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ABSTRACT

While current node classification methods for graphs have enabled significant
progress in many applications, they rely on abundant labeled nodes for training. In
many real-world datasets, nodes for some classes are always scarce, thus current
algorithms are ill-equipped to handle these few-shot node classes. Some meta
learning approaches for graphs have demonstrated advantages in tackling such
few-shot problems, but they disregard the impact of node importance on a task.
Being exclusive to graph data, the dependencies between nodes convey vital infor-
mation for determining the importance of nodes in contrast to node features only,
which poses unique challenges here. In this paper, we investigate the effect of
node importance in node classification meta learning tasks. We first theoretically
analyze the influence of distinguishing node importance on the lower bound of the
model accuracy. Then, based on the theoretical conclusion, we propose a novel
Node Importance Meta Learning architecture (NIML) that learns and applies the
importance score of each node for meta learning. Specifically, after construct-
ing an attention vector based on the interaction between a node and its neighbors,
we train an importance predictor in a supervised manner to capture the distance
between node embedding and the expectation of same-class embedding. Exten-
sive experiments on public datasets demonstrate the state-of-the-art performance
of NIML on few-shot node classification problems.

1 INTRODUCTION

Graph structure can model various complicated relationships and systems, such as molecular struc-
ture (Subramanian et al., 2005), citationships (Tang et al., 2008b) and social media relation-
ships (Ding et al., 2019). The use of various deep learning methods (Hamilton et al., 2017; Kipf
& Welling, 2016) to analyze graph structure data has sparked lots of research interest recently,
where node classification is one of the essential problems. Several types of graph neural networks
(GNNs) (Veličković et al., 2017; Wu et al., 2020) have been proposed to address the problem by
learning high-level feature representations of nodes and addressing the classification task end-to-
end.

Despite the success in various domains, the performance of GNNs drops dramatically under the
few-shot scenario (Mandal et al., 2022), where extremely few labeled nodes are available for novel
classes. For example, annotating nodes in graph-structured data is challenging when the samples
originate from specialist disciplines (Guo et al., 2021) like biology and medicine.

Many meta learning works, including optimization-based methods (Finn et al., 2017) and metric-
based methods (Snell et al., 2017; Vinyals et al., 2016), have demonstrated their power to address
few-shot problems in diverse applications, such as computer vision and natural language process-
ing (Lee et al., 2022). In meta learning, a meta learner is trained on various tasks with limited
labeled data in order to be capable of fast generalization and adaption to a new task that has never
been encountered before. However, it is considerably challenging to generalize these meta learning
algorithms designed for independent and identically distributed (i.i.d.) Euclidean data to graph data.

To address the few-shot node classification problem, some graph meta learning approaches have
been proposed (Liu et al., 2021; Ding et al., 2020; Yao et al., 2020). They structure the node clas-
sification problem as a collection of tasks. The key idea is to learn the class of nodes in the query
set by transferring previous knowledge from limited support nodes in each task. However, most
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existing approaches simply assume that all labeled nodes are of equal importance to represent the
class they belong to. Differences and interdependencies between nodes are not considered in the
learning process of the few-shot models. Since only limited data points are sampled to generate
tasks in meta learning, each sampled task has high variance; therefore, treating all the data points
equally might lead to loss of the crucial information supplied by central data points and render the
model vulnerable to noises or outliers. In particular, the relationship between nodes and neighbors
in a graph is an important factor that carries node information in addition to node features, and can
be utilized as a starting point to investigate the importance of nodes. Although some work (Ding
et al., 2020) considers the importance of nodes, there is lack of theoretical analysis about it.

To address the aforementioned challenges, we first explore, in a theoretical manner, the effect of
distinguishing nodes of different degree of importance on the lower bound of the accuracy of the
model. We analyze the ProtoNet (Snell et al., 2017), and conclude that when important nodes
are given more weight when computing prototype representations in a task, the prototype will get
closer to its own expectation, thus the lower bound of the accuracy will be increased. Based on this
theoretical result, we propose a node importance meta learning framework (NIML) for learning and
using the node importance in a task. Specifically, an attention vector is constructed for each node
to describe the relationship distribution of that node and its neighbors. Then we train a supervised
model using this attention vector as input to learn the distance between the node embedding and
the same-class prototype expectation, effectively capturing the importance of that node to its class.
The obtained distance will be used to calculate a weighted prototype in meta learning. We conduct
experiments on three benchmarks, and results validate the superiority of proposed NIML framework.

To summarize, the main contributions of this paper are as follows: 1) We theoretically explore
the influence of node importance on the lower bound of model accuracy and show the benefit of
distinguishing between nodes of different importance in a meta learning task. The theory conclusion
can be applied to any domain, not only graph data. 2) We design a category-irrelevant predictor to
estimate the distance between node embedding and approximated prototype expectation and follow
the theorem conclusion to compute a weighted prototype, where we construct an attention vector as
the input, which describes the distribution of neighbor relationships for a given node. 3) We perform
extensive experiments on various real-world datasets and show the effectiveness of our approach.

2 RELATED WORKS

2.1 GRAPH NEURAL NETWORKS

Recent efforts to develop deep neural networks for graph-structured data have been largely driven by
the phenomenal success of deep learning (Cao et al., 2016; Chang et al., 2015). A large number of
graph convolutional networks (GCNs) have been proposed based on the graph spectral theory. Spec-
tral CNN (Bruna et al., 2013) mimics the properties of CNN by defining graph convolution kernels at
each layer to form a GCN. Based on this work, researches on GCNs are increasingly getting success
in (Defferrard et al., 2016; Henaff et al., 2015; Kipf & Welling, 2016). Graph Attention Networks
(GATs) (Veličković et al., 2017) learn the weights of node neighbors in the aggregation process by
an attention mechanism. GraphSAGE (Hamilton et al., 2017) utilizes aggregation schemes to aggre-
gate feature information from local neighborhoods. However, modern GNN models are primarily
concerned with semi-supervised node classification. As a result, we develop a GNN framework to
address the few-shot difficulties in graph data, which is one of their largest obstacles.

