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TD3: Tucker Decomposition Based Dataset Distillation Method
for Sequential Recommendation

Anonymous Author(s)

ABSTRACT
In the era of data-centric AI, the focus of recommender systems has

shifted from model-centric innovations to data-centric approaches.

The success of modern AI models is built on large-scale datasets, but

this also results in significant training costs. Dataset distillation has

emerged as a key solution, condensing large datasets to accelerate

model training while preserving model performance. However, con-

densing discrete and sequentially correlated user-item interactions,

particularly with extensive item sets, presents considerable chal-

lenges. This paper introduces TD3, a novel Tucker Decomposition

based Dataset Distillation method within a meta-learning frame-

work, designed for sequential recommendation. TD3 distills a fully

expressive synthetic sequence summary from original data. To effi-

ciently reduce computational complexity and extract refined latent

patterns, Tucker decomposition decouples the summary into four

factors: synthetic user latent factor, temporal dynamics latent fac-
tor, shared item latent factor, and a relation core that models their

interconnections. Additionally, a surrogate objective in bi-level opti-

mization is proposed to align feature spaces extracted from models

trained on both original data and synthetic sequence summary be-

yond the naïve performance matching approach. In the inner-loop,
an augmentation technique allows the learner to closely fit the syn-

thetic summary, ensuring an accurate update of it in the outer-loop.
To accelerate the optimization process and address long dependen-

cies, RaT-BPTT is employed for bi-level optimization. Experiments

and analyses on multiple public datasets have confirmed the superi-

ority and cross-architecture generalizability of the proposed designs.

Codes are released at https://anonymous.4open.science/r/TD3.
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Data-Centric Recommender System: Optimizing Recommendation Data 

Tremendous Datasets
Settled Model and

Distillation Algorithm
Informative Data Summary

Model-Centric Recommender System: Optimizing Recommendation Model

Settled Datasets
Model Designs and
Evaluation Metrics Best Designed Model

Figure 1: Comparison of the data-centric recommender sys-
tem through the lens of dataset distillation approach with
the traditional model-centric recommender system. The key
difference lies in their distinct optimization objectives.

1 INTRODUCTION
To address the persistent challenge of information overload from

the Internet, Sequential Recommendation Systems (SRS) capture

users’ evolving preferences through chronological interaction se-

quences [11, 17, 48, 55, 66, 74]. By recommending relevant items,

these systems provide personalized services, alleviating users from

having to seek out options themselves. However, as recommenda-

tion models become increasingly complex, the primary constraint

affecting recommendation performance gradually shifts towards

the quantity and quality of recommendation data [19], leading to

the emergence of data-centric recommendations, as shown in fig. 1.

Moreover, several emerging AI companies have prioritized data

for its numerous benefits, including improved accuracy, faster de-

ployment, and standardized workflows [34, 37, 46]. These collective

initiatives in academia and industry highlight the growing recogni-

tion of data-centric approaches as essential for innovation.

Several initiatives have already been dedicated to the data-centric

movement. A notable work launched by [65] aims to acquire an

informative and generalizable training dataset for sequential rec-

ommender systems and asks the participants to iterate on the se-

quential recommendation dataset regeneration mostly focusing on

improving the data quality. Another separate line is dataset dis-

tillation (DD) [49], which focuses on both data quality and data

quantity. Unlike heuristic data pruning methods that directly select

data points from original datasets, DD methods are designed to gen-

erate novel data points and have emerged as a solution for creating

high-quality and informative data summaries. The utility of DD

approaches has been witnessed in several fields, including federated

learning [16, 26, 50, 59], continual learning [9, 32, 63], graph neural

network [5, 10, 62, 69] and recommender systems [39, 40, 47].
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Significant progress has been made in DD for non-sequential

recommender systems [39, 47, 53, 54]. Methods like ∞-AE [39]

and DConRec [53] distill user-item interaction matrices, while

CGM [47] condenses categorical recommendation data in click-

through rate (CTR) scenarios. Additionally, TF-DCon [54] employs

large languagemodels (LLMs) to condense user and item content for

content-based recommendations. However, applying DD to sequen-

tial recommendation systems presents challenges due to several

inherent complexities. (1) Maintaining sequential correlations:
User-item interactions are sequentially correlated, reflecting the

dynamic evolution of user preferences. Existing DD methods gen-

erate multiple synthetic interactions independently. Although it is

possible to trivially organize these interactions into a sequence, this

fails to capture the sequential correlations essential for modeling

user behavior over time. (2) Optimization dilemma: In DD, the

distilled dataset is typically parameterized as a learnable matrix,

enabling fully differentiable distillation through a bi-level optimiza-

tion process [2]. In sequential settings, this optimization becomes

more difficult because the parameterized dataset size increases with

sequence length. The enlarged parameter space further exacerbates

convergence issues in the bi-level optimization process.

To address these challenges, we introduce TD3 to efficiently

reduce computational complexity and extract streamlined latent

patterns by decomposing the summary into four components: (1)

Synthetic User Latent Factor (U), which represents synthetic user

representations; (2) Temporal Dynamics Latent Factor (T), which
captures temporal contextual information; (3) Shared Item Latent
Factor (V), which characterizes items within the set and aligns

with the item embedding table; and (4) Relation Core (G), which
models the interrelationships among the factors. After decomposi-

tion, each factor is represented as a two-dimensional tensor, with

its size determined by the sequence number, maximum sequence

length, and item set size. Additionally, component V shared with

the item embedding table does not require learning during distilla-

tion, making TD3 suitable for large item sets and long sequences.

To address the final challenge, we propose an enhanced bi-level

optimization objective to align feature spaces from models trained

on both original and synthetic data. During inner-loop training, an

augmentation technique allows the learner model to deeply fit the

synthetic summary, ensuring accurate updates of it in the outer-
loop. This approach accelerates convergence and, in conjunction

with RaT-BPTT [6], minimizes computational costs while ensuring

effective distillation. The contributions are concretely summarized:

• We study a novel problem in sequential recommendation: distill-

ing a compressed yet informative synthetic sequence summary

that retains essential information from the original dataset.

