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ABSTRACT
Multi-label image classification is an important and challenging
task in computer vision and multimedia fields. Most of the recent
works only capture the pair-wise dependencies among multiple
labels through statistical co-occurrence information, which cannot
model the high-order semantic relations automatically. In this paper,
we propose a high-order semantic learning model based on adap-
tive hypergraph neural networks (AdaHGNN) to boost multi-label
classification performance. Firstly, an adaptive hypergraph is con-
structed by using label embeddings automatically. Secondly, image
features are decoupled into feature vectors corresponding to each
label, and hypergraph neural networks (HGNN) are employed to
correlate these vectors and explore the high-order semantic interac-
tions. In addition, multi-scale learning is used to reduce sensitivity
to object size inconsistencies. Experiments are conducted on four
benchmarks: MS-COCO, NUS-WIDE, Visual Genome, and Pascal
VOC 2007, which cover large, medium, and small-scale categories.
State-of-the-art performances are achieved on three of them. Re-
sults and analysis demonstrate that the proposed method has the
ability to capture high-order semantic dependencies.
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红色：表示可有可无
主要目的：出现人时，不一定有背包；出现自行车时，也不一定有背包；

 但是人和自行车同时出现时，很大概率会出现背包。

P(person) = 0.55 P(tennis racket) = 0.03 P(sports ball) = 0.04 P(sports ball | person, tennis racket) =0.53 

P(dining table) = 0.10 P(chair | dining table, cup) = 0.45 P(chair) = 0.11 P(cup) = 0.08 

Figure 1: Illustration of high-order label dependencies on
the MS-COCO dataset. When “person” and “tennis racket”
appear at the same time, “sports ball” comes together with
a high probability in an image. Similarly, “chair” co-occurs
with “dining table + cup” is as high as 0.45.

1 INTRODUCTION
The multi-label image classification (MLIC) task has attracted im-
portant attention in computer vision. It can be widely applied to
scene recognition [3, 31, 33], automatic image annotation [19, 36],
and human attribute recognition [14, 51]. Unlike single-label im-
age classification, the multi-label task is more challenging due to
two main issues: associating multi-labels with image regions and
correlation among multiple labels.

For the first issue, some works [41, 45] utilize object detection
technologies to extract region proposals and to enhance the feature
learning of object region. These works usually need extra bounding
box annotations of objects in training, which severely limits the
practical application. Some researchers [1, 13, 44, 50] introduce
attention mechanisms [43]. These methods capture the associations
between image regions and labels with image-level supervision.
However, they do not take the label dependencies into account [5].

For the second issue, a popular method is to use recurrent neural
networks (RNNs) or long short-term memory (LSTM) to model
the label correlations [2, 26]. Though good performance has been
achieved, it suffers from the problem that only sequential label
relations are modeled [6]. Another popular method is to capture
two label dependencies based on the probabilistic graph model [23],
such as ChowLiu Tree [7], PLEM [24], etc. These methods utilize
label co-occurrence pairs to construct a maximum spanning tree
structure for MLIC tasks. However, probabilistic graph models have
high computational complexity [38].

To overcome the aforementioned limitations, recent works in-
troduce graph neural networks (GNN) to explicitly model label
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correlations, such as ML-GCN [6], knowledge and statistics su-
perimposing network (KSSNet) [38], etc. These methods leverage
a graph to model the label correlations from the statistical label
co-occurrence or human prior knowledge, which makes a signifi-
cant improvement in MLIC performance. Even so, existing methods
only capture relationships among pair-wise labels and cannotmodel
high-order semantic dependencies [12]. And the hand-crafted cor-
relation graph makes most of these models very inflexible [22].
Real-world objects usually have high-order correlations. For the
first row of Fig. 1, we can see that “sports ball” comes together
with “person + tennis racket” with a high probability. Similarly,
“chair” co-occurs with “dining table + cup” is as high as 0.45 on
the MS-COCO dataset. It is obvious that the high-order semantic
relations own great potential for improving MLIC performance.

In this paper, we propose an adaptive hypergraph neural net-
work (AdaHGNN) to learn high-order semantic relations. Instead
of using statistical co-occurrence information, we utilize label em-
beddings to automatically construct the adaptive hypergraph. The
main contributions of this paper include:

• Propose a model based on hypergraph neural networks for
learning high-order semantic relations and guiding label-
related feature learning.

• Propose a novel method for constructing an adaptive hyper-
graph, which is more flexible and effective than hand-crafted
methods.

• Experiments are conducted on four benchmarks and state-
of-the-art performances are achieved on three of them in
multi-label image classification tasks.

2 RELATEDWORKS
2.1 Multi-Label Image Classification (MLIC)
Some works use object detection techniques for MLIC tasks. Zhang
et al. [49] use a regional proposal network like layer to localize
the regions corresponding to labels. Yang et al. [45] extract object
proposals and do single-label classification in each local region.
Though these methods can enhance feature learning, they require
extra object-level annotations [46]. To overcome this issue, some
other works exploit attention mechanisms based on image-level an-
notations to obtain local information. For instance, Wang et al. [39]
propose a recurrent memorized-attention module to locate atten-
tional regions. Li et al. [21] propose a recurrent highlight network
(RHN) to generate candidate glimpses and locate related regions
for improving features learning.