2.2 META LEARNING

Existing meta learning algorithms mainly fall into two categories (Hospedales et al., 2020):
optimization-based meta learning and metric-based meta learning. Optimization-based meta learn-
ing (Finn et al., 2017; Li et al., 2017; Mishra et al., 2017; Ravi & Larochelle, 2016; Mishra et al.,
2017) aims to learn an initialization of parameters in a gradient-based network. MAML (Finn et al.,
2017) discovers the parameter initialization that is suitable for various few-shot tasks and can be
used in any gradient descent model. MetaSGD (Li et al., 2017) advances MAML and learns the
initialization of weights, gradient update direction, and learning rate in a single step. Metric-based
meta learning (Liu et al., 2019; Ren et al., 2018; Snell et al., 2017; Sung et al., 2018; Vinyals et al.,
2016) focuses on learning a generalized metric and matching function from training tasks. In partic-
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ular, Prototypical Networks (ProtoNet) (Snell et al., 2017) embed each input into a continuous latent
space and carry out classification using the similarity of an example to the representation of latent
classes. Matching Networks (Vinyals et al., 2016) learn a weighted nearest-neighbor classifier with
attention networks. Ren et al. (2018) propose a novel extension of ProtoNet that are augmented with
the ability to use unlabeled examples when producing prototypes. Relation Network (Sung et al.,
2018) classifies new classes by computing a relation score between the query set and a few samples
in each new class. Most existing meta learning methods cannot be directly applied to graph data due
to lack of the ability to handle node dependencies.

2.3 FEW SHOT LEARNING ON GRAPHS

Current node representation learning cannot handle unseen classes with few-shot data. Some few-
shot research on graphs target on node/link/graph classification (Mandal et al., 2022). We introduce
the node classification works as follows. Meta-GNN (Zhou et al., 2019) extends MAML (Finn et al.,
2017) to graph data. RALE (Liu et al., 2021) considers the dependency between nodes within a task
and alignment between tasks, then learns the hub-based relative and absolute location embedding.
G-Meta (Huang & Zitnik, 2020) uses a local subgraph to represent the nodes given local structural
information. MetaHG (Qian et al., 2021) presents a heterogeneous graph few-shot learning model
for automatically detecting illicit drug traffickers on Instagram. MetaTNE (Lan et al., 2020) com-
bines the skip-gram mechanism with meta learning to capture the structural information with known
labels and without node attributes. GFL (Yao et al., 2020) implements few-shot classification on
unseen graphs for the same set of node classes. GPN (Ding et al., 2020) aggregates node importance
scores and learns node embedding with a few-shot attributed network based on ProtoNet. However,
a theoretical analysis of the effect of node importance on meta learning is still missing.

3 PRELIMINARY

3.1 META LEARNING PROBLEM SETUP

We first introduce some notations of few-shot classification problems. Let C be the space of classes
with a probability distribution τ , and χ be the space of input data. We sample N classes c1, · · · , cN
i.i.d form τ to form an N -way classification problem. For each class ci, k data points are sampled
as Si = {sx1, · · · , sxk|(sxj , syj) ∈ χ × C ∩ (syj = ci)} to constitute the support set, where
sxj ∈ RD, D is the dimension of input data, syj is the class of sxj . Thus the support set is a union
of Si, and S = ∪N

i=1Si. Besides, for each class ci, we sample m data points to form a part of query
set Q in the same way. The table of notation and definition can be found in the appendix.

The core idea of meta learning algorithms is to train on various tasks sampled from distribution τ
and then equip the model with the ability to fast generalize and adapt to unseen tasks with limited
labeled data. Each N -way k-shot task is sampled by the above method. In the meta-train phase,
ground truth of S and Q are both known, and Q is used to evaluate the performance of model
updated by S. During the meta-test phase, the performance of the model will be evaluated on unseen
classes. We assume each unseen class follows the same distribution τ .

3.2 PROTOTYPICAL NETWORKS

ProtoNet (Snell et al., 2017) is a metric-based meta learning algorithm. It learns an embedding func-
tion fϕ : RD → RM , which maps input data from χ to the embedding space. The M -dimensional
prototype representation ci for each class ci is computed by averaging the embedding of all data
points belonging to ci in the support set:

ci =
1

|Si|

k∑
j=1

fϕ(sxj). (1)

Given a distance function d(x,x′), the probability a data point x belongs to class n is calculated by
Softmax function over squared distance between the embedding of x and prototype representations.

pϕ(y = n|x) = exp(−d(fϕ(x), cn))∑N
j=1 exp(−d(fϕ(x), cj))

. (2)
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The prediction of an input x is computed by taking argmax over probability function pϕ(y = n|x).
Let ŷ be the prediction of an input x, then ŷ = argmaxj(pϕ(y = j|x)). The loss function for input
data belongs to class n is in the form of negative log-likelihood J(ϕ) = −log(pϕ(y = n|x)). Thus,
the parameters of embedding function fϕ is updated by minimizing the sum of loss functions on
query sets. After the process of meta learning, the function fϕ has the ability to embed data points
belonging to the same class to the same group in the embedding space RM .

4 THEORETICAL ANALYSIS

In this section, we use ProtoNet (Snell et al., 2017), a classic metric-based meta learning algorithm
as an example, to theoretically explore the effect of node importance on the lower bound of model
accuracy in the embedding space. The theoretical conclusion is that assigning higher weight to
the data point that has closer distance to the prototype expectation will increase the lower bound of
accuracy. This conclusion thus motivates us to use abundant data to learn the distance between node
representation and prototype expectation in NIML framework.

