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Abstract
Flow matching has shown state-of-the-art
performance in various generative tasks, ranging
from image generation to decision-making, where
generation under energy guidance (abbreviated as
guidance in the following) is pivotal. However,
the guidance of flow matching is more general
than and thus substantially different from that of
its predecessor, diffusion models. Therefore, the
challenge in guidance for general flow matching
remains largely underexplored. In this paper, we
propose the first framework of general guidance
for flow matching. From this framework, we
derive a family of guidance techniques that can
be applied to general flow matching. These
include a new training-free asymptotically exact
guidance, novel training losses for training-based
guidance, and two classes of approximate
guidance that cover classical gradient guidance
methods as special cases. We theoretically
investigate these different methods to give
a practical guideline for choosing suitable
methods in different scenarios. Experiments on
synthetic datasets, image inverse problems, and
offline reinforcement learning demonstrate the
effectiveness of our proposed guidance methods
and verify the correctness of our flow matching
guidance framework. Code to reproduce the ex-
periments can be found at https://github.
com/AI4Science-WestlakeU/flow_
guidance.

1. Introduction
Flow matching has emerged as a prominent class of gen-
erative models. It features the ability to use a vector field
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to transform samples from a source distribution into sam-
ples following a target distribution, thus realizing generative
modeling (Lipman et al., 2023). The probability distribution
the samples follow during the flow is called the probability
path. By designing the probability path in a large design
space, flow matching has shown improved generative model-
ing fidelity as well as higher sampling efficiency in a variety
of generative modeling tasks including image generation
(Lipman et al., 2023), decision-making (Zheng et al., 2023),
audio generation, and molecular structure design (Gat et al.,
2024; Chen & Lipman, 2024; Ben-Hamu et al., 2024). Flow
matching substantially extends diffusion models (Ho et al.,
2020; Song et al., 2021). Most diffusion models leverage the
score matching process (Song & Ermon, 2019; Song et al.,
2020; 2021), inherently limiting them to using the Gaussian
distribution as the source distribution to construct a special
probability path. Meanwhile, flow matching can learn the
mapping between any source distribution and target distri-
butions (Lipman et al., 2023; 2024; Chen & Lipman, 2024;
Gat et al., 2024).

Guiding flow matching models refers to steering the gen-
erated samples toward desired properties, e.g., sampling
from a distribution weighted with some objective function
(Lu et al., 2023) or conditioned on class labels (Song et al.,
2021)1. It is vital in many generative modeling applications
(Song et al., 2023b; Zheng et al., 2023), but contrary to well-
studied guidance in diffusion models (Song et al., 2023b;
Chung et al., 2023; Dhariwal & Nichol, 2021; Song et al.,
2023a; Zheng et al., 2024; Lu et al., 2023; Dou & Song,
2024; Trippe et al., 2023), the guidance of flow matching
remains less investigated. Most existing guidance methods
only apply to a subset of flow matching that assumes the
source distribution to be Gaussian and the probability path
to have a certain simple form (Lipman et al., 2024; Zheng
et al., 2023; Pokle et al., 2024; Zhang et al., 2025; Kollovieh
et al., 2025). In these cases, it is allowed to simplify the
guidance of flow matching to be essentially the same as dif-
fusion model guidance, but flow matching’s power of gener-
ating more flexible probability paths than diffusion models
(Tong et al., 2024; Chen & Lipman, 2024; Gat et al., 2024)
is restricted. There have been other controlled generation
methods for flow matching, with a notable stream following
the paradigm of optimizing some objective functions via

1Mathematically, they are essentially equivalent (Section 3.1).
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differentiating through the sampling process (Ben-Hamu
et al., 2024; Liu et al., 2023b; Wang et al., 2025). However,
their goal differs from our guidance of weighting the gener-
ated distribution. Therefore, the guidance for flow-matching
models remains unrevealed in the rest of the ample design
space.

To fill this gap, in this work, we start from a similar assump-
tion as diffusion guidance and propose a general framework
of flow matching guidance. From the perspective of this
framework, we propose Monte Carlo-based training-free
asymptotically exact guidance for flow matching. We also
propose different training losses for exact training-based
guidance, one of which covers existing losses as special
cases (Lu et al., 2023; Zhang et al., 2025). For approximate
guidance methods, we can theoretically derive from our
framework many famous guidance methods that have ap-
peared in the literature, including DPS (Chung et al., 2023),
ΠGDM (Song et al., 2023a), LGD (Song et al., 2023b), as
well as their flow-matching extensions that are theoretically
justified for general flow matching models. We demonstrate
the effectiveness of our proposed method in both synthetic
datasets and decision-making (offline RL) benchmarks. Fur-
thermore, more extensive experiments are conducted on
image inverse problems to provide an empirical comparison
of different types of guidance methods for a guideline of
choosing different methods.

We summarize our contributions as follows: (1) We propose
a theoretically justified unified framework to construct guid-
ance for general flow matching, i.e., with arbitrary source
distribution, coupling, and conditional paths. (2) The frame-
work inspires us to propose a family of new guidance meth-
ods, including Monte Carlo sampling-based asymptotically
exact guidance and training-based exact guidance for flow
matching. (3) The framework can exactly cover multiple
classical guidance methods in flow matching and diffusion
models. Contrary to previous derivations relying on the flow
to have a Gaussian source distribution, our derivation pro-
vides theoretical justification of these methods for general
flow matching. (4) Empirical comparisons between guid-
ance methods are conducted in different tasks, providing
insights into choosing appropriate guidance methods for
different generative modeling tasks.

2. Background
Let Rd denote the data space where the data samples xt ∈
Rd. Here the subscript t ∈ [0, 1] denotes inference time
such that p1(x1) is a target distribution we want to generate,
and p0(x0) is a base distribution that is easy to sample
from. Flow-based generative models (Lipman et al., 2023;
2024) define a vector field vt(xt) : [0, 1] × Rd → Rd

that generates a probability path pt(xt) : [0, 1] × Rd →
R>0 connecting the tractable base distribution p0(x0) and

the target distribution p1(x1). By first sampling x0 from
p0(x0) and then solving the ordinary differential equation
(ODE) d

dtxt = vt(xt), one can generate clean samples
x1 := xt|t=1 that follow the target distribution p1(x1).

An efficient way to learn the vector field vt(·) by a model
vθ(·, t) is to use flow matching (Lipman et al., 2023; 2024;
Tong et al., 2024). It works by first finding a conditional
vector field vt|z(xt|z) that generates a conditional probabil-
ity path pt(xt|z), where z denotes sample pairs (x0, x1)

2.
The pairs (couplings) follow the probability distribution of
p(z) = π(x0, x1)

3. We use (x0, x1) and z interchangeably
throughout the paper.

It has been proved that the marginal vector field

vt(xt) :=

∫
vt|z(xt|z)p(z|xt)dz,

where p(z|xt) = pt(xt|z)p(z)
p(xt)

, will generate the marginal
probability path pt(xt) =

∫
pt(xt|z)p(z)dz (Lipman et al.,

2023). Thus, one only needs to fit the marginal vector field
vt(xt) =

∫
vt|z(xt|z)pt(z|xt)dz using a model vθ(xt, t).

It is intuitive to construct the loss

Et∼U(0,1),xt∼p(xt)

[
∥vθ(xt, t)− vt(xt)︸ ︷︷ ︸

intractable

∥22
]
,

which is, unfortunately, intractable. To cope with this prob-
lem, an equivalent conditional flow matching loss has been
proposed (Lipman et al., 2023; Tong et al., 2024):

Et∼U(0,1),z∼p(z),xt∼p(xt|z)

[∥∥vθ(xt, t)− vt|z(xt|z)
∥∥2
2

]
,

which is tractable and can be used to train vθ.

3. Guidance Vector Fields
This section is organized as follows: Section 3.1 proposes
the general flow matching guidance framework. In Section
3.2, we derive a new guidance method gMC based on Monte
Carlo estimation, which is asymptotically exact. In Section
3.3, we derive a guidance glocal

t proportional to the gradient
of the energy function J by approximating gt with Taylor
expansion. Then, we introduce the affine path assumption
(Assumption 3.2) to obtain a tractable gcov ≈ glocal

t , and
show that under the stronger uncoupled affine Gaussian
path assumption (Assumption 3.3), glocal covers classical
diffusion guidance methods. Section 3.4 introduces an alter-
native approximation that p(z|xt) is a Gaussian. Under this
approximation and the affine path assumption (Assumption
3.2), we derive a derivative-free guidance gsim-MC, and a
specialized guidance of gsim-A for inverse problems. Finally,

2The notation z can also represent x1 alone (Lipman et al.,
2024). Our analysis is in the general setting where z = (x0, x1),
but for ease of interpretation, one may consider z as simply x1.

