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Abstract

Diffusion policies have emerged as a mainstream paradigm for building vision-
language-action (VLA) models. Although they demonstrate strong robot control
capabilities, their training efficiency remains suboptimal. In this work, we identify
a fundamental challenge in conditional diffusion policy training: when generative
conditions are hard to distinguish, the training objective degenerates into mod-
eling the marginal action distribution, a phenomenon we term loss collapse. To
overcome this, we propose Cocos, a simple yet general solution that modifies the
source distribution in the conditional flow matching to be condition-dependent. By
anchoring the source distribution around semantics extracted from condition inputs,
Cocos encourages stronger condition integration and prevents the loss collapse. We
provide theoretical justification and extensive empirical results across simulation
and real-world benchmarks. Our method achieves faster convergence and higher
success rates than existing approaches, matching the performance of large-scale
pre-trained VL As using significantly fewer gradient steps and parameters. Cocos is
lightweight, easy to implement, and compatible with diverse policy architectures,
offering a general-purpose improvement to diffusion policy training.
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Figure 1: Fusing generative condition into the source distribution greatly simplifies diffusion policy
training. Diffusion policy trained with our method achieves 7 performance on the LIBERO benchmarks
with only 30K gradient steps, which is 2.14x faster than the vanilla model. We also show the cosine similarity
and the norm scale change between the policy hidden states before and after injecting condition information,
demonstrating that our method fundamentally compels the policy network to utilize condition information, rather
than simply embedding conditions into the source distribution.

1 Introduction

Denoising generative models have emerged as a scalable approach for high-dimensional data genera-
tion [28, 6, 26, 17, 18, 12, 30, 16], significantly advancing Vision-Language-Action (VLA) models in
robotics (VLAs?) [19, 15, 1, 3, 36, 11]. Mainstream VLA models frame robot control as a conditional
generation problem: given vision-language inputs as conditions, the model generates appropriate
robot action sequences. Despite action sequences being substantially lower-dimensional than typ-
ical generative content like images or text, training VLAs remains unexpectedly challenging and

*Corresponding authors: Hang Zhao (hangzhao @mail.tsinghua.edu.cn), Jianye Hao (jianye.hao@tju.edu.cn).
2Unless otherwise specified, VLAs in this paper refer specifically to denoising generative VLA models.
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Figure 2: Diffusion Policy w/ Cocos. Our approach requires only replacing the standard Gaussian source
distribution with a condition-conditioned Gaussian. An autoencoder compresses condition representations to
match dimensionality, providing the mean while maintaining a fixed standard deviation.

resource-intensive. Recent efforts to enhance VLA training efficiency have explored various direc-
tions, including leveraging more powerful vision-language encoders [9, |, 24, 10, 33, 32], designing
compact and expressive action tokenizers [22, 31], and incorporating richer conditioning strategies
[7, 8, 35, 14, 23]. These approaches converge on a critical insight: the core challenge may not lie in
action generation itself, but rather in how models interpret and utilize conditional inputs.

To further investigate how condition inputs affect policy training, we empirically compare diffusion
policies with visual encoders trained from scratch versus those initialized with DINOv2. We analyze
the cosine similarity and norm scale change between policy network hidden states before and after
condition information injection, correlating these metrics with LIBERO task success rates Figure 1.
Higher cosine similarity and lower norm scale change indicate weaker condition influence on the
policy network, directly correlating with degraded performance (as observed comparing DP-DINOv2
versus DP-scratch). The results demonstrate a fundamental issue: policies facing difficult-to-interpret
conditions actively omit conditional inputs, producing actions disconnected from observations. This
phenomenon persists even when using high-quality representations, though to a lesser degree.

While empirical results reveal this condition omission phenomenon, we conduct a theoretical analysis
to identify its root cause in VLA training. We discover that when policy networks struggle to differen-
tiate between generative conditions, the flow-matching objective degrades into an unconditional one
that merely models the marginal action distribution. This loss collapse creates a destructive feedback
loop: as the policy network begins ignoring conditional inputs, the training objective further degrades,
reinforcing the network’s tendency to discard conditions altogether rather than attempting to interpret
them. To prevent this loss collapse, we introduce a novel conditional flow-matching approach with
a condition-conditioned source distribution (Cocos). Rather than adopting a standard Gaussian
prior ¢(z), Cocos anchors the source distribution around the semantics of each condition ¢(z|c),
theoretically preventing training loss collapse and forcing the policy network to remain responsive to
condition inputs. As demonstrated in Figure 1, diffusion policies trained with Cocos exhibit 2.14x
faster training and substantially higher success rates. Critically, the lower cosine similarity and
increased norm scale change indicate that Cocos fundamentally compels the policy network to utilize
condition information, rather than simply embedding conditions into the source distribution.

Specifically, we implement Cocos by formulating the source distribution as a Gaussian with fixed
standard deviation, where the mean derives from latent representations produced by a vision-language
autoencoder (see Figure 2). This approach introduces minimal architectural overhead, making it
compatible with diverse VLA architectures and model scales. This simplicity, combined with strong
theoretical guarantees and empirical benefits, positions Cocos as a general-purpose solution for
preventing condition omission in VLA training.

To comprehensively validate Cocos, we conduct extensive evaluations across diverse settings: 70
simulation tasks from the LIBERO and MetaWorld benchmarks [13, 34], 10 real-world tasks on the
low-cost open-source SO-100 robot platform [2], and 10 tasks on the high-performance xArm robot
platform. Our results demonstrate significant improvements in both manipulation success rates and
learning efficiency. Through detailed case studies, we analyze loss collapse manifestations and the
mechanisms through which Cocos enhances performance. Our contributions include:

* We formulate the mathematical framework of flow matching with generative conditions and
demonstrate that policy networks omit conditions when they are difficult to distinguish.



* We introduce Cocos, a simple yet effective source distribution modification that prevents
loss collapse and significantly improves diffusion policy training efficiency and performance.

* We establish a comprehensive evaluation benchmark across diverse settings, including
simulation tasks from LIBERO and MetaWorld, real-world tasks on a low-cost open-source
robot (SO100), and tasks on a high-performance robot (xArm). Our results demonstrate
consistent performance improvements across these varied platforms, validating Cocos as a
general-purpose, plug-and-play solution for enhancing diffusion policy training.