We derive our theorem based on a previous work (Cao et al., 2019). The detailed proof process is
included in the Appendix A.1. We first define the expected accuracy R of ϕ as:

R(ϕ) = EcES,x,yI

[
argmax

j
{pϕ(ŷ = j | x,S)} = y

]
, (3)

where I denotes the indicator function.

In order to simplify the theorem, we present the analysis for a special case: 2-way 2-shot problem
i.e. a binary classification with 2 nodes for each class. Note that the theorem we present can also be
extended to an N -way k-shot problem. We adopt the assumption that for any input x in each class c,
the embedding vector fϕ(x) follows a Gaussian distribution, where p(fϕ(x) | y = c) = N (µc,Σc).
µc is the expectation of fϕ(x) when the input x belongs to class c, and Σc is the expected intra-class
variance of class c. We denote Σ as the variance between classes.

Define importance based on prototype deviation: We want to explore the influence of differen-
tiating data with different degrees of importance on the accuracy R. Since only a few data points
are sampled for one class to form a task, when we compute ci following Equation( 1), there exists
deviation between ci and µi. As we simplify the problem to a 2-shot setting, the embedding vector
of two nodes belonging to the class ci can be denoted by µi − ϵ1 and µi + ϵ2 respectively. We
would like to emphasize that the sign of ϵi can be permuted freely and will have no effect on the
theorem. After that, we naturally treat the node which has an embedding vector that is closer to the
expectation µi as the more important node. Based on this consideration, we redefined the prototype
calculation as below.

Definition 1 We change the definition of ci to a weighted form. Let x1 and x2 be the feature vector
of two nodes belonging to class ci. The embedding of x1 and x2 is: fϕ(x1) = µi − ϵ1, and
fϕ(x2) = µi + ϵ2. w1 and w2 are weights related to fϕ(x1) and fϕ(x2), which can be either
trainable or pre-defined. Then,

ci =
w1

w1 + w2
fϕ(x1) +

w2

w1 + w2
fϕ(x2). (4)

When w1 = w2 in Equation( 4), Equation( 4) is equivalent to Equation( 1).

We would like to prove our key idea: in Definition 1, when w1, w2 and ϵ1, ϵ2 have opposite relative
value relationships (i.e. If w1 > w2, ϵ1 < ϵ2), which means greater weight is assigned to the more
important node, this setting allows the lower bound of the model to be raised. Some theoretical
results are provided below, and the whole proof is included in the Appendix.

Let a and b denote the two classes sampled from τ for a task. Since all classes follow the same
distribution, we only need to select one class and investigate the model accuracy for each node
inside this class and extend the results to remaining classes. Let x be the feature of a node drawn
from class a, then Equation( 3) can be written as:

R(ϕ) = Ea,b∼τEx∼a,SI[ŷ = a]. (5)
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Proposition 1 We can express Equation( 5) as a probability function:

R(ϕ) = Pra,b,x,S(ŷ = a) = Pra,b,x,S(α > 0), (6)

where α ≜ ∥fϕ(x)− cb∥2 − ∥fϕ(x)− ca∥2.

From the one-sided Chebyshev’s inequality, it can be derived that:

R(ϕ) = Pr(α > 0) ⩾
E[α]2

Var(α) + E[α]2
. (7)

Lemma 1 Consider space of classes C with sampling distribution τ , a, b iid∼ τ. Let S = {Sa,Sb}
Sa = {ax1, . . . , axk} ,Sb = {bx1, . . . , bxk} , k ∈ N is the shot number, and y(x) = a. Define ca
and cb as shown in Equation( 4). Then,

Ex,S|a,b[α] = (µa − µb)
T (µa − µb) + (2µb + σb − 2µa)

Tσb + σT
b σb − σT

a σa, (8)

Ea,b,x,S[α] = 2Tr(Σ) + σT
b σb − σT

a σa, (9)

Ea,b[Var(α | a, b)] ≤ 8

(
1 +

1

k

)
Tr{Σc

((
1 +

1

k

)
Σc + 2Σ

)
+ σT

b σb + σT
a σa}, (10)

where
σa =

aw2aϵ2 − aw1aϵ1

aw2 + aw1
, σb =

bw2bϵ2 − bw1bϵ1

bw2 + bw1

Lemma 1 provides several key components for Theorem 1. Two new variables are introduced: σa

and σb, defined by σa = ca − µa and σb = cb − µb.

Theorem 1 Under the condition where Lemma 1 hold, we have:

R(ϕ) ⩾
(2Tr(Σ) + σT

b σb − σT
a σa)

2

f1(σa, σb) + f2(σa, σb)
, (11)

where

f1(σa, σb) = 12Tr{Σc(
3

2
Σc + 2Σ + σT

b σb + σT
a σa)}

f2(σa, σb) = Ea,b[((µa − µb)
T (µa − µb) + (2µb + σb)

Tσb)
2.

The lower bound of model accuracy R(ϕ) is in the form of a fraction, where we denote the denom-
inator using the sum of two functions f1(σa, σb) and f2(σa, σb). We would like to investigate the
effect of a change in σa, σb on R(ϕ), where σa, σb are the bias between µa, µb and ca, cb. From
the definition in Lemma 1, we can divide σc for a class c into three cases: If w and ϵ are negatively
correlated, the value of σc is closest to 0 among the three cases; If the same w is given to each ϵ,
this corresponds to the case of calculating the prototype directly with the average embedding value.
If w and ϵ are positively correlated, which is an opposite case from the first one, the value of σc is
farthest from 0. We emphasize that for all classes in one episode, they have the same assignment
strategy, thus σa and σb are positively correlated.