• We introduce TD3, which employs Tucker decomposition to

separate the factors influencing the size of the synthetic sum-

mary, thereby reducing computational and storage complexity.

• Augmented learner training in inner-loop ensures precise syn-

thetic data updates and feature space alignment loss is proposed

beyond the naïve bi-level optimization objective for a better

loss landscape to optimize while minimizing computational

costs and preserving long dependencies through RaT-BPTT.

• Empirical studies on public datasets have confirmed the superi-

ority and cross-architecture generalizability of TD3’s designs.

2 RELATEDWORK

Sequential Recommendation (SR) aims to leverage historical

sequences to better capture current user intent [36]. In recent

years, there has been rapid advancement in model-centric SR ap-

proaches, focusing from Markov chains [13] and factorization [38]

to RNNs [14, 23], CNNs [43, 61], and GNNs [51, 56, 60]. Models

like SASRec [17] and BERT4Rec [42] leverage self-attention mecha-

nisms to learn the influence of each interaction on target behaviors.

Recently, the emergence of LLMs has further enriched SR model de-

sign, for instance, [12, 64] leverage LLMs to uncover latent relation-

ships, while RecFormer [22] represents items as item "sentences",

and SAID [15] employs LLMs to learn semantically aligned item ID

embeddings. With the emergence of the concept of data-centric
recommendation, more works shift the focus to recommendation

data enhancement. DR4SR [65] proposes to regenerate an informa-

tive and generalizable training dataset for sequential recommenda-

tions. FMLP-Rec [75] and HSD [68] adopt learnable filters for data

denoising. DiffuASR [27] proposes a diffusion augmentation for

higher quality data generation. ASReP [28] and MELT [18] focused

on generating fabricated data for long-tailed sequences.

Dataset Distillation (DD) compresses large training datasets into

smaller ones while preserving similar performance [8, 31]. There

have been several lines of methods, that prioritize different aspects

of information. Performance matching based methods focus on

optimizing loss at the final training stage. For example, Farzi [40]

distills auto-regressive data in latent space to produce a latent data

summary and a decoder, although its parameters scale linearly with

the vocabulary size and sequence length.∞-AE [39] uses neural tan-

gent kernels (NTKs) to approximate an infinitely wide autoencoder

and synthesizes fake users through sampling-based reconstruction,

while DConRec [53] distills synthetic datasets by sampling user-

item pairs from a learnable probabilistic matrix, both tailored for

collaborative filtering data in the form of user-item-rating triples.

Another line of research focuses on data matching, encouraging
synthetic data to replicate the behavior of target data. CGM [47],

following the gradient matching paradigm [71] that mimics the

influence on model parameters by matching the gradients of the

target and synthetic data in each iteration, optimizes a new form

of synthetic data rather than condensing discrete one- or multi-hot

data in CTR scenarios. Furthermore, TF-DCon [54] utilizes large

language models (LLMs) to condense item and user content for

content-based recommendations, although this approach is hardly

applicable to the contexts of ID-based sequential recommendation.

Tucker Decomposition (TD) decomposes a tensor into a set of

factor matrices and a smaller core tensor [44]. It can be viewed as

a kind of principal component analysis approach for high-order

tensors. In particular, when the super-diagonal elements in the core

tensor of tucker equal 1 and other elements equal 0, tucker decom-

position degrades into canonical decomposition [58]. In three-mode

case, A tucker decomposition of a tensor 𝑋 ∈ R𝐼1×𝐼2×𝐼3 is:

𝑿 = G ×1 A(1) ×2 A(2) ×3 A(3) =: ⟦G;A(1) ,A(2) ,A(3)⟧, (1)

where ×𝑛 indicating the tensor product along the n-th mode, each

𝐴(𝑛) ∈ R𝐼𝑛×𝑅𝑛 is called the factor matrix, and G ∈ R𝑅1×𝑅2×𝑅3 is
the core tensor, show the level of interaction between all factors.
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3 METHODOLOGY
This section introduces TD3, which distills discrete and complex

sequential recommendation datasets into fully expressive synthetic

sequence summaries in latent space.

3.1 Overview
Notation. Suppose we are given a large training dataset T ≜

{x𝑖 } | T |𝑖=1
, where x𝑖 ≜ [𝑥𝑖 𝑗 ∈ V] |x𝑖 |𝑗=1

is an ordered sequence of items,

with each item 𝑥𝑖 𝑗 belonging to the set of all possible itemsV . We

denote the user set of the training dataset asU, where |U| = |T |.
Our goal is to learn a differentiable function Φ𝜃 (i.e. SASRec) with
parameters 𝜃 , which predicts the next item 𝑥𝑖+1 given the previous

sequence 𝑥1:𝑖 . The parameters of this function are optimized by

minimizing an empirical loss over the training set :

𝜃 T = arg min

𝜃

LT (𝜃 ) ,

LT (𝜃 ) ≜ E x∼T, 𝑥𝑖∼x
[
ℓT (Φ𝜃 (x1:𝑖 ), 𝑥𝑖+1)

]
,

(2)

where function ℓT (· , ·) represents the next item prediction loss,

and 𝜃 T is the minimizer of LT , which reflects the generalization

performance of the model Φ𝜃T . Our objective is to generate a small

set of condensed synthetic sequence summary S ∈ R𝜇×𝜁×|V |

consisting of 𝜇 fake sequences of maximum length 𝜁 and |S| ≪ |T |.
Similar to eq. (2), once the condensed set is learned, the parameters

𝜃 can be trained on this set as follows :

𝜃S = arg min

𝜃

LS (𝜃 ) ,

LS (𝜃 ) ≜ E x̃∼S, �̃�𝑖∼x̃
[
ℓS (Φ𝜃 (𝜓 (x̃1:𝑖 , E)), 𝑥𝑖+1)

]
,

(3)

where x̃𝑖 ≜ [ S[𝑖, 𝑗, :] ]𝜁𝑗=1, ℓ
S (· , ·) measures the distance between

probability distributions, 𝜓 (· , ·) is matrix product, E is the item

embedding table and LS is the generalization performance of Φ𝜃S .
We wish the generalization performance of Φ𝜃S to be close to Φ𝜃T :

E x∼T, 𝑥𝑖∼x
[
ℓT (Φ𝜃 (x1:𝑖 ), 𝑥𝑖+1)

]
≃ E x̃∼S, �̃�𝑖∼x̃

[
ℓ𝑆 (Φ𝜃 (𝜓 (x̃1:𝑖 , E)), 𝑥𝑖+1)

]
.

