
Amortized Bayesian Workflow (Extended Abstract)

Marvin Schmitt∗
University of Stuttgart

Germany

Chengkun Li∗
University of Helsinki

Finland

Aki Vehtari
Aalto University

Finland

Luigi Acerbi
University of Helsinki

Finland

Paul-Christian Bürkner
TU Dortmund University

Germany

Stefan T. Radev
Rensselaer Polytechnic Institute

United States

Abstract

Bayesian inference often faces a trade-off between computational speed and sam-
pling accuracy. We propose an adaptive workflow that integrates rapid amortized
inference with gold-standard MCMC techniques to achieve both speed and ac-
curacy when performing inference on many observed datasets. Our approach
uses principled diagnostics to guide the choice of inference method for each
dataset, moving along the Pareto front from fast amortized sampling to slower
but guaranteed-accurate MCMC when necessary. By reusing computations across
steps, our workflow creates synergies between amortized and MCMC-based in-
ference. We demonstrate the effectiveness of this integrated approach on a gener-
alized extreme value task with 1000 observed data sets, showing efficiency gains
(90x faster inference) while maintaining high posterior quality.

1 Introduction
In statistics, we often reason about unknown parameters θ from observables y modeled as a joint
distribution p(θ, y). The posterior p(θ | y) is the statistically optimal solution to this inverse problem,
and there are different computational approaches to approximate this costly distribution.

Markov chain Monte Carlo (MCMC) methods constitute the most popular family of sampling al-
gorithms due to their theoretical guarantees and powerful diagnostics [6, 7]. MCMC methods yield
autocorrelated draws conditional on a fixed data set yobs. As a consequence, the probabilistic model
has to be re-fit for each new data set, which necessitates repeating the entire MCMC procedure
from scratch. For such algorithms performed conditionally on a fixed data set, the well-established
Bayesian workflow [7] defines an iterative sequence of steps that encompasses model specification,
fitting, evaluation, addressing computational issues, modifications, and model comparison.

Differently, amortized Bayesian inference uses deep neural networks to learn a direct mapping from
observables y to the corresponding posterior p(θ | y). Amortized inference follows a two-stage ap-
proach: (i) a training stage, where neural networks learn to distill information from the probabilistic
model based on simulated examples of observations and parameters (θ, y) ∼ p(θ) p(y | θ); and (ii)
an inference stage where the neural networks approximate the posterior distribution for an unseen
data set yobs in near-instant time without repeating the training stage. The Bayesian workflow is not
directly transferable to amortized inference because the approximation step is learned over the prior
predictive space (see Section 2) while only the inference step is conditional on a fixed data set.

∗equal contribution

Workshop on Bayesian Decision-making and Uncertainty, 38th Conference on Neural Information Processing
Systems (NeurIPS 2024).

1

One data set
𝑦!"#
(%)

Neural density
estimator 𝑞'

𝑆 draws
$𝜃(
(%), … , $𝜃)

(%)

Step 1

yes

no

Importance
weights

Fit Pareto
distribution

Diagnostics
OK?

Initialize 𝑆
superchains

Warmup and
sampling

Diagnostics
OK?

Use NUTS or
revise model

Accept
draws

re-use
draws

Step 2 Step 3

no

yes

Accept
draws

yes

Accept
draws

no

K=256 observed data sets

Accept amortized draws for 192/256 data sets

PSIS on remaining 64 data sets

Accept PSIS draws for 56/64 data sets Accept ChEES-HMC draws for 8/8 data sets

ChEES-HMC on remaining 8 data sets

Diagnostics
OK?

Amortized inference Pareto-smoothed importance sampling ChEES-HMC with amortized inits

Example draws Example draws Example draws

re-use
draws

Figure 2: Our adaptive workflow leverages near-instant amortized posterior sampling when possible
and gradually resorts to slower – but more accurate – sampling algorithms. As indicated by the blue
dashed arrows, we re-use the S draws from the amortized posterior in step 1 for the subsequent steps
in the form of PSIS proposals (step 2) and initial values in ChEES-HMC (step 3).

