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ABSTRACT

Traditional recommendation systems represent user preferences in dense repre-
sentations obtained through black-box encoder models. While these models of-
ten provide strong recommendation performance, they lack interpretability for
users, leaving users unable to understand or control the system’s modeling of their
preferences. This limitation is especially challenging in music recommendation,
where user preferences are highly personal and often evolve based on nuanced
qualities like mood, genre, tempo, or instrumentation. In this paper, we propose
an audio prototypical network for controllable music recommendation. This net-
work expresses user preferences in terms of prototypes representative of semanti-
cally meaningful features pertaining to musical qualities. We show that the model
obtains competitive recommendation performance compared to popular baseline
models while also providing interpretable and controllable user profiles.

1 INTRODUCTION

Modern recommender systems often rely on techniques such as collaborative filtering methods,
which represent users with opaque numerical embeddings that are difficult for their users to interpret
and not meant to control recommendations. While previous work aims to improve the scrutability
of such systems by using keyword tags or natural language summaries to describe user preferences,
such approaches are not universally applicable across domains. For instance, Siebrasse & Wald-
Fuhrmann (2023) demonstrate that using broad genres to describe someone’s musical taste can be
misleading, as users with similar genre profiles may still have vastly different preferences. Their
study shows that sub-genres, more closely tied to specific artists and musical elements, provide a
more accurate representation of individual taste.

In light of these challenges, our work focuses on capturing user preferences through listenable au-
dio clips, which transparently reflect the system’s inferred understanding of their musical tastes.
This encoding makes the system’s assumptions more interpretable and empowers users by allowing
them to fully scrutinize and correct their profiles, offering control over how their preferences are
represented and over their proposed recommendations.

We introduce APRON: Audio PROtotypical Network for music recommendation, where prototypes
are listenable audio clips. We showcase the difference between a traditional recommendation system
and APRON in Figure 1. APRON draws inspiration from prototypical networks (e.g. ProtoPNET)
(Chen et al., 2019; Donnelly et al., 2022; Willard et al., 2024; Zinemanas et al., 2021; Alonso-
Jiménez et al., 2024; Heinrich et al., 2024), which are widely used in the Explainable AI (XAI)
literature.

APRON leverages an attention mechanism to create a weighted combination of prototype represen-
tations of users’ historical interactions, ensuring an interpretable user representation. Furthermore,
by constraining the inferred prototype distribution to that of the recommended songs, we enable a
fully steerable system, allowing users to scrutinize and adjust their profiles through simple modifi-
cation of prototype weights.

We demonstrate that our proposed methodology significantly enhances the controllability of the
system’s recommendations while maintaining performance comparable to fully black-box models.
To evaluate controllability, we simulate user updates to their profiles, such as adding or removing
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Figure 1: (Top) Classical Recommendation System Pipeline. (Bottom) The high-level pipeline for
APRON. The User behavior Data (the audio features) are expressed in terms of listenable prototypes
to create a scrutable user embedding. This embedding is then converted into recommendations.

prototypes, and measure the differences in recommendations between the original and modified
profiles. Additionally, we conduct various ablation studies to validate our design choices.

We summarize our contributions as follows.

• We propose APRON, a prototypical network for music that expresses the overall user pref-
erences using prototypes composed of listenable audio clips.

• We show that our model achieves a good controllability-accuracy tradeoff on the Million
Song Dataset (MSD) (Bertin-Mahieux et al., 2011). APRON obtains similar performance
as several strong baselines while enabling users to control their recommendations directly
by altering their learnt representation.

• Since APRON relies on (song) features to obtain user profiles, we show that it can produce
good-quality recommendations even when users listen to cold-start (unseen) songs.