According to Theorem 1, we notice that σa and σb always appear in the form of a squared norm;
thus, their positives or negatives have little effect on the result. In the numerator, σT

b σb and σT
a σa

are subtractive, whereas they are additive in the denominator. After analyzing their degree and
coefficients, we can reach the following conclusion: when we use the first strategy to assign values
for w and ϵ, the lower bound of accuracy R(ϕ) will be improved. In detail, when w and ϵ are
negatively correlated, σa and σb are both closest to 0, resulting in an increase in the value of lower
bound. This theoretical result is exactly in line with our perception: when the value of σa and σb are
close to 0, it means that the prototype embedding we compute with the weighted node embedding
is very close to its expectation µa and µb, which is what we anticipate the prototype should achieve.
Besides, from f2(σa, σb), we can conclude that bringing σb close to 0 will help reduce the sensitivity
of the lower bound to µb. Thus, if the distance ϵ between given data point and prototype expectation
could be predicted, the weight can be assigned by the first strategy to enhance the model accuracy.
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5 FRAMEWORK

Inspired by theoretical results, we propose to prioritize node importance in graph meta learning
problems by introducing an importance score predictor. In detail, by constructing an attention vector
to describe the relationship distribution of a given node, we end-to-end predict the distance between
node embedding and prototype expectation, which is further used to compute a weighted average of
node embeddings as the more accurate prototype representation.

5.1 FEW-SHOT NODE CLASSIFICATION TASK

!!

!"

!#

Support Set

"

Query Set

#

Figure 1: An episode for a 3-
way k-shot problem. ci repre-
sents node class, k and m de-
note the number of nodes for
each class in support set S and
query set Q.

We denote an undirected graph as G = (V,E,A,X), where
V = {v1, · · · , vn} is the node set, E = {e1, · · · , em} is the edge
set. The adjacency matrix A = {0, 1}n×n represents the graph
structure, where aij denotes the weight between node vi and vj .
X ∈ Rn×d is the feature matrix, where xi ∈ Rd represents the
feature of node vi.

We focus on solving few-shot node classification problems.
Episode training is adopted in the meta-train phase as previous
works Snell et al. (2017), which samples several tasks and updates
parameters based on the sum of the loss functions of the query sets.
In our problem, nodes in the graphs correspond to data points in
Euclidean space, and an N -way k-shot problem implies that each
of the N categories has k nodes. The query set and support set are
illustrated in Figure 1.

5.2 NODE REPRESENTATION LEARNING

Our graph prototypical network has a node representation learning component. Following the idea
from ProtoNet (Snell et al., 2017) introduced in Section 3, we aim to train an embedding function
fθ(vi,xi) that learns the node representation of vi, thus prototypes representing each category of the
task can be computed. The node classification can then be implemented by calculating the distance
between the current node and each prototype.

On graph data, the embedding function is implemented with an inductive Graph Neural Network
(GNN) (Hamilton et al., 2017) that learns a low-dimensional latent representation of each node. It
follows a neighborhood combination and aggregation scheme, where each node recursively fetches
information from its neighbors layer by layer. Let hl

v denote a node v’s representation at the lth step,

hl
N(v) = AGGREGATEl(h

l−1
u ,∀u ∈ N(v)),

hl
v = σ(W l · CONCAT(hl−1

v ,hl
N(v))),

(12)

where N(v) represents node v’s (sampled) neighbors. The first step is to aggregate the representa-
tions of neighbor nodes in layer l − 1 into a new vector hl

N(v). The node representation on layer
l − 1 and the aggregated neighborhood representation are concatenated, which is then fed to a fully
connected layer with nonlinear activation function σ. We denote this L-layer GNN by fθ(·).

5.3 NIML: NODE IMPORTANCE SPECIFIC PROTOTYPICAL NETWORK

Prototype is typically calculated by averaging node embeddings inside the support set as Equa-
tion( 1) shows. However, based on our theoretical findings, distinguishing nodes of different impor-
tance within a category can increase the model accuracy. When the number of nodes in the task is
relatively small, the deviation produced by randomly sampling nodes for the prototype computation
can be reduced by assigning higher weights to nodes with more importance (i.e. less distance to the
prototype expectation). We therefore develop a model to learn the importance score of each node,
which contributes to a weighted prototype computation.

Although the theory motivates us to assign weights according to the distance between the node
representation and the prototype expectation, it is based on the assumption that the distance ϵ is
known. To overcome this obstacle, we design a model which end-to-end predicts the distance.
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Since numerous tasks are sampled during meta-train phase, we get access to relatively abundant
nodes belonging to each class. When the number of nodes in a category is large enough, the pro-
totype expectation µc can be approximated by the mean embedding of same-class nodes among the
whole graph, where µc ≃ mean(fϕ(xu)), for each node u belongs to class c. Then the ground
truth distance ϵ between a node v and its same-class prototype expectation can be computed by
dvp = d(fϕ(xv), µc). Thus, theoretically speaking, we expect that the distance function can be
learned with the iterative meta-training.

The next step is to decide which node information should be used to predict the distance. Directly
using node embedding generated by Proto-GCN as input does not meet our expectation for distance
predictor. Proto-GCN maps same-class nodes to close locations in the embedding space; whereas
distance predictor maps nodes of comparable importance to close distance value, so nodes of differ-
ent categories may be mapped to the same location (as shown in Figure 6 in Appendix A.3). Hence,
it is necessary to design an input which containing as little label information as possible.

1

3

4

2

5 6
"!"

"!#

"!$

"!%
"!&

"! = ["!#, "!&, "!%, "!$, "!"]

')' = '()( ℎ) , +*,()( ℎ* )
- is all same-class nodes as v

MLP

sortedattention
vector

Figure 2: Illustration of distance model

Due to the feature smoothing mechanism of
GNN, an L-layer GNN brings the same smooth
intensity for each node. Assuming we consider
the homophily graph, the neighboring nodes
have similar features. With equal smooth in-
tensity, the similarity between a central node
and its neighbors is higher than that between
a marginal node and its neighbors, thus the re-
lationship between a central node and its neigh-
bors is more uniformly distributed.