Inference speed per data set
A

cc
ur

ac
y

gu
ar

an
te

es
slow

w
ea

k
st

ro
ng

Amortized
inference

+ PSIS

ChEES-HMC

instant

Figure 1: Our workflow adaptively
moves along the Pareto front and
re-uses previous computations.

In Bayesian inference, both MCMC (e.g., ChEES-HMC; [9])
and amortized inference lie at the Pareto front of methods that
have a favorable trade-off between accuracy and speed. In
this paper, we propose an adaptive workflow that yields high-
quality posterior draws while minimizing the required com-
pute time by moving along the Pareto front to afford fast-and-
accurate inference when possible, and slow-but-guaranteed-
accurate inference when necessary (see Figure 1). Crucially,
our workflow consistently yields high accuracy, as evaluated
with tailored diagnostics in all steps. Furthermore, it re-uses
computations for subsequent steps in the form of importance
sampling proposals and initializations of many-short-chains
MCMC. The software implementation encompasses an end-to-
end workflow featuring model specification via PyMC [15], amortized inference with deep learning
via BayesFlow [16], and GPU-enabled ChEES-HMC [9] via Tensorflow Probability [5].

2 Integrating Amortized Inference into the Bayesian Workflow
Our adaptive workflow starts with neural network training to enable subsequent amortized inference
on any number of unseen data sets. While this training phase is conceptually identical to standalone
amortized inference training, the inference phase features a principled control flow that guides the
analysis based on tailored diagnostics in order to select the appropriate inference algorithm for each
observed data set while re-using computations along the way.

2.1 Training phase: simulation-based optimization

Since most Bayesian models are generative by design, we can readily simulate M tuples of param-
eters and corresponding observations from the joint model,

(θ(m), y(m)) ∼ p(θ, y) ⇔ θ(m) ∼ p(θ), y(m) ∼ p(y | θ) for m = 1, . . . ,M (1)

which results in the training set {(θ(m), y(m))}Mm=1.2 The total number M of example tuples is
called the training budget, and the quality of the amortized posterior estimator hinges on a sufficient
training budget. In the case study, we use flow matching [13] as a flexible neural estimators, but our
workflow is agnostic to the exact choice of neural network architecture.

Diagnostics. At this point, there are no observed data sets yet to guide data-conditional diagnos-
tics. However, we can easily simulate a synthetic test set {(θ(j)∗ , y(j))}Jj=1 of size J from the joint
model via Eq. 1. In this closed-world setting, we know which “true” parameter vector θ(j)∗ gener-
ated each simulated test data set y(j). We evaluate the amortized posterior’s bias and variance via

2This data generation scheme is also known as prior predictive sampling.

2

the normalized root mean-squared error (NRMSE) and perform simulation-based calibration (SBC;
[19, 21]) checking to evaluate the uncertainty calibration. These evaluations act as a convergence di-
agnostic to assert that the neural estimator yields faithful posterior draws under idealized conditions
(see Appendix A for details). If these closed-world convergence diagnostics fail, we should tune the
training hyperparameters (e.g., training duration, simulation budget, neural network architecture).

2.2 Inference phase: posterior approximation on observed data sets

We now use the pre-trained neural network to achieve rapid amortized posterior inference on a
total of K observed data sets {y(k)obs }Kk=1, which naturally do not come with known ground-truth
parameters. The diagnostics in this step are evaluated conditional on each observed data set to
determine whether the whole set of amortized draws is acceptable for each specific data set.

2.2.1 Step 1: Amortized posterior draws

We aim to use the rapid sampling capabilities of the amortized posterior approximator qϕ whenever
possible according to the diagnostics. Therefore, the natural first step for each observed data set
y
(k)
obs is to query the amortized posterior and sample S posterior draws θ̂(k)1 , . . . , θ̂

(k)
S ∼ qϕ(θ | y(k))

in near-instant time (see Figure 2, first panel).

0.4 0.6 0.8 1.0 1.2
MMD2

0.0

0.5

1.0

1.5

2.0

2.5

3.0

D
en

si
ty

Training samples (null distribution)
Test samples
MMD2 cut-off

Figure 3: Illustration of our sampling-based hy-
pothesis test that flags atypical data sets where
amortized inference has no accuracy guarantees.