3We use π to denote the probability density of data couplings.
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Section 3.5 provides different training losses for training-
based exact guidance gϕ. Figure 1 visualizes the above
outline and the relations between these guidance methods.

3.1. General Guidance Vector Fields

Guided generative modeling aims to generate samples ac-
cording to specific requirements, and energy-guided sam-
pling is one of the primary approaches. Appendix A.1
shows that energy guidance is fundamentally equivalent
to conditional sampling or posterior sampling. Accord-
ingly, we use the notation of energy guidance throughout,
with the theoretical results directly extending to these tasks.
Given an energy function J : Rd → R and a pre-trained
generative model for p(x), energy-guided samples follow
x ∼ p′(x) = 1

Z p(x)e−J(x), where Z =
∫
p(x)e−J(x)dx is

the normalizing constant. Samples with lower energy values
J are more likely to be generated. Thus, the problem of
guidance for flow-matching models becomes:

How can we alter the original vector field (VF) vt that gen-
erates p(x) such that the new VF v′t

4can generate samples
from the new distribution p′(x) = 1

Z p(x)e−J(x)?

A natural choice that is commonly used in diffusion models
(Dhariwal & Nichol, 2021) is to add a guidance VF gt(xt) :
[0, 1] × Rd → Rd to the original VF vt(xt), such that the
new VF v′t(xt) = gt(xt) + vt(xt) is a VF formed with
the same flow matching hyperparameters but generates the
new probability path arriving at the new distribution p′(x).
Therefore,

gt(xt) =

∫
v′t|z(xt|z)p′(z|xt)dz−

∫
vt|z(xt|z)p(z|xt)dz,

where p(z|xt) = pt(xt|z)p(z)
p(xt)

and p′(z|xt) =
p′
t(xt|z)p′(z)

p′(xt)
.

Recall that new VF v′t(xt) has the conditional probability
path and conditional VF as that of the original VF, i.e.,
v′t(xt|z) = vt(xt|z) and p′t(xt|z) = pt(xt|z). Then, we
have the following theorem (proof in Appendix A.2).

Theorem 3.1. Adding the guidance VF gt(xt) to the origi-
nal VF vt(xt) will form VF v′t(xt) that generates p′t(xt) =∫
pt(xt|z)p′(z)dz, as long as gt(xt) follows:

gt(xt) =

∫ (
P e−J(x1)

Zt(xt)
− 1

)
vt|z(xt|z)p(z|xt)dz, (1)

where Zt(xt) =

∫
Pe−J(x1)p(z|xt)dz, (2)

P = π′(x0|x1)
π(x0|x1)

is the reverse coupling ratio, where π′(x0|x1)

is the reverse data coupling for the new VF, i.e., the distri-
bution of x0 given x1 sampled from the target distribution.

4The prime symbol ′ denotes probability distributions and vec-
tor fields corresponding to the new distribution p′(x).

In this paper, we consider the case where P is or can be
approximated as 1. P is exactly 1 when the coupling is
independent π(x0, x1) = p(x0)p(x1), which results in
π′(x0|x1) = π(x0|x1) = p(x0). P = 1 is also reasonable
in many practical flow matching methods with dependent
couplings, such as mini-batch optimal transport (OT) condi-
tional flow matching (Tong et al., 2024), which we elaborate
in Appendix A.3. However, there may be cases where the
VF of dependent couplings is significantly different from
that of independent couplings. In these cases, the impact of
P can be non-negligible, which we leave for future work.
Later, we will show this approximation allows us to cover
many existing guidance techniques for flow matching or
diffusion models.

Uncoupled affine Gaussian path flow matching, where
π(x0, x1) = p(x0)p(x1), vt|1(xt|x1) = αtxt + βtx1, and
p(x0) = N (x0;µ,Σ), is known to be equivalent to dif-
fusion models, with little difference in the noise sched-
ule (Zheng et al., 2023; Ma et al., 2024). In this case,
our general guidance for flow matching Eq. (1) can be
reduced to a commonly used guidance term in diffusion
models: gt(xt) ∝ ∇xt

logZt(xt) (proof in Appendix A.4).
Thus, most existing works that only consider uncoupled
affine Gaussian path flow matching essentially apply the
same guidance techniques for diffusion models (Dhariwal
& Nichol, 2021; Song et al., 2023b; Chung et al., 2023).

Next, we will explore more challenging scenarios of flow
matching guidance, which are substantially different from
diffusion guidance: either the coupling is dependent, or the
source distribution is non-Gaussian.

3.2. Monte Carlo Estimation, gMC
t

To start with, we discuss the Monte Carlo (MC) method to
estimate the guidance gt(xt) in Eq. (1), which is asymptot-
ically exact while being training-free. The MC estimation
of the integrals in Eq. (1) and (2) requires sampling from
intractable p(z|xt), but they can be converted into:

gMC
t (xt)

∆
= Ex1,x0∼p(z)

[
(
e−J(x1)

Zt
− 1)vt|z(xt|z)

pt(xt|z)
pt(xt)

]
, (3)

Zt(xt) = Ex1,x0∼p(z)

[
e−J(x1)

pt(xt|z)
pt(xt)

]
,

where only pt(xt) remains intractable. We can use the same
MC samples to self-normalize the distribution pt(xt|z), us-
ing pt(xt) = Ex1,x0∼p(z)[pt(xt|z)]. In the expressions
above, pt(xt|z) is usually designed to be a simple, known
distribution (Tong et al., 2024) and p(z) can be sampled ei-
ther using the learned generative model or from the training
distribution if accessible. The above method can be under-
stood as executing importance sampling to convert the ex-
pectation under the intractable distribution Ez∼p(z|xt)[·] to

3
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Figure 1: Overview of guidance methods in the paper. We start with a unified guidance expression and derive different
guidance methods, including training-free and training-based methods, and cover many classical diffusion guidances.

that under a tractable distribution Ez∼p(z)[
p(xt|z)
p(xt)

(·)]. The
pseudocode for computing gMC

t (xt) can be found in Algo-
rithm 1, and a simplified version of gMC under the assump-
tion of independent coupling is provided in Appendix A.8.

It should be noted that this method is unbiased and appli-
cable to any source distribution. This enables the guidance
for flow matching with different source distributions such as
uniform (Chen & Lipman, 2024), Gaussian process (Andrae
et al., 2025), mixture of Gaussian (Hiranaka et al., 2025;
Papamakarios et al., 2017), and others (Mathieu & Nickel,
2020; Stimper et al., 2022). This method can also be applied
to flow matching with dependent couplings of x1, x0, e.g.,
optimal transport couplings (Tong et al., 2024) and rectified
flow (Liu et al., 2023a).

To our knowledge, gMC
t is the first to provide an asymptoti-

cally exact training-free estimation of the guidance VF for
flow matching whose source distribution is non-Gaussian.
However, due to the high variance of MC given a limited
number of samples, gMC is more suitable for tasks where
the energy function J varies gently and the data is relatively
low-dimensional.

Since the efficiency of gMC is restricted by the high variance
in the MC estimation, it has an unsatisfactory performance
in high-dimensional generation tasks like image inverse
problems. To improve the scalability of gMC, there are many
techniques that can be readily applied. For example, we can
adopt importance sampling in Eq. (3) to reduce the variance

of the MC estimation:

gMC-IS
t (xt)

∆
= Ex1,x0∼p̃(z)

[
p(z)

p̃(z)
(
e−J(x1)

Zt
− 1)

pt(xt|z)
pt(xt)

vt(xt|z)
]
,

Zt(xt) = Ex1,x0∼p̃(z)

[
p(z)

p̃(z)
e−J(x1)

pt(xt|z)
pt(xt)

]
,

where p̃(z) is an alternative distribution that can be sampled
from. To enhance the scalability of gMC-IS, we need to select
a p̃ such that e−J(x1)

p̃(z) has lower variance, i.e., when e−J(x1)

is large, p̃(z) is also large, and vice versa. This can be
achieved by sampling using another guided VF, such as
those to be proposed subsequently, which generates samples
close to (but not exactly) 1

Z p(x1)e
−J(x1). The probability

density ratio p(z)
p̃(z) can be estimated using, for example, the

Hutchinson trace estimator to preserve scalability (Song
et al., 2021). It should be noted that this estimation is still
unbiased.5

3.3. Localized p(x1|x)

Many practical guidance methods rely on approximations
(Song et al., 2023b; Pokle et al., 2024), so contrary to the
unbiased MC estimation of gt, we investigate approximate
(and thus biased) guidance methods in this subsection. We
start from an intuitive assumption that the probability mass
of p(x1|xt) is centered around its mean. Following this,

5We leave empirical investigation into gMC-IS to future work.
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it is natural to approximate the integrals in Eq. (1) with
the Taylor expansion that captures local behaviors around
the mean. Thus, Eq. (1) can be simplified and becomes
tractable.