We thus construct an attention vector αv for each node v to represent the relationship distribution,
where a more uniform distribution indicates a higher node importance and a much closer distance to
prototype expectation. As shown below and in Figure 2, each component in αv is an attention score
between node v and u ∈ N(v). Note that a fixed number of neighbors are sampled for each node.

αv = [αv1, · · · , αv|N(v)|], (13)

αvu =
exp(LeakyReLU(aT [Whv ∥Whu])∑

q∈N(v)(exp(LeakyReLU(aT [Whv ∥Whq]))
, (14)

where W is a linear transformation, ∥ is a concatenation operation. Attention coefficient is cal-
culated by a single-layer feed-forward neural network with a LeakyReLu nonlinear activation and
parameterized by a vector a, then a Softmax function is utilized for normalization.

Thus, αv is the category-irrelevant node representation that describes the relation distribution be-
tween given node v and its neighbors. We use sorted αv as the input of the supervised distance
predictor to avoid the effect of neighbor nodes’ sampling order. For a node v in class c, the distance
between node representation and prototype is predicted by a multi-layer supervised model:

d(fϕ(xv), µc) = MLP (SORTED(αv)), (15)
where xv is the node feature, µc = mean(fϕ(xu)), for all nodes u belongs to class c. Then given
the support set Sc of class c, the importance score sv is computed by

sv =
exp(−d(fϕ(xv), µc))∑

u∈Sc exp(−d(fϕ(xu), µc))
. (16)

Prototype representation c of class c can be obtained by a weighted combination of embeddings,

c =
∑
v∈Sc

svfθ(x). (17)

Then the probability p(c|v) that a node v with feature x belonging to class c can be computed
following the Softmax function in Equation( 2). Thus, the loss function L can be defined as a sum
over query set Q of negative log-probability of a node v’s true label c.

L =
1

N |Q|

N∑
c=1

∑
v∈Qc

−logp(c|v), (18)

where N is the number of classes, Qc is the nodes that belong to class c in query set Q. The
parameters in representation network fθ(·) and importance score network are then updated by SGD.
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Table 1: Experiment result on Reddit, Amazon-Electronic and DBLP w.r.t ACC and F1 (%)

Method
Reddit Amazon-Electronic DBLP

5-way 3-shot 5-way 5-shot 5-way 3-shot 5-way 5-shot 5-way 3-shot 5-way 5-shot
Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc F1

Deepwalk 26.13 26.9 30.11 29.74 23.24 21.27 26.51 25.39 44.62 43.19 62.87 61.57
node2vec 27.16 26.41 31.32 29.83 24.18 24.05 27.46 26.93 41.96 40.15 58.64 58.03

GCN 38.82 38.17 45.53 44.14 54.36 54.07 56.31 55.04 58.76 57.44 69.28 69.57
GAT 39.69 39.12 47.58 46.39 53.18 52.19 56.22 56.18 60.45 59.31 70.64 68.29

ProtoNet 34.72 33.31 37.89 38.12 53.17 52.65 58.34 57.69 37.28 36.52 43.08 44.31
MAML 29.21 26.78 32.14 33.45 54.09 54.17 59.17 58.46 38.72 39.43 45.63 44.81

Proto-GCN 61.43 60.74 64.08 63.15 63.18 62.49 67.32 66.93 71.35 70.72 74.89 74.66
Meta-GCN 60.81 58.32 62.73 61.21 62.17 60.47 67.16 65.08 69.58 69.24 74.67 73.19
Proto-GAT 61.49 60.82 63.67 64.27 63.27 62.51 68.30 67.96 71.86 70.67 74.33 73.17
Meta-GAT 61.45 59.34 64.06 61.48 63.86 61.55 67.97 66.74 68.62 66.94 73.38 72.17

RALE 64.73 64.42 66.35 64.27 66.82 65.39 71.48 70.05 73.17 72.46 76.95 76.47
GPN 65.37 64.28 66.57 65.19 65.69 64.32 70.31 70.24 74.69 73.82 78.58 77.43

NIML 67.51 66.90 69.67 69.33 68.93 68.24 73.85 73.19 76.53 75.32 81.37 81.09

6 EXPERIMENT

To verify the effectiveness of NIML on few-shot node classification problem, in this section, we first
introduce the experimental settings and then present the detailed experiment results with ablation
study and parameter analysis on three public datasets.

6.1 EXPERIMENT SETTINGS

We implement the experiment on three public datasets: Reddit (Hamilton et al., 2017), Amazon-
Electronic (McAuley et al., 2015), and DBLP (Tang et al., 2008a). Details of datasets are provided
in Appendix A.2. N classes are sampled episode by episode from training classes in meta-train
phase, and N novel classes from testing classes are used for evaluation. A fixed number of neighbors
are sampled to construct the attention vector, where zero is padded for the nodes without enough
neighbors. We compare with several baselines which can be grouped into three categories.

• GNNs: We test on four graph algorithm including DeepWalk, node2vec, GCN and GAT. Deep-
Walk (Perozzi et al., 2014) is done by a series of random work technique, and node embeddings
are learnt from the random walks. Node2vec (Grover & Leskovec, 2016) is an extension from
DeepWalk, which is a combination of DFS and BFS random walk. GCN (Kipf & Welling, 2016)
is like an first-order approximation of spectral graph convolutions. GAT (Veličković et al., 2017)
leverages self-attention to enable specifying different weights to different nodes in neighborhood.

• Meta Learning: We test on two typical meta learning algorithms without using GNN as backbone.
ProtoNet Snell et al. (2017) is a metric-based meta learning method, which learns an embedding
function and use prototype to do a classification. MAML Finn et al. (2017) is an optimization-
based meta learning method, which learns a good parameter initialization of networks.