Diagnostics. Amortized inference may yield
unfaithful results under distribution shifts [11,
20, 23]. Therefore, we assess whether an
observed data set is atypical under the data-
generating process of the joint model. We de-
fine atypical data as data sets that have a larger
maximum mean discrepancy (MMD; [8]) to the
training set than 95% of the training data sets
themselves and frame this decision problem as
a sampling-based hypothesis test, as proposed
by [20]. The method is illustrated in Figure 3
and formalized in Appendix B. Since the amor-
tized approximator has no accuracy guarantees
for data outside of the typical set of the joint
model, we propagate such atypical data sets to the next step. Additional data-conditional diag-
nostics (e.g., posterior predictive checking) can complement our sampling-based atypicality test to
evaluate the trustworthiness of the amortized posterior draws.

2.2.2 Step 2: Pareto-smoothed importance sampling

As a first pursuit to improve the quality of the amortized posterior draws with a small overhead in
computation time, we use a Pareto-smoothed sampling importance sampling (PSIS) scheme [22]
(see Figure 2, second panel). Based on the amortized posterior draws from step 1, we compute the
importance weights w

(k)
s = p(y(k) | θ̂s) p(θ̂s)/qϕ(θ̂s | y(k)) conditional on each observed data set

y(k) and smooth the tail of the weight distribution based on fitting a generalized Pareto distribution
(aka. Pareto-smoothing; [22]). These smoothed importance weights are then used for computing
posterior expectations and for improving the posterior draws with the sampling importance resam-
pling (SIR) scheme [18]. While the utility of standard importance sampling for improving neural
posterior draws has previously been investigated [4], we specifically use the PSIS algorithm which
is self-diagnosing and therefore better suited for a principled workflow.

Note. Common neural architectures for amortized inference (e.g., normalizing flows, flow match-
ing) are mode covering.3 When the neural network training stage is insufficient (e.g., small simu-
lation budget or poorly optimized network), this may lead to overdispersed posteriors. Fortunately,
this errs in the right direction, and PSIS can generally mitigate overdispersed mode-covering draws.

3Conditional flow matching is mode covering [13]. Normalizing flows are mode covering because they
optimize the forward KL divergence [17]. In contrast, variational inference algorithms typically optimize the
reverse KL divergence, which leads to mode seeking behavior that is less favorable for importance sampling.

3

Diagnostics. We use the Pareto-k̂ diagnostic to gauge the fidelity of the PSIS-refined posterior
draws. According to established guidelines [22, 24], Pareto-k̂ ≤ 0.7 indicates good results, whereas
k̂ > 0.7 implies that the draws should be rejected and the respective data sets proceed to step 3.

2.2.3 Step 3: ChEES-HMC with amortized initializations

1

2

Amortized initializations
ChEES-HMC samples
Target posterior

Figure 4: We initialize many ChEES-
HMC chains with amortized draws.

If Pareto-smoothed importance sampling fails according
to the diagnostics, we resort to an MCMC sampling
scheme which is augmented by re-using computations
from the previous steps. Concretely, we use the ChEES-
HMC algorithm [9] that affords to launch thousands of
parallel chains on a GPU. To accelerate convergence, we
use the importance weights from step 2 to sample S (e.g.,
16) unique draws for initializing S ChEES-HMC super-
chains4, each with L (e.g., 128) subchains for the nested-
R̂ diagnostic below. For the purpose of ChEES-HMC ini-
tialization, it is also desirable that the amortized posterior
draws are generally mode covering (cf. step 2).

Diagnostics. In this last step, we use the nested R̂ diagnostic [14] which is specifically designed to
assess the convergence of the many-but-short MCMC chains. If the diagnostics in this step indicate
unreliable inference, we recommend resorting to the overarching Bayesian workflow [7] and ad-
dressing the computational issues that even persist when using the (ChEES-)HMC algorithm. This
could involve using the established NUTS-HMC algorithm ([3, 10]) or revising the Bayesian model.