2 Preliminaries

Problem Formulation. Our goal is to train a VLA 7y (a1.7|E(0)) that maps an observation o to
sequences of future robot actions ay.z by imitating expert demonstrations. Here, o typically includes
current and historical images as well as language instructions, while £ represents a pre-trained
vision-language encoder. In this paper, we focus on denoising generative model VLAs.

Conditional Flow Matching. Assume a smooth time-varying vector field v : [0,1] x RY — R?
defines an ordinary differential equation (ODE) dz = w;(x)d¢, which pushforward samples from
source distribution py to the target distribution p;. The density transported along « from time O to ¢ is
denoted as p; : [0,1] x RY — R. p; and wu; satisfy the continuity equation: 9p/ot = —V (p; - uz).
Suppose that the marginal probability path p;(x) is a mixture of probability paths p;(z|z), that is
pi(x) = [ pi(x]z)q(2)dz, where ¢(z) is some distribution over the conditioning variable. If p;(x|z)
is generated by the vector field u;(x|z) from initial conditions p(x|z), then the vector field

ut(z|2)pe(x|2)
pe(7)

generates the probability path p;(z). Let vg : [0,1] x R? — R? be a time-dependent vector field
parameterized as a neural network 6. Define the conditional flow matching (CFM) objective:

ECFM(G) = Et,q(z),pt(ﬂz) ||U9(t,$) - ut($|Z)”2 : (@)

In VLA models, a typical choice sets ¢(z) = ¢q(xo)g(x1), corresponding to an independent coupling
of the source and target distributions, and the conditional flow is defined by

ut(x) = Eq(z) (])

pe(x]2) = pe(x|@, 20), we(2|2) = we(z|x1, 20), 3)

where the source distribution is a standard Gaussian. By optimizing CFM objective, vy (¢, x) can
converge to the vector field u:(z), with which we can solve the ODE and sample action chunks.
Note that this is a general formulation covering a wide range of denoising generative models, e.g.,
Var. Exploding [27], Var. Preserving [0] diffusion models, flow matching models [ 2], rectified flow
models [16], etc. So our following discussion can be easily transferred to various policy backbones.

3 How Generative Conditions Can Lead to Loss Collapse

While conditional flow matching offers a general framework for transporting probability distributions,
it does not inherently consider condition inputs. Prior works adopt a straightforward strategy: injecting
the generative condition directly into the policy network [4, 37, 38]. However, the implications of this
approach have received little theoretical attention. In this section, we first analyze how the underlying
flow formulation changes when generative conditions are introduced, then demonstrate that this
seemingly benign modification can lead to a critical failure mode: loss collapse, where the training
objective degenerates and the model learns to omit the generative condition altogether.

3.1 Flow with Generative Conditions

We consider a conditional vector field u:(x|c) that transports the source distribution pg(z|c) to the
target p1 (z|c), where ¢ is the generative condition. Let p;(x|z, ¢) denote the time-varying intermediate
density under generation condition ¢ and flow condition z, with its associated vector field u;(xz|z, c).
Then, the overall conditional velocity can be expressed as:

ut(iL'|Z, c)pt($|z, C)
pe(zlc) '

“

ug(z|e) = Eq(2)
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Figure 3: Loss collapse causes the policy to degrade to an average. The policy omits language instructions
(‘Move it to the left’ or ‘Move it to the right’) and yields actions based on their frequency in the training data.
Cocos prevents loss collapse, enabling the policy to produce distinct actions corresponding to ‘Left’ and ‘Right’.

Suppose we introduce ¢ into the neural estimator vg(t, x, ¢) of the conditional velocity w;(x|c). The
corresponding training objective becomes:

£CFMC(9) = Et,q(z),pt(ﬂz,c) ||U9(t7 z, C) - Ut($|2, C)|l2 . (5)

Lemma 1. [fp,(x|c) > 0 forall z € R and t € [0, 1], up to a constant independent of 0, objective
Et p,(z)e) lva(t, z,c) — ut(zc|c)||2 and By 4(2) p, (z)z,c) [V0(t, 2, ¢) — us (22, c)H2 are equal.

By optimizing Equation (5), we can use vy (¢, x,c) to estimate u;(z|c) and solve the ODE for
generation. In practice, a common formulation of ¢(z) in Equation (5) is ¢(z) = q(x0)g(x1,¢), 2z =
(21, xg, ¢). This setup corresponds to sampling a condition-action pair from the dataset and perturbing
the action with Gaussian noise during training. Under this formulation, the conditional flow and
velocity field are defined by:

el = { PO 0SS el = { ) 0g2 )

This reduces the objective to that implemented in previous works [4, 37, 38]:

2
£CFMC(9> = Et,q(zo),q(zl,c),pt(az|z1,zo) ”/UG(tv x, C) - ut(x|x1, l‘())” . (7)

3.2 Loss Collapse

While this conditional objective encourages the model to learn condition-dependent vector fields,
a critical failure mode can occur: if the model fails to distinguish the condition information in C
(e.g., forany c1,ca € C, |lvg(t, x,c1) — vg(t, x, c2)|| < €), the objective effectively collapses into a
marginal form on C that no longer depends on c.

Theorem 1 (Gradient Contraction under Independent Sampling). Under the independent sampling
measure

u(dy) = q(z1, ¢) q(w0) pe(z|21, 20) droda1da,
the difference of the score gradients for any two conditions ¢y, ca € C admits the bound

[VoLerme(0,¢1) — VoLerme(0, c2)|| < 2(M + KD)e,

provided that ||Vgvg| < M, ||d|| < D, and the model output satisfies ||ve(t, z, c1) —vg(t, x, ca)|| <
with its gradient being output-sensitive Lipschitz of constant K. The velocity estimator vy (t, x,
tends to converge to a c-independent function v*(t, x) that minimizes the averaged objective:

€
c)
v*(t,x) = argmvin EcecE.np [||v(t,3:) — ut(x|x1,x0)||2] .

By contrast, when samples are drawn from the conditional measure

pe(dy) = q(z1, ¢) q(xolc) pi(x|xy, 20) drodrda,

the same gradient difference can become arbitrarily large unless additional coupling assumptions on
q(xo|c) are imposed.