First, we approximate the normalizing constant Zt(xt) in
Eq. (2) as (Appendix A.9):

Zt(xt) =

∫
p(z|xt)e

−J(x1)dz ≈ e−J(x̂1) (4)

where x̂1 := Ex0,x1∼p(z|xt)[x1]. Likewise, Eq. (1) can be
approximated as gt(xt) ≈ glocal

t , and:

glocal
t (xt)

∆
= −Ez∼p(z|xt)

[
(x1 − x̂1)v1|t(xt|z)

]
∇x̂1J(x̂1),

where x̂1 is defined as above. The approximation error
∥δg∥22 can be bounded: ∥δg∥22 ≤ |λhσ1d/e

−J(x̂1)|2(C1 +
C2) (Appendix A.9), where λh is the maximum eigenvalue
of the Hessian of e−J(x), σ1 is the L2 norm of the covari-
ance matrix of the distribution p(x1|xt), d is the dimension-
ality of the data, and C1, C2 are constants dependent on the
variance of the original conditional VF and the guided VF.

The error bound gives insights on the approximation quality
of glocal

t (detailed discussion in Appendix A.9.):

• The error is small when J is smooth, in which case
the Hessian of e−J(x) will approach zero. This cor-
responds to the mild guidance, where approximation-
based glocal works well.

• The error is small when σ1 is small, i.e. the covariance
matrix Σ11 has a small Frobenius norm. This is the
case when the flow time t→ 1 (and σt = 0), where xt

predicts x1 well.

The gradient in glocal
t is a natural outcome of the Taylor

expansion near the mean of p(x1|xt). glocal
t is not only ap-

plicable to more general flow matching but also originates
differently from diffusion guidance (Dhariwal & Nichol,
2021) where the gradient naturally emerges from the score
function∇xt

log p(xt). Moreover, the error bound we pro-
vide here is more practical compared to those previously
proposed for diffusion guidance, e.g., the Jensen gap in dif-
fusion posterior sampling (DPS) (Chung et al., 2023), which
only bounds the error in E[e−J(x1)], but it is∇xt logZt that
is the guidance VF, whose error is not bounded.

In order to obtain x̂1, we need the following assumption:
Assumption 3.2. The affine path assumption. We as-
sume the conditional probability path to be affine, i.e.,
xt = αtx1 + βtx0 + σtε, where ε is a random noise and σt,
σ̇t are both sufficiently small.6

6This choice is a widely used one (Lipman et al., 2023; Tong
et al., 2024). With a small random noise σtε, xt under conditional
VF flows is almost exactly from x0 to x1.

Note that this assumption does not prevent the samples from
having dependent coupling: π(x0|x1) ̸= p(x0). Under As-
sumption 3.2, we can use the x1-parameterization (Lipman
et al., 2024) to express x̂1 with the VF vt that is learned by
the model vθ (Appendix A.10):

x̂1 ≈ −
β̇t

α̇tβt − β̇tαt

xt +
βt

α̇tβt − β̇tαt

vt. (5)

With the commonly chosen schedule αt = t, βt = 1 − t
(Lipman et al., 2023; Tong et al., 2024), x̂1 = xt + (1 −
t)vt coincides with the 1-step generated x1 under the Euler
scheme. Also under this affine path assumption, glocal

t can
be expressed with the covariance matrix of p(x1|xt), Σ1|t,
and the gradient ∇x̂1

J(x̂1) (proof in Appendix A.11):

gcov
t

∆
= − α̇tβt − β̇tαt

βt︸ ︷︷ ︸
schedule

Σ1|t∇x̂1
J(x̂1). (6)

Intuitively, the guidance is the gradient of estimated J pre-
conditioned with the covariance matrix of p(z|xt). The pre-
conditioning squeezes the guidance vector into the p(z|xt)
manifold. Next, we discuss different ways to obtain this
covariance term, resulting in gcov-A, gcov-L, and gcov-G.

The simplest way is to approximate the covariance matrix
with a manually set schedule λ′

tI , resulting in gcov-A
t . This al-

lows us to tune the guidance’s schedule, a common practice
in diffusion model guidance (Song et al., 2023b;a).

gcov-A
t

∆
= −λcov-A

t ∇x̂1
J(x̂1),

where the original schedule in gcov
t is already included in the

hyperparameter λcov-A
t . Since p(x1|xt) is localized when

t→ 1, a general guideline is to set λcov-A
t decaying. gcov-A

t

only assumes affine path (Assumption 3.2), and is thus
theoretically justified for mini-batch optimal transport con-
ditional flow matching (Tong et al., 2024) for which few
existing guidance methods have been proposed. Besides,
gcov-A
t is efficient as its computation involves no extra num-

ber of function evaluations (NFE) than unguided sampling.

Alternatively, we can use Proposition 3.5 to train a model to
fit the actual covariance matrix of p(x1|xt) and acquire
gcov-L
t . Note that this covariance matrix is determined

by the original distribution and is agnostic to the energy
function J . The original flow matching essentially learns
Ex1∼p(x1|xt)[x1], but to achieve better approximate guided
generation, more detailed information of the distribution
p(x1|xt), its covariance, also needs to be learned.

The important special case where flow matching is a diffu-
sion model with a new schedule is formalized with:

Assumption 3.3. The uncoupled affine Gaussian path as-
sumption. In addition to Assumption 3.2, the source dis-
tribution p(x0) is a standard Gaussian and the coupling is
independent π(x0, x1) = p(x0)p(x1).
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We will demonstrate that under Assumption 3.3, gcov
t sim-

plifies into gcov-G
t (Eq. (7)), which covers classical guid-

ance methods in diffusion models. Specifically, using the
second-order Tweedie’s formula, we can express the co-
variance matrix Σ1|t in Eq. (6) in terms of the Hessian of
the log-probability, ∇xt

∇xt
log p(xt) (Rozet et al., 2024;

Boys et al., 2023; Ye et al., 2024). Then, under Assumption
3.3,∇xt log p(xt) depends affinely on the VF vt in Eq. (5)
which depends affinely on x̂1. Therefore, the covariance ma-
trix Σ1|t can be expressed with the derivative of the Jacobian
matrix ∂x̂1

∂xt
. We refer to this relationship as the Jacobian

trick (proof in Appendix A.12):

Proposition 3.4. The Jacobian trick. Under Assumption
3.3, the inverse covariance matrix of p(x1|xt), Σ1|t, de-
pends affinely on the Jacobian of the VF ∂vt

∂xt
, and is propor-

tional to the Jacobian ∂x̂1

∂xt
:

Σ1|t =
β2
t

αt(α̇tβt − β̇tαt)
(−β̇t + βt

∂vt
∂xt

) =
β2
t

αt

∂x̂1

∂xt
.

Inserting back to Eq. (6), we have:

gcov-G
t

∆
=λcov-G

t ∇xtJ(x̂1), (7)

where λcov-G
t = −βt(α̇tβt − β̇tαt)/αt is the schedule.

gcov-G
t covers classical diffusion model guidance includ-

ing loss-guided diffusion7 (LGD) (Song et al., 2023b) and
diffusion posterior sampling (DPS) (Chung et al., 2023).
In diffusion models, the guidance can be expressed as
∇xt

logEz∼p(z|xt)[e
−J(x1)], and DPS approximates this by

neglecting the gap in the Jensen inequality (Chung et al.,
2023) to move the expectation into eJ(·), and LGD approxi-
mates the expectation with a point estimation. Both methods
arrive at −∇xtJ(x̂1), which is covered by our Eq. (7).

3.4. Gaussian Approximation of p(z|xt)

Instead of approximating guidance by expanding it near
its mean, we can alternatively approximate p(z|xt) with a
Gaussian distribution p̃(z|xt) = N (z;µt(xt),Σt(xt)), and
get gt ≈ gsim

t . To minimize the KL divergence between the
approximate distribution and the original distribution, we
need to choose µt(xt) and Σt(xt) to that of the actual distri-
bution p(z|xt) (Rozet et al., 2024; Boys et al., 2023). Under
Assumption 3.2, x̂1 can be estimated using Eq. (5), x̂0 can
be similarly estimated (Appendix A.10), and Σt(xt) can be
either set as a hyperparameter as in gcov-A

t or computed as
in gcov-G

t in uncoupled affine Gaussian path flow matching.

Now that if J has an unknown expression, we can use Monte
Carlo (MC) sampling to estimate gsim

t ≈ gsim-MC
t , since we

7We refer to the simplest version of LGD-MC(n = 1) as LGD
here. LGD-MC with n > 1 will be covered in Section 3.4.

can sample from p̃(z|xt) which is a Gaussian distribution:

gsim-MC
t

∆
=

N∑
i

(
e−J(xi

1)

Z̃t

− 1

)
vt|z(xt|zi), (8)

where Z̃t := 1
N

∑N
i e−J(xi

1) is an estimated normalizing
constant. This shares the spirit of LGD-MC (Song et al.,
2023b), which uses MC to estimate Zt and then computes
diffusion guidance∇xt

logZt.