3 Empirical Demonstration: Generalized Extreme Value Distribution
In this section, we illustrate the application of the proposed workflow with Bayesian inference on
the parameters of a generalized extreme value (GEV) distribution. The GEV distribution is charac-
terized by three parameters: a location parameter µ ∈ R, a scale parameter σ ∈ R>0, and a shape
parameter ξ ∈ R, with cumulative distribution function

G(y) = exp

{
−
[
1 + ξ

(
y − µ

σ

)]−1/ξ
}
, (2)

and we use the prior distributions from Caprani et al. [2] (see Appendix C for details). Given N = 65
i.i.d. observations y = (y1, . . . , y65) from the GEV distribution, we aim to compute a posterior
estimate for the data-generating parameters θ = (µ, σ, ξ). We first train the amortized posterior
approximator on simulated parameters and verify that its closed-world performance is satisfactory,
as indexed by high parameter recovery and excellent calibration (see Appendix C).

As summarized in Table 1, we perform inference on a total of K = 1000 test data sets which are
deliberately sampled from a model with a 2× wider prior distribution to emulate out-of-distribution
settings in real applications (see Appendix C for details). In step 1, we draw 2000 posterior samples
from the amortized approximator qϕ, which takes 150 seconds for all 1000 data sets (2 million
posterior draws in total). We confirm that 678/1000 observed data sets are typical under the data-
generating process and accept the amortized draws. The remaining 322 data sets are passed to stage
2, where we apply the PSIS algorithm, taking a total of 130 seconds. The Pareto-k̂ diagnostic signals
acceptable results for 228 of the 322 data sets, which means that we propagate the remaining 94 data
sets to stage 3. Here, we initialize the parallel ChEES-HMC sampler with the amortized draws and
observe that the nested R̂ values lie below 1.01 for 66 of the data sets, leading to acceptance of
the ChEES draws. This leaves only 28 data sets for separate inference with NUTS-HMC. In total,
our amortized Bayesian workflow took ≈ 10 minutes and led to high-quality posterior draws on all
steps, as indicated by a small MMD to a reference posterior. In contrast, running NUTS-HMC on
all 1 000 observed test data sets would have taken ≈ 955 minutes (16 hours), which underscores the
efficiency gains of our integrated workflow.

4If importance sampling resampling without replacement fails to return S valid draws for initializing the
chains (e.g., due to less than S non-zero importance weights), we fall back to random initializations.

4

Accepted datasets Time TPA1 MMD to reference

Step 1: Amortized inference 678/1 000 142 0.21 0.0082 [4×10−4,0.35]

Step 2: Amortized + PSIS 228/322 124 0.54 0.0010 [1×10−4,0.02]

Step 3: ChEES-HMC w/ inits 66/94 398 6.03 0.0001 [1×10−5,0.05]

Total: aggregated over steps 972/1 000 664 0.68 —
1 TPA: time per accepted data set in seconds, computed as the expended time relative to the number of accepted data sets in this step.

Table 1: MMD (median, 95% CI) quantifies the distance between approximate and reference poste-
rior draws. All times are wall-clock seconds on an NVIDIA A100. The time for step 1 includes the
training (120s), inference (10s), and diagnostics (12s) stages of the amortized approximator. Our
amortized workflow yielded a total of 2 million posterior draws in 11 minutes, whereas using NUTS
on all data sets takes approximately 16 hours. While the MMD in step 1 is numerically higher than
in steps 2 and 3, spot checks indicated that the posteriors are visually similar to the reference draws.

10 50 100 200 300 500
Number of warmup iterations

10 3

10 2

10 1

100

101

N
es

te
d

R
1 Amortized

Amortized + PSIS
Random Initialization

Figure 5: Using amortized posterior
draws as inits can reduce the required
warmup in ChEES-HMC, but the extent
of the benefit varies. The figure shows
median±IQR across 20 test data sets.