(4)

As the synthetic set S is significantly smaller, we expect the opti-

mization in eq. (3) to be significantly faster than in eq. (2) .

Problem. The objective of achieving comparable generalization

performance by training on synthetic data can be formulated in

an alternative way. As proposed in [49], this can be framed as a

meta-learning problem using bi-level optimization. In this approach,

the inner-loop trains the learner models on synthetic data, while

the outer-loop evaluates its quality using ℓT (· , ·) on the original

dataset, updating the synthetic summary via gradient descent. More

formally, the bi-level optimization problem can be expressed as :

S∗ = E
𝜃0∼Θ
[LT (𝜃∗)] ,

s.t. 𝜃∗ = arg min

𝜃

LS (𝜃 | 𝜃0) .
(5)

The primary approach for addressing bi-level optimization prob-

lems is truncated backpropagation through time (T-BPTT) [35, 52] in
reverse mode. When the inner-loop learner updated uses gradient
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Figure 2: An illustration of Tucker decomposition. The left
part shows a three-dimensional synthetic sequence summary,
with the third dimension representing the probability dis-
tribution over the entire item set. The right part illustrates
the tucker decomposition, composed of a core tensor and
factor matrices. The user tensor, temporal tensor, and core
tensor are the parameters to be learned, while the item tensor
shares values with the trained item embedding table.

descent with a learning rate 𝜂, the meta-gradient with respect to

the distilled sequence summary is obtained as follows :

G = −𝜂 𝜕L
S (𝜃𝑇 )
𝜕𝜃

𝑇−1∑︁
𝑖=𝑇−𝑀

Π𝑇−1𝑗=𝑖+1

[
1 − 𝜂

𝜕2LS (𝜃 𝑗 )
𝜕𝜃2

]
𝜕2LS (𝜃𝑖 )
𝜕𝜃𝜕S ,

(6)

where 𝑇 represents the total optimization and unrolling steps that

we perform in inner-step with loss L𝑆 (𝜃 ), but T-BPTT only propa-

gates backward through a smaller window of𝑀 steps.

3.2 Synthetic Summary Decomposition
The discrete nature of user-item interaction records in sequential

recommendation data complicates the direct use of gradient meth-

ods to distill an informative summary in the same format as the

original data. Inspired by prior research [25, 30, 40], we choose to

distill in the latent space. Consequently, we define the synthetic

sequence summary as S ∈ R𝜇×𝜁×|V | , a three-dimensional prob-

ability tensor that contains 𝜇 synthetic users, each with up to 𝜁

interaction records. The third dimension of S represents the size

of the entire item set |V|, where S𝑖 𝑗 : captures the interaction in-

formation of synthetic user 𝑖 at position 𝑗 by synthesizing the total

original item information, with each item weighted differently, en-

suring that the summary preserves the critical points.

Considering that the size of S is 𝜇 × 𝜁 × |V|, an increase in any

of its dimensions leads to substantial growth in the overall tensor

size, thereby escalating computational and storage requirements,

especially when the original item set is large. Inspired by Tucker

decomposition, S can be decomposed into the products of sev-

eral smaller factor tensors and a core tensor, where the dimension

of each sub-tensor is determined by only a single dimension, as

visualized in fig. 2 and formalized as follows:

S = 𝑮 ×1 U ×2 T ×3 V =: ⟦𝑮 ; U,T,V⟧ , (7)

where U ∈ R𝜇×𝑑1 , T ∈ R𝜁×𝑑2 , V ∈ R |V |×𝑑3 , G ∈ R𝑑1×𝑑2×𝑑3 , with
×𝑛 indicating the tensor product along the n-thmode and𝑑𝑛 ≪ |V|.
Empirically, 𝑑1 = 𝑑2. More importantly, V is shared with the trained

item embedding table, with no parameters needed to be trained.

3
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Step 1: Model Pretraining

Item-EmbeddingTrained-Model

Early Epoch Pretrained
Learner Model Pool

…

Training Data
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Step 2: Synthetic Data Distilling

Training with
Synthetic Summary

× T inner-steps

Test Loss
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Figure 3: Illustration of TD3. In step 1, the learner is trained to get the best checkpoint for feature space alignment and item
embedding for the shared item latent factor, and checkpoints from early epochs are saved to form a pool for initialization in
each outer-loop. Step 2 visualizes a single outer-loop step, where the meta-gradient is computed from both the test loss and the
feature space alignment loss. Step 3 demonstrates that the distilled summary enables training of other networks with similar
performance to models trained on real data, while significantly reducing training time and memory usage.

The advantage of this decomposition lies in its ability to decou-

ple the factors influencing the size of S, thereby reducing data

dimensionality as well as computational and storage complexity

while preserving key feature information. This approach enables

more efficient processing of high-dimensional data and enhances

the understanding of its structure and characteristics.

3.3 Enhanced Bi-Level Optimization
Existing methods are computationally expensive for generating

synthetic datasets with satisfactory generalizability, as optimiz-

ing synthetic data requires differently initialized networks [67].

To accelerate dataset distillation, we propose 1) augmented learner
training, which enables the learner model to effectively fit the syn-

thetic summary, supporting precise and comprehensive updates

of synthetic data. Additionally, as mentioned in [33, 57], bias and

poorly conditioned loss landscapes arise from truncated unrolling

in TBPTT, we further propose 2) feature space alignment which
aligns feature spaces from models trained on both original and

synthetic data, combined with 3) random truncated backpropagation
through time (RaT-BPTT) proposed by [6] to reduce bias in TBPTT

and create a more favorable loss landscape for optimization.