In some guided generation tasks like inverse problems where
J is known analytically, we can derive analytical expres-
sions of gsim

t . For example, when the measurement in-
volves a known degradation operator H applied to x and
then adding Gaussian noise with scale σy to Hx, we have
J(x1) ∝ 1

2σ2
y
∥y − Hx∥22. Thus we can derive gsim

t under
the affine path assumption (Assumption 3.2), and propose a
practical approximation gsim-inv-A

t (Appendix A.13):

gsim-inv-A
t

∆
= −λt

(σ2
y

r2t
+HTH

)−1

HT (y −Hx̂1) , (9)

where λt and rt are both hyperparameters. gsim-inv-A
t extends

ΠGDM (Song et al., 2023a) to affine flow matching but
requires a further approximation ∂x̂1

∂xt
≈ I , which is accurate

when t→ 1.

In uncoupled affine Gaussian path (Assumption 3.3), gsim
t

in our framework can exactly cover ΠGDM and OT-ODE
(Song et al., 2023a; Pokle et al., 2024) (Appendix A.13).
Note that our gsim

t is theoretically justified for dependent
couplings, such as optimal transport conditional flow match-
ing (OT-CFM) (Tong et al., 2024).

3.5. Training-based Guidance gϕ

Previously, we have discussed training-free guidance meth-
ods. In this subsection, we discuss how to train a neural
network gϕ to fit guidance gt. To construct a tractable train-
ing loss, we extend the conditional loss in flow matching to
arbitrary conditional variables in the following proposition
(proof in Appendix A.5).

Proposition 3.5. Any marginal variable f(xt, t) :=
Ez∼pt(z|xt)[ft|z(xt, z, t)], z = (x0, x1) has an intractable
marginal loss:

Lt = Ext∼p(xt)

[∥∥fθ(xt, t)− Ez∼pt(z|xt)[ft|z(xt, z, t)]
∥∥2
2

]
,

whose gradient w.r.t. θ is identical to that of the tractable
conditional loss:

Lt|z = Ext,z∼p(xt,z)

[∥∥fθ(xt, t)− ft|z(xt, z, t)
∥∥2
2

]
.

Guidance Matching. Based on proposition 3.5, We can
train gϕ by first learning a surrogate model ZϕZ

(xt, t) ≈
Zt, and then train gϕ ≈ gt with the following guidance

6
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Figure 2: Results of the synthetic dataset with different source (blue) and target (red) distributions. We visualize the start/end
points and the flow trajectories. gMC and gϕ yield the best guidance across different settings while diffusion guidance fails.

matching (GM) losses.

LϕZ ,ϕ = Et∼U(0,1),z∼p(z),xt∼p(xt|z)[ℓϕZ
+ ℓGM

ϕ ], (10)

ℓGM
ϕ =

∥∥∥∥gϕ(xt, t)−
(

e−J(x1)

ZϕZ ,sg(xt, t)
− 1

)
vt|z(xt|z)

∥∥∥∥2
2

,

ℓϕZ
=
∥∥∥ZϕZ

(xt, t)− e−J(x1)
∥∥∥2
2
, (11)

where sg denotes stopping the gradient in automatic differ-
entiation. We prove in Appendix A.7 that the minimizer of
LϕZ ,ϕ is indeed ZϕZ

= Zt and gϕ = gt.

In fact, there are other methods to learn ZϕZ
. In the litera-

ture on diffusion models, Lu et al. (2023) proposed to use
contrastive learning to obtain Zt(xt) that can be extended to
include the general flow matching path (Appendix A.6). Al-
ternatively, Monte Carlo estimation can be applied to obtain
ZϕZ

(Appendix A.6). As for learning gϕ, alternative to the
loss ℓGM

ϕ in Eq. (11), there are other losses ℓVGM, ℓRGM, and
ℓMRGM which, when substituted into Eq. (10), will produce
the same minimizer. We provide detailed analysis and proof
for all these losses in Appendix A.7. Notably, ℓMRGM that
we derive is identical to a newly proposed training-based
flow matching guidance loss in Zhang et al. (2025). For
uncoupled affine Gaussian path flow matching (Assumption
3.3), since the guidance is gt ∝ ∇x1

logZt(xt) (Appendix
A.4), learning ZϕZ

in Eq. (11) is adequate, and Lu et al.
(2023) also learns ZϕZ

.

These different training-based guidance opens the design
space of classifier-guidance (Dhariwal & Nichol, 2021) for
flow matching. For diffusion models, one only needs to train
a classifier on noisy input to produce the correct guidance,

whereas for general flow matching, one needs the training
loss proposed above to train a network to get the accurate
guidance.

In summary, we have proposed guidance matching methods
for training-based guidance in this subsection. We derive
different losses for learning Zt and gt, which all provide
unbiased estimations of the gradient and can be utilized
without specific assumptions on flow matching.

4. Experiments
In the experiment, we benchmark different guidance meth-
ods for flow matching models in different tasks including
synthetic datasets, generative decision-making, and image
inverse problems. These tasks all fall into the category of
energy guidance (Janner et al., 2022; Lu et al., 2023) or
posterior sampling (Chung et al., 2023). With these ex-
periments, we aim to answer the following questions: (1)
Can the proposed learning-based exact guidance method gϕ
learn the correct guidance VF gt for general (including non-
uncoupled affine Gaussian path) flow matching? (2) For the
asymptotically exact MC guidance method, can it produce
the correct guidance in non-Gaussian flow matching, and
is it exact assuming a sufficiently large sample budget? (3)
On the practical aspect, how do different types of guidance
methods (approximate/exact, training-free/training-based)
perform on more realistic tasks, and how do we choose the
appropriate flow matching guidance in different tasks?

7



On the Guidance of Flow Matching

Table 1: Results of the D4RL Locomotion experiments. Entries with ≥ 95% score of the best results per task (excluding
baselines) are highlighted in bold. The standard deviation is deferred to Appendix B.2 due to limited space.

Baselines OT-CFM CFM

BC Diffuser w/o g gcov-A gcov-G gsim-MC gMC gϕ w/o g gcov-A gcov-G gsim-MC gMC gϕ

HalfCheetah 55.2 88.9 61.9 64.8 73.2 78.1 86.4 70.2 46.4 63.4 68.5 83.5 87.7 81.5
Medium-Expert Hopper 52.5 103.3 95.2 101.8 112.3 112.3 112.7 98.1 83.4 93.9 113.3 88.5 113.3 91.5

Walker2d 107.5 106.9 79.1 97.3 107.2 101.0 107.2 91.3 65.7 100.4 106.9 107.0 107.1 102.3

HalfCheetah 42.6 42.8 34.7 42.2 42.9 43.1 43.1 43.4 41.8 43.6 43.3 43.8 43.8 43.8
Medium Hopper 52.9 74.3 63.3 75.1 89.8 76.2 79.8 79.7 73.2 79.1 82.7 82.1 88.0 85.2

Walker2d 75.3 79.6 72.4 82.7 81.3 83.4 83.0 80.6 72.2 80.7 82.5 81.9 81.9 72.9

HalfCheetah 36.6 37.7 25.6 31.7 36.1 36.8 40.0 35.5 22.2 33.4 39.3 37.9 40.6 39.1
Medium-Replay Hopper 18.1 93.6 40.1 57.7 74.1 60.9 88.6 55.3 55.1 63.0 69.3 61.0 80.9 63.5

Walker2d 26.0 70.6 31.2 62.5 82.5 64.4 88.1 52.4 28.3 64.9 76.6 58.9 70.9 70.3

Average 51.9 77.5 55.9 68.4 77.7 72.9 81.0 67.4 54.3 69.2 75.8 71.6 79.4 72.2

4.1. Synthetic Dataset

We first compare different guidance methods on 2-
dimensional synthetic datasets where the source distribu-
tions are different from Gaussian. The base flow matching
model is trained to learn the flow with source distributions
other than Gaussian. During inference, different guidance
methods are applied to perform guided sampling with dif-
ferent objective functions J for each dataset. All of the
source distributions are non-Gaussian, so traditional dif-
fusion guidance should not be applied. In Figure 2, we
compare the performance of gMC, gϕ, an exact diffusion
guidance called contrastive energy guidance (CEG) pro-
posed by Lu et al. (2023), and approximate guidance gcov-A,
gcov-G, and gsim-MC. The original target distributions (w/o gt)
and the J-weighted distributions (ground truth) are shown in
the first and second columns. The details of the experiment
are provided in Appendix B.