Amortized draws can be good ChEES-HMC inits.
To further investigate whether the amortized posterior
estimates are indeed beneficial for initializing ChEES-
HMC chains, we randomly collect 20 test datasets that
are passed to step 3 in the workflow. This indicates
that both the amortized posterior draws and their Pareto-
smoothed refinement are deemed unacceptable, as quanti-
fied by Pareto-k̂ > 0.7 in step 2. We initialize the ChEES-
HMC chains with three different methods: (1) Amortized
posterior draws, (2) PSIS-refined amortized draws, and
(3) a random initialization scheme similar to Stan [3].We
run the chains for different numbers of warmup iterations
followed by a single sampling iteration. As described in
Section 2, we use the nested R̂ value to gauge whether the
chains converged appropriately during the warmup stage (as quantified by common R̂− 1 thresholds
of 10−1 or 10−2). As shown in Figure 5, amortized posterior draws (and their PSIS-refined counter-
parts) can significantly reduce the required number of warmup iterations to achieve convergence of
ChEES-HMC chains, even though the draws themselves have previously been flagged as unaccept-
able. This emphasizes that our amortized workflow creates synergies by re-using computations in
subsequent steps. However, it is not evident whether initializing ChEES-HMC with the PSIS-refined
draws from step 2 has an advantage over using the raw amortized draws from step 1, and we mainly
see that PSIS improves the worst-case performance (upper error boundary in Figure 5).

4 Conclusion
We presented an adaptive Bayesian workflow to combine the rapid speed of amortized inference
with the undisputed sampling quality of MCMC in the context of many observed data sets while
maintaining a high quality of posterior draws. Our workflow efficiently uses resources by (i) using
fast (amortized) inference when the results are accurate; (ii) refining draws with PSIS when possible;
and (iii) amortized initializations of slow-but-guaranteed-accurate MCMC chains when needed.

Acknowledgments

MS and PB acknowledge support of Cyber Valley Project CyVy-RF- 2021-16, the DFG under
Germany’s Excellence Strategy – EXC-2075 - 390740016 (the Stuttgart Cluster of Excellence
SimTech). MS acknowledges travel support from the European Union’s Horizon 2020 research and
innovation programme under grant agreements No 951847 (ELISE) and No 101070617 (ELSA),
and support from the Aalto Science-IT project. CL and LA were supported by the Research Coun-
cil of Finland (grants number 356498 and 358980 to LA). AV acknowledges the Research Council
of Finland Flagship program: Finnish Center for Artificial Intelligence, and Academy of Finland
project 340721.

References
[1] Paul-Christian Bürkner, Maximilian Scholz, and Stefan T. Radev. Some models are useful,

but how do we know which ones? Towards a unified Bayesian model taxonomy. Statistics
Surveys, 17, 2023.

5

[2] Colin Caprani. Generalized Extreme Value Distribution. https://www.pymc.io/
projects/examples/case_studies/GEV.html.

[3] Bob Carpenter, Andrew Gelman, Matthew D Hoffman, Daniel Lee, Ben Goodrich, Michael
Betancourt, Marcus Brubaker, Jiqiang Guo, Peter Li, and Allen Riddell. Stan: A probabilistic
programming language. Journal of statistical software, 76(1), 2017.

[4] Maximilian Dax, Stephen R. Green, Jonathan Gair, Michael Pürrer, Jonas Wildberger, Jakob H.
Macke, Alessandra Buonanno, and Bernhard Schölkopf. Neural importance sampling for rapid
and reliable gravitational-wave inference. Phys. Rev. Lett., 130:171403, Apr 2023.

[5] Joshua V. Dillon, Ian Langmore, Dustin Tran, Eugene Brevdo, Srinivas Vasudevan, Dave
Moore, Brian Patton, Alex Alemi, Matt Hoffman, and Rif A. Saurous. TensorFlow distri-
butions, 2017.

[6] Andrew Gelman, John B Carlin, Hal S Stern, David B Dunson, Aki Vehtari, and Donald B
Rubin. Bayesian Data Analysis. Chapman & Hall/CRC, Philadelphia, PA, 3 edition, 2013.

[7] Andrew Gelman, Aki Vehtari, Daniel Simpson, et al. Bayesian workflow. arXiv preprint, 2020.

[8] A Gretton, K. Borgwardt, Malte Rasch, Bernhard Schölkopf, and AJ Smola. A Kernel Two-
Sample Test. The Journal of Machine Learning Research, 13:723–773, 2012.

[9] Matthew Hoffman, Alexey Radul, and Pavel Sountsov. An adaptive-MCMC scheme for setting
trajectory lengths in Hamiltonian Monte Carlo. In Arindam Banerjee and Kenji Fukumizu, edi-
tors, Proceedings of The 24th International Conference on Artificial Intelligence and Statistics,
volume 130 of Proceedings of Machine Learning Research, pages 3907–3915. PMLR, 13–15
Apr 2021.