3.3.1 Augmented Learner Training. As shown in eq. (7), we define

the synthetic sequences summary as a three-dimensional proba-

bilistic tensor obtained from the factors of the tucker decomposition

and a core matrix via the mode product operation: S ∈ R𝜇×𝜁×|V | .
Under this settings, we use Kullback-Leibler (KL) Divergence as the

loss function in eq. (3), and the inner objective is defined as:

x = S[ : , : 𝜁 , : ] ,
y = S[ : , 𝜁 , : ] ,
ŷ = Softmax(Φ

𝜃S
𝑗
(𝜓 (x , E))) ,

ℓS (y, ŷ) = D𝐾𝐿 (y | | ŷ) =
|V |∑︁
𝑖=1

y𝑖 log
y𝑖
ŷ𝑖

,

(8)

where x is the input, y is the target, Φ
𝜃S
𝑗
(·) is the learner model

trained on synthetic data in 𝑗-th step, ŷ is output of the learner

model and D𝐾𝐿 (· | | ·) is the discrete pointwise KL-divergence.

However, this approach only uses the previous 1 to 𝜁 − 1 in-

teractions to predict the 𝜁 -th interaction probability. We propose

further enhancing the prediction by randomly sampling middle

positions, which can significantly improve the diversity of training,

strengthen contextual understanding, enhance the model’s gener-

alization ability, and reduce reliance on specific sequence patterns.

This strategy helps the model capture sequence information more

comprehensively, improving its practical application performance.

3.3.2 Feature Space Alignment. We propose improving the current

outer-loop test accuracy objective by incorporating a metric that

ensures alignment between the feature spaces of models trained

on both the original dataset and synthetic sequence summary. As

noted in [20], the naïve meta-learning framework focuses primarily

on matching the performance of models trained on original and

synthetic data. However, from a loss surface perspective, this ap-

proach can be seen as mimicking the local minima of the target data

using distilled data [21]. Nevertheless, it encounters considerable

difficulties due to poorly conditioned loss landscapes [41]. Based on

this defective, we aim to learn S such that the learner Φ𝜃S trained

on them achieves not only comparable generalization performance

to Φ𝜃T but also converges to a similar solution in the feature space.

The enhanced objective can be formulated as:

S∗ = arg min

S
E

𝜃0∼Θ
[LT (𝜃∗) + LF (𝜃∗)] ,

s.t. LF (S,T ;𝜃∗) ≜ 1

2

∥ Φ𝜃T (T ) − Φ𝜃 ∗ (T ) ∥
2

𝐹 ,

LT (𝜃 ) ≜ E x∼T, 𝑥𝑖∼x
[
ℓT (Φ𝜃 ∗ (x1:𝑖 ), 𝑥𝑖+1)

]
,

𝜃∗ = arg min

𝜃

LS (𝜃 | 𝜃0) ,

(9)

where LF (𝜃∗) is the feature space alignment loss with a mean

squared error (MSE) by optimizing synthetic summary S directly.

Unlike the most basic meta-learning framework, by aligning the

feature spaces of models trained on both the original dataset and

the synthetic summary, the synthetic summary achieves better gen-

eralization, going beyond simply matching performance metrics.

4
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Algorithm 1: Optimization for TD3

Input :T: original dataset; [𝑮,U,T,V]: core tensor and tucker

factors for generating synthetic summary; Θ: pretrained
model parameters; N: total unrolling steps for BPTT; W:

truncated window size; 𝛼 : learning rate for the synthetic

data; 𝜂: learning rate for the learner model;

1 // Outer loop: update synthetic sequences summary

2 while not converged do
3 ▷ Initialize learner’s parameter 𝜃0 ∼ Θ

4 ▷ Sample a mini-batch of original data BT ∼ T
5 ▷ Uniformly sample the ending unrolling stepM ∼ 𝑈 (W,N)
6 // Inner loop: update learner model parameters

7 for 𝑛 ← 1, . . . ,𝑀 do
8 ▷ Sample a mini-batch of synthetic user :

9 BU ∼ U
10 ▷ Generate a mini-batch of synthetic summary :

11 BS = 𝑮 ×1 BU ×2 T ×3 V
12 // Start Random Truncked Backpropagation Through time

13 if n = M - W - 1 then
14 ▷ start accumulating gradients

15 end if
16 ▷ Update learner’s parameter by gradient descent :

17 𝜃𝑛 = 𝜃𝑛−1 − 𝜂 ∇LS (BS ;𝜃𝑛−1 )
18 end for
19 ▷ Compute test loss and feature space alignment loss :

20 L(𝜃𝑀 ) = LT (𝜃𝑀 ) +
1

2

∥ Φ𝜃T (BT ) − Φ
𝜃𝑆
𝑀
(BT ) ∥2

𝐹

21 ▷ Update synthetic data summary S = S − 𝛼 ∇SL(𝜃𝑀 )
22 end while

Output : synthetic sequence summary S.

3.3.3 Random Truncated Backpropagation Through Time. Training
neural networks on distilled data is challenging largely due to the

pronounced non-convexity of the optimization process. One com-

mon approach to capture long-term dependencies in this context is

Backpropagation Through Time (BPTT), although it suffers from

slow optimization and excessive memory demands. TBPTT, which

limits unrolled steps, is a more efficient alternative. Yet, TBPTT

introduces its drawbacks, such as bias from the truncation [57]

and poorly conditioned loss landscapes, especially with long un-

rolls [45]. To address these issues, [6] propose the Random Trun-

cated Backpropagation Through Time (RaT-BPTT) method, which

combines randomization with truncation in BPTT. This approach

unrolls within a randomly anchored and fixed-size window along

the training trajectory and aggregates gradients within this window.

The random window ensures that the RaT-BPTT gradient serves as

a random subsample of the full BPTT gradient, covering the entire

trajectory, while the truncated window improves gradient stability

and reduces memory usage. As a result, RaT-BPTT enables faster

training and better performance. It can be formulated as follows:

G = −𝜂 𝜕L
S (𝜃𝑇 )
𝜕𝜃

𝑀−1∑︁
𝑖=𝑀−𝑊

Π𝑀−1𝑗=𝑖+1

[
1 − 𝜂

𝜕2LS (𝜃 𝑗 )
𝜕𝜃2

]
𝜕2LS (𝜃𝑖 )
𝜕𝜃𝜕S ,

(10)

where𝑀 is the random number of total unrolled steps in the inner-
loop, and𝑊 represents the number of steps included in the back-

ward, with only the final𝑊 steps being used for backpropagation.