This result reveals a vicious cycle: as the policy network becomes confused by condition inputs, the
objective degenerates into an unconditional one. This further reinforces the network’s tendency to
discard difficult-to-interpret conditions, leading to models that appear to be well-trained but fail to
comprehend conditional cues during deployment. As shown in Figure 3, loss collapse causes the
policy to average actions. In the next section, we introduce Cocos, a simple method to prevent it.

4 Method

In Theorem 1, we identify that loss collapse arises when ¢ becomes indistinguishable to the policy net-
work. This collapse is exacerbated by the standard choice of sampling z from ¢(z) = ¢(z1, ¢)q(x0),
which decouples xg from the condition. If vy (¢, x, ¢) = vy(t, z), the expectation in the objective
effectively marginalizes over c, causing it to degenerate into an unconditional one.

To prevent it, we propose a simple yet effective modification: using a condition-conditioned source
distribution (Cocos) by sampling z from ¢(z) = ¢(x1,¢)q(zo|c). As shown in Theorem I, this
change directly avoids the loss collapse and enforces condition-awareness during training. While
q(xo|c) can be designed in various ways, in this work, we choose to maintain the overall framework’s
simplicity by setting it as a Gaussian with fixed standard deviation, with the following objective:

Lcocos(0) := Bt q(z0/0),a(@1,6),pe v — UtH27 where ¢(zolc) = N (2o; aF¢(5(c)),ﬁQI), (8)

where I, is a feature encoder that maps the condition representations to the action space dimension-
ality. The scalar « controls the strength of the condition prior, and S adjusts the uncertainty. Setting
a = 0, 6 = 1 recovers the commonly used formulation with a standard Gaussian prior. Incorporating
Cocos requires only replacing the standard Gaussian source distribution with a condition-conditioned
one. Algorithm | clearly shows the differences in training and inference pipelines.

In practice, we adopt an autoencoding objective on condition embeddings to train Fy;. Specifically,
we minimize the negative cosine similarity between the original and reconstructed embeddings:

L(¢) = —EcSim (G (F5(E(c))), €(c)) ©)
where F, and G, are the encoder and decoder networks, respectively. As a default setting, we adopt
a two-stage training process: we first train the source distribution (i.e., the autoencoder) and then
fix it during policy training. However, in practical scenarios, this two-step pipeline may introduce
additional inflexibility. To address this, we also explore a joint training alternative. Simultaneous
training of this autoencoder and the policy can be unstable due to the evolving distribution of xg.
To mitigate this, we adopt an Exponential Moving Average (EMA) strategy. We maintain a target
network I, -, updated via EMA from Fy, and use this EMA copy during policy training, ensuring
stability. In practice, this approach achieves performance comparable to the two-stage strategy, which
we will discuss in detail in the experimental section.

We implement our policy network using a compact Robot Diffusion Transformer (RDT) [15]. The
diffusion process follows a linear interpolation schedule [12]:

pi(x|zy, 20) = N(25tzy + (1 — t)xo,02), u(w|z1,z0) = 1 — 0. (10)
We select these design choices as they have been widely adopted in advanced VLA models [15, 1].

Algorithm 1 Training and Inference Pseudocode for Diffusion Policy with Cocos

Require: Policy Network vy, Condition Network £, Pre-trained condition encoder Fi
1: while not coverge do # Training

(z1,¢) ~ q(z1,¢), t ~U(0,1), 20 ~ g(xo|c) Equation (8) # xg ~ N(0,1) (without Cocos)
0 < 6 + VoLcrmc(6) Equation (7)

end while

while not done do # Inference
Observe ¢, o ~ q(zo|c) Equation (8) # o ~ N(0,1) (without Cocos)
Solve ODE dz¢ = vg(t, x¢,c)dt fromt = 0tot = 1.
a < x1; Execute action a

end while

Ve nkhw

S Experiments

We conduct comprehensive experiments to evaluate the effectiveness of Cocos in both simulated and
real-world robot manipulation tasks. The experiments are designed to answer three core questions:
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Figure 4: Learning curve on LIBERO benchmark. Dashed line scores are reported by Kim et al. [10].

Table 1: Success rate on LIBERO benchmark. Each of the four task suites includes 10 tasks, and we evaluate
150 trials for each task. The 1%, 2" highest scores are emphasized with bold and the 3™ with underline. Cocos
(0.2 std) is our default configuration, and other Cocos variants serve for an ablation study.

DP-scratch DP-DINOv2  Cocos (0.2 std) Cocos (0.1 std) Cocos (0.4 std) Cocos (VAE) Cocos (EMA)

Goal 64.3+1.3 82.9+0.4 93.8+0.3 50.9+1.8 92.3+0.9 92.5+0.3 90.5+0.4
LIBERO | Spatial  76.11.6 91.4+0.7 97.5+0.7 97.10.4 96.7+0.5 96.1+0.7 97.5+0.2
Object  71.40.7 88.9+1.0 99.1+0.6 79.3+0.8 97.6£1.0 98.1+0.7 96.9+0.5
Long 45.9+1.6 82.7+0.2 88.7+0.1 82.7+0.5 89.5+0.4 88.2+0.6 87.3+0.6
Average 64.4 86.5 94.8 71.5 94.0 93.8 93.0

(RQ1) Does Cocos improve diffusion policies’ training efficiency and final performance?
(RQ2) Does it mitigate the loss collapse phenomenon?

(RQ3) Does it facilitate policy learning in real-world settings across heterogeneous robot platforms?

5.1 Experimental Setup

Diffusion Policy. Our diffusion policy (DP) adopts a compact RDT policy network of approximately
40M parameters. The vision-language condition inputs are encoded using a DINOv2-Base [20] and
a T5-Base [25]. We denote the resulting model as DP-DINOv2. To evaluate the effectiveness of
Cocos, we compare three key variants: (1) DP-scratch, which is trained without any pre-trained vision
encoder; (2) DP-DINOvV2, which incorporates frozen DINOv2 features but uses the standard source
distribution; and (3) DP-DINOvV2 with Cocos, our full method with a condition-conditioned source
distribution. The autoencoder used to define the source distribution in Cocos is implemented using a
single-layer Transformer for both encoder and decoder components.