Recently, several studies attempt to model label correlations
by RNNs or LSTM. Specifically, Hua et al. [18] use a bidirectional
LSTM-based network to capture the label correlations in both di-
rections. Lyu et al. [28] use RNNs to encode the label dependencies
sequentially. In addition, the probabilistic graph model is also used
to model label dependencies. For instance, a cyclic directed graph-
ical model [15] and a tree-structured graph [24] are proposed to
capture label relevance.

2.2 Graph Neural Network (GNN)
With the great success of GNN on visual tasks [40, 42], GNN has
been introduced to MLIC and achieved impressive progress. For

instance, Chen et al. [6] propose a novel graph convolutional net-
work (GCN) based model (ML-GCN) to learn the label relationships.
Wang et al. [38] add lateral connections between GCN and CNN at
different stages to enhance the information transmission of feature
learning and label system. A semantic-specific graph representa-
tion learning (SSGRL) [5] framework is proposed to explore the
interactions between semantics and regions. Despite the significant
improvements have been achieved, these methods only capture
the relations of two label, which can’t model high-order semantic
dependencies [12].

Some works [34, 47, 52] introduce the hypergraph structure
to model high-order relations among data. These methods treat
each sample as one vertex and iteratively optimize each variable
by fixing others. Different from these works, we regard each label
as one vertex and integrate the adaptive hypergraph into HGNN
for end-to-end training. Recently, HGNN [12] is proposed to learn
multi-modal and complex data by a hyperedge convolution oper-
ation. Unlike an edge in general graphs, which only connect two
vertices, a hyperedge in hypergraphs connects two or more vertices.
It satisfies the characteristics of high-order relationships in multi-
labels. So inspired by [12], this paper proposes adaptive hypergraph
neural networks to deal with MLIC tasks. Most of the prior works
of GNN and HGNN use the statistical co-occurrence information of
two labels to construct the graph manually. And A-GCN [22] uses
two 1 × 1 convolutional layers and a dot product operation to learn
the correlation matrix of pair-wise labels with fixed dimensions.
Different from these works, we use label embeddings to directly
initialize the adaptive hypergraph with an arbitrary number of
hyperedges, which can model high-order semantic relations auto-
matically. The adaptive hypergraph not only avoids the inflexibility
of hand-crafted correlation graphs but also avoids statistical bias
caused by imbalanced labels in the training set.

3 METHOD
In this section, we elaborate on the proposed AdaHGNN model
for MLIC tasks, as illustrated in Fig. 2. The overall architecture
mainly consists of 3 modules, i.e., the construction of adaptive
hypergraph, HGNNmodule, and multi-scale learning. Among them,
the adaptive hypergraph module is proposed to construct and learn
label associations. The HGNN module is used to correlate the label-
related features and explore semantic interactions. And multi-scale
learning is utilized to improve the robustness to object size.

3.1 Construction of Adaptive Hypergraph
Following [12], a hypergraph is defined as G =

{
V, E,𝑾

}
, where

V denotes a set of vertices, E denotes a set of hyperedges and𝑾 is
a diagonal matrix of hyperedges weights, which can be initialized
with an identity matrix for meaning equal weights for all hyper-
edges. A hypergraph incidence matrix is denoted as 𝑯 ∈ R𝑛×𝑚 ,
where 𝑛 and 𝑚 denote the number of vertices and hyperedges,
respectively. Generally, the distance between two vertices is cal-
culated to build a hypergraph or statistical information is used to
build a graph. These methods depend on calculations or statistics
information from the training set, which may suffer bias caused by
imbalanced labels. To solve this issue, we propose a novel method
to construct an adaptive hypergraph.
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Figure 2: The overall architecture of the proposedAdaHGNN. Firstly, ResNet-101 [16] is employed to extract the image features.
A semantic decoupling module [5] is used to decouple the features into label-related feature vectors by label embeddings.
Secondly, two-layer hypergraph neural networks based on adaptive hypergraph are employed to correlate the label-related
features and explore the high-order semantic interactions. Finally, merge image features of stage-3 and stage-4 to improve the
robustness to object size. “⊕” denotes the concatenate operation and “FC” denotes the fully-connected layer.

Hand-Crafted Hypergraph. For comparison, we first intro-
duce the construction of a hand-crafted hypergraph for the MLIC
task. Assuming a classification task contains 𝑛 labels and regards
each label as one vertex, the process of hand-crafted hypergraph
construction is as follows:

Step 1: construct a probability matrix 𝑷 ∈ R𝑛×𝑛 from the label
co-occurrence of the training dataset. The element of probability
matrix 𝑷 can be formulated as

𝑃𝑖 𝑗 = 𝑃 (𝐿𝑖 |𝐿𝑗 ) (1)

where 𝑃 (𝐿𝑖 |𝐿𝑗 ) denotes the conditional probability of appearance
of label 𝐿𝑖 when label 𝐿𝑗 appears, 𝑖, 𝑗 = 1, 2, ..., 𝑛.

