben, 2016; Shilton et al., 2018) ✓ ✓ ✗ ✓ ✗

Maxmin, Pareto Indicator Pareto improvement , EmaX (Bautista, 2009)
Maximin improvement (Svenson, 2011) ✓ ✓ ✗ ✓ ✓

Completeness Averaged completeness indicator (Svenson, 2011) ✓ ✗ ✓ ✓ ✗
Estimated completeness indicator improvement (Svenson, 2011) ✓ ✓ ✓ ✓ ✓
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E ALGORITHM

Algorithm 1: MOBO with BOTIED: a CDF-based acquisition function

1: Input: Probabilistic surrogate f̂ , initial data D0 = {(xn,yn)}N0
n=1, X ⊂ Rd,Y ⊂ RM

2: Output: Optimal selected subset DT .
3: Fit the initial surrogate model f̂(xi) on D0.
4: for {t = 1, . . . , T} do
5: Sample the candidate pool x1, · · · ,xN ∈ X
6: for {i = 1, . . . , N} do
7: Evaluate f̂ on the candidate pool to obtain the posterior p(f(xi)|Dt−1)

8: Draw L predictive samples f̂ (j)
i ∼ p(f(xi)|Dt−1), for j ∈ [L]

9: end for
10: Obtain uniform marginals {u(j)

i }i∈[N ],j∈[L] from the pooled samples {f̂ (j)
i }i∈[N ],j∈[L]

11: Version 1: Fit a vine copula Ĉ on the uniform marginals on the sample level,
{u(j)

i }i∈[N ],j∈[L].
Version 2: Fit a vine copula Ĉ on the mean-aggregated uniform marginals,
{ 1
L

∑L
j=1 u

(j)
i }i∈[N ].

12: for {i = 1, . . . , N} do
13: Version 1: Compute the expected CDF score S(xi) =

1
L

∑L
j=1 Ĉ

(
u
(j)
i

)
Version 2: Compute the CDF score of the mean ranks S(xi) = Ĉ

(
1
L

∑L
j=1 u

(j)
i

)
14: end for
15: i⋆ ← argmaxi∈[N ] S(xi)

16: Dt ← Dt−1 ∪ {(xi⋆ ,yi⋆)}
17: end for
18: return DT

F EXPERIMENTAL DETAIL

We executed batched BO simulations with a batch size of B = 4 for all the experiments. The number of
iterations T varied across the experiments. Other parameters include: the initial data size N0, the size of
the pool N , and the number of predictive posterior samples L. We fixed the size of the pool relative to the
selected batch, at N/B = 100. We also fixed L = 20, which was found to yield good sample coverage
and a stable BOTIED acquisition value.

Unless otherwise stated, the surrogate model was a multi-task Gaussian process (MTGP) with a Matern kernel
implemented in BoTorch (Balandat et al., 2020) and GPyTorch (Gardner et al., 2014). The inputs and outputs
were both scaled to the unit cube for fitting the MTGP, but the outputs were scaled back to their natural units
for evaluating the respective acquisition functions.

F.1 BRANIN-CURRIN

Branin-Currin (d = 2, M = 2; (Belakaria et al., 2019)) is a composition of the Branin and Currin functions
featuring a concave Pareto front (in the maximization setting). We maximize

f1(x1, x2) = −
(
x2 −

5.1

4π2
x2
1 +

5

π
x1 − r

)2

+ 10(1− 1

8π
) cos(x1) + 10

f2(x1, x2) = −[1− exp

(
− 1

2x2

)
]
2300x3

1 + 1900x2
1 + 2092x1 + 60

100x3
1 + 500x2

1 + 4x1 + 20
,

where x1, x2 ∈ [0, 1]. We used T = 30.

F.2 DTLZ

For the DTLZ problem, we took DTLZ2 (d = 9, M ∈ {4, 6, 8}; (Deb & Gupta, 2005)) and used T = 20.
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F.3 PENICILLIN PRODUCTION

For the Penicillin production problem (d = 7, M = 3; (Liang & Lai, 2021)), we used T = 10.