It can be seen from Figure 2 that gMC and gϕ generated
samples that almost exactly match the ground truth distri-
bution and the performance is consistent across different
datasets. Note that the generated samples maintain the cor-
rect data manifold instead of concentrating on some points
as gradient-based approximate guidance methods do. As has
been mentioned in Section 3, CEG is essentially∇xt logZt

which is exact under the uncoupled affine Gaussian path as-
sumption 3.3. However, none of the flow matching paths
we have here are uncoupled affine Gaussian paths, so exact
diffusion guidance performs poorly compared to gϕ and
gMC, showing a largely distorted generated distribution.

Also, we investigated the asymptotic exactness of gMC. To
quantitatively see the increasing guidance precision as the
sample size increases, we show the Wasserstein-2 distance
between the guided generation distribution and the ground
truth target distribution, estimated using 1000 samples. As
shown in Figure 4, the error decreases as the number of sam-
ples for computing gMC (N in Algorithm 1) increases from
5 to 104, and eventually approaches or surpasses the error

of the learned generative model for the original distribution,
which can be seen as an approximate lower-bound of the
guided generation error.

4.2. Planning

We also conduct experiments on offline RL tasks where
generative models have been used as planners (Janner et al.,
2022; Chen & Lipman, 2024). The planning process is real-
ized through sampling from 1

Z p(x1)e
R(x1) (Levine, 2018),

which aligns with the goal of our guidance by setting
J = −R, and R being the return. We report experiment
results on the Locomotion tasks in the D4RL dataset (Fu
et al., 2020), with experiment setting details and complete
results provided in Appendix B.2.

The average normalized scores across five seeded runs of
each guidance method are reported in Table 1 where score
= 100 corresponds to the scores of the expert. The conclu-
sions for CFM and OT-CFM are consistent: for gradient-
based methods, gcov-G is generally better than gcov-A with an
average increase in score of 8.0. gsim-MC has a performance
between gcov-A and gcov-G. The improved performance of
gcov-G comes at a higher computation cost of differentiation
through the VF model, though. The MC-based guidance,
although being gradient-free, outperforms the second-best
method gcov-G by 3.5 on average and is the best method
in 7 out of 9 tasks. For gϕ, we report the result of the
best losses ℓ, but their performance is still relatively weak,
falling behind the best by 10.4 on average. We attribute this
to the unstable joint training of two networks and provide
the complete results in Appendix B.2.

To investigate the effectiveness of gMC, we collect an ensem-
ble of plans that are generated under guidance, compute the
critic-predicted objective function value (estimated return
R), and then plot the density distribution of the estimated
return R. An ideal guidance will result in the R distribution
to be p(R)eR where p(R) is the distribution generated with-
out guidance (Appendix B.2). As can be seen from Figure 3,
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Table 2: Image inverse problem results on CelebA-HQ. The best and runner-up results are highlighted in bold and underlined.

Inpainting-Center, σy = 0.05 Super-Resolution ×4, σy = 0.05 Gaussian Deblurring, σy = 0.05

FID ↓ LPIPS ↓ PSNR ↑ SSIM ↑ FID ↓ LPIPS ↓ PSNR ↑ SSIM ↑ FID ↓ LPIPS ↓ PSNR ↑ SSIM ↑
gcov-A 7.330 0.1904 25.70 0.8432 26.06 0.3016 26.64 0.7292 14.34 0.2968 24.46 0.6982
gsim-A 10.67 0.1716 25.42 0.8681 31.78 0.3717 23.88 0.6072 11.83 0.2837 24.54 0.7109

OT-CFM gcov-G 18.43 0.2390 26.96 0.8125 15.42 0.2533 27.40 0.7783 17.04 0.2873 24.96 0.7196
ΠGDM 12.56 0.1717 27.74 0.8723 9.828 0.2322 27.24 0.7891 12.95 0.2226 28.43 0.7952
gMC 22.75 0.5589 8.67 0.3484 22.92 0.5596 8.59 0.3468 22.82 0.5596 8.64 0.3469

gcov-A 7.678 0.1920 25.95 0.8414 31.76 0.3770 22.79 0.5899 16.09 0.3052 24.21 0.6825
gsim-A 11.54 0.1785 28.00 0.8686 33.02 0.3749 23.75 0.6015 13.37 0.2947 24.34 0.6926

CFM gcov-G 19.65 0.2377 27.03 0.8140 13.89 0.2461 27.15 0.7864 16.89 0.2908 24.84 0.7112
ΠGDM 15.27 0.1753 25.48 0.8700 10.52 0.2435 26.96 0.7755 12.60 0.2244 28.27 0.7893
gMC 26.37 0.5615 9.06 0.3495 26.75 0.5492 10.05 0.3689 26.84 0.5494 10.04 0.3684

the samples generated with gMC have a density distribution
that best matches the ground-truth target distribution.

4.3. Image Inverse Problems

We conduct experiments on the image inverse problems on
the CelebA-HQ (256×256) dataset to reflect the guidance
performances on higher dimensional generative tasks. We
consider three different types of noised inverse problems:
box inpainting, super-resolution, and Gaussian deburring,
and compute the metrics FID, LPIPS, PSNR, and SSIM on
3000 samples from the test set. The details of the settings
and result visualizations are included in Appendix B.3.
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Figure 3: R distribution of generated trajectories in Loco-
motion. gMC matches the target gray dashed line well.

The results demonstrate that ΠGDM is generally better on
all tasks, being the best in 8 out of 12 metrics. gcov-G has
a similar but slightly worse performance than ΠGDM, be-
ing the best or the runner-up in all 4 metrics of the super-
resolution task if ranking the results of CFM and OT-CFM
separately and 3 out of 4 metrics in the deblurring task.
gsim-A that does not involve the Jacobian shows remarkable
performance in inpainting and deblurring, with a lower FID
score than ΠGDM by 1.5 on average, and LPIPS, PSNR,
and SSIM within 3% relative difference compared to the
best or the runner-up method in 5 out of 6 metrics, especially
when considering the efficiency of gsim-A that no backprop-

agation through the model is needed. gcov-A is the worst
excluding gMC, being the second worst or the worst in 11
out of 12 metrics and ranking CFM and OT-CFM separately.
It should be noted that gMC performs poorly here, as J in
the inverse problem is highly complex, thus requiring an
infeasibly large sample budget to compute accurate gMC. A
more detailed explanation is deferred to Appendix B.3.

5. Limitations and Future Works
The major limitation of our work lies in the assumption that
P ≈ 1. When the coupling is strong, the guidance VF no
longer has the correct direction. In future works, we plan
to address this problem by estimating P , which enables
guidance for flow matching models with exact coupling.

In addition, we plan to improve the specific guidance meth-
ods. For example, gMC suffers from the low sample effi-
ciency on high-dimensional datasets. Thus, it is worthwhile
to comprehensively investigate and improve the effective-
ness of gMC-IS

t , or to explore other techniques (such as the
control variable method) to further lower the variance.

Besides, guided VF v′t(xt) can be chosen to have differ-
ent properties, such as the straightness of the VF. In this
way, there may be add-on VFs that facilitate the sampling
efficiency, which we also leave for future work.

6. Conclusion
In this work, we have proposed the first framework for
general flow matching guidance, from which new MC-based
guidance gMC, many approximate guidance, and learned
guidance gϕ, are derived, all of them verified by experiments.
Many classical guidance methods have been covered as
special cases, and we provided a theoretical derivation for
each guidance method. We believe this work will facilitate
the application of flow matching by opening novel design
spaces of its guidance methods.
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Günnemann, S. Flow matching with gaussian process pri-
ors for probabilistic time series forecasting. In The Thir-
teenth International Conference on Learning Represen-
tations, 2025. URL https://openreview.net/
forum?id=uxVBbSlKQ4.

Levine, S. Reinforcement learning and control as proba-
bilistic inference: Tutorial and review. arXiv preprint
arXiv:1805.00909, 2018.

Lipman, Y., Chen, R. T. Q., Ben-Hamu, H., Nickel, M., and
Le, M. Flow matching for generative modeling. In The
Eleventh International Conference on Learning Repre-
sentations, 2023.

Lipman, Y., Havasi, M., Holderrieth, P., Shaul, N., Le, M.,
Karrer, B., Chen, R. T. Q., Lopez-Paz, D., Ben-Hamu, H.,
and Gat, I. Flow matching guide and code. arXiv preprint
arXiv:2412.06264, 2024.

10

https://openreview.net/forum?id=ePEZvQNFDW
https://openreview.net/forum?id=ePEZvQNFDW
https://openreview.net/forum?id=yMHe9SRvxk
https://openreview.net/forum?id=yMHe9SRvxk
https://openreview.net/forum?id=uxVBbSlKQ4
https://openreview.net/forum?id=uxVBbSlKQ4


On the Guidance of Flow Matching

Liu, X., Gong, C., and Liu, Q. Flow straight and fast:
Learning to generate and transfer data with rectified flow.
In The Eleventh International Conference on Learning
Representations, 2023a.

Liu, X., Wu, L., Zhang, S., Gong, C., Ping, W., and Liu, Q.
FlowGrad: Controlling the output of generative ODEs
with gradients. In 2023 IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (CVPR), 2023b.