2 RELATED WORK ON SCRUTABLE RECOMMENDER SYSTEMS

Explainable recommendation has become an increasingly important topic as recommender systems
grow more complex and opaque. Traditionally, explainability has been approached post-hoc, using
explanations based on models’ features (Ning & Karypis, 2011; Shimizu et al., 2022; Vijayaragha-
van & Mohapatra, 2024; Wang et al., 2018; Zhang et al., 2020) or more recently on LLM-produced
explanations (Lubos et al., 2024; Luo et al., 2024). However, as noted earlier, these explanations
might not be actionable by users or contain truthful information (Huang et al., 2023). On the
other hand, scrutable recommender systems present the model’s inferred user profile in a human-
understandable and editable manner, enabling user interventions to directly influence the system’s
recommendations. This enhances actionability and truthfulness by allowing users to make mean-
ingful changes that are transparently reflected in the system’s behavior. Although holding many de-
sirable properties, such systems have primarily been explored through the use of keywords or tags,
which allow users to personalize their experience by selecting from a predefined collection (Green
et al., 2009; Lubos et al., 2024; Moses & Babu, 2016; Balog et al., 2019). Unfortunately, represent-
ing a user’s taste profile in this way can be limiting, as users may have to parse through an excessive
collection of tags if they want to effectively customize their experience. More recently, scrutable
systems have shifted towards using natural language summaries to represent users, offering an al-
ternative to keyword-based personalization (Radlinski et al., 2022; Ramos et al., 2024). Instead of
relying on keywords/tags, these systems generate a personalized summary using natural text. While
this approach works well for domains suited to textual descriptions—such as movies, TV shows, or
restaurants—it may not translate as effectively to other domains, like music or fashion, where user
preferences might be difficult to express easily through text and could be better expressed through
other mediums, such as audio or images. This highlights the need for more flexible approaches that
can adapt scrutability to wider content types.

In this work, we address both limitations by enabling prototypes to attend to items in the user’s
history, allowing us to maintain scrutability while offering a more personalized experience. Ad-
ditionally, to the best of our knowledge, this is the first work that allows users to scrutinize their
recommendations using song-based prototypes, offering a much more suitable medium for music
recommendations.
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Figure 2: The pipeline of our model APRON. First of all the user history is transformed through cal-
culating the attention weights wi

kj through the prototypes P1, . . . , PK . Then the user representation
ui is obtained by summing over the songs. Then finally the model output ŷi is calculated through
transforming this user representation ui through the feedforward network f(.).

3 METHODOLOGY: PROTOTYPE-BASED CONTROLLABLE USER
REPRESENTATION

Our main goal is to express a user’s historical interactions in terms of listenable prototypes, each
associated with distinct musical concepts. In our experiments, musical concepts are encoded with
tags corresponding to musical qualities (e.g. era, instrumentation, mood). Let us denote the user
history for i’th user as,

Xi = {xi
1, x

i
2, . . . , x

i
Si
}, (1)

where Si and xi
j ∈ RD respectively denote the total number of songs listened by user i, and the

D-dimensional encoding of the j’th song listened by the i’th user. A reasonable way to construct the
profile ui for user i is by summing the representations of songs the user has listened to in the past,

ui =

Si∑
j=1

xi
j . (2)

Such representations could then be processed by an encoder which directly provides recommenda-
tions. However, to impose a controllability constraint on the user profile, we constrain each song
representation in terms of prototypes {P1, . . . , PK}, such that:

xi
j =

K∑
k=1

wi
kjPk, (3)

where Pk ∈ RD is the prototype that corresponds to the k’th musical tag. Each tag corresponds to
a musical concept (e.g. rock, jazz, 90s, country, instrumental – more generally tags correspond to
musical qualities). Note that each song can have more than a single tag (e.g. an instrumental song
with two associated genres such as country and ballad). The weights wi

kj are parametrized using an
attention layer,

wi
kj =

exp
(
(PkA

p
k)

⊤(xi
jA

x
j )
)∑K

k′ exp
(
(Pk′Ap

k′)⊤(xi
jA

x
j )
) , (4)

where Ap
k ∈ RD×D′

, Ax
j ∈ RD×D′

are learnable parameter matrices. Each user profile is then
modelled as

ui =

K∑
k=1

Si∑
j=1

exp
(
(PkA

p
k)

⊤(xi
jA

x
j )
)∑K

k′ exp
(
(Pk′Ap

k′)⊤(xi
jA

x
j )
)︸ ︷︷ ︸

:=w̃i
k

(PkA
p
k) =

K∑
k=1

w̃i
kP̃k, (5)

Note that unlike the Eq. 3 the prototypes Pk are transformed as well, such that we use the result of the
vector-matrix product PkA

p
k as the Value vector in the attention calculation (similar to the standard

query-key-value attention formulation). One difference from the standard query-key-value attention
formulation is that we use the same learnable matrix for the key and value, since we observed that it
results in a more controllable model.
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4 TRAINING OBJECTIVES

After describing the process adopted in APRON to create the user profile, we now discuss how to
generate predictions for training. The output distribution over song recommendations yi ∈ SL

(where L is the number of songs in the catalog, and SL denotes an L dimensional probability
simplex) is computed by obtaining the interpretable user profile from Eq. 3, through a series of
feed-forward layers denoted with f(.) followed by a softmax activation as:

ŷi = a(f(ui)), (6)

where a(.) is an activation function such as the Softmax or the Sigmoid. We describe the overall
pipeline in Figure 2.