Benchmarks. Our simulation evaluations are based on the LIBERO and MetaWorld benchmarks.
LIBERO includes 40 tasks in four task suites: Goal, Spatial, Object, and Long, to test different
policy generalizations. MetaWorld includes 30 tasks from various difficulty levels. For real-world
experiments, we deploy the models on two robot platforms: The SO100 robot (low-cost, open-sourced,
equipped with dual RGB cameras) evaluated on 10 tasks in four suites: Pick&Place, MoveTo, Wipe,
and Unfold; The xArm robot (higher-precision, equipped with one Intel RealSense L515 LiDAR
camera) evaluated on 10 tasks in suites: Pick&Place, Pot, Pour, and Moka. We show detailed task
configurations in Appendix B.

5.2 Overall Comparison (RQ1)

We evaluate the effectiveness of Cocos on two widely-used simulation benchmarks: LIBERO and
MetaWorld. For LIBERO, we also include comparisons with fine-tuned my [1], OpenVLA-OFT [10],
and Seer [29]. my and OpenVLA-OFT are SOTA large-scale pre-trained VLA models, featuring
flow-matching and next-token prediction, respectively. Seer is not an end-to-end VLA model but
predicts future frames to infer actions. We report the results in Table |, Table 2 and Figure 4.

Finding 1: Cocos significantly improves training efficiency and policy performance. Across all
LIBERO suites, Diffusion policy (DP) trained with Cocos outperforms its counterparts without Cocos.
Notably, Cocos-enabled models reach high success rates (e.g., >95% on Spatial and Object suites)
within only 5-10K training steps, achieving convergence roughly 2.14x faster than DP-DINOV2.
On average, Cocos improves LIBERO success rates by 8.3%. Across all MetaWorld tasks, it also
outperforms the counterpart by 25.7% gain, showing consistent performance gains.



Table 2: Success rate on MetaWorld benchmark. We evaluate 150 trials for each task. The highest scores are
emphasized in bold. We take a multi-task setting, using language instructions to differentiate each task.

‘bmlon—press button-press-td  button-press-td-w  button-press-w

coffee-button

door-open

door-lock

door-unlock

drawer-close

drawer-open ‘ Average

w/ Cocos 100.0+0.0 95.3£0.9 94.7+3.4 97.3+2.5 100.0+0.0 99.3+0.9 44.7£1.9 93.3+4.1 100.0+0.0 100.0£0.0 | 74.8+0.
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w/ Cocos 82.0£2.8 100.0+0.0 99.3+0.9 100.0£0.0 100.0+0.0 94.0£3.3 2.7£0.9 9.3+4.7 80.7+8.6 64.0£6.2
w/o Cocos 80.7+3.8 84.0+4.3 98.0£1.6 98.0£1.6 100.0:0.0 89.3+4.1 1.320.9 0.0£0.0 0.7£0.9 46.0+5.9
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w/ Cocos 79.3+6.2 60.7+5.0 60.0+2.8 76.7£6.6 72.0+8.5 66.0+8.6 14.0£3.3 26.7+0.9 39.3x1.9 94.0+4.3
w/o Cocos 72.7+4.7 553452 24.0+43 72.7£1.9 9.3£2.5 20.0£3.4 14.0£0.9 3.3£25 72.7+4.9 12.7£1.9
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Figure 5: Evaluation results on SO100 and xArm platforms. We collect 4 task suites or 10 tasks for each
robot platform. Each task provides 20 demonstrations and is tested over 10 trials.

Finding 2: Cocos enables compact models to rival large-scale pre-trained VLAs. Despite using
fewer parameters and fewer gradient steps, DP with Cocos performs comparably to large-scale models
like 9 and OpenVLA-OFT. As described in Kim et al. [10], while OpenVLA-OFT takes 50-150K
gradient steps for fine-tuning and 7 takes 100-250K steps, our model reaches similar performance
within 30K steps. On the challenging Long suite, Cocos even outperforms Seer, a non-end-to-end
model with a larger parameter count. These results demonstrate that proper condition integration,
rather than model scale alone, can be a major driver of performance in VLA training.

Finding 3: Cocos encourages deeper condition utilization rather than just injecting priors. To
understand the nature of the improvement, we examine internal representations of the policy network
before and after condition injection (Figure 1). Specifically, we measure cosine similarity and norm
scale changes of hidden states (see Appendix C for details). A lower similarity and a higher norm
shift reflect greater responsiveness to conditioning inputs. As shown in Figure 1, these metrics are
consistently aligned with higher task success rates. This suggests that the benefit of Cocos does not
stem merely from injecting condition priors into the source distribution. Instead, it actively compels
the policy network to differentiate between and respond to condition inputs. If the gains were due
only to initialization, we would expect weaker condition dependence, contrary to what we observe.

5.3 Real-World Experiments (RQ2)

To assess the practicality of our approach, we deploy diffusion policies trained with and without
Cocos on two real-world robotic platforms: SO100, a low-cost and open-source arm, and XArm, a
widely used high-precision industrial robot. The two platforms offer complementary insights: SO100
lowers the entry barrier for research and reproducibility, while xArm reflects deployment scenarios
with more demanding task complexity and control fidelity.

As shown in Figure 5 and Figure 6, Cocos consistently improves task success rates across all
task suites on both robots. The improvement is particularly pronounced on SO100, where the
relatively lightweight structure makes it more sensitive to inaccuracies in action generation. We
observe that both policy variants, with and without Cocos, are capable of generating smooth and
coherent trajectories. However, the main failure modes of the baseline model are closely linked to
misinterpretation of condition inputs, for example, confusing spatial references in language, or failing
to correctly localize an object in the visual scene. In contrast, these types of errors are reduced when
using Cocos, indicating improved condition understanding and robustness. These trends align with
our theoretical motivation: condition misalignment during training can lead to loss collapse and
unreliable behavior at inference time. The fact that Cocos provides consistent improvements across
two distinct robotic platforms further highlights its practical value. In the next section, we present
detailed case studies to examine these qualitative differences in greater depth.



Figure 6: Rollout samples of DP with Cocos on real-robot manipulation, including MoveTo (Bowl) (Top
Left), Wipe (Top Right), Moka (Bottom Left), and Pour (Bottom Right).

“Open the pot lid.” “Pick the sponge and place it on the right side of the table.”

Figure 7: Real robot case study. Top left rollout comes from policy w/ Cocos and the others are from baselines.