Step 2: construct the hypergraph incidence matrix 𝑯𝑺 ∈ R𝑛×𝑚
with vertex as row and hyperedge as column. Each hyperedge se-
lects one vertex as the center and connects the 𝐾 nearest neighbors
by co-occurrence probability. Let 𝑽𝒋 denotes the vertex set of the 𝐾
nearest neighbors of the 𝑗𝑡ℎ vertex, then the element of hypergraph
incidence matrix 𝑯𝑺 can be formulated as

[𝐻𝑆 ]𝑖 𝑗 =
{
𝑃𝑖 𝑗 , 𝑣𝑖 ∈ 𝑽𝒋

0, 𝑣𝑖 ∉ 𝑽𝒋
(2)

where 𝑣𝑖 denotes the 𝑖𝑡ℎ vertex, 𝑖 = 1, 2, ..., 𝑛 and 𝑗 = 1, 2, ...,𝑚.
Here 𝑛 =𝑚, that is, the number of vertices equals the number of
hyperedges.

Step 3: add an identity matrix 𝑰𝒏 ∈ R𝑛×𝑛 to obtain the final
hypergraph incidence matrix:

𝑯𝑺
′ = 𝑯𝑺 + 𝑰𝒏 (3)

Fig. 3 (b) shows the example of hand-crafted hypergraph con-
struction. The hyperedge 𝑒1 takes vertex 𝑣1 as the center and con-
nects other vertices with the co-occurrence probability as the dis-
tance. When 𝐾 = 2, 𝑣3 with the probability of 0.67 and 𝑣5 with the

probability of 0.5 are the top 2 nearest neighbors of 𝑣1. So in the hy-
pergraph incidencematrix𝑯𝑺 , the element values of 𝑣3 and 𝑣5 corre-
sponding to column 𝑒1 are 0.67 and 0.5 respectively, while others are
equal to 0. In this way, we finally get the hand-crafted hypergraph
based on the statistical co-occurrence information. However, the
number of the hyperedge suffers limitation and the hyperparameter
𝐾 has an impact on the construction of hypergraph.

Adaptive Hypergraph. To address the above issue, this paper
proposes an automatic learning method of the incidence matrix to
construct the adaptive hypergraph. It is impossible that all label
relationships can be obtained by statistical co-occurrence informa-
tion. Therefore, we redefine the hyperedge of hypergraphs, which
no longer centers on a vertex to connect its 𝐾 nearest neighbor ver-
tices. We define a hyperedge as a kind of abstract relation between
vertices, rather than a specific prior relationship. Let E be a set of
hyperedge in a hypergraph, then hyperedges can be denoted as:

E =
{
𝒆1, 𝒆2, ..., 𝒆𝒎

}
,𝑚 > 0 (4)

where𝑚 is the number of hyperedges. Each hyperedge indicates
a potential relationship between two or more vertices, which can
be learned automatically in the training phase. Then the adaptive
hypergraph incidence matrix 𝑯𝑨 ∈ R𝑛×𝑚 can be obtained by ag-
gregating the learnable hyperedges. We can choose random values
or label embeddings to initialize 𝑯𝑨. To accelerate the convergence,
this paper uses label embeddings as initialization. The label embed-
dings 𝑬 ∈ R𝑛×𝑚 can be denoted as

𝑬 =
{
𝒃1, ..., 𝒃𝒊, ..., 𝒃𝒎

}
,𝑚 > 0 (5)

where 𝑛 is the number of labels and𝑚 denotes the dimensionality
of the embedding. 𝒃𝒊 denotes the 𝑖𝑡ℎ dimension vector of the label
embedding. They can be obtained by the pre-trained word embed-
ding, such as GloVe [30], BERT [10], etc. Intuitively, each dimension
of the label embedding indicates an attribute or relation of labels,
which is consistent with the characteristics of the hyperedge. So
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Figure 3: The comparison of hand-crafted and adaptive hypergraph construction processes. (a) The input data examples with
6 objects and 11 examples. Each colored dot denotes an object label. The same color of edges connect the labels co-occurred
in the same image sample. (b) For each vertex, aggregate its 𝑛 − 1 neighbor vertices by co-occurrence probability to generate a
hyperedge. Then select the 𝐾 nearest neighbors to construct the hypergraph incidence matrix. The red circle region denotes
the neighborhood of 𝐾 = 2. The greater the probability, the closer they are. (c) The adaptive hypergraph is initialized by label
embedding and automatically learned during training.

it is meaningful to use label embedding to initialize the adaptive
hypergraph incidence matrix 𝑯𝑨. Fig. 3 (c) shows an example of the
construction of an adaptive hypergraph. There are 6 vertices and𝑚
hyperedges. Label embedding is used to initialize the hypergraph
incidence matrix. And the adaptive hypergraph can be learned after
model training. The darker the color, the stronger the correlation.
Take 𝑒𝑚 as an example, we can draw its potential relationship with
four vertices (𝑣2, 𝑣6, 𝑣3, 𝑣4) according to the degree of correlation.
The closer the distance, the stronger the association.

3.2 Feature-Semantics Interaction through
HGNN

The overall framework of our approach is shown in Fig. 2. Given
an input image 𝐼 , ResNet-101 [16] is utilized to extract the image
feature maps. The last average pooling layer has a size of 2×2 and a
stride of 2. Then the output of stage-4 is 𝑭 𝑖𝑚𝑎𝑔𝑒 ∈ R𝑤×ℎ×𝑐 , where
𝑤,ℎ and 𝑐 denote the width, height and the channel of the feature
maps, respectively. To learn label-related features, a semantic de-
coupling module [5] is employed to decouple image features into
the semantic-specific feature representation by the label embed-
dings. The module uses a low-rank bilinear pooling method and an
attention function to calculate the attention coefficient. The label
embeddings 𝑬 ∈ R𝑛×𝑑 are obtained by the pre-trained GloVe [30]
model. Thenwe can get the semantic-specific feature representation
𝑭𝒔𝒅 ∈ R𝑛×𝑑1 , 𝑭𝒔𝒅 =

{
𝒇1,𝒇2, ...,𝒇𝒏

}
, where 𝑛 denotes the number

of labels, 𝒇𝒊 denotes the feature vector related to label 𝑖 , and 𝑑1
denotes the dimensionality of feature vector 𝒇𝒊 .