F.4 CACO2+

For the Caco2 problem (M = 3; Wang et al., 2016a), we use T = 10. The objective is to identify molecules
with maximum cell permeability. Here, permeability describes the degree to which a molecule passes through
a cellular membrane. This property is critical for drug discovery (DD) programs where the disease protein
being targeted resides within the cell (intracellularly). In each experiment, a molecule xi is applied to a
monolayer of Caco2 cells and, after incubation, the concentration c of xi is measured on both the input and
output side of the monolayer, giving cin and cout(Van Breemen & Li, 2005). The ratio cout/cin is then treated
as the final permeability label yp

i .

Cellular membranes are composed of a complex mixture of lipids and other biomolecules. In order to enter
and (passively) diffuse through a membrane, molecule xi should interact favorably with these biomolecules
and/or avoid disrupting their packing structure. Increasing the lipophilicity (logP) of xi is thus one strategy
to increase permeability. However, increasing logP often results in promiscuous binding of xi to non-disease
related proteins, which can lead to undesired side-effects. As such, we seek to minimize the computed logP
(clogP, yl

i) in our optimization task and note that this could directly compete with (i.e., harm) permeability.

Lastly and related, common objectives during MPO in DD settings include increasing the affinity and specificity
of target binding. As opposed to non-specific lipophilic interactions as above, polar contacts (such as hydrogen
bonds) between drug molecules and proteins often result in higher affinity and more specific binding. We
compute the topological polar surface area (TPSA, yt

i ) of each candidate xi as one indicator of its ability to
form such interactions and seek to maximize it in our optimization. As with decreasing logP, increasing TPSA
can negatively impact permeability and we thus consider it a competing objective.

It is important to note that the treatment of each of these optimization tasks as unidirectional (max or min)
is a simplification of many practical DD settings. There is often an acceptable range of each value that is
targeted, and leaving the bounds in either direction can be problematic for complex reasons. We direct the
reader to D. Segall (2012) for a comprehensive review.

For fitting the MTGP on the Caco2+ data, we represent each input molecule as a concatenation of fingerprint and
fragment feature vectors, known as fragprints (Thawani et al., 2020) and use the Tanimoto kernel implemented
in GAUCHE (Griffiths et al., 2022).

F.5 DETAILS ON WALL CLOCK TIME

Details for Fig. 5. For all acquisition functions, we report the wall clock time per single acquisition function
evaluation as computed on a Tesla V100 SXM2 GPU (16GB RAM) and an Intel Xeon CPU @ 2.30GHz (240GB
RAM). A single call takes in the surrogate inference results for the candidate pool as well as the previously
evaluated points and computes the acquisition scores.

• BC M=2: q batch size = 4, number of predictive samples=40, initial n = 10, pool size = 40

• DTLZ M=4: q batch size = 4, number of predictive samples=20, initial n = 50, pool size = 40

• DTLZ M=6: q batch size = 4, number of predictive samples=20, initial n = 50, pool size = 40.

Therefore, a single call for BOtied includes the copula computation and this is reflected in Figure 4. The
complexity for fitting the copula scales as O(numbpointsMvinedepth), where numpoints is nL for BOtied
v1 and n for BOtied v2. The copula is refit at every iteration to take advantage of the additional data. In the
case of a batch selection of q candidates within an iteration, the computation for BOtied increases linearly
with every iteration, since this adds q points to the copula at each iteration. The L predictive samples of those
q candidates are also included in the copula fit.
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Figure 8: Examples of molecules with “good"/desirable TPSA, permeability, and ClogP values.

Figure 9: An example of a molecule with “bad" TPSA, permeability, and ClogP values.

G ABLATION STUDIES
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Figure 10: Ablation studies for BOtied v1. (a) BOtied is robust to the number of posterior samples
drawn. (b) Increasing the batch size improves acquisition, particularly as it improves the CDF fit
quality in earlier iterations.
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