5.4 Case Studies (RQ3)

To better understand the mechanisms behind Cocos’s effectiveness, we conduct qualitative case
studies on both simulation and real-world tasks, focusing on common failure patterns and condition
sensitivity.

Finding 1: Cocos improves utilization of 3rd-person visual inputs in simulation. In the LIBERO
benchmark, we find that policies trained without Cocos tend to omit 3rd-person views, relying almost
exclusively on the wrist-mounted 1st-person camera. To quantify this, we compute cosine similarity
between randomly sampled visual features extracted before fusion into the policy network. As shown
in Figure 8 bottom table, models without Cocos produce highly similar 3rd-person embeddings across
diverse scenes, indicating weak discriminability, while Cocos-trained models show significantly
greater variation, suggesting stronger visual grounding.

This contrast is clearly illustrated through the rollout comparisons in Figure 8. (Row 1) shows a
successful execution by the model trained with Cocos: the robot pushes the plate forward, turns
smoothly to the left, and finally pushes the plate backward to the stove, demonstrating accurate spatial
reasoning and multi-step planning. This trajectory serves as a reference for the expected behavior.
In (Row 2), a failure case from the model without Cocos, the robot accidentally releases the plate
mid-way and attempts to recover by locating it again. However, since the plate is no longer visible in
the 1st-person view, the policy fails to re-establish contact, even though the 3rd-person view clearly
shows the plate’s new location. This indicates that the model underutilizes the auxiliary camera input.
(Row 3) presents a similar failure condition, but the plate remains within the first-person field of view
after being released. In this case, the robot successfully relocates and completes the task. Comparing
Row 2 and Row 3 highlights the model’s strong reliance on the 1st-person view: if the object leaves
that view, recovery becomes unlikely. (Row 4) shows another typical failure from the non-Cocos
model: after reaching the stove, the robot continues to push the plate beyond the goal region. This
happens because the 1st-person view offers no clear signal indicating proximity to the stove, while
the 3rd-person view does. Again, the model fails to leverage this available information. Taken
together, these cases reveal a consistent pattern: policies trained without Cocos tend to over-rely
on the wrist-mounted camera and struggle to utilize 3rd-person observations. In contrast, models
trained with Cocos seldom exhibit these failures, suggesting that the policy network learns to better
incorporate multi-view context and is more robust to visual uncertainty.

Finding 2: Cocos reduces modality over-reliance and improves contextual awareness in real-
world settings. In real-robot experiments, we observe that models without Cocos frequently exhibit
modality over-reliance, particularly favoring language instructions or arm states over visual cues. As
shown in Figure 7, when tasks begin in an already-completed configuration (e.g., lid already open), the
baseline policy often executes a full rollout regardless of the visual scene (left bottom). This indicates



that the model has learned to follow the instruction without verifying whether it is still applicable.
By contrast, policy trained with Cocos correctly remains idle in such states, indicating improved
contextual awareness (left top). Similar trends appear in other tasks such as SpongeMoveRight (right
top) and ScissorMoveRight (right bottom), where the baseline struggles to locate target objects or
misinterprets spatial references. These errors are less frequent with Cocos, which appears to enhance
the policy’s sensitivity to both visual and semantic nuances in the scene. Together, these case studies
provide concrete support for our theoretical claims: Cocos prevents loss collapse not just in training
metrics, but in how models behave under ambiguous or weakly conditioned scenarios.

5.5 Ablation Studies

Cocos only requires the source distribution to
be condition-dependent, i.e., g(z|c), and admits
flexibility in its concrete form. For simplicity,
we instantiate it as a Gaussian with fixed stan-
dard deviation and a condition-dependent mean
(Equation (8)). Our default setting uses 5 = 0.2,
and we compare it against 5 = 0.1 and 8 = 0.4
to investigate the impact of the standard devia-
tion. Inspired by the similarity between our for-
mulation and the variational autoencoder (VAE)
posterior, we evaluate a VAE-based version of
Cocos, where the standard deviation is auto-
matically learned from data. As shown in Ta-
ble 1, we observe that the default (6 = 0.2) and
the wider variant (3 = 0.4), and the VAE ver-
sion all achieve comparable performance across
LIBERO task suites. However, the model with
B = 0.1 performs substantially worse, suggest-
ing that overly concentrated ¢(z|c) hinders train-
ing. Overall, these results indicate that Cocos
is robust to the choice of 3, as long as ¢(z|c)
remains sufficiently spread.

Average feature cosine similarities (|)

o . d.
We also compare the default two-stage training 3<-person 0.514 0.843 0.971

approach, where the source distribution is pre- 1%-person 0.206 0.324 0.820
trained and then fixed, with a joint training strat-
egy using exponential moving average (EMA) Figure 8: Case study of LIBERO plate movement.
updates. In this version, a slowly updated target

encoder Fy- is used during policy training to provide stable condition-dependent sampling. This
online approach achieves performance on par with the two-stage method while simplifying the
pipeline, making it a practical choice for integrated training scenarios.

6 Conclusion, Limitations, and Future Works

In this paper, we identify and address a critical failure mode in diffusion policy training, loss collapse,
where the model fails to distinguish between generative conditions and degenerates into modeling
marginal action distributions. We propose Cocos, a simple yet effective modification that injects
condition-awareness directly into the source distribution. We provide a theoretical analysis showing
how Cocos prevents loss collapse and demonstrate its empirical benefits across extensive simulations
and real-world tasks. Our results show that Cocos improves both training efficiency and policy
performance, enabling even compact models to match or exceed the performance of large-scale
pretrained VLA systems. Despite its effectiveness, Cocos leaves open several important directions.
First, while the method only requires the source distribution to be condition-dependent (¢(z|c)), we
have so far instantiated it using a fixed-variance Gaussian derived from autoencoding the condition.
Exploring more expressive or learnable source distributions, such as flow-based or attention-guided
priors, may further enhance its adaptability. Second, our current experiments are focused on multi-task
imitation learning. Extending Cocos to large-scale pretraining and evaluating its ability to generalize
across broad VLA domains remains a promising area for future work.
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A Proofs of Theorems

Proof of Lemma 1. Asin Tong et al. [30] we assume that ¢, p:(x|z) are decreasing to zero at sufficient
speed as ||z|| — oo and that u,, v, Vgv; are bounded.