Lu, C., Chen, H., Chen, J., Su, H., Li, C., and Zhu, J.
Contrastive energy prediction for exact energy-guided
diffusion sampling in offline reinforcement learning. In
Proceedings of the 40th International Conference on Ma-
chine Learning, 2023.

Lu, H., Han, D., Shen, Y., and Li, D. What makes a good
diffusion planner for decision making? In The Thirteenth
International Conference on Learning Representations,
2025. URL https://openreview.net/forum?
id=7BQkXXM8Fy.

Ma, N., Goldstein, M., Albergo, M. S., Boffi, N. M.,
Vanden-Eijnden, E., and Xie, S. SiT: Exploring Flow
and Diffusion-based Generative Models with Scalable
Interpolant Transformers. In The 18th European Confer-
ence on Computer Vision, 2024.

Mathieu, E. and Nickel, M. Riemannian continuous normal-
izing flows. In The Thirty-Fourth Annual Conference on
Neural Information Processing Systems, 2020.

Owen, A. B. Monte Carlo theory, methods and examples.
https://artowen.su.domains/mc/, 2013.

Papamakarios, G., Pavlakou, T., and Murray, I. Masked
autoregressive flow for density estimation. In The Thirty-
First Annual Conference on Neural Information Process-
ing Systems, 2017.

Pokle, A., Muckley, M. J., Chen, R. T. Q., and Karrer, B.
Training-free linear image inverses via flows. In The
Twelfth International Conference on Learning Represen-
tations, 2024.

Rozet, F., Andry, G., Lanusse, F., and Louppe, G. Learning
diffusion priors from observations by expectation max-
imization. In The Thirty-Eighth Annual Conference on
Neural Information Processing Systems, 2024.

Song, J., Vahdat, A., Mardani, M., and Kautz, J.
Pseudoinverse-guided diffusion models for inverse prob-
lems. In The Eleventh International Conference on Learn-
ing Representations, 2023a.

Song, J., Zhang, Q., Yin, H., Mardani, M., Liu, M.-Y.,
Kautz, J., Chen, Y., and Vahdat, A. Loss-guided diffu-
sion models for plug-and-play controllable generation.

In Proceedings of the 40th International Conference on
Machine Learning, 2023b.

Song, Y. and Ermon, S. Generative modeling by estimating
gradients of the data distribution. In The Thirty-third
Annual Conference on Neural Information Processing
Systems, 2019.

Song, Y., Garg, S., Shi, J., and Ermon, S. Sliced score
matching: A scalable approach to density and score es-
timation. In Proceedings of The 35th Uncertainty in
Artificial Intelligence Conference, 2020.

Song, Y., Sohl-Dickstein, J., Kingma, D. P., Kumar, A., Er-
mon, S., and Poole, B. Score-based generative modeling
through stochastic differential equations. In The Ninth
International Conference on Learning Representations,
2021.

Stimper, V., Schölkopf, B., and Hernández-Lobato, J. M.
Resampling base distributions of normalizing flows. In
Proceedings of the 25th International Conference on Ar-
tificial Intelligence and Statistics, 2022.

Tong, A., Fatras, K., Malkin, N., Huguet, G., Zhang, Y.,
Rector-Brooks, J., Wolf, G., and Bengio, Y. Improv-
ing and generalizing flow-based generative models with
minibatch optimal transport. Transactions on Machine
Learning Research, March 2024.

Trippe, B. L., Yim, J., Tischer, D., Baker, D., Broderick, T.,
Barzilay, R., and Jaakkola, T. Diffusion probabilistic mod-
eling of protein backbones in 3d for the motif-scaffolding
problem. In The Eleventh International Conference on
Learning Representations, 2023.

Wang, L., Cheng, C., Liao, Y., Qu, Y., and Liu, G. Train-
ing free guided flow-matching with optimal control. In
The Thirteenth International Conference on Learning
Representations, 2025. URL https://openreview.
net/forum?id=61ss5RA1MM.

Ye, H., Lin, H., Han, J., Xu, M., Liu, S., Liang, Y., Ma,
J., Zou, J., and Ermon, S. TFG: Unified training-free
guidance for diffusion models. In The Thirty-Eighth
Annual Conference on Neural Information Processing
Systems, 2024.

Zhang, S., Zhang, W., and Gu, Q. Energy-weighted flow
matching for offline reinforcement learning. In The Thir-
teenth International Conference on Learning Represen-
tations, 2025. URL https://openreview.net/
forum?id=HA0oLUvuGI.

Zheng, H., Chu, W., Wang, A., Kovachki, N., Baptista,
R., and Yue, Y. Ensemble kalman diffusion guidance:
A derivative-free method for inverse problems. arXiv
preprint arXiv:2409.20175v1, 2024.

11

https://openreview.net/forum?id=7BQkXXM8Fy
https://openreview.net/forum?id=7BQkXXM8Fy
https://artowen.su.domains/mc/
https://openreview.net/forum?id=61ss5RA1MM
https://openreview.net/forum?id=61ss5RA1MM
https://openreview.net/forum?id=HA0oLUvuGI
https://openreview.net/forum?id=HA0oLUvuGI


On the Guidance of Flow Matching

Zheng, Q., Le, M., Shaul, N., Lipman, Y., Grover, A., and
Chen, R. T. Q. Guided flows for generative modeling
and decision making. arXiv preprint arXiv:2311.13443,
2023.

Zhou, G., Swaminathan, S., Raju, R. V., Guntupalli, J. S.,
Lehrach, W., Ortiz, J., Dedieu, A., Lázaro-Gredilla, M.,
and Murphy, K. Diffusion model predictive control. arXiv
preprint arXiv:2410.05364, 2024.

12



On the Guidance of Flow Matching

A. Complete Theoretical Derivations and Proofs
Here, we provide the theoretical analysis that is deferred from the main text, including the following subsections: Appendix
A.1 includes proof of how energy-guided sampling from p(x)e−J(x)/Z is equivalent to conditional sampling from p(x|y).
Appendix A.2 proves Theorem 3.1 by showing gt + vt is equal to v′t which generates the correctly guided probability path.
Appendix A.4 Proof of that under uncoupled affine Gaussian paths, our general guidance gt is equivalent to the diffusion
guidance ∇xt

logZt. Appendix A.5 is proof of Proposition 3.5. Appendix A.6 discusses other ways to obtain Zt, including
using contrastive learning and Monte Carlo estimation. In appendix A.7, we propose three other training losses ℓV GM ,
ℓRGM , and ℓMRGM for gϕ and prove that the losses will produce the correct gradient. Appendix A.8 includes a more
detailed explanation of gMC and a variant of it under uncoupled paths. Appendix A.9 derives glocal and proves its error
bound. Appendix A.10 shows how to estimate x̂1 using xt and vθ(xt, t) under the affine path assumption. Appendix A.11
proves that glocal becomes gcov under affine paths. Appendix A.12 includes the proof of the Jacobian trick (Proposition
A.12). Appendix A.13 includes a proof of gsim-inv

t for the image inverse problem, how to derive gsum-inv-A, and how to recover
ΠGDM under the uncoupled affine Gaussian path assumption.

A.1. Energy Guided Sampling as Posterior Sampling

There exists a J(x) such that sampling from 1
Z p(x)e−J(x) is equivalent to sampling from p(x|y).

Simply take J = − log p(y|x). Plug it in to get

1

Z
p(x)e−J(x) =

p(x)elog p(y|x)∫
p(x)elog p(y|x)dx

=
p(x)elog

p(y|x)
p(y)∫

p(x)elog
p(y|x)
p(y) dx

= p(x|y). (12)

This theorem can be interpreted as, when you have a classifier p(y|x) and an energy guidance algorithm, you can directly
use this algorithm to perform conditional generation from p(y|x) by setting the energy J(x) = p(y|x).

Similar approaches have been used in probability inference, reinforcement learning (Levine, 2018), and Diffuser (Janner
et al., 2022) uses this to convert return-conditioned sampling into energy-guided sampling.

A.2. General Guidance

We prove Theorem 3.1 here.

Theorem A.1. Adding the guidance VF gt(xt) to the original VF vt(xt) will form VF v′t(xt) that generates p′t(xt) =∫
pt(xt|z)p′(z)dz, as long as gt(xt) follows:

gt(xt) =

∫ (
P e−J(x1)

Zt(xt)
− 1

)
vt|z(xt|z)p(z|xt)dz, (13)

where Zt(xt) =

∫
Pe−J(x1)p(z|xt)dz, (14)

P = π′(x0|x1)
π(x0|x1)

is the reverse coupling ratio, where π′(x0|x1) is the reverse data coupling for the new VF, i.e., the distribution
of x0 given x1 sampled from the target distribution.