Table 1: Statistical information of experimental datasets.

Dataset

# user # item # inter avg.

sparsity

( |U| ) ( |V| ) (

∑
x 𝑁x ) length

Magazine 408 758 2.7k 6.6 99.13%

Epinions 4739 7998 24.7k 5.2 99.99%

ML-100k 944 1683 100k 106.0 93.71%

ML-1M 6041 3707 1M 165.6 95.53%

Previous studies have demonstrated that diverse models in inner

optimization improve robustness to overfitting [1, 70]. Moreover,

pretrained models significantly enhance dataset distillation by pro-

viding better initialization, faster convergence, and higher-quality

synthetic data [29, 40]. Building on these insights, we maintain

a pool of pretrained learner models from early training epochs,

capturing various stages of learning. At each outer step of the distil-

lation process, we randomly sample from it to ensure a diverse and

representative training signal for optimizing the synthetic dataset.

The overall TD3 training procedure is summarized in Algorithm 1.

4 EXPERIMENTS
In this section, we present and analyze the experiments on four

public datasets, aiming to answer the following research questions:

• RQ1. How does the performance of models trained on the

synthetic summary, distilled using the TD3 method, compare

to their performance when trained on the original data?

• RQ2. How does the performance of the synthetic data vary

when applied to different recommendation model architectures

that differ from the one used for dataset distillation?

• RQ3.What time savings are achieved by using the synthetic

summary distilled by TD3 compared to training from scratch

with the original sequential recommendation dataset?

• RQ4. How do the Augmented Learner Training module and

Feature Space Alignment module in TD3 impact the efficiency

and effectiveness of the entire dataset distillation process?

4.1 Settings
Training Datasets. To evaluate the distillation method proposed

in this paper, we conduct experiments on four commonly used and

publicly available datasets with variable statistics in table 1.

1) Amazon1 includes Amazon product reviews and metadata in-

fomation. For our empirical study, we mainly focus on the

categories of "Magazine_Subscriptions".

2) MovieLens2 is maintained by GroupLens and it contains movie

ratings from the MovieLens recommendation service. We use

the "ml-100k" and "ml-1m" versions for our experiments.

3) Epinions3 was collected by [72] from Epinions.com, a popular

online consumer review website. It describes consumer reviews

and also contains trust relationships amongst users and spans

more than a decade, from January 2001 to November 2013.

1
http://snap.stanford.edu/data/amazon/productGraph/categoryFiles/

2
https://grouplens.org/datasets/movielens/

3
https://cseweb.ucsd.edu/~jmcauley/datasets.html#social_data

5

http://snap.stanford.edu/data/amazon/productGraph/categoryFiles/
https://grouplens.org/datasets/movielens/
https://cseweb.ucsd.edu/~jmcauley/datasets.html#social_data
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Table 2: Comparison of TD3’s performance (%) across various size synthetic data and the full dataset. Bold numbers denote
the best-performing distilled summary. Underlined numbers denote that the distilled summary outperforms the full dataset.
Superscript * means improvements are statistically significant with p<0.05, while ** meaning p<0.01.

Dataset &

Model

Data

size

HR@5 ↑ HR@10 ↑ HR@20 ↑ NDCG@5 ↑ NDCG@10 ↑ NDCG@20 ↑ MRR@5 ↑ MRR@10 ↑ MRR@20 ↑

Magazine

&

SASRec

[10 x 10] ≡ 2.5% 34.24 (±0.73) 46.72 (±0.71) 56.65 (±0.80) 21.82 (±0.18) 25.81 (±0.26) 28.33 (±0.30) 17.74 (±0.21) 19.36 (±0.28) 20.05 (±0.28)

[15 x 15] ≡ 3.7% 37.11 (±0.23)∗ 48.60 (±0.90)∗ 60.51 (±0.76)∗ 24.14 (±0.21)∗∗ 27.82 (±0.34)∗∗ 30.82 (±0.35)∗∗ 19.88 (±0.35)∗∗ 21.38 (±0.34)∗∗ 22.20 (±0.36)∗∗

[25 x 20] ≡ 6.1% 34.15 (±1.21) 47.45 (±0.31)∗ 61.00 (±1.03) 23.04 (±0.46)∗ 27.36 (±0.35)∗∗ 30.78 (±0.07) 19.39 (±0.39)∗∗ 21.19 (±0.44)∗∗ 22.12 (±0.36)∗∗

[30 x 20] ≡ 7.4% 34.81 (±0.47) 47.87 (±1.54) 61.17 (±1.83)∗ 23.62 (±0.28)∗∗ 27.90 (±0.88)∗ 31.25 (±0.98)∗∗ 19.96 (±0.53)∗∗ 21.75 (±0.77)∗ 22.67 (±0.80)∗

Full-Data 34.15 (±0.65) 45.40 (±0.76) 56.98 (±0.23) 21.92 (±0.18) 25.63 (±0.28) 28.57 (±0.14) 17.90 (±0.12) 19.47 (±0.22) 20.29 (±0.20)

Epinions

&

SASRec

[10 x 50] ≡ 0.2% 12.07 (±0.10) 19.69 (±0.09)∗ 30.51 (±0.19) 8.15 (±0.07) 10.59 (±0.10) 13.31 (±0.09)∗ 6.86 (±0.11) 7.85 (±0.13) 8.60 (±0.12)

[15 x 30] ≡ 0.3% 12.35 (±0.10) 19.86 (±0.10)∗∗ 31.06 (±0.19)∗ 8.27 (±0.04) 10.67 (±0.05)∗ 13.49 (±0.08)∗∗ 6.93 (±0.09) 7.91 (±0.09) 8.67 (±0.10)