Yoy, ale ot 2, ¢) — wa(le)|* =
Vo (aiey (It 2, ) — 2 {wo(t,z,¢), (zle)) + ue(ale) )

= VoEp, (z/c) (|\Ue(t7$a0)||2 -2 <ve(tvx,0),ut(x|0)>) (11)

VoEq(z) pe(alz0 106 (L, 7, €) — w2, c)|* =
2 2
VoEq(oypitoizer (10t 2. 0)[F = 2 o(t, 2, 0), ue(lz, ) + fuslzlz, o))
= v19’Eq(z),pt(3r:|z,c) <||’Ug(t,1'7c)||2 -2 <U9(ta Z,C),ut(1’|2, C)>) (12)

By bilinearity of the 2-norm and since u; is independent of 6. Next,

Epeio leo(t, 2,0 = [ eo(t,z,0)| pulolo)do (13)
— [ Ioott.. 1P palz, a1z (14)
= Eqg(2).pi(alzc) 06 (t, 2, 0| (15)
Finally,
Eop, (z]c) (vo(t, @, ¢), ue(]c)) = /(Ue(t,wvc),Ut($|C)>pt(x\C)da? (16)
x|z, e)pe(z|z, c
/<v9(t,x,c),Eq(z)ut( |pt()ac|tc() | )>pt(:cc)dz (17)
:/<vg(t,x,c),/ut(m|z,c)pt(x|z,c)q(z)>dzdx (18)
:// (vo(t, x, ), ut(z|z, €)) pe(z|2, €)q(2)dzdx (19)
= Eq(2),pi (al2,0) (vo (L, 7, €), ue (2|2, ¢)) (20)

Since the gradients of the two objectives are equal for any time ¢, the two objectives are equal. [

Proof of Theorem 1. Define
d(t,I,C) = ’l}g(t,l‘7c) _Ut($|$1,$0)7 f(Z,C) = V@Ug(t,x,C)Td(t,Z‘,C), (21)

where we write y = (xg, 1, x). Introduce two measures:

* Independent measure

w(dy) = q(z1, ¢) g(xo) pt (x|x1, xo) dxg dzq dz, (22)

which does not depend on the particular choice of ¢, corresponding to the design choice
where g(z) = g(x1, ¢)q(x0).

e Conditional measure
we(dy) = q(z1,¢) q(:z:0|c) Dt (as\xl, xo) dxg dx dz, (23)

which does depend on ¢, corresponding to the design choice where ¢(z) = q(x1, ¢)q(zolc).
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We assume the following bounds hold for all y and ¢ € C:
[Vove(t,z,c)l| <M, |d(t,,c)|| <D, 24)
and that the model’s gradient is output-sensitive Lipschitz, namely there exists & > 0 such that

Hngg(t,x,cl) — ngg(t,x,CQ)H <K ||vg(t,x,cl) - Ug(t,x,CQ)H < Ke. (25)

(i) Independent measure. Under p, the gradient is

VoLorue(8,0) =2 [ Flz.0)n(dy). 26)
Hence for any c1, o
|VoLerme(0,e1) = VoLorme(d, )| @
=2 [ s ntdy) - [ £(eca) )| e8)
=2 [[7z.c0) - £ calutan)| 9)

Expanding the integrand,
f(zv Cl) - f(Zv 02) = Vﬁv(ﬂ(tv z, CI)T d(tv z, Cl) - Veva(t, z, CQ)T d(t7 z, 02) (30)

= Vouvp(t,z,c1)" [d(t, x,c1) — d(t, x, 02)] (31)
+ [ngg(t,:a c1) — Vouvp(t, x, 02)]Td(t,x,02). (32)
Using the bounds ||d(c1) — d(c2)|| < eand ||[Vov(c1) — Vou(ca)|| < Ke, we obtain
[ Fatersc(®.cr) = Vaterse(d.ca)|| <2 [ (Me+ K eD) ulay) (33)
—2(M + KD)e. (34)

The above bound shows that when all ¢ € C induce similar gradients, the network update over this
region becomes nearly invariant to c. In the limit of gradient descent, the parameter 6 thus evolves
according to a shared direction, regardless of the exact ¢ value. As a result, the learned model
vg(t, x, ¢) tends to converge, for all ¢ € C, to a c-independent function v*(¢, z) that minimizes the
averaged objective:

v*(t,x) = argmvin EcecE.np [||v(t7x) — ut(x|x1,x0)||2] ) (35)

That is, the network effectively collapses the conditional dependency on c and behaves like a shared
estimator v* optimized for average performance across C.

(ii) Conditional measure. Under 1., the gradient becomes

VoLorse6,0) =2 [ £(z.¢) ne(dy). (36)

For ¢y, co, write
VoLerme(l, c1) — VoLerme(b, c2) (37)
=2 [ e (@) = [ £ere0) e (02) G8)
—2[(f Fcr e (@2) = [ Fer) ues2)) + ([ T men(@s) - [ Fleca) (@)
_n4m, Eiii
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The second term 75 coincides with the independent-measure analysis and thus is bounded by
2(M + K D) e. The first term

T, = 2(/]‘(z,cl)uc1 (dz) — /f(Z,Cl)/J,CZ (dz)) 41)

is the difference of the same function under two different measures. Without any further assumption
on the relationship between pi., and pi.,, this difference can be made arbitrarily large. For instance, if
q(zoler) = 64 and q(zo|c2) = Op, then ||T1|| = 2| f(a, c1) — f(b, ¢1)| can diverge independently of
e. Hence, under the conditional measure (., no bound depending only on € exists for | Vg L(6,¢1) —
VoL(8,ca)||-

B Details of Benchmarks

Figure 9: LIBERO simulation benchmark. We conduct experiments on 40 tasks from four task suites in the
LIBERO benchmark. We show two task examples for each suite here.

Figure 10: MetaWorld simulation benchmark. We conduct experiments on 30 tasks of three difficulty levels
in the MetaWorld benchmark. We show all task examples here.

-

Figure 11: Real-world experimental setups. We conduct experiments on both SO100 and xArm platform. For
each robot, we design a suite of 10 tabletop tasks involving diverse objects.