For training the full system, we now demonstrate the three objectives employed as below.

Recommendation Objective. We train this system with a recommendation system loss that aims to
minimize the divergence

LRecSys = d(y ∥ ŷi). (7)

The divergence is typically chosen as negative binary cross-entropy loss.

Controllability Objective. In addition to the recommendation system loss, to allow the system to
be controllable, we construct a loss objective that minimizes the divergence between the aggregate
prototype weights w̃i

k and tag distribution that corresponds to the model output. We express this
controllability loss Lcontrollability as follows:

Lcontrollability = d(w̃i ∥ T (ŷi)), (8)

where T (·) is a counting function that obtains the tag distribution given the songs selected with
ŷi. This loss imposes the constraint that, for user i, the tag distribution T (ŷi) that corresponds to
the recommendation output of the model ŷi is as close as possible to the user’s distribution over
tag prototypes w̃i ∈ RK . For the choice of the divergence metric, we emprically observe that the
Hellinger distance gives the best performance. Therefore in our experiments this is what we use for
the controllability loss:

Lcontrollability =

N∑
i=1

1√
2

√√√√ K∑
k=1

(√
w̃i

k −
√

T (ŷi)k

)2

, (9)

Prototype-separability Objective. We include a prototype-separability loss to make the prototypes
as representative and distinct as possible of the associated music tags. For this, we enforce the
transformed prototypes P̃k to be classified as the associated tag, after passing these vectors through
a linear layer ϕ(·) : D′ → K. The corresponding loss is as follows:

Lprototype-sep = d(ϕ(P̂k) ∥ ek), (10)

where ek is the unit-vector that corresponds to the k’th tag, and for d(.∥.) we used the standard
cross-entropy loss for multi-way classification. We observed that this loss helps in avoiding solutions
where the transformed prototypes collapse to very similar vectors.

Finally, the overall training objective L is defined as a weighted sum of the above three objectives
as follows, with relative strengths λ1, λ2.

L = LRecSys + λ1Lprototype-sep + λ2Lcontrollability. (11)

5 EXPERIMENTS

In this section, we evaluate the recommendation system performance of APRON along with other
baseline models applicable for music recommendation. We also provide experimental results for
controllability analysis of APRON.
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5.1 EXPERIMENTAL SETUP

Dataset and Evaluation Protocol. We conduct our experiments with the MSD and follow the
same data preprocessing procedure as in Liang et al. (2018) which only keeps the users who at least
listened to 20 songs and the songs that are listened to by at least 200 users. Before this filtering stage
we also removed the songs from the dataset for which we do not have the audio files. Our dataset
consists of 40,940 songs, 469,432 train users, 50,000 validation users and 50,000 test users. We
conduct our evaluation in terms of strong generalization in which training, validation and test sets
have disjoint users. We report the Normalized Discounted Cumulative Gain (NDCG@100) as well
as Recall (Recall@20, Recall@50)as they are the standard performance metrics in recommendation
literature.

Tags and Prototype Generation. We select the prototypes to correspond to the 88 most commonly
used song-level tags according to the Last.fm Dataset (Bertin-Mahieux et al., 2011). Tags fall into 4
major groups: era, genre, mood, and instrumentation. To create listenable prototypes, we generate
30-second long prototype songs using the MusicGen-Large-3.3B model (Copet et al., 2023) by
querying “[TAG] song” (if the tag describes a quality of the song, e.g. 90s song, rock song) or “a
song played by [TAG].” (if the tag describes instrumentation). Generated prototypes can be found
in supplementary material.

Music Feature Extractor. We extract music features for each song in the dataset and prototype
songs with the MERT-v1-330M model (LI et al., 2024). For a song of an arbitrary length, MERT-
v1-330M model outputs an encoding in the shape of (Time (T), Layers (N), Dimension (D)). We take
the average over T axis to reduce the dimensionality to (N, D), which are (25, 1024) for the MERT-
v1-330M model. We use the last representation layer in our experiments, which observed to give
the best performance in terms of representation performance. In the end we have 1024 dimensional
feature representations for each song in the dataset and prototype songs.