[20 x 20] ≡ 0.4% 12.26 (±0.30) 19.37 (±0.26) 30.87 (±0.19)∗ 8.20 (±0.19) 10.47 (±0.20) 13.38 (±0.12)∗ 6.88 (±0.19) 7.80 (±0.21) 8.59 (±0.19)

Full-Data 11.83 (±0.42) 19.13 (±0.16) 30.09 (±0.27) 7.92 (±0.29) 10.25 (±0.19) 13.00 (±0.08) 6.64 (±0.25) 7.58 (±0.21) 8.33 (±0.17)

ML-100k

&

SASRec

[25 x 150] ≡ 2.6% 48.57 (±0.23) 66.45 (±1.27) 81.30 (±0.28) 32.64 (±0.30) 38.44 (±0.69) 42.20 (±0.35) 27.39 (±0.42) 29.80 (±0.56) 30.83 (±0.47)

[30 x 50] ≡ 3.2% 49.84 (±1.02) 66.14 (±1.16) 81.37 (±0.44) 33.30 (±0.31) 38.56 (±0.86) 42.44 (±0.72) 27.88 (±0.63) 30.04 (±0.85) 31.12 (±0.82)

[50 x 50] ≡ 5.3% 51.86 (±0.13) 68.79 (±0.49) 82.96 (±0.36) 35.13 (±0.59) 40.62 (±0.16) 44.21 (±0.20) 29.63 (±0.38) 31.90 (±0.19) 32.89 (±0.22)

Full-Data 51.75 (±1.17) 69.46 (±0.26) 84.37 (±0.22) 35.57 (±0.60) 41.34 (±0.49) 45.12 (±0.54) 30.24 (±0.70) 32.65 (±0.70) 33.69 (±0.72)

ML-1m

&

SASRec

[50 x 50] ≡ 0.8% 56.33 (±0.43) 69.71 (±0.37) 81.88 (±0.34) 41.69 (±0.24) 46.02 (±0.17) 49.10 (±0.14) 36.83 (±0.20) 38.63 (±0.16) 39.47 (±0.15)

[100 x 50] ≡ 1.7% 56.68 (±0.13) 70.42 (±0.20) 82.82 (±0.27) 41.42 (±0.18) 45.87 (±0.11) 49.02 (±0.20) 36.37 (±0.21) 38.22 (±0.18) 39.08 (±0.20)

[200 x 100] ≡ 3.3% 62.80 (±0.31) 74.45 (±0.17) 84.83 (±0.08) 47.82 (±0.24) 51.61 (±0.20) 54.24 (±0.18) 42.84 (±0.23) 44.42 (±0.21) 45.14 (±0.21)

Full-Data 67.92 (±0.36) 78.22 (±0.28) 86.91 (±0.09) 54.02 (±0.14) 57.37 (±0.11) 59.57 (±0.07) 49.38 (±0.09) 50.78 (±0.07) 51.38 (±0.07)

Evaluation Metrics. We adopt the leave-one-out strategy for

evaluation, following prior research [3, 65, 66]. For each sequence,

the most recent interaction is used for testing, the second for valida-

tion, and the rest for training. To expedite evaluation, as in previous

studies [17], we randomly sample 100 negative items to rank with

the ground-truth item, which closely approximates full-ranking re-

sults while significantly reducing the computational cost. We assess

performance using HR, NDCG, andMRR. HR@k checks if the target

item appears within the top-k recommendations, NDCG@k consid-

ers the item’s rank, and MRR@k computes the average reciprocal

rank of the first relevant item, with k ∈ {5, 10, 20}.

Implementation Details. We implement TD3 using PyTorch and

develop recommendationmodels based on the library of Recbole [73].

Throughout the distillation process, we use SASRec [17] serves as

the learner across all datasets, utilizing attention heads ∈ {1, 2}, lay-
ers ∈ {1, 2}, hidden size ∈ {64, 128}, inner size ∈ {64, 128, 256}, and
attention dropout probability of 0.5 and hidden dropout probability

of 0.2. For magazine and epinions dataset, we set 𝑑1, 𝑑2 ∈ {8, 16},
while for ml-100k and ml-1m dataset, we set𝑑1, 𝑑2 ∈ {16, 32, 64}. To
evaluate the cross-architecture generalization of the proposed TD3,

we employ GRU4Rec [14], BERT4Rec [42], and NARM [23] for per-

formance assessment. For all distilled datasets, we apply the Adam

optimizer [4] for both the inner-loop and outer-loop optimization.

In the outer-loop, the synthetic sequence summary optimizer

is configured with a learning rate 𝛼 ∈ {0.01, 0.03} and a weight

decay of 0.0001, using a cosine scheduler to adjust the learning

rate throughout the process. In the inner-loop, the learner optimizer

employs a learning rate 𝜂 ∈ {0.003, 0.005, 0.01}, with a weight

decay of 0.00005. The inner steps are set to 200, using a random

truncated window of 40 for backpropagation through time in RaT-

BPTT, implemented via the Higher [7] package across all datasets.

4.2 Overall Performance
We evaluated TD3’s performance across various synthetic sequence

summary sizes and diverse datasets. In table 2, we compare models

trained on full original datasets with those using various-sized syn-

thetic sequence summaries. Additionally, table 3 and fig. 4 compare

TD3’s performance with Farzi and heuristic sampling methods:

random sampling, which selects sequences uniformly, and longest
sampling, which selects sequences in descending order of length.

Our findings are as follows: 1) TD3 achieves comparable training

performance, even with substantial data compression. This shows

that small-batch synthetic summaries distilled from the original

dataset effectively capture essential information, preserving data

integrity for model training. 2) In datasets such as Magazine and

Epinions, models trained on TD3-distilled summaries outperform

those trained on the original datasets. This highlights the value of

high-quality, smaller datasets over larger, noisier ones, underscor-

ing the importance of data quality in model training. 3) Epinions,

with the fewest average user-item interactions, achieved the highest

data compression rate with TD3 while maintaining strong perfor-

mance. This demonstrates data distillation’s potential to address

data sparsity in sequential recommendation tasks. 4) As illustrated

in table 3 and fig. 4, TD3 is more sample-efficient than Farzi and

heuristic methods, demonstrating superior data utilization.