LIBERO. The LIBERO simulation benchmark [13] features a Franka Emika Panda arm in simulation
across four challenging task suites: Goal, Spatial, Object, and Long. Each suite comprises 10 tasks
with 500 demonstrations and is designed to investigate controlled knowledge transfer related to goal
variations, spatial configurations, object types, and long-horizon tasks. Unlike prior work [9, 10],
we do not filter out unsuccessful demonstrations, aiming for a more realistic evaluation setting. For
policy training, the model predicts action chunks of length 16; after each chunk prediction, 8 steps
are executed before generating the next chunk. The observation space includes 2-view RGB images
at the current time step, without historical observations. During evaluation, following Liu et al. [13],
each task is tested over 50 trials with 3 different random seeds, and success rates are reported. To
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provide a clearer understanding of the task suites, we present agent-view observations in Figure 9
and detailed task descriptions in Table 3.

MetaWorld. The MetaWorld simulation benchmark [34] includes 50 distinct tabletop manipulation
tasks using a Sawyer robot arm. We select 30 tasks from easy, medium, and very hard difficulty
levels to evaluate VLA models. We use a scripted policy to collect 20 demonstrations for each task.
For policy training, the model predicts action chunks of length 16; after each chunk prediction, 16
steps are executed before generating the next chunk. The observation space consists of a single RGB
image at the current time step, without historical observations. During evaluation, each task is tested
over 50 trials with 3 different random seeds, and success rates are reported. To better illustrate the
task suites, we show agent-view observations in Figure 10 and task descriptions in Table 4.

S0100 Robot Manipulation. The SO100 robot [2] is a low-cost, open-source 6-DoF manipulator,
with both the leader and follower arms costing approximately $250. We assemble the hardware using
a 3D-printed kit provided by the open-source community. The robot has two RGB cameras: one
mounted on the wrist and the other positioned to provide a third-person view. Both cameras operate
at a resolution of 640x480 and 25 FPS. The robot controller runs at 30Hz, and actions are defined as
target absolute joint angles. Due to its low-cost design, the platform has several hardware limitations,
including significant arm jitter, low load capacity, and occasional camera lag, which present practical
challenges for developing embodied Al systems. However, given the increasing adoption of such
affordable open-source robots by the research community, we believe that evaluating models on
these lower-performance systems offers valuable insights and broader applicability. We design four
categories of tabletop manipulation tasks for the SO100 setup: (1) Pick&Place: involving 3 objects
and 2 placement zones (6 tasks), (2) MoveTo: navigating 2 objects to a single target zone (2 tasks),
(3) Wipe: picking up a cloth and wiping the table (1 task), and (4) Unfold: unfolding a cloth (1 task).
In total, we evaluate performance on 10 distinct tasks. Language instructions for each task are listed
in Table 5, and visual examples of the task environments are shown in Figure 1 1.

During data collection, we record 20 demonstrations per task. For policy training, the model predicts
an action chunk of length 64; after each chunk prediction, 40 steps are executed before generating
the next chunk. The observation space includes 2-view RGB images at the current time step, along
with the absolute joint angles from the current and previous 10 steps. During evaluation, each task is
tested over 10 trials, and success rates are reported.

xArm Robot Manipulation. xArm is a high-performance 7-DoF manipulator. The robot is equipped
with a third-person view Intel RealSense L515 LiDAR camera, operating at 640x480 resolution
and 30 FPS. We collect both RGB and depth images from the camera. The robot controller runs at
30Hz, and actions are defined as target absolute joint angles. We design four categories of tabletop
manipulation tasks for the xArm setup: (1) Pick&Place: involving 3 objects and 2 placement zones
(6 tasks), (2) Pot: taking off or putting on the pot lid (2 tasks), (3) Pour: pouring water from the
kettle into the cup (1 task), and (4) Moka: placing the Moka pot on the cooker (1 task). In total, we
evaluate performance on 10 distinct tasks. Language instructions for each task are listed in Table 5,
and visual examples of task environments are shown in Figure 11.

During data collection, we record 20 demonstrations per task. For policy training, the model predicts
an action chunk of length 64; after each chunk prediction, 40 steps are executed before generating the
next chunk. The observation space includes a third-person view RGB image at the current time step,
as well as the absolute joint angles from the current and previous 10 steps. During evaluation, each
task is tested over 10 trials, and success rates are reported.

C Details of Evaluation Metrics

Cosine similarity. To quantify the influence of condition inputs on our policy network, we measure
the cosine similarity between hidden states before and after condition injection. Given an L-layer
RDT policy network where conditions are integrated via cross-attention in each transformer block,
we denote the hidden states before and after condition injection as hl, ht e RS*D where S is the
sequence length and D is the transformer hidden dimension. Since earlier layers’ transformations
propagate through the network, affecting all subsequent computations, we calculate an exponentially
weighted sum: 3", " w! ming{Sim(h!, h')}, where ming operates across the sequence dimension,
Sim computes cosine similarity across the hidden dimension, and w = 0.5 gives greater weight to
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Table 3: Task description of each task in the LIBERO benchmark.

Task Suite | Task Description

open the middle layer of the drawer

put the bowl on the stove

put the wine bottle on the top of the drawer

open the top layer of the drawer and put the bowl inside
put the bowl on the top of the drawer

push the plate to the front of the stove

put the cream cheese on the bowl

turn on the stove

put the bowl on the plate

put the wine bottle on the rack

LIBERO-Goal

pick the akita black bowl between the plate and the ramekin and place it on the plate
pick the akita black bowl next to the ramekin and place it on the plate

pick the akita black bowl from table center and place it on the plate

pick the akita black bowl on the cookies box and place it on the plate

pick the akita black bowl in the top layer of the wooden cabinet and place it on the plate
pick the akita black bowl on the ramekin and place it on the plate

pick the akita black bowl next to the cookies box and place it on the plate

pick the akita black bowl on the stove and place it on the plate

pick the akita black bowl next to the plate and place it on the plate

pick the akita black bowl on the wooden cabinet and place it on the plate

LIBERO-Spatial

pick the alphabet soup and place it in the basket
pick the cream cheese and place it in the basket
pick the salad dressing and place it in the basket
pick the bbq sauce and place it in the basket

pick the ketchup and place it in the basket

pick the tomato sauce and place it in the basket

pick the butter and place it in the basket

pick the milk and place it in the basket

pick the chocolate pudding and place it in the basket
pick the orange juice and place it in the basket

LIBERO-Object

put both the alphabet soup and the tomato sauce in the basket

put both the cream cheese box and the butter in the basket

turn on the stove and put the moka pot on it

put the black bowl in the bottom drawer of the cabinet and close it

put the white mug on the left plate and put the yellow and white mug on the right plate
pick up the book and place it in the back compartment of the caddy

put the white mug on the plate and put the chocolate pudding to the right of the plate
put both the alphabet soup and the cream cheese box in the basket

put both moka pots on the stove

put the yellow and white mug in the microwave and close it

LIBERO-Long

earlier layers. Lower similarity values indicate stronger condition influence on network representa-
tions.