• Meta Learning GNN: We consider six works that implement GNN in a meta learning framework.
Proto-GCN is a baseline we design for an ablation purpose, which learns a GCN as an embedding
function and uses the average value as a prototype. Meta-GCN Zhou et al. (2019) is a previous
work which extends MAML to graph data by using a GCN base model. Proto-GAT and Meta-
GAT are two baselines where the embedding function is GAT. We also include two related works:
RALE (Liu et al., 2021) introduces hub nodes and learns both relative and absolute location node
embedding; GPN (Ding et al., 2020) learns node importance by aggregating the importance score.

6.2 EXPERIMENT RESULTS

Table 1 shows the performance comparison results on 5-way 3-shot and 5-way 5-shot problems
on each dataset. We report the average performance of accuracy and F1 score after ten repetitions
Among the GNNs, the typical methods DeepWalk and node2vec are far inferior to other methods
since they rely on a large number of labeled data to learn good node representations. GCN and GAT
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are better than the previous two methods, but they still cannot achieve satisfying performance on this
few-shot problem. In terms of ProtoNet and MAML, although they have shown the ability to deal
with few-shot problems of Euclidean data, they are hard to handle graph data without considering
the graph structure, i.e. node dependency.

Due to the incorporation of both meta-learning and graph structure, the meta-learning GNN model
outperforms the previous two types of models, which demonstrates that meta learning methods can
effectively deal with the problem of few samples in graph data under a GNN configuration. For the
four basic Meta Learning GNN model: Meta-GCN, Proto-GCN, Meta-GAT and Proto-GAT, they
all achieve similar performance. Our model NIML outperforms other baselines in each case. The
advantage of NIML is slightly advanced in the 5-shot case than in the 3-shot case, thanks to a better
refinement of prototype calculation using the importance score in the case of additional nodes.

6.3 MODEL ANALYSIS
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Figure 3: Different methods of
computing importance score

Methods of computing importance score. We implement abla-
tion study to test the performance of different methods of comput-
ing importance score and provide results of four models shown in
Figure 3. Proto-GCN compute prototype directly by mean func-
tion; GPN train a score aggregation model; Proto-GCN+GAT use
GAT to learn importance score for each node. The results in-
dicate that distinguishing the importance of various nodes will
have a significant impact on the model performance, and NIML
is closely connected with the theory conclusion, thus makes its
advantages more significant.

Effect of N -way/ k-shot/ m-query. We analyze the effect of
number of class N , support set size k and query set size m on
the accuracy of three datasets. The results of each dataset are
depicted in Figure 4. 1) As N grows, the difficulty of predicting
increases, resulting in a decline in performance. 2) The accuracy
will always increase as k increasing, and the curves tend to flatten
in some instances. 3) The query set size m has the least impact on
model accuracy of all variables. Larger m may result in decrease
in performance, which may be due to the difficulty that larger
query sets bring to parameter update.
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Figure 4: Effect of support set size k on three datasets

7 CONCLUSION

This work begins with a theoretical analysis of the effect of node importance on the model, and con-
cludes that providing a greater weight to the data point whose embedding is closer to the expectation
of same-class prototype would enhance the lower bound of model accuracy. This theory can also be
applied to other domains, not just graph. Then we propose node importance meta learning (NIML)
closely based on theoretical conclusion. We construct an attention vector to represent the relation-
ship distribution between node and its neighbors, and train a distance predictor to learn the distance
between node embedding and an approximation of prototype expectation. Experiments demonstrate
the superior capability of our model in few-shot node classification. NIML has the potential to be
utilized in any Proto-based few-shot node classification framework to compute prototype.
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Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua
Bengio. Graph attention networks. arXiv preprint arXiv:1710.10903, 2017.

Oriol Vinyals, Charles Blundell, Timothy Lillicrap, Daan Wierstra, et al. Matching networks for one
shot learning. Advances in neural information processing systems, 29, 2016.

Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and S Yu Philip. A
comprehensive survey on graph neural networks. IEEE transactions on neural networks and
learning systems, 32(1):4–24, 2020.

Huaxiu Yao, Chuxu Zhang, Ying Wei, Meng Jiang, Suhang Wang, Junzhou Huang, Nitesh Chawla,
and Zhenhui Li. Graph few-shot learning via knowledge transfer. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 34, pp. 6656–6663, 2020.

Fan Zhou, Chengtai Cao, Kunpeng Zhang, Goce Trajcevski, Ting Zhong, and Ji Geng. Meta-
gnn: On few-shot node classification in graph meta-learning. In Proceedings of the 28th ACM
International Conference on Information and Knowledge Management, pp. 2357–2360, 2019.

11



Under review as a conference paper at ICLR 2023

A APPENDIX

A.1 THEORY PROOF

Table 2: Notation list
Symbol Definition Symbol Definition

C Space of classes ci Prototype representation in RM

τ Class probability distribution fϕ Embedding Function
χ Space of input data µc Expectation of inputs that belong to class c
N Number of class in a task Σc Expected intra-class variance of class c
S Support Set Σ Expected variance between classes
Q Query Set k Number of data points for support set
Si Support Set of class i m Number of data points for Q

A.1.1 PROOF OF LEMMA 1:

Consider space of classes C with sampling distribution τ , a, b iid∼ τ. Let S = {Sa,Sb} Sa =
{ax1, . . . , axk} ,Sb = {bx1, . . . , bxk} , k ∈ N is the shot number, and y(x) = a. Define ca and cb
as shown in Equation( 4). Then,

Ex,S|a,b[α] = (µa − µb)
T (µa − µb) + (2µb + σb − 2µa)

Tσb + σT
b σb − σT

a σa (19)

Ea,b,x,S[α] = 2Tr(Σ) + σT
b σb − σT

a σa (20)

Ea,b[Var(α | a, b)] ≤ 8

(
1 +

1

k

)
Tr{Σc

((
1 +

1

k

)
Σc + 2Σ

)
+ σT

b σb + σT
a σa} (21)

where
σa =

aw2aϵ2 − aw1aϵ1

aw2 + aw1
, σb =

bw2bϵ2 − bw1bϵ1

bw2 + bw1

Proof: From the definition of prototype, we have:

ca =
aw1

aw1 +a w2
· ϕ(ax1) +

aw2

aw1 +a w2
· ϕ(ax2)

=
aw1

aw1 +a w2
· (µa − ϵ1) +

aw2

aw1 +a w2
· (µa + ϵ2)

= µa +
ϵ2aw2 − ϵ1aw1

aw1 + aw2

We denote the second term as σa, thus ca = µa + σa and cb = µb + σb.