These results illustrate the transformative potential of data dis-

tillation in improving sequential recommendation systems. This

approach represents a shift towards a data-centric paradigm in

recommender systems, where prioritizing data quantity and quality

and strategic compression can create more robust and efficient al-

gorithms, reducing computational costs and storage demands. This

evolution paves the way for the next generation of recommendation

algorithms, focusing on maximizing value from the minimal data.
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Table 3: Comparison of TD3 with existing dataset distillation
techniques and heuristic sampling methods. "Random" indi-
cates random sampling of the same number of interactions
as used in dataset distillation. "Longest" refers to selecting
the same number of longest user sequences.

Dataset Metric

Sampling Distillation

Full-Data

Random. Longest. Farzi TD3

Magazine

[30×20]

HR@10 ↑ 15.44 (±2.68) 19.62 (±0.31) 41.46 (±1.27) 47.87 (±1.54) 45.40
HR@20 ↑ 27.50 (±1.03) 33.66 (±2.73) 58.70 (±0.13) 61.17 (±1.83) 56.98

NDCG@10 ↑ 7.75 (±1.16) 9.58 (±0.58) 24.27 (±0.20) 27.90 (±0.88) 25.63
NDCG@20 ↑ 10.75 (±0.77) 13.10 (±0.30) 28.65 (±0.13) 31.25 (±0.98) 28.57

Epinions

[15×30]

HR@10 ↑ 10.67 (±0.90) 10.24 (±0.21) 18.99 (±0.30) 19.86 (±0.10) 19.13
HR@20 ↑ 20.25 (±1.25) 20.01 (±0.41) 29.82 (±0.39) 31.06 (±0.19) 30.09

NDCG@10 ↑ 4.93 (±0.36) 4.79 (±0.06) 10.38 (±0.17) 10.67 (±0.05) 10.25
NDCG@20 ↑ 7.31 (±0.45) 7.22 (±0.11) 13.09 (±0.07) 13.49 (±0.08) 13.00

ML-100k

[30×50]

HR@10 ↑ 10.85 (±2.30) 13.36 (±0.45) 62.92 (±1.39) 66.14 (±1.16) 68.93
HR@20 ↑ 21.49 (±3.98) 25.59 (±0.64) 77.84 (±0.30) 81.37 (±0.43) 83.78

NDCG@10 ↑ 4.81 (±1.10) 5.97 (±0.32) 34.92 (±0.71) 38.56 (±0.86) 40.97
NDCG@20 ↑ 7.48 (±1.28) 9.02 (±0.36) 38.72 (±0.40) 42.44 (±0.72) 44.76

ML-1M

[200×50]

HR@10 ↑ 15.88 (±0.22) 16.60 (±0.51) 38.01 (±0.98) 70.52 (±0.36) 79.32
HR@20 ↑ 28.09 (±0.31) 30.93 (±0.45) 56.10 (±1.24) 82.52 (±0.25) 87.60

NDCG@10 ↑ 7.40 (±0.11) 7.77 (±0.16) 19.85 (±0.49) 45.93 (±0.37) 58.82
NDCG@20 ↑ 10.47 (±0.10) 11.36 (±0.14) 24.41 (±0.55) 48.97 (±0.30) 60.93

Table 4: Evaluation of generalization performance on unseen
architectures using a synthetic summary of size [50 × 20]
distilled from the Epinions dataset via SASRec.

Metric

Architecture
Synthetic Data / Original Data

SASRec NARM GRU4Rec BERT4Rec

HR@10 19.75 / 19.61 19.60 / 19.43 19.11 / 20.25 18.98 / 17.14

HR@20 31.30 / 30.90 30.55 / 31.10 29.49 / 31.49 29.08 / 27.62

NDCG@10 10.61 / 10.45 10.67 / 10.25 10.55 / 10.93 10.31 / 9.29

NDCG@20 13.51 / 13.28 13.43 / 13.18 13.15 / 13.75 12.83 / 11.91

MRR@10 7.85 / 7.69 7.98 / 7.48 7.96 / 8.13 7.70 / 6.93

MRR@20 8.64 / 8.46 8.73 / 8.28 8.66 / 8.90 8.38 / 7.63

4.3 Cross-Architecture Generalization
Since the synthetic sequence summary is carefully tailored for opti-

mizing a specific learner model, we assess its generalizability across

various unseen architectures, as shown in table 4. We first distill

the Epinions dataset using SASRec [17], resulting in a condensed

synthetic summary of size [50 × 20]. This summary is then used

to train several alternative architectures, including GRU4Rec [14],

which models sequential behavior using Gated Recurrent Units

(GRU); NARM [24], which enhances GRU4Rec with an attention

mechanism to emphasize user intent; and BERT4Rec [42], which

uses bidirectional self-attention to learn sequence representations.

The models trained on the synthetic summary demonstrate strong

generalization across diverse architectures, maintaining high pre-

dictive performance. In some cases, they even outperform models

trained on the original dataset, highlighting the effectiveness of our

proposed TD3 method in enabling cross-architecture transferability.
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Figure 4: Illustration of the performance comparison of the
TD3 against: Farzi, random sampling and longest sampling.
The above panel presents a comparison of the Magazine,
while the below is on the ML-100k. For the random sample
method, we conducted three independent trials to mitigate
the impact of randomness on the experimental outcomes.