To capture high-order semantic relations automatically, the two-
layer hypergraph neural networks with adaptive hypergraphs are
used to correlate the feature vectors and explore semantic depen-
dencies. Let𝚽(𝑙) be the learnable filter matrix of hypergraph neural
network at 𝑙 layer, 𝑭 (𝑙) be the vertex features of hypergraph at 𝑙
layer, then a hypergraph convolutional layer [12] 𝐻𝐶𝑜𝑛𝑣 (𝑭 ,𝑾 ,𝚽)
can be formulated as

𝑭 (𝑙+1) = 𝜎 (𝑫−1/2
𝑣 𝑯𝑨𝑾𝑫−1

𝑒 𝑯𝑨
𝑇𝑫−1/2

𝑣 𝑭 (𝑙)
𝚽
(𝑙) ) (6)

where 𝜎 (.) is the nonlinear activation function, 𝑯𝑨 is the adaptive
hypergraph incidence matrix, 𝑫𝑒 and 𝑫𝑣 denote the degrees of
the edge and the degrees of vertex, respectively. They are used for
normalization. For a vertex 𝑣 ∈ V and a hyperedge 𝑒 ∈ E, their
degrees can be calculated by

𝑑 (𝑣) =
∑
𝑒∈E

𝑤 (𝑒)𝑎(𝑣, 𝑒), 𝑑 (𝑒) =
∑
𝑣∈V

𝑎(𝑣, 𝑒) (7)

where 𝑤 (𝑒) is an element on the diagonal of matrix 𝑾 and in-
dicates the weight of hyperedge 𝑒 . 𝑎(𝑣, 𝑒) is the element of 𝑯𝑨.
According to Equation 6, the process of a hypergraph convolu-
tion layer is as follows. Firstly, the learnable filter matrix at 𝑙 layer
𝚽
(𝑙) is used to transform the 𝑙 layer vertex features 𝑭 (𝑙) to the

new vertex features. Note that the initial vertex features 𝑭 (1) is
the output of the semantic decoupling module. Secondly, the new
vertex features on the hyperedges are gathered to obtain the hy-
peredge features by the multiplication of 𝑯𝑨

𝑇 . Finally, the related
hyperedge features are associated to obtain the final vertex features
𝑭 (𝑙+1) , which is implemented by multiplying matrix 𝑯𝑨. Through
the vertex-hyperedge-vertex transform, HGNN can effectively cap-
ture semantic dependencies and explore the interaction between
features and semantics.

3.3 Multi-Scale Learning
To bemore robust to object size, we propose themulti-scale learning
by using the image features of stage-3. Different from other multi-
scale feature fusion methods, such as MS-CMA [46], which average
the predicted probability score of classifier of multi-scale features,
while we fuse multi-scale results at the output of hypergraph. Let
𝑭 ′

𝑖𝑚𝑎𝑔𝑒 ∈ R𝑤′×ℎ′×𝑐′ be the output of stage-3, and go through
the semantic decoupling module and two-layer HGNN. Then the
final vertex features 𝑭 ′

𝒐𝒖𝒕 of stage-3 can be obtained. Following [5],
we also concatenate the output 𝑭𝒔𝒅 of the semantic decoupling
module of stage-4 with the final vertex features. Then the final
vertex features of multi-stage learning can be written as

𝑭𝒎𝒔 = 𝑭𝒔𝒅 ⊕ 𝑭𝒐𝒖𝒕 ⊕ 𝑭 ′
𝒐𝒖𝒕 (8)



where ⊕ denotes the concatenate operation by channels. Finally,
the vertices are classified after two fully connected layers.

3.4 Optimization
Let the training set be 𝑿 =

{
𝐼𝑖 ,𝒚𝑖

}
, here 𝑖 = 1, 2, ...,𝑇 , 𝑇 is the

number of images in training set. 𝐼𝑖 and 𝒚𝑖 are the 𝑖𝑡ℎ input image
and ground truth, respectively. For the MLIC task with 𝑛 objects,
𝒚𝑖 = {𝑦𝑖1, ..., 𝑦𝑖 𝑗 , ..., 𝑦𝑖𝑛}, 𝑦𝑖 𝑗 is equal to 1 if the ground truth con-
tains the label 𝑗 and 0 otherwise. We employ the cross entropy as
the loss function:

𝐿𝑒𝑛𝑡𝑟𝑜𝑝𝑦 =

𝑇∑
𝑖=1

𝑛∑
𝑗=1

𝑦𝑖 𝑗 log 𝑝𝑖 𝑗 + (1 − 𝑦𝑖 𝑗 ) log(1 − 𝑝𝑖 𝑗 ) (9)

where 𝑝𝑖 𝑗 is the probability of the classifier via a sigmoid function.