Since α = ∥ϕ(x)− cb∥2 − ∥ϕ(x)− ca∥2,

Ex,S|a,b[α] = Ex,S|a,b[∥ϕ(x)− cb∥2 − ∥ϕ(x)− ca∥2]

= Ex,S|a,b[∥ϕ(x)− cb∥2]− Ex,S|a,b[∥ϕ(x)− ca∥2]
We denote Ex,S|a,b[∥ϕ(x)− cb∥] and Ex,S|a,b[∥ϕ(x)− ca∥] as i and ii respectively. For a random
vector X , the expectation of quadratic form is E[∥X∥2] = Tr(V ar(X)) + ETE, thus,

i = Ex,S|a,b[∥ϕ(x)− cb∥2]
= Tr(V ar(ϕ(x)− cb)) + E[ϕ(x)− cb]

TE[ϕ(x)− cb]

Since V ar(X) = E[X2]− (E[X])2,

V ar(ϕ(x)− cb) = E[ϕ(x)− cb
T (ϕ(x)− cb)]− E[ϕ(x)− cb]

2

= E[ϕ(x)− cb
T (ϕ(x)− cb)]− (µa − cb)(µa − cb)

T

= Σc + µaµ
T
a +

1

k
Σc + cbcb

T − µacb
T − cbµ

T
a − [µaµ

T
a − µacb

T − cbµ
T
a + cbcb

T ]

= (1 +
1

k
)Σc

12
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Since E[ϕ(x)− cb] = µa − cb,

i = (1 +
1

k
)Σc + (µa − cb)

T (µa − cb)

ii = (1 +
1

k
)Σc + (µa − ca)

T (µa − ca) = (1 +
1

k
)Σc + σT

a σa

Thus,

i− ii = (µa − cb)
T (µa − cb)− σT

a σa

= µT
a µa − µT

a (µb + σb)− (µb + σb)
Tµa + (µb + σb)

T (µb + σb)− σT
a σa

= µT
a µa − 2µT

a µb − 2µT
a σb + µT

b µb + 2µT
b σb + σT

b σb − σT
a σa

and,
Ex,S|a,b[α] = (µa − µb)

T (µa − µb) + (2µb + σb − 2µa)
Tσb − σT

a σa

Since Ea,b,x,S [α] = Ea,b[Ex,S|a,b[α]], we have,

Ea,b,x,S [α] = Ea,b[i− ii]

= Ea,b[µ
T
a − 2µT

a µb + µT
b µb + 2µT

b σb − 2µT
a σb + σT

b σb − σT
a σa]

= Tr(Σ) + µTµ− 2µTµ+ Tr(Σ) + µTµ+ 2µTσb − 2µTσb + σT
b σb − σT

a σa

= 2Tr(Σ) + σT
b σb − σT

a σa

Thus, Ea,b,x,S [α] = 2Tr(Σ) + σT
b σb − σT

a σa.

Then we do an inequality scaling on the variance of α.

V ar(α|a, b) = V ar(∥ϕ(x)− cb∥2 − ∥ϕ(x)− ca∥2)
= V ar(∥ϕ(x)− cb∥2) + V ar(∥ϕ(x)− ca∥2)− 2Cov(∥ϕ(x)− cb∥2 , ∥ϕ(x)− ca∥2)

≤ V ar(∥ϕ(x)− cb∥2) + V ar(∥ϕ(x)− ca∥2) + 2

√
V ar(∥ϕ(x)− cb∥2)V ar(∥ϕ(x)− ca∥2)

≤ 2V ar(∥ϕ(x)− cb∥2) + 2V ar(∥ϕ(x)− ca∥2)

Given the theorem: given a random vector y N(µ,Σ), A is a symmetric matrix,

V ar(yTAy) = 2Tr((AΣ)2) + 4µTAΣAµ

we can obtain that,

V ar(∥ϕ(x)− cb∥2) = 2(1 +
1

k
)2Tr(Σ2

c) + 4(1 +
1

k
)(µa − cb)

TΣc(µa − cb)

V ar(∥ϕ(x)− ca∥2) = 2(1 +
1

k
)2Tr(Σ2

c) + 4(1 +
1

k
)σT

a Σcσa

Thus,

Ea,b[V ar(α|a, b)] ≤ Ea,b[2V ar(∥ϕ(x)− cb∥2) + 2V ar(∥ϕ(x)− ca∥2)]

= Ea,b[8(1 +
1

k
)2Tr(2c) + 8(1 +

1

k
)[(µa − cb)

T
c (µa − cb) + σT

a Σcσa]]

= 8(1 +
1

k
)Ea,b[Tr{(1 +

1

k
)Σ2

c +Σc((µa − cb)
T (µa − cb) + σT

a σa)}]

= 8(1 +
1

k
)Tr{Σc[(1 +

1

k
)Σc + 2Σ + σT

b σb + σT
a σa]}

A.1.2 PROOF OF THEOREM 1

Under the condition where Lemma 1 hold, we have:

R(ϕ) ⩾
(2Tr(Σ) + σT

b σb − σT
a σa)

2

f1(σa, σb) + f2(σa, σb)
(22)
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where
f1(σa, σb) = 12Tr{Σc(

3

2
Σc + 2Σ + σT

b σb + σT
a σa)}

f2(σa, σb) = Ea,b[((µa − µb)
T (µa − µb) + (2µb + σb)

Tσb)
2]