Baselines. As baselines, we use MultiDAE, MultiVAE (Liang et al., 2018), RecVAE (Shenbin et al.,
2020) and MacridVAE, SEM-MacridVAE (Wang et al., 2023) with our data split. We could not
directly use the numbers from the corresponding papers as the version of the dataset does not contain
the audio files for 200 songs audio files, and we have therefore run the baselines ourselves. For
the MultiVAE, MultiDAE, MacridVAE and SEM-MacridVAE we use SEM-MacridVAE’s official
codebase and for the RecVAE we use RecVAE’s official codebase.

Implementation Details. In our experiments, when implementing the attention mechanism to ex-
press each song in terms of prototypes in Eq. 4, we use multihead-attention. This results in the
following way of calculating the protoype weights for each song:

wi
kj,h =

exp
(
(Pk,hA

p
k,h)

⊤(xi
jA

x
j,h)

)
∑K

k′ exp
(
(Pk′,hA

p
k′,h)

⊤(xi
jA

x
j,h)

) , (12)

where we learn a matrix Ap
k,h ∈ R(D/nh)×D′

, Ax
j ∈ R(D/nh)×D′

, for each head h. The user profile
is then calculated as,

ui,h =

K∑
k=1

Si∑
j=1

exp
(
(Pk,hA

p
k,h)

⊤(xi
jA

x
j,h)

)
∑K

k′ exp
(
(Pk′,hA

p
k′,h)

⊤(xi
jA

x
j,h)

)
︸ ︷︷ ︸

ŵi
k,h

(Pk,hA
p
k,h) =

K∑
k=1

wi
k,hP̃k,h. (13)

Note that Pk,h, is obtained by dividing the prototype vector into H equal-length chunks. Then to
obtain the final user profile ui, we concatenate over the head dimension h, such that,

ui = Concatenate([ui,1, ui,2, . . . , ui,H ]), (14)

where H is the number of attention heads. We observe that increasing the number of parallel atten-
tion heads improves the recommendation performance while slightly decreasing the controllability
metrics that we define in the next subsection. We explore the trade-off in Section 5.3.

The code for our implementation of APRON is available on our anonymous repository1.
1https://anonymous.4open.science/r/apron_iclr2025-A2D3
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Table 1: Comparison of recommendation performance of APRON and baselines.

Method Recall@20 Recall@50 NDCG@100

MultiDAE 0.253 0.355 0.300
MultiVAE 0.264 0.366 0.315
RecVAE 0.275 0.373 0.325
MacridVAE 0.276 0.369 0.330
SEM-MacridVAE 0.290 0.384 0.343

APRON (Ours) 0.273 0.371 0.321

Controllability Metrics. Besides the recommendation system performance, we also define a con-
trollability metric based on NDCG as defined follows. For a specific tag τ , we define the tag-wise
DCGt @k as follows (the subscript t is used to denote tag-wise DCG),

DCGt @k(τ) =
k∑

i=1

I(τ ∈ T (yi))

log2(i+ 1)
, (15)

where T (.) extracts the tag information that corresponds to song song yi, and I(.) denotes the indi-
cator function. That is, if the tag τ is contained in the tags of the song yi (denoted with T (yi), the
indicator function I(.) returns 1).

Then we calculate NDCG for all users in Uτ , where Uτ denotes the set of users having items with
tag τ :

NDCGt @k(τ) =
1

|Uτ |
∑
u∈Uτ

k∑
i=1

I(τ ∈ T (i))

log2(i+ 1)
(16)

We define the controllability metric (∆@k(τ)) to measure the interpretability performance of our
system. We calculate the change (∆@k) between the full (using all of the templates, denoted with a
superscript F ) and modified (we denote with a superscript M ).

∆@k(τ) = NDCGF
t @k(τ)−NDCGM

t @k(τ) (17)

When we drop attention weights, we allow using all of the prototypes except the prototype that
corresponds to the tag τ . When we increase the attention weights, for each user if the attention score
is smaller than a certain threshold th, we increase it to th. (We do this experiment for th = 0.5, 0.7)

In this calculation we filter the users with having 0 in both term since every user does not contribute
to each tag. Results, averaged over all tags, are presented in Table 2. We furthermore provide an
analysis to breakdown the contribution of each tag in Figures 3, 4.