[10] Matthew D. Hoffman and Andrew Gelman. The No-u-Turn Sampler: Adaptively Setting Path
Lengths in Hamiltonian Monte Carlo. Journal of Machine Learning Research, 15(47):1593–
1623, 2014.

[11] Daolang Huang, Ayush Bharti, Amauri Souza, Luigi Acerbi, and Samuel Kaski. Learning
robust statistics for simulation-based inference under model misspecification, 2023.

[12] Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In Interna-
tional Conference on Learning Representations (ICLR), San Diega, CA, USA, 2015.

[13] Yaron Lipman, Ricky T. Q. Chen, Heli Ben-Hamu, Maximilian Nickel, and Matthew Le. Flow
matching for generative modeling. In The Eleventh International Conference on Learning
Representations, 2023.

[14] Charles C. Margossian, Matthew D. Hoffman, Pavel Sountsov, Lionel Riou-Durand, Aki Ve-
htari, and Andrew Gelman. Nested R̂: Assessing the Convergence of Markov Chain Monte
Carlo When Running Many Short Chains. Bayesian Analysis, pages 1 – 28, 2024.

[15] Abril-Pla Oriol, Andreani Virgile, Carroll Colin, Dong Larry, Fonnesbeck Christopher J.,
Kochurov Maxim, Kumar Ravin, Lao Jupeng, Luhmann Christian C., Martin Osvaldo A., Os-
thege Michael, Vieira Ricardo, Wiecki Thomas, and Zinkov Robert. PyMC: A modern and
comprehensive probabilistic programming framework in Python. PeerJ Computer Science,
9:e1516, 2023.

[16] Stefan T. Radev, Marvin Schmitt, Lukas Schumacher, Lasse Elsemüller, Valentin Pratz, Yannik
Schälte, Ullrich Köthe, and Paul-Christian Bürkner. BayesFlow: Amortized Bayesian work-
flows with neural networks. Journal of Open Source Software, 8(89):5702, 2023.

[17] Danilo Rezende and Shakir Mohamed. Variational inference with normalizing flows. In Fran-
cis Bach and David Blei, editors, Proceedings of the 32nd International Conference on Ma-
chine Learning, volume 37 of Proceedings of Machine Learning Research, pages 1530–1538,
Lille, France, 07–09 Jul 2015. PMLR.

6

https://www.pymc.io/projects/examples/case_studies/GEV.html
https://www.pymc.io/projects/examples/case_studies/GEV.html

[18] Donald B. Rubin. Using the SIR algorithm to simulate posterior distributions. In Bayesian
statistics 3. Proceedings of the third Valencia international meeting, 1-5 June 1987, pages
395–402. Clarendon Press, 1988.

[19] Teemu Säilynoja, Paul-Christian Bürkner, and Aki Vehtari. Graphical test for discrete uni-
formity and its applications in goodness-of-fit evaluation and multiple sample comparison.
Statistics and Computing, 32(2):1–21, 2022.

[20] Marvin Schmitt, Paul-Christian Bürkner, and Köthe. Detecting model misspecification in
amortized Bayesian inference with neural networks. Proceedings of the German Conference
on Pattern Recognition (GCPR), 2023.

[21] Sean Talts, Michael Betancourt, Daniel Simpson, Aki Vehtari, and Andrew Gelman. Validating
bayesian inference algorithms with simulation-based calibration. arXiv preprint, 2018.

[22] Aki Vehtari, Daniel Simpson, Andrew Gelman, Yuling Yao, and Jonah Gabry. Pareto smoothed
importance sampling. arXiv preprint, 2015.

[23] Daniel Ward, Patrick Cannon, Mark Beaumont, Matteo Fasiolo, and Sebastian Schmon. Robust
neural posterior estimation and statistical model criticism. Advances in Neural Information
Processing Systems, 35:33845–33859, 2022.

[24] Yuling Yao, Aki Vehtari, Daniel Simpson, and Andrew Gelman. Yes, but did it work?: Eval-
uating variational inference. In Jennifer Dy and Andreas Krause, editors, Proceedings of the
35th International Conference on Machine Learning, volume 80 of Proceedings of Machine
Learning Research, pages 5581–5590. PMLR, 10–15 Jul 2018.