4 EXPERIMENTS
In this section, we conduct experiments on four benchmarks: MS-
COCO [25], NUS-Wide [8], Pascal VOC 2007 [11], andVisual Genome
500 [20]. These benchmarks cover large, medium and small-scale
categories. Experimental results demonstrate the effectiveness and
generality of AdaHGNN.

4.1 Evaluation Metrics
To fairly compare with existing approaches, we report the mean
average precision (𝒎𝑨𝑷 ) over all labels on all datasets. 𝒎𝑨𝑷 is
a key metric used for MLIC tasks, which is more important than
other metrics. Following [27] on the MS-COCO dataset, we further
present the average per-label F1 (CF1) and the average overall F1
(OF1). The results of top-3 labels are also reported. Following [5] on
Pascal VOC 2007 dataset, we further present the average precision
(AP) of each label.

4.2 Datasets
MS-COCO. Microsoft COCO [25] is a widely used dataset for

MLIC tasks. It contains 82,081 training images and 40,137 validation
images for testing. There are 80 labels on the dataset and about 2.9
labels per image.

NUS-Wide. NUS-Wide [8] is a web dataset from Flickr, which
contains 269,648 images and 5018 labels. Following the processing
and split used in [46], we use 150,000 images for training and 59,347
for testing. There are 81 labels with 2.4 labels per image on average.

Visual Genome. Visual Genome [20] is a dataset with 80,138
labels. Because most labels contain very few images, we follow [5]
to use a VG-500 subset. The VG-500 subset contains 108,249 images
and 500 labels. Following the split of [5], there are 10,000 images
for testing and the rest 98,249 images for training.

Pascal VOC2007. Pascal VOC 2007 [11] is also a popular dataset
for MLIC tasks. It contains 5,011 images for training and 4,952
images for testing. The Pascal VOC 2007 dataset only contains 20
labels, which is a small-scale dataset.

4.3 Implementation Details
Data Preprocessing. Data preprocessing is the same for all

datasets. During training, we first resize the input image to 640×640
and randomly select a number from {640, 576, 512, 384, 320} as the

height and width to randomly crop the resized image. Finally, the
training image can be obtained by further resizing the cropped
patches to 576 × 576. During testing, we simply resize the test
image to 640 × 640 for evaluation.

Experimental settings. All experiments on AdaHGNN are
optimized by ADAM algorithm with momentums of 0.999 and 0.9.
We employ ResNet-101 pre-trained on ImageNet dataset [9] to
extract image features and freeze the parameters of stage-1 and
stage-2. The learning rate is initialized to 10−5, and it is divided by
10 when the error stops dropping. 300-dim GloVe is used as word
embeddings to obtain label representation. When a label contains
multiple words, the average of word embeddings for all words in it
is used as the label embeddings. The final vertex features 𝑭𝒎𝒔 of
multi-scale learning are classified through 5,120-to-2,048 and 2,048-
to-1 fully connected layers. The proposed AdaHGNN is trained in
an end-to-end manner with a batch size of 4. Other parameters are
as follows: 𝑑 = 300, 𝑑1 = 2048, 𝑑2 = 2048, 𝑑3 = 1024, 𝑑4 = 1024.

4.4 Compared Methods
To evaluate the effectiveness of the proposed AdaHGNN, we com-
pare it with the following state-of-the-art methods, which can be
grouped into two main categories:

(1) Classical deep learning methods. CNN-RNN [35] and CNN-
SREL-RNN [26] use CNN to encode the image and RNN to decode
it into sequences. RNN-Attention [39] and Order-Free RNN [4]
are based on a LSTM framework with the attention module. RHN-
GRRE [21] employs RHN to consider related regions and a gated
recurrent relation extractor (GRRE) to capture the label correlation.
ResNet-SRN [50] develops a spatial regularization network to ex-
plore semantic and spatial relations of labels.Multi-Evidence [13]
proposes aweakly supervised curriculum learningmethod forMLIC
tasks. CMA and MS-CMA [46] utilize cross-modality attention
module to generate semantic attention maps. KD-WSD [27], Dis-
tillation [17], FitsNet [32], andAttention transfer [48] focus on
knowledge distillation. FeV+LV [45] extracts object proposals to ob-
tain local information. RCP [37] proposes an object-proposal-free
framework based on random crop pooling.

(2) GNN based methods. ML-GCN [6] employs GCN to cap-
ture label dependencies by a re-weighted correlation matrix. A-
GCN [22] uses an adaptive label graph module to a learn adjacent
matrix with fixed dimension. Attention-GCN [29] employs atten-
tion mechanism to associate labels and regions and uses GCN to
learn label dependencies.KSSNet [38] adds knowledge prior graph
and lateral connections between CNN and GCN. SSGRL [5] uses
a semantic decoupling module to guide the feature learning and a
semantic interaction module to capture correlations.

4.5 Experimental Results
MS-COCO. We compare the proposed AdaHGNN with state-of-

the-art methods and report the main results in Table 1. It can be ob-
served that AdaHGNN achieves the best performances at all evalua-
tion metrics. Compared with CNN-RNN [35], CNN-SREL-RNN [26],
Order-Free RNN [4], RNN-Attention [39], RHN-GRRE [21] and
ResNet-SRN [50], which rely on RNN framework, AdaHGNN out-
performs them by significant margins. In comparison with weakly-
supervised learning (KD-WSD [27] and Multi-Evidence [13]), better



Table 1: Performance comparisons (%) between state-of-the-
art methods and AdaHGNN on MS-COCO dataset. Upper
part presents the results of classical deep learning methods
and lower part presents GNN based methods.