Proof. We can subtract vt(xt) from v′t(xt) to construct gt(xt):

gt(xt) = v′t(xt)−
∫

vt|z(xt|z)
pt(xt|z)p(z)

pt(xt)
dz. (15)

v′t(xt) generates pt(xt) =
∫
pt(xt|z)p′(z)dz if

v′t(xt) =

∫
vt|z(xt|z)

pt(xt|z)p′(z)
p′(xt)

dz, (16)

where p′(z) = π′(x0|x1)
1
Z p(x1)e

−J(x1), which follows from conditional flow matching, i.e., a VF marginalizing a
conditional VF will generate the corresponding marginal probability path (Lipman et al., 2023; Tong et al., 2024). Then, we
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have a possible form of gt(xt)

gt(xt) =

∫
vt|z(xt|z)(

pt(xt|z)p′(z)
p′t(xt)

− pt(xt|z)p(z)
pt(xt)

)dz

=

∫
vt|z(xt|z)(

pt(xt|z)π′(x0|x1)
1
Z p(x1)e

−J(x1)

p′t(xt)
− pt(xt|z)p(z)

pt(xt)
)dz

=

∫
vt|z(xt|z)(P(z)

pt(xt|z)p(z) 1
Z e−J(x1)

p′t(xt)
− pt(xt|z)p(z)

pt(xt)
)dz

=

∫
vt|z(xt|z)

pt(xt|z)p(z)
pt(xt)

(P(z) 1
Z
e−J(x1)

pt(xt)

p′t(xt)
− 1)dz, (17)

where pt(xt) =
∫
p(xt, z)dz, p′(xt) =

∫
p′(xt, z)dz, and P(z) = π′(x0|x1)

π(x0|x1)
. Since

p(xt) =

∫
p(xt, z)dz = p(xt)

∫
p(z|xt)dz (18)

and

p′(xt) =

∫
p′(xt, z)dz =

∫
p′(xt|z)p′(z)dz

=

∫
p(xt|z)π′(x0|x1)

1

Z
p(x1)e

−J(x1)dz

=

∫
P(z)p(xt|z)p(z)

1

Z
e−J(x1)dz

=

∫
P(z)p(xt, z)

1

Z
e−J(x1)dz

= p(xt)

∫
P(z)p(z|xt)

1

Z
e−J(x1)dz. (19)

Plugging Eq. (18) and Eq. (19) into Eq. (17), we get

gt(xt) =

∫
vt|z(xt|z)

pt(xt|z)p(z)
pt(xt)

(P(z) 1
Z
e−J(x1)

pt(xt)

p′t(xt)
− 1)dz

=

∫
vt|z(xt|z)

pt(xt|z)p(z)
pt(xt)

(P(z)
�
��1

Z
e−J(x1) ���p(xt)

∫
p(z|xt)dz

�
��p(xt)
∫
P(z)p(z|xt)��

1
Z e−J(x1)dz

− 1)dz

=

∫
vt|z(xt|z)

pt(xt|z)p(z)
pt(xt)

(P(z)e−J(x1)
1∫

P(z)p(z|xt)e−J(x1)dz

∫
p(z|xt)dz︸ ︷︷ ︸

=1

−1)dz

=

∫
vt|z(xt|z)

pt(xt|z)p(z)
pt(xt)

(
P(z)e−J(x1)

Ez∼p(z|xt)[P(z)e−J(x1)]
− 1)dz. (20)

Finally, denote Zt = Ez∼p(z|xt)[e
−J(x1)] to complete the proof.

Remark. The theorem states that v′t = gt + vt not only generates the desired terminal distribution 1
Z p(x1)e

−J(x1) at
time t = 1, but also generates a probability path p′t(xt) that is similar to the original one. Specifically, their ”noising
process” p(xt|x1), and the conditional vector fields v(xt|x1), and the reverse coupling p(x0|x1) are the same. These are all
hyperparameters of flow matching, as one can choose an arbitrary conditional vector field satisfying boundary conditions
and the conditional vector field uniquely determines the conditional probability path; the reverse coupling, given target
(dataset) distribution p(x1) or 1

Z p(x1)e
−J(x1), composes the data coupling p(x0, x1) = p(z) for flow matching training.

It should be noted that the gt and v′t we construct here is only one of infinitely many (Lipman et al., 2023) possible vector
fields to generate 1

Z p(x)e−J(x1) at t = 1. It remains an interesting question whether there exists better v′t that, for example,
simplifies gt or improves the vector field by straightening the flow.
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Flow time 0.05 0.25 0.5 0.75 0.95

Relative L2 0.0382± 0.0076 0.0297± 0.0043 0.0271± 0.0032 0.0312± 0.0033 0.0717± 0.0096

Table 3: The relative L2 of the difference between the VF of OT-CFM and CFM at different time steps on the sampling
trajectory.

A.3. The P = 1 Approximation

From the empirical perspective, we found that P = 1 is a valid choice for dependent couplings in realistic datasets. As we
show in Table 3, the VF of the OT-CFM (batch size 128) in and uncoupled CFM trained on CelebA 256×256 have small
relative error at all flow time steps, so their ideal guidance VFs are approximately the same, validating our approximation of
P = 1.

Next, we give a more intuitive understanding of the approximation. Our framework allows us to choose any π′(x0|x1) (and
hence P ) as long as the source distribution is consistent: p(x0) =

∫
π′(x0|x1)

1
Z p(x1)e

−J(x1)dx1. In other words, the error
induced by setting P = 1 can be characterized by the deviation in either the source distribution or the vector field. In the
former case, the guidance VF is essentially considered exact, which implies π′(x0|x1) = π(x0|x1). Therefore, the error is
induced by the fact that we should have sampled from

∫
π′(x0|x1)

1
Z p(x1)e

−J(x1)dx1, rather than the original p(x0). In
the latter case, we actually assumed the source distribution to be unchanged, i.e., we need π′(x0|x1) = p(x0) to make the
source distributions compatible automatically. In this case, the error is caused by approximating P = p(x0)

π(x0|x1)
with 1.

We now discuss the practical effect of the approximation, i.e., when it is a good approximation and when it is not.

In the case of strongly dependent couplings, P ≈ 1 still holds as long as J varies slowly. This is demonstrated by the small
deviation in the error of the source distribution (assuming π′(x0|x1) = π(x0|x1)) as we discussed above. If J is always
near its average value, the new source distribution

∫
π(x0|x1)

1
Z p(x1)e

−J(x1)dx1 is almost
∫
π(x0|x1)p(x1)dx1 = p(x0)

that is the original source.

Nevertheless, when both the coupling is strong and J varies intensively, a more complicated treatment is required for exact
guidance. For example, we can try to sample from the new source distribution

∫
π(x0|x1)

1
Z p(x1)e

−J(x1)dx1. Although
one may argue that this may be equally difficult as sampling from the target distribution 1

Z p(x1)e
−J(x1) exactly, it may be

learned more easily as the target distribution is potentially smoothed after being convolved with the ”kernel” π(x0|x1). We
leave this more detailed treatment of P to future work.

A.4. Uncoupled Affine Gaussian Guidance

Here we prove that∇xt logZt(xt) is proportional to the guidance gt in Eq. (1). Note that the term∇xt logZt(xt) is widely
used as guidance in the diffusion model literature (Dhariwal & Nichol, 2021; Ho & Salimans, 2022; Song et al., 2021;
2023b;a; Janner et al., 2022; Ajay et al., 2023). Therefore, we prove that our general flow matching guidance exactly
covers the original diffusion guidance under the affine Gaussian path assumption, i.e., when flow matching falls back to the
diffusion model. Our proof here also elucidates how the gradient∇xt

emerges from the original expression of the general
guidance for flow matching in Eq. (1) where there is no apparent gradient.

We restate Eq. (1) here:

gt(xt) =

∫
(
e−J(x1)

Zt(xt)
− 1)vt|z(xt|z)

pt(xt|z)p(z)
pt(xt)

dz (21)

Zt(xt) =

∫
e−J(x1)

pt(xt|z)p(z)
pt(xt)

dz (22)

Assuming the flow matching to be of uncoupled affine path, we have

xt = σtx0 + αtx1, (23)
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where σt and αt are schedulers satisfying boundary conditions σ0 = α1 = 1, σ1 = α0 = 0. Thus,

vt|z(xt|z) = σ̇tx0 + α̇tx1

=
σ̇t

σt︸︷︷︸
at

xt +
1

σt
(α̇tσt − σ̇tαt)︸ ︷︷ ︸

bt

x1 (24)

where ḟt :=
df
dt denotes derivative to time t, and we define at :=

σ̇t

σt
, bt := 1

σt
(α̇tσt − σ̇tαt).