5.2 RECOMMENDATION PERFORMANCE

In Table 1, we compare the recommendation performance of APRON and several baselines
introduced in the previous section. We evaluate recommendation performance under strong-
generalization (i.e for users not seen during training). We observe that APRON with an attention
mechanism with 16 parallel head (H = 16) is able to obtain competitive results in terms of NDCG.
We note that APRON is outperformed only by the SEM-MacridVAE baseline. This is encourag-
ing since it implies that the proposed modelling, while constrained to represent users using music
prototypes and the combination of losses, leads to strong recommendation performance. Of course,
the goal of APRON is to provide scrutable encodings, which is a property other baselines fail to
effectively capture (see Section 5.3)

5.3 ASSESSING THE CONTROLLABILITY OF APRON

To assess the controllability of APRON, we conduct an experiment where we manipulate the atten-
tion weights ŵi

k for k ∈ {1, . . . ,K} that correspond to the different musical tags. The expectation

6
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Figure 3: Tag based controllability of APRON (for attention weight reduction): We observe that for
almost all tags reducing the associated attention weight ŵi

k results in reduction in NDCGt. This
experiment is conducted for H = 16.

is that if, for instance, the weight corresponding to tag k is lowered, songs associated with this tag
would be less likely to be recommended. We showcase this in Figure 3 where we systematically
lower the weight associated with a tag and evaluate its effect on the recommendation quality. We
observe that for almost all tags, reducing the attention weight to zero w̃i

k for the tag k results in a
drop in NDCGt for that particular tag (using the metric defined in Eq. 17). We observe that tags that
yield a large NDCGt value are more likely to still appear at the model output even if the attention
weights are dropped. These correspond to generic tags such as ‘alternative,’ ‘love,’ or ‘pop.’ These
songs are likely to have other tags associated with them. Therefore, we hypothesize that reducing
attention weights corresponding to these tags does not decrease the recommendation of these songs,
as they likely have other prototypes promoting them.

Additionally, we have conducted an experiment where we have increased attention weights of tags.
For this, for each tag, for every user, we have increased the weights w̃i

k for tag k to 0.5 if we observe
that the weight is lower than 0.5, and did not modify it if the weight is already larger than 0.5. In
Figure 4 we showcase the results, and observe that APRON can increase model output for most
tags. We see that especially for similar tags (e.g. female vocalist-female vocalists, alternative rock-
alternative, funk-fun, relax-relaxing) we see this intervention might result in the opposite effect. But
this is probably due to the confounding effect caused in this case by the prototype for a similar tag.
In future work, this can be alleviated by using prototype-generated songs that are highly distinct
from each other.

Furthermore, in Table 2, we explore the tradeoff between performance and controllability when the
number of parallel attention heads is changed, and also compare the level of controllability achieved
with APRON with that of SEM-MacridVAE. In Table 3, we report the average increase NDCGt

for the case H = 16.
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Figure 4: Tag based controllability of APRON (for attention weight increase): We observe that
for most tags increasing the associated attention weight ŵi

k results in increase in NDCGt. This
experiment is conducted for H = 16, and the attention weights for the corresponding tag is set to
0.5.

Table 2: The performance trade-off between the model performance (NDCG) and the level of con-
trollability (∆@20) when the number of heads H is changed, for the experiment where we reduce
the attention weights.

Method H (# Heads) ∆@20 % ∆@20 Recall@20 Recall@50 NDCG@100

SEM-Macrid VAE N/A −0.000 54 −0.30 0.290 0.384 0.343
APRON 16 0.046 87 31.60 0.273 0.371 0.321
APRON 8 0.056 03 37.22 0.268 0.366 0.316
APRON 1 0.057 02 37.99 0.228 0.315 0.274

Table 3: The changes observed in NDCGt when the attention weights are increased.

Method th (Threshold) H (# Heads) ∆@20 % ∆@20

APRON 0.5 16 −0.071 −132.80
APRON 0.7 16 −0.073 −144.11

5.4 ABLATION OF TRAINING LOSS COMPONENTS

To better understand the effects of the loss components LRecSys, Lrototype-sep, and Lcontrollability, we re-
trained APRON by changing the values of the tradeoff parameters associated with Lprototype-sep (λ1)

8
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and Lcontrollability (λ2). We present these results in Table 4, where we compare the recommendation
system performance and the controllability of the model for different λ1, and λ2 values. We observe
that when the system is trained only with the Recommendation loss (λ1 = 0, λ2 = 0) both the
recommendation system performance and the controllability are lower. We observe that the biggest
gain in performance is obtained with the controllability loss (the case λ1 = 0, λ2 = 0.005). How-
ever, with the addition of the prototype-separability loss (the case λ1 = 1, λ2 = 0.005) we observe
that the recommendation performance and the controllability metric is further improved. We also
observe that these two losses also act as a regularizer improving the recommendation performance
as well as the controllability metrics.