Method All Top-3
mAP CF1 OF1 CF1 OF1

CNN-RNN [35] 61.2 - - 60.4 67.8
CNN-SREL-RNN [26] - 63.4 72.5 - -
Order-Free RNN [4] - - - 62.1 67.7
RNN-Attention [39] - - - 67.4 72.0
RHN-GRRE [21] 66.7 - - 65.2 71.8
KD-WSD [27] 74.6 69.2 74.0 66.8 72.7

ResNet-SRN [50] 77.1 71.2 75.8 67.4 72.9
ResNet101-ACfs [14] 77.5 72.2 76.3 68.0 73.1
Multi-Evidence [13] - 74.9 78.4 70.6 74.7

CMA [46] 82.8 77.5 80.9 73.8 77.0
MS-CMA [46] 83.8 78.4 81.0 74.9 77.1
ML-GCN [6] 83.0 78.0 80.3 74.6 76.7
A-GCN [22] 83.1 78.0 80.3 74.6 76.6

Attention-GCN [29] 83.3 78.0 80.7 74.4 77.0
KSSNet [38] 83.7 77.2 81.5 - -
SSGRL [5] 83.8 76.8 79.7 72.7 76.2

AdaHGNN (Ours) 85.0 79.9 81.8 75.5 77.6

performances are also obtained onAdaHGNN.Moreover, AdaHGNN
exceeds the previous state-of-the-art result (MS-CMA: 83.8%) by
1.2% on mAP. From the lower part of Table 1, comparing to other
GNN-based methods, e.g., ML-GCN [6], A-GCN [22], Attention-
GCN [29], KSSNet [38] and SSGRL [5], AdaHGNN also achieves a
notable performance improvement on all metrics, which demon-
strates the effectiveness of our model for multi-label image classifi-
cation. Specifically, it is 1.2%, 3.1%, 2.1%, 2.8% and 1.4% higher than
the previous best GNN-based method SSGRL [5] on mAP, CF1 (all),
OF1 (all), CF1 (Top-3), and OF1 (Top-3), respectively.

NUS-WIDE. The comparison results on the NUS-WIDE dataset
are also shown in Table 2. Comparing to distillation-based meth-
ods, e.g., Distillation [17], FitsNet [32], Attention transfer [48] and
KD-WSD [27], AdaHGNN improves by at least 2.2%. AdaHGNN
also outperforms the latest model MS-CMA [46] by achieving
0.9% gain. On the NUS-WIDE dataset, AdaHGNN ranks second,
which is 1.2% lower than RHN-GRRE [21]. However, on the MS-
COCO dataset, the proposed AdaHGNN (85.0%) outperforms RHN-
GRRE [21] (66.7%) by a large margin of 18.3% on mAP. The possible
reason for such performance difference is that, on the NUS-WIDE
dataset, the labels may have the hyponymy relation, e.g., “cat, dog,
cow” are all belonged to the concept “animal”. For images only
containing “cat”, some ground truths are “cat” and some are “cat, an-
imal”, which greatly affect the performance of the proposed method
since it pays more attention to the modeling of the semantic rela-
tionships among multiple labels.

VG-500. To evaluate the performance of large-scale categories
classification, we conduct experiments on the VG-500 dataset, as
depicted in Table 2. The proposed AdaHGNN performs much better
than existing baseline methods (ResNet-101 and ResNet-SRN [50])

Table 2: Performance of mAP (%) between state-of-the-art
methods and AdaHGNN on NUS-WIDE and VG-500 dataset.

Method NUS-WIDE VG-500

CNN-RNN [35] 56.1 -
Distillation [17] 57.2 -
FitsNet [32] 57.4 -

Attention transfer [48] 57.6 -
KD-WSD [27] 60.1 -

RHN-GRRE [21] 63.5 -
CMA [46] 60.8 -

MS-CMA [46] 61.4 -
ResNet-101 [16] - 30.9
ResNet-SRN [50] - 33.5
ML-GCN [6] - 33.8
SSGRL [5] - 36.6

AdaHGNN (Ours) 62.3 38.2

by achieving 4.7% mAP improvement. Comparing to GNN-based
models, e.g., ML-GCN [6] and SSGRL [5], AdaHGNN achieves the
mAP of 38.2%, which exceeds the previous state-of-the-art by 1.6%.
The performance gain on the VG-500 dataset indicates that our
AdaHGNN model is suitable for recognizing large-scale categories.

Pascal VOC 2007. Table 3 shows the comparisons of average
precision (AP) of each label and mean average precision (mAP) with
state-of-the-art methods on the Pascal VOC 2007 dataset. Following
SSGRL [5], we also pre-train the AdaHGNN model on the COCO
dataset. It can be observed that of the 20 categories, we have 17
with the best on AP. Comparing to SSGRL [5], AdaHGNN gets
the absolute performance gain of 0.20% on mAP, i.e., error relative
dropping of 4.0%. The results show that AdaHGNN is also effective
for small data with small-scale labels.