Norm scale change. Similarly, we quantify the magnitude of change induced by conditional inputs

_ TU_ IRt
using an exponentially weighted sum of relative norm changes: S"r-"' w! maxg ‘% ‘, where
maxg operates across the sequence dimension, || - || computes the norm across the hidden dimension,
and w = 0.5. Larger values indicate that conditional information substantially alters the magnitude

of hidden representations, suggesting stronger condition integration within the policy network.

Cosine similarity in case study. In Figure 8, we also calculate a cosine similarity metric to quantify
the degree to which the policy network differentiates between conditions. This cosine similarity
is computed between visual features before they are fused into the policy network (i.e., after the
vision encoder’s output has been processed by positional encoding and an MLP, yielding the features
ultimately used for fusion with the policy network). We calculate this metric by randomly sampling
image pairs from the dataset and then averaging the cosine similarity of their corresponding features.
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Table 4: Task description of each task in the MetaWorld benchmark.

Task Name | Task Description

basketball Dunk the basketball into the basket.
bin-picking Grasp the puck from one bin and place it into another bin.
button-press Press a button.

button-press-topdown Press a button from the top.
button-press-topdown-wall | Bypass a wall and press a button from the top.
button-press-wall Bypass a wall and press a button.
coffee-button Push a button on the coffee machine.
coffee-pull Pull a mug from a coffee machine.
coffee-push Push a mug under a coffee machine.
dial-turn Rotate a dial 180 degrees.

disassemble Pick a nut out of the peg.

door-lock Lock the door by rotating the lock clockwise.
door-open Open a door with a revolving joint.
door-unlock Unlock the door by rotating the lock counter-clockwise.
drawer-close Push and close a drawer.

drawer-open Open a drawer.

faucet-close Rotate the faucet clockwise.

faucet-open Rotate the faucet counter-clockwise.

hammer Hammer a screw on the wall.

handle-press Press a handle down.

handle-press-side Press a handle down sideways.

handle-pull Pull a handle up.

handle-pull-side Pull a handle up sideways.

shelf-place Pick and place a puck onto a shelf.

soccer Kick a soccer into the goal.

stick-push Grasp a stick and push a box using the stick.
sweep Sweep a puck off the table.

sweep-into Sweep a puck into a hole.

window-close Push and close a window.

window-open Push and open a window.

Table 5: Task description of each task in the SO100 and xArm benchmark. As each parameter combination
introduces one task, each task suite has 10 tasks in total. For each task, we test the model for 10 trials.

Task Suite | Task Description | Parameter

pick [A] and place it on the [B] side of the table | [A]: ["screwdriver", "sponge", "charger"], [B]: ["left", "right"]
S0100 move [A] to the center of the table [A]: ["cup", "bowl"]

pick the cloth and wipe the table None

unfold the cloth None

pick [A] and place it on the [B] side of the table | [A]: ["scissor", "plier", "tap"], [B]l: ["left", "right"]

<Arm open the pot lid or put the lid on the pot [open, close]
pour the water from the kettle into the cup None
place the Moka pot on the cooker None

D Policy Backbone Recipe

D.1 Condition Network

For vision encoding, we utilize the pre-trained DINOv2-Base model, and for language encoding, we
employ the pre-trained T5-Base model. Both of these encoders are frozen during training. The outputs
from these pre-trained modality encoders are processed by a linear projector and then augmented
with positional encodings before being fused into the policy network. These positional encodings are
trainable but are initialized with sin-cos positional encoding and scaled down by a factor of 0.2.

D.2 Policy Network

We employ a compact Robot Diffusion Transformer (RDT) architecture, which is fundamentally a
Diffusion Transformer incorporating cross-attention layers. Diffusion timestamps and robot kinematic
information are integrated into the policy network using AdaLLN-Zero [21]. The vision and language
embeddings are used as the Keys and Values in the cross-attention layers to be integrated into the
policy network alternately [15]. The Transformer architecture has a hidden dimension of 384, with 6
attention heads, and 12 layers.
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D.3 Diffusion Model

We use a flow matching model defined by Equation (10). Diffusion timestamps are treated as
continuous values within the range [0, 1]; we do not discretize them. Instead, they are represented
using a Fourier embedding with a scale of 0.2 [5]. During training, diffusion timestamps are sampled
from a uniform distribution over the interval [0, 1]. For inference, we solve the corresponding ODE
using the Euler method, dividing the interval [0, 1] into equal-sized steps.

D.4 Computation Resources

All policy training and testing are conducted on a server equipped with 4 NVIDIA GeForce RTX
4090 GPUs and an Intel(R) Xeon(R) CPU E5-2678 v3 @ 2.50GHz.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We have discussed the limitations of the work in Section 6.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

20



Justification: We provide the full set of assumptions and a complete proof for each theoretical
result.

Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

¢ Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

e Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]
Justification: We provide every detail to reproduce the main experimental results.
Guidelines:

* The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: We will open-source the code in a few days after submission.
Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

¢ The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

 The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: We provide every detail in training and testing.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

¢ The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
Justification: Yes. We report error bars in the learning curve.
Guidelines:

» The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.
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It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CIL, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: Yes. We list the GPU and CPU resources.
Guidelines:

» The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

 The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: Yes, we do.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: Yes, we do.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
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generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: Yes, they are.
Guidelines:

» The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

« If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
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Answer: [Yes]
Justification: Yes.
Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: We do not include crowdsourcing experiments or research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: We do not include crowdsourcing experiments or research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
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Justification: The core method development in this research does not involve LLMs.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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