Finally, we would like to note that we have tried also the case, λ1 = 1, and λ2 = 0, but this did not
result in stable training, as the transformed prototypes P̃k all converged to non-separable vectors.
We have also observed inferior performance for the case λ1 = 0.1, λ2 = 0, compared to the last
row of Table 4.

Table 4: Ablation study with respect to the controllability-loss (the strength of which measured by
λ1), and the prototype separability loss (the strength of which measured by λ2).

Method λ1 λ2 Recall@20 Recall@50 NDCG@100 ∆@20

APRON 0 0 0.246 0.335 0.293 0.000 10
APRON 0.1 0 0.245 0.334 0.292 −0.001 00
APRON 0 0.005 0.266 0.362 0.315 0.036 46
APRON 1 0.005 0.273 0.371 0.321 0.046 87

5.5 ENCODING UNSEEN SONGS

As we have mentioned in the introduction, a significant advantage that comes with APRON com-
pared to the other baselines is that, because APRON works with song features directly, it is able to
encode songs that were not previously seen during training (called cold-start items in the recom-
mendation systems).

To evaluate the performance in the case where we encode unseen songs, we create an additional
control set that consists of 16,575 users who have listened to 9,313 additional songs besides the
40,940 that were used to train APRON. We made sure that each of these new songs were listened to
at least 150 times. We have then created recommendations for these 16,575 users from the original
training set that consists of 40,940 songs.

As other baselines work with a fixed item-set (that is, they require additional training to encode the
new songs), we were not able to provide any baseline for this new evaluation set.

Results are presented in Table 5. As seen from the results, although we encode 9,313 new songs
that the system had not been exposed to earlier, we observe that in terms of Recall, our model is
able to remain competitive with the numbers reported in Table 1 for the baseline methods such as
MultiDAE, MultiVAE, RecVAE and MacridVAE. We note that this experiment does not explicitly
test for creating recommendations for unseen songs. However, we show here that the model is
able to encode new songs. With a modification to the output loss function, such that at the output
we calculate a similarity function (e.g. cosine similarity) between song embeddings and the user
embeddings, the model can be adapted to produce recommendations for new songs also.

This therefore showcases the potential for APRON to be used for zero-shot generalization to new
songs, for providing recommendations on unseen songs without needing to retrain the system. More-
over, we observe that APRON is still able to be similarly controllable when compared to the case
where the testing is carried out on already seen songs.

6 LIMITATIONS AND DISCUSSION ON IMPACT

The music datasets with user interaction information are hard to obtain. For the audio features cor-
responding to the Million Song Dataset we had to resort to peer sharing as many other researchers

9
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Table 5: The recommendation performance and controllability metrics when we encode unseen
songs with APRON.

Method Dataset H ∆@20 % ∆@20 Recall@20 Recall@50 NDCG@100

APRON Unseen 16 0.03931 27.31 0.282 0.372 0.258
APRON Unseen 8 0.04594 31.83 0.276 0.364 0.252
APRON Unseen 1 0.05136 35.22 0.222 0.298 0.206

in the Music Information Retrieval Domain (Kim et al., 2023). For this reason, we were not able to
evaluate APRON on other datasets. We have also only investigated working with fixed prototypes,
and did not experiment with modifying the subtle musical qualities in order to model the user pref-
erences. The framework we propose in this paper however supports this, and in future works, we
would like to explore editing the audio for prototypes directly, and study the behavior of the model
with user studies. We will also work on generating and selecting higher quality prototypes.

We would like to state that this work aims to render the recommendation systems more transparent
and controllable. Therefore we do not believe that our work has an obvious negative social impact.
On the contrary, our methodology can be used to understand the biases in recommendation systems
and to mitigate them.

7 CONCLUSIONS

In this paper, we have proposed APRON, a prototypical network for music recommendations. Our
experiments on the Million Song Dataset show that APRON can produce controllable recommen-
dations (more controllable compared to SEM-Macrid VAE, for example) while maintaining com-
petitive recommendation performance with other baselines. Moreover, APRON can encode unseen
songs; it is able to incorporate information from users who have listened to songs that had not been
listened to before and to produce recommendations. All in all, APRON is a new form of scrutable
recommendation system which directly exposes the user taste, paving the way for domain specific
scrutable models that captures the feature level information. As future work, we would like to also
apply APRON on other application domains where prototypes can be used to encode fundamental
notions pertaining to items (e.g. clothing recommendation).

REFERENCES
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