Proof: From the three equations in Lemma 1, we plug in the result to Equation(7) and do an in-
equality scaling as shown in below. Since we know:

V ar(α) = E[α2]− E[α]2

= Ea,b|x,S [α
2|a, b]− Ea,b,x,S [α]

2

= Ea,b[V ar(α|a, b) + Ex,S [α|a, b]2]− Ea,b,x,S [α]
2

Then,

R(ϕ) ≥ 2Tr(Σ) + σT
b σb − σT

a σa

f1(σa, σb) + Ea,b[[(µa − µb)T (µa − µb) + (2µb + σb − 2µa)Tσb − σT
a σa]2]

≥ 2Tr(Σ) + σT
b σb − σT

a σa

f1(σa, σb) + f2(σa, σb)

where

f1(σa, σb) = 8(1 +
1

k
) Tr{Σc(

(
1 +

1

k
) Σc + 2Σ + σT

b σb + σT
a σa)}

f2(σa, σb) = Ea,b[((µa − µb)
T (µa − µb) + (2µb + σb)

Tσb)
2]

In the 2-way 2-shot case we talked about, k = 2.

A.1.3 EXTEND THE ALGORITHM TO N CLASS

Let x and y denote the pair of query set. Let αi = ∥ϕ(x)− ci∥2 − ∥ϕ(x)− cy∥2, hence R(ϕ) =
Prc,x,S(∪N

i=1,i̸=yαi > 0).

By Frechet’s inequality:

R(ϕ) >

N∑
i=1,i̸=n

Pr(αi > 0)− (N − 2)

After plug in the inequality of R(ϕ) in Theorem 1, the lower bound of accuracy for N classes
problem can be obtained.

A.2 EXPERIMENT DETAILS

A.2.1 DATASET DESCRIPTION

Table 3: Statistic of datasets
Dataset # of nodes # of edges # of features labels train/val/test split

Reddit 232,965 11,606,919 602 41 16/10/15
Amazon-Electronic 42,318 43,556 8,669 167 90/37/40
DBLP 40,672 288,270 7,202 137 80/27/30

Reddit (Hamilton et al., 2017) is a social network with data sampled from Reddit, where each node
is a discussion post and an edge between two nodes means that the two posts are commented by the
same user.

Amazon-Electronic (McAuley et al., 2015) is a product network within electronic category of Ama-
zon. Nodes represent products, and edges between two products exits if they are bought together.

DBLP (Tang et al., 2008a) is a citation network where each node is a paper and link is the citation
relationship between papers.

We record the number of nodes contained in each category in these three datasets and show the
results of Reddit dataset in the histogram.

14



Under review as a conference paper at ICLR 2023

Class
0

5000

10000

15000

20000

25000

Fr
eq

ue
nc

y

28272
15181

13999
13101
12797

12146
11187

10308 8222
5962 5112

5101
4960
4928
4854
4673
4570
4239
4233
4202
4180
4066
3952
3597
3550
3429
3302
3099
2964
2846
2731
2639
2322
2246
2138
1696
1659
1596
1575

1003 328

Figure 5: Histogram of Reddit dataset

A.2.2 IMPLEMENTATION DETAILS

We implement the proposed framework in PyTorch. We set the number of episode as 500 with an
early stopping strategy. The representation network fθ(·), i.e. GCN, consists of two layers with
dimension size 32 and 16, respectively. Both of them are activated with ReLU function. We train
the model using Adam optimizer, whose learning rate is set to be 0.005 initially with a weight decay
of 0.0005. The size of query set is set to be 15 for all datasets. The Proto-GCN and distance
predictor are both learnt during meta-train phase. We also provide an anonymous Github link in the
supplementary file.

A.3 TECHNICAL EXPLANATION

Figure 6 provides an illustration of difference between the Proto-based GCN and distance predic-
tor, where the bottom right figure depicts the embedding space of a prototypical network and the
upper right figure is the distance in the embedding space between a given node and its same-class
prototype. The distance is equivalent to the length of gray arrow in bottom right figure.

A.4 DIFFERENCE BETWEEN NIML AND GPN

Even though, both NIML and GPN make an effort to compute weighted prototypes, the two meth-
ods are designed with different intentions. NIML starts with a theoretical analysis, quantify the
node importance as the distance from the node to its same-class prototype expectation and conclude
that assigning higher weights to nodes with closer distance will enhance the lower bound of model
accuracy. After that, NIML adopts the idea that the distribution of the relationship between a given
node and its neighbors can reflect the node importance and then construct an attention vector that
depicts the relationship distribution as input to predict the distance in a supervised manner, further
learning the node importance. While GPN adopts a different view that assumes the importance of a
node is highly correlated with its neighbor’s importance and derive a score aggregation mechanism
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Figure 6: Difference between Proto-based GCN model and distance predictor: distance predictor
maps node of similar importance to similar distance value regardless of node category, Proto-based
GCN maps same-class nodes to close locations in the embedding space.

using GAT as the backbone, which has similar characteristic to message passing that relies on graph
homophily. We think this is the main reason why NIML outperforms GPN as shown in Table 1.

A.5 VISUALIZATION OF RELATIONSHIP BETWEEN SCORE AND DISTANCE

In order to verify whether NIML follows the theory, we visualize the relationship between score
and distance in figure 7. For a selected category, we calculate the embedding of five nodes with the
same label belonging to the support set and visualize them in the figure together with the prototype
expectation (mean of all same-class embeddings) of that category. The shade of the color represents
the score. The darker the color, the higher the score, where the darkest color is the prototype. The
distance between points in the figure is consistent with the distance between node embedding. Here
we present three groups of visualization. From the result, we find that our algorithm always assigns
higher weights to closer nodes, but very strict distinctions may not be made for certain cases where
the distance is relatively close. Although the detail of some cases is inconsistent, the overall trend is
consistent with the theory.

(a) (b) (c)

Figure 7: Visualization of the relationship between score and distance
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