[25] Manzil Zaheer, Satwik Kottur, Siamak Ravanbakhsh, Barnabas Poczos, Ruslan Salakhutdinov,
and Alexander Smola. Deep sets, 2017.

7

A Closed-world diagnostics

In the following, let θ̂(j)1 , . . . , θ̂
(j)
S ∼ qϕ(θ | y(j)) be S draws from the amortized posterior qϕ(·).

A.1 Normalized root mean-squared error

As a measure of posterior bias and variance, we assess the recovery of the ground-truth parameters,
for example via the average normalized root mean squared error (RMSE) over the test set,

NRMSE =
1

J

J∑
j=1

1

range(θ∗)

√√√√ 1

S

S∑
s=1

(
θ
(j)
∗ − θ̂

(j)
s

)2

, (3)

where range(θ∗) = max
k

(θ
(k)
∗)−min

k
(θ

(k)
∗).

A.2 Simulation-based calibration checking

Simulation-based calibration (SBC; [19, 21]) checking evaluates the uncertainty calibration of the
amortized posterior. For the true posterior p(θ | y), all intervals Uq(θ | y) are well-calibrated for any
quantile q ∈ (0, 1) [1],

q =

∫∫
I[θ∗ ∈ Uq(θ | y)] p(y | θ∗) p(θ∗)dθ∗dy, (4)

with indicator function I[·]. Insufficient calibration of the posterior manifests itself as violations
of Eq. 4. To quantify these violations, we report the expected calibration error of the amortized
posterior, computed as median SBC error of 20 posterior credible intervals with increasing centered
quantiles from 0.5% to 99.5%, averaged across the J examples in the test set.

B Testing for atypicality in step 1
Inspired by an out-of-distribution checking method for amortized inference under model misspeci-
fication [20], we use a sampling-based hypothesis test to flag atypical data sets where the trustwor-
thiness of amortized inference might be impeded. Concretely, we use the sampling-based estimator
for the maximum mean discrepancy (MMD; [8]),

MMD2(p || q) = Ex,x′∼p(x)[κ(x, x
′)] + Ex,x′∼q(x)[κ(x, x

′)]− 2Ex∼p(x),x′∼q(x)[κ(x, x
′)], (5)

where κ(·, ·) is a positive definite kernel and we aim to quantify the distance between the distribu-
tions p, q based on samples.

In our case of atypicality detection in step 1, p is the distribution of training data y used during
simulation-based training, and q is the opaque distribution behind the observed test data sets. We
construct a hypothesis test, where the null hypothesis states that p = q. For M training data sets
{y(m)}Mm=1 and K test data sets {y(k)}Kk=1, we first compute the sampling distribution of MMDs
from M MMD estimates based on training samples y vs. y(m). This quantifies the natural sampling
distribution for M -vs.-1 MMD estimates where both samples stem from the training set. We then
compute the α = 95% percentile, which marks the cutoff for the 5% most atypical training exam-
ples, and denote this threshold as MMD2

α. For the K data sets in the test sample, we then compute
the MMD estimate of all M training samples against each of the k = 1, . . . ,K test samples, here de-
noted as MMD2

k. Then, we put it all together and flag data sets as atypical when MMD2
k ≥ MMD2

α.
The type-I error rate of this test can be set relatively high to obtain a conservative test that will flag
many data sets for detailed investigation in further steps of our workflow.

Note. In the case study of this paper, we perform the above test in the summary space, that is, we
replace all occurences of y with the learned neural summary statistics hψ(y), where hψ is a DeepSet
that learns an 8-dimensional representation of the data (see below for details).

C Experiment details
In this section, we provide experiment details for parameter inference of the generalized extreme
value (GEV) distribution.

8

3.4 3.6 3.8 4.0 4.2
Ground truth

3.4

3.6

3.8

4.0

4.2

E
st

im
at

ed

R2 = 0.961
r = 0.981

0.0 0.2 0.4 0.6 0.8 1.0
Ground truth

0.0

0.2

0.4

0.6

0.8

1.0
R2 = 0.984
r = 0.992

0.4 0.2 0.0 0.2 0.4
Ground truth

0.4

0.2

0.0

0.2

0.4 R2 = 0.724
r = 0.853

(a) The parameter recovery is excellent for the parameters µ, σ and good for
the shape parameter ξ.