4.6 Ablation Studies
To demonstrate the effectiveness and influence of each component
of the AdaHGNN, we perform a series of ablation experiments on
the MS-COCO dataset. We evaluate the effect of the HGNN module,
the adaptive hypergraph module, the multi-scale learning module,
and the different initialization methods of adaptive Hypergraph.

4.6.1 Effect of the HGNN Module. To explore the effect of the
HGNN module, we replace the HGNN module in the AdaHGNN
model by the GNNmodule. The GNNmodule is following SSGRL [5]
but without gated recurrent update mechanism. The graph con-
struction is based on the statistical label information from training
data. As shown in Table 4, the mAP drops from 85.0% to 84.2% when
GNN is used instead of HGNN. The result demonstrates that HGNN
is superior to GNN in exploring label associations and interactions.
The possible reason is that GNN only captures the label pair rela-
tionship, while HGNN can discover high-order semantic relations
of multi-labels.

4.6.2 Effect of Adaptive Hypergraph. To evaluate the effectiveness
of the proposed adaptive hypergraph, we compare different con-
struction methods of hypergraph, as depicted in Table 5. The hand-
crafted hypergraph is constructed as described in section 3.1 and



Table 3: Comparisons of AP and mAP (%) with state-of-the-art methods on the Pascal VOC 2007 dataset. Upper part presents
the results of classical deep learning methods and lower part presents GNN based methods.

Method aero bike bird boat bottle bus car cat chair cow table dog horse motor person plant sheep sofa train tv mAP

CNN-RNN [35] 96.7 83.1 94.2 92.8 61.2 82.1 89.1 94.2 64.2 83.6 70.0 92.4 91.7 84.2 93.7 59.8 93.2 75.3 99.7 78.6 84.0
ResNet-101 [16] 99.5 97.7 97.8 96.4 65.7 91.8 96.1 97.6 74.2 80.9 85.0 98.4 96.5 95.9 98.4 70.1 88.3 80.2 98.9 89.2 89.9
FeV+LV [45] 97.9 97.0 96.6 94.6 73.6 93.9 96.5 95.5 73.7 90.3 82.8 95.4 97.7 95.9 98.6 98.6 77.6 88.7 98.3 89.0 90.6

RNN-Attention [39] 98.6 97.4 96.3 96.2 75.2 92.4 96.5 97.1 76.5 92.0 87.7 96.8 97.5 93.8 98.5 81.6 93.7 82.8 98.6 89.3 91.9
RCP [37] 99.3 97.6 98.0 96.4 79.3 93.8 96.6 97.1 78.0 88.7 87.1 97.1 96.3 95.4 99.1 82.1 93.6 82.2 98.4 92.8 92.5

ML-GCN (Binary) [6] 99.6 98.3 97.9 97.6 78.2 92.3 97.4 97.4 79.2 94.4 86.5 97.4 97.9 97.1 98.7 84.6 95.3 83.0 98.6 90.4 93.1
ML-GCN (Re-weighted) [6] 99.5 98.5 98.6 98.1 80.8 94.6 97.2 98.2 82.3 95.7 86.4 98.2 98.4 96.7 99.0 84.7 96.7 84.3 98.9 93.7 94.0

SSGRL [5] 99.7 98.4 98.0 97.6 85.7 96.2 98.2 98.8 82.0 98.1 89.7 98.8 98.7 97.0 99.0 86.9 98.1 85.8 99.0 93.7 95.0
AdaHGNN (Ours) 99.8 98.9 98.9 98.1 88.1 97.3 98.3 98.8 81.7 98.2 87.2 99.1 99.3 97.7 99.1 87.8 98.4 82.5 99.7 94.5 95.2

Table 4: Performance comparisons (%) between HGNN and
GNN in the AdaHGNN model on the MS-COCO dataset.

Method All Top-3
mAP CF1 OF1 CF1 OF1

GNN 84.2 78.8 81.4 74.8 77.3
HGNN 85.0 79.9 81.8 75.5 77.6

Table 5: Comparisons (%)with several constructionmethods
of hypergraph on the MS-COCO dataset.

Method All Top-3
mAP CF1 OF1 CF1 OF1

Hand-crafted hypergraph 84.8 79.3 81.6 75.2 77.3
Static hypergraph 84.8 79.8 81.6 75.1 77.2

Adaptive hypergraph 85.0 79.9 81.8 75.5 77.6

Table 6: Performance of different scales of AdaHGNNon the
MS-COCO dataset.

Method All Top-3
mAP CF1 OF1 CF1 OF1

Stage-4 84.5 79.1 81.2 75.2 77.2
Stage-3,4 85.0 79.9 81.8 75.5 77.6
Stage-2,3,4 84.9 79.6 81.8 75.3 77.5

𝐾 is set to 80. The static hypergraph is initialized with label em-
bedding, the parameters of the hypergraph incidence matrix are
frozen and not learnable in the training process. From Table 5, it
is obvious to see that the proposed adaptive hypergraph performs
better than other construction methods at all evaluation metrics,
which indicates the effectiveness of adaptive hypergraph.

4.6.3 Effect of Multi-Scale Learning. The comparison result of dif-
ferent scales is shown in Table 6. When the features of the stage
are used, the network parameters of the stage are no frozen and
but learnable. From Table 6 we can see that “Stage-3,4” achieves
the best performance, which obtains 0.5% improvement comparing
to single-scale learning. When using three stages of fusion, the
possible reason of performance dropping is that when more stage

Table 7: Performance of different initialization methods of
adaptive Hypergraph on the MS-COCO dataset.