4.4 Time and Memory Analysis

4.4.1 Theoretical Memory Complexity. As discussed in Section 2,

Farzi [40] decomposes synthetic data S ∈ R𝜇×𝜁×|V | to a latent

summaryD ∈ R𝜇×𝜁×𝑑 and a decoderM ∈ R𝑑×|V | , where 𝑑 ≪ |V|.
To highlight the advantages of employing Tucker decomposition

for three-dimensional data, we perform a comparative analysis

of our proposed approach with that of Farzi. In particular, we in-

vestigate the computational footprint associated with the bi-level

optimization framework by evaluating memory usage during a

single outer-loop step, providing insights into the efficiency gains

achieved through our method as follows:

Farzi : O
(
|Φ| + |BT | · 𝜁 · 𝑑3 + |BS | · 𝜁 · |V| + 𝜇 · 𝜁 · 𝑑 + 𝑑 · |V|

)
TD3 : O

(
|Φ| + |BT | · 𝜁 · 𝑑3 + |BS | · 𝜁 · |V| + (𝜇 + 𝜁 ) · 𝑑1 + 𝑑21 · 𝑑3

)
where |BT | and |BS | denote the batch size of real and synthetic

data, respectively, while 𝑑3 represents the item embeddings’ hidden

dimension. Additionally, 𝑑 , 𝑑1, and 𝑑3 are of the same order of

magnitude and much smaller than |V|. When the item set is very

large, or the distilled sequence summary requires larger values of 𝜇

and 𝜁 , the inequality (𝜇 + 𝜁 ) · 𝑑1 +𝑑2
1
· 𝑑3 ≪ 𝜇 · 𝜁 · 𝑑 +𝑑 · |V| holds,

the method proposed in our work will offer a spatial advantage.
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Table 5: Wall-clock runtime (in A100 GPU hours) and storage costs for each operation. Distillation time represents the total
runtime for 30 epochs, though actual dataset distillation requires less computation. Training on the original data uses an early
stopping strategy while training on the synthetic data is fixed at 200 or 500 epochs.

Dataset

TD3 distillation process Training on original data Training on synthetic data

Compute Memory Compute Memory Compute Memory

Magazine 21m 28s 742MB 1m 13s 666MB 25s 534MB

Epinions 55m 46s 2156MB 1m 27s 932MB 18s 624MB

ML-100k 1h 58m 24s 3460MB 5m 47s 1910MB 14s 604MB

ML-1m 2h 26m 59s 9832MB 57m 31s 3482MB 22s 924MB

Table 6: Ablation performance of a model trained on a [50 ×
50] synthetic summary distilled from the ML-100k. ✗ indi-
cates a module was not used, while ✓ indicates the opposite.

Dataset FSA ALT NDCG@5 NDCG@10 MRR@5 MRR@10

ML-100k

✗ ✗ 33.27 (±0.65) 38.80 (±0.51) 27.90 (±0.65) 30.19 (±0.59)

✓ ✗ 34.27 (±0.57) 40.06 (±0.33) 29.03 (±0.61) 31.44 (±0.51)

✗ ✓ 34.45 (±0.79) 39.75 (±0.27) 28.84 (±0.62) 31.03 (±0.39)

✓ ✓ 35.13 (±0.59) 40.62 (±0.16) 29.63 (±0.38) 31.90 (±0.19)

4.4.2 Empirical Computational Complexity. The data distillation
process consumes considerable wall-clock time and GPU memory,

so we conducted a detailed quantitative analysis of these require-

ments for both distillation and model training on the original and

distilled datasets, as shown in table 5. Wall-clock time is reported in

single A100 (80GB) GPU hours. While distillation generally takes

longer and uses more memory than training on the original data,

its cost is often amortizable in real-world scenarios where multiple

models must be trained on the same dataset. The amortization,

based on the ratios in the table, varies by dataset and distillation

scale. Notably, for large datasets, where training time is typically

lengthy, training on significantly reduced distilled data can shorten

this process by several orders of magnitude. This trade-off substan-

tially decreases future training time, making distillation a one-time

cost that yields long-term benefits for various downstream tasks,

such as hyperparameter tuning and architecture exploration. Hence,

the distillation process and its amortization will be well justified.

4.5 Ablation Studies
To further analyze the effects of different components in ourmethod,

we perform ablation studies on ML-100k as an example. Besides

the RaT-BPTT, the ablation results of components about Feature
Space Alignment (FSA) and Augmented Learner Training (ALT) are

summarized in table 6. We show that FSA and ALT are comple-

mentary to each other. After integrating ALT, TD3’s performance

improved significantly. This improvement is due to ALT’s ability

to enhance the learner model’s contextual understanding and re-

duce reliance on specific sequence patterns, enabling the model to

capture sequence information more comprehensively. As a result,

the synthetic data undergoes more accurate and comprehensive

updates during the outer-loop. Moreover, incorporating FSA alone

also brings performance improvements in every metric. From the

loss perspective, the basic bi-level optimization approach, which

only uses the test loss as the objective function in the outer-loop,
may encounter considerable challenges due to poorly conditioned

loss landscapes, which is the main bottleneck affecting distillation

performance. FSA strengthens the objective function, ensuring the

model converges to a similar solution in the feature space while pre-

serving the comparable model’s performance when trained on the

original and synthetic summary, thereby providing robust guaran-

tees for optimal synthetic data updates. Therefore, using both com-

ponents simultaneously, with each contributing in the inner-loop
and outer-loop, maximizes the benefits of the distillation process.

5 CONCLUSION
In this paper, we propose TD3 which distills a large discrete sequen-

tial recommendation dataset into an informative synthetic sum-

mary, which is decomposed into four factors inspired by Tucker de-

composition in latent space. TD3 offers several advantages, includ-

ing the decoupling of factors that influence the size of S, thereby
reducing data dimensionality, computational costs, and storage

complexity while preserving essential feature information. Addi-

tionally, we introduce an enhanced bi-level optimization approach

featuring an augmented learner training strategy in the inner-loop,
ensuring the learner deeply fits the summary and a feature-space

alignment surrogate objective in the outer-loop, ensuring optimal

learning of synthetic data parameters. Experiments and analyses

confirm the effectiveness and necessity of the proposed designs.

Despite these advantages, our work has certain limitations, par-

ticularly the computational complexity of the bi-level optimization

process, which remains demanding for larger models and extensive

datasets. However, the cost is often amortizable in real-world sce-

narios where multiple models need training on the same dataset.

This trade-off significantly reduces future training time, making

distillation a one-time cost with long-term benefits for various

downstream tasks. As for our future works, we intend to develop

a more time-efficient dataset distillation method that can scale

to larger datasets without compromising performance. Addition-

ally, we also plan to leverage dataset distillation to facilitate cross-

domain knowledge transfer, enabling distilling information from

one domain to be effectively reused in others and enhancing the

framework’s versatility across various recommendation contexts.
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