0.0 0.2 0.4 0.6 0.8 1.0
Fractional rank statistic

0.15

0.10

0.05

0.00

0.05

0.10

0.15

E
C

D
F

di
ff

er
en

ce

Rank ECDF
95% Confidence Bands

0.0 0.2 0.4 0.6 0.8 1.0
Fractional rank statistic

0.15

0.10

0.05

0.00

0.05

0.10

0.15
Rank ECDF
95% Confidence Bands

0.0 0.2 0.4 0.6 0.8 1.0
Fractional rank statistic

0.15

0.10

0.05

0.00

0.05

0.10

0.15

Rank ECDF
95% Confidence Bands

(b) Simulation-based calibration checking indicates excellent calibration for
all parameters.

Figure 6: The closed-world diagnostics indicate acceptable convergence of the amortized posterior.

C.1 Problem description

Following Caprani et al. [2], the prior distribution is defined as:

µ ∼ N (3.8, 0.04)

σ ∼ Half-Normal(0, 0.09)
ξ ∼ Truncated-Normal(0, 0.04) with bounds [−0.6, 0.6].

(6)

C.2 Simulation-based training

For the simulation-based training stage, we simulate 10 000 tuples of parameters and observations
from the parameter priors and the corresponding GEV distributions. Each data set contains 65
i.i.d. observations from the GEV distribution. The validation set, generated in the same manner,
consists of 1 000 samples from the joint model. The neural density estimator uses flow matching
[13] as a generative neural network backbone. The internal network is a multilayer perception (MLP)
with 5 layers of 128 units each, residual connections, and 5% dropout. Before entering the flow
matching network as conditioning variables, we pre-process the observations y = (y1, . . . , y65) with
a DeepSet [25] that jointly learns an 8-dimensional embedding of the observations while accounting
for the permutation-invariant structure of the data. The DeepSet has a depth of 1, uses a mish
activation, max inner pooling layers, 64 units in the equivariant and invariant modules, and 5%
dropout. In accordance with common practice in computational Bayesian statistics (e.g., PyMC
or Stan), the amortized neural approximator learns to estimate the parameters in an unconstrained
parameter space.

Optimization. The neural network is optimized via the Adam optimizer [12], with a cosine decay
applied to the learning rate (initial learning rate of 10−4, a warmup target of 10−3, α = 10−3) as
well as a global clipnorm of 1.0. The batch size is set to 512 and the number of training epochs is
300.

Diagnostics. The closed-world recovery (Figure 6a) and simulation-based calibration (Figure 6b)
indicate that the neural network training has successfully converged to a trustworthy posterior ap-
proximator within the scope of the training set.

Inference data sets In order to emulate distribution shifts that arise in real-world applications
while preserving the controlled experimental environment, we simulate the “observed” data sets
from a joint model with a prior that has 4× the dispersion of the model used during training. More

9

specifically, the prior is specified as:

µ ∼ N (3.8, 0.16)

σ ∼ Half-Normal(0, 0.36)
ξ ∼ Truncated-Normal(0, 0.16) with bounds [−1.2, 1.2].

(7)

C.3 ChEES-HMC

We use S = 16 superchains and L = 128 subchains, resulting in a total number of S · L = 2048
chains. The initial step size is set to 0.1. The number of warmup iterations is set to 200. The number
of sampling iterations is 1, resulting in a total number of 2048 post-warmup MCMC draws.

10

	Introduction
	Integrating Amortized Inference into the Bayesian Workflow
	Training phase: simulation-based optimization
	Inference phase: posterior approximation on observed data sets
	Step 1: Amortized posterior draws
	Step 2: Pareto-smoothed importance sampling
	Step 3: ChEES-HMC with amortized initializations

	Empirical Demonstration: Generalized Extreme Value Distribution
	Conclusion
	Closed-world diagnostics
	Normalized root mean-squared error
	Simulation-based calibration checking

	Testing for atypicality in step 1
	Experiment details
	Problem description
	Simulation-based training
	ChEES-HMC