Method All Top-3
mAP CF1 OF1 CF1 OF1

GloVe-300 (AdaHGNN) 85.0 79.9 81.8 75.5 77.6
Random-300 84.9 79.5 81.6 75.1 77.3

BERT-base-768 85.1 79.8 81.9 75.5 77.6
Random-768 85.0 79.7 81.8 75.5 77.6

BERT-large-1024 85.1 79.6 81.9 75.6 77.6
Random-1024 84.9 79.6 81.6 75.2 77.3

features are used, the more network parameters are, which result in
difficulty to train and possible over-fitting. We also use the general
metric FPS (frames per second) to measure the inference time. On
the machine with 1 GPU of Nvidia V100, the average inference
time of stage-3,4 and stage-4 are 34 FPS and 39 FPS, respectively. It
shows that the multi-scale learning achieves a 0.5% improvement
with the acceptable cost of inference time.

4.6.4 Effect of different initialization methods of adaptive Hyper-
graph. The results of different initialization methods are depicted
in Table 7. Three pre-trained word embeddings including 300-dim
GloVe [30], 768-dim BERT-base [10], and 1024-dim BERT-large [10]
are used to obtain label embedding. Random vectors of the same di-
mension are also used for comparison. The effectiveness of random
initialization proves that adaptive hypergraph can be learned in
the training process. The label embedding method is slightly better
than the random initialization method. The possible reason is that
the label embedding contains external prior knowledge. In addition,
the number of hyperedges does not have a great impact on per-
formance. The possible reason is that the relationship is relatively
simple on the MS-COCO dataset. Because there are only 80 labels,
each image is about 2.9 labels.

4.7 Visualization and Analysis
4.7.1 Component Analysis. Fig. 4 visualizes the results of replacing
different components on AdaHGNN. Columns 3, 4, and 5 show the
results of using GNN instead of HGNN, hand-crafted hypergraphs
instead of adaptive hypergraphs, and single-scale learning (stage-4)
instead of multi-scale learning (stage-3,4) on AdaHGNN, respec-
tively. From the last row, we can see that the highlighted regions
of the semantic feature maps on GNN, hand-crafted hypergraphs,
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Figure 4: The visualization of replacing different compo-
nents of AdaHGNN on MS-COCO dataset. In each row, the
red label indicates the label corresponding to the semantic
feature maps of that row. “module A-> module B” indicates
that on AdaHGNN, replace the module B with module A.
The number below the image indicates the prediction prob-
ability of the corresponding label.
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Figure 5: Comparison of capability for high-order seman-
tic association capturing on MS-COCO dataset. Column 1, 2
are input images and ground truth. Column 3-5 are the pre-
dicted labels of different methods. The red-colored text indi-
cates classification errors. The green-colored text indicates
the labels predicted according to the higher-order relation.

and stage-4 are not very accurate for the label “potted plant”. And
the confidences of the corresponding label are relatively low. It
demonstrates the effectiveness of each component of AdaHGNN.

4.7.2 Comparison Analysis. Fig. 6 shows the predicted labels and
the corresponding semantic featuremaps of AdaHGNN,ML-GCN [6],
and SSGRL [5]. The predicted labels with confidence greater than 0.5
are positive. They are sorted by confidence from high to low. It can
be observed that the predicted labels and corresponding highlighted
regions of AdaHGNN are more consistent and accurate than those
of ML-GCN [6] and SSGRL [5]. Moreover, the semantic-aware areas
of AdaHGNN are more concentrated and not scattered. It shows
that AdaHGNN is superior to the existing methods in learning
label-related features and exploring label and region interaction.
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Figure 6: Compare the visualization results of different
methods onMS-COCO dataset. Column 1 is the input image
and ground truth labels, and column 2-4 are the predicted la-
bels and the corresponding semantic feature maps. Red text
indicates classification errors.

4.7.3 High-order Semantic Association Analysis. We further ana-
lyze the ability of AdaHGNN to capture high-order semantic associ-
ations. Fig. 5 shows the predicted labels of AdaHGNN, ML-GCN [6],
and SSGRL [5] on MS-COCO dataset, which are sorted by confi-
dence from high to low. According to the probability of statistics
from the training set in Fig. 1, we know that the co-occurrence
probability of “sports ball” and “person + tennis racket” is 0.53. And
“chair” co-occurs with “dining table + cup” is as high as 0.45. How-
ever, when the conditions are met, ML-GCN [6] and SSGRL [5] can’t
correctly recognize “sports ball” and “chair” while AdaHGNN can. It
demonstrates that AdaHGNN has the ability to capture high-order
semantic associations.

5 CONCLUSION
In this paper, to capture the high-order semantic relations among
multi-labels, we propose a novel hypergraph neural networks based
model for multi-label image classification. To overcome the lim-
itation of the hand-crafted hypergraph constructing method, an
automatic hypergraph learning mechanism is also proposed based
on label embeddings. Extensive experiments are conducted on
four public benchmarks, and new state-of-the-art performances are
achieved on three of them. Further analysis demonstrates the effi-
cacy of AdaHGNN on modeling high-order semantic associations.
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