First, we demonstrate a useful technique for the proof later. Inserting Eq. (24) into gt(xt) in Eq. (21) and we have

gt(xt) =

∫
(
e−J(x1)

Zt
− 1)(atxt + btx1)

pt(xt|z)p(z)
pt(xt)

dz. (25)

Since Zt = Ez∼p(z|xt)[e
−J(x1)], ∫

(
e−J(x1)

Zt
− 1)atxt

pt(xt|z)p(z)
pt(xt)

dz = 0. (26)

That is to say, xt inside the integral of Eq. (26) will integrate to zero, and we can freely remove or add it to construct desired
terms.

Recall the assumption of uncoupled Gaussian path, i.e. p(x0, x1) = p(x0)p(x1), p(x0) = N (x0; 0, I). We can utilize the
important fact that the conditional probability path for affine Gaussian path flows satisfies xt ∼ N (xt;αtx1, σ

2
t I), which

allows us to connect the conditional score to x1

∇xt
log p(xt|x1) = −

xt − αtx1

σ2
t

. (27)

Using Eq. (26) and Eq. (27), Eq. (25) can be further converted to

gt(xt) =

∫
(
e−J(x1)

Zt
− 1)(btx1−

bt
αt

xt︸ ︷︷ ︸
Eq. (26)

)
pt(xt|x1)p(x1)

pt(xt)
dx1 (28)

=
btσ

2
t

αt

∫
(
e−J(x1)

Zt
− 1)∇xt

log p(xt|x1)
pt(xt|x1)p(x1)

pt(xt)
dx1

=
btσ

2
t

αt

∫
(
e−J(x1)

Zt
− 1)

∇xt
log p(xt) +∇xt

log p(x1|xt)︸ ︷︷ ︸
Bayes’ rule

 pt(xt|x1)p(x1)

pt(xt)
dx1

=
btσ

2
t

αt

∫
(
e−J(x1)

Zt
− 1)

 ((((((∇xt
log p(xt)︸ ︷︷ ︸

Integrates to zero as in Eq. (26)

+∇xt
log p(x1|xt)

 pt(xt|x1)p(x1)

pt(xt)
dx1 (29)

=
btσ

2
t

αt

∫
(
e−J(x1)

Zt
− 1)∇xt

log p(x1|xt)
pt(xt|x1)p(x1)

pt(xt)
dx1. (30)

Notice in Eq. (30) that ∫
∇xt

log p(x1|xt)
pt(xt|x1)p(x1)

pt(xt)
dx1

=

∫
p(x1|xt)∇xt

log p(x1|xt)︸ ︷︷ ︸
Since f∇ log f=∇f

dx1

=

∫
∇xt

p(x1|xt)dx1

=∇xt

∫
p(x1|xt)dx1

=0. (31)
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Therefore

gt(xt) = −
btσ

2
t

αt

∫
(
e−J(x1)

Zt
��−1)∇xt

log p(x1|xt)
pt(xt|x1)p(x1)

pt(xt)
dx1

=
btσ

2
t

αt

∫
e−J(x1)

Zt(xt)
pt(x1|xt)∇xt

log p(x1|xt)︸ ︷︷ ︸
Using again f∇ log f = ∇f

dx1

=
btσ

2
t

αt

1

Zt(xt)

∫
e−J(x1)∇xtp(x1|xt)dx1

=
btσ

2
t

αt

1

Zt(xt)
∇xt

∫
e−J(x1)p(x1|xt)dx1︸ ︷︷ ︸

Absorb e−J(x1) for it is independent of x1, and exchange with integral

=
btσ

2
t

αt

1

Zt(xt)
∇xt

Zt(xt)︸ ︷︷ ︸
Zt’s definition in Eq. (1)

=
btσ

2
t

at
∇xt

logZt(xt). (32)

Another possible way to derive this is to first prove the vector field in affine Gaussian path flow matching to be affine to the
marginal score, and we direct interested readers to (Zheng et al., 2023).
Remark A.2. The above derivation opens the possibility of using diffusion guidance into affine Gaussian path flow matching,
i.e., by multiplying a scheduler − btσ

2
t

αt
= σt(α̇tσt−σ̇tαt)

αt
to the diffusion classifier guidance. The most common scheduler for

flow matching is σt = 1− t, αt = t (Lipman et al., 2023; Pokle et al., 2024; Zheng et al., 2023; Tong et al., 2024; Liu et al.,
2023a; Lipman et al., 2024). In this case, the guidance scheduler is (1−t)

t . It should be noted that this scheduler explodes
near t = 0, thus being unstable. The flow matching schedule σt and αt can be chosen as other ways to avoid this instability.
Remark A.3. Note that this guidance cannot be applied to coupled paths. Central to the proof is that in uncoupled affine
Gaussian paths, we can convert the conditional vector field to the conditional score. If we could do this in coupled
paths, we would require (1) pt(x|z) is Gaussian N (x;µt, σtI), such that ∇xt log pt(xt|z) ∝ xt − µt. and (2) vt|z =
µ̇t+ σ̇t(xt−µt) ∝ µt, such that in Eq. (28) the conditional vector field can be converted to the conditional score. Therefore,
the following equation must hold for any xt, x0, x1

µ̇t + σ̇t(xt − µt) ∝ µt (33)

inside the integral of Eq. (28) where µt = ξtx0 + ηtx1. This equivalent to that

(ξ̇t − σ̇tξt)x0 + (η̇t − σ̇tηt)x1 + σ̇txt ∝ ξtx0 + ηtx1 (34)

must hold for any xt, x0, x1 inside the integral of Eq. (28). According to Eq. (26), xt terms will integrate to zero, thus

ηt(ξ̇t − σ̇tξ) = ξt(η̇t − σ̇tηt) (35)

which cannot hold8: because of the boundary conditions ξ0 = η1 = 1 and ξ1 = η0 = 0, ∃t ∈ (0, 1), d log ξt
dt ̸= d log ηt

dt . It
can be observed that the reason why this guidance does not apply to coupled paths is that x0, x1, and xt are all independent
variables here, preventing us from canceling two of x0 to avoid matching the schedulers’ ratio.

A.5. Proof of Proposition 3.5

We prove proposition 3.5 here.
Proposition A.4. Any marginal variable f(xt, t) := Ez∼pt(z|xt)[ft|z(xt, z, t)], z = (x0, x1) has an intractable marginal
loss

L = Ext∼p(xt)

[∥∥fθ(xt, t)− Ez∼pt(z|xt)[ft|z(xt, z, t)]
∥∥2
2

]
, (36)

whose gradient is identical to the tractable conditional loss

Lt|z = Ext,z∼p(xt,z)

[∥∥fθ(xt, t)− ft|z(xt, z, t)
∥∥2
2

]
. (37)

8Unless ξt = 1 which falls back to the uncoupled case.
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Proof. Expand and take gradient w.r.t. Eq. (36) to get

∇θLt = ∇θExt∼p(xt)

[∥∥fθ(xt, t)− Ez∼pt(z|xt)[f(xt, z, t)]
∥∥2
2

]
= Ext∼p(xt)

[
∇θ

∥∥fθ(xt, t)− Ez∼pt(z|xt)[f(xt, z, t)]
∥∥2
2

]
=

∫
∇θp(xt)

∥∥fθ(xt, t)− Ez∼pt(z|xt)[f(xt, z, t)]
∥∥2
2
dxt

=

∫
∇θp(xt)

(
∥fθ(xt, t)∥2 − 2⟨fθ(xt, t),

∫
pt(z|xt)dzf(xt, z, t)⟩

)
dxt

=

∫
∇θpt(z|xt)p(xt)

(
∥fθ(xt, t)∥2 − 2⟨fθ(xt, t), f(xt, z, t)⟩

)
dxtdz

=

∫
pt(z|xt)p(xt)∇θ

(
∥fθ(xt, t)∥2 − 2⟨fθ(xt, t), f(xt, z, t)⟩

)
dxtdz

= Ez,xt∼pt(z|xt)p(xt)

[
∇θ ∥fθ(xt, t)− f(xt, z, t)∥2

]
= ∇θ Ez,xt∼pt(z|xt)p(xt)

[
∥fθ(xt, t)− f(xt, z, t)∥2

]
︸ ︷︷ ︸

L1|z

. (38)

Thus, the gradient of the marginal loss Lt is identical to the gradient of the conditional loss Lt|z .

A.6. Other Ways to Obtain ZϕZ

Lu et al. (2023) proposed to use contrastive learning to train ZϕZ
. The proof already applies to any uncoupled path, and we

show that ZϕZ
does not depend on the coupling

Zt =Ex1∼p(x0,x1|xt)[e
−J(x1)] =

∫
e−J(x1)p(x0|x1, xt)p(x1|xt)dx0dx1 (39)

=

∫
e−J(x1)p(x1|xt)dx1 = Ex1∼p(x1|xt)[e

−J(x1)]. (40)

That is, instead of actually sampling from p(x0, x1|xt), sampling from p(x1|xt) will result in the same Zt. In the case of
the coupled path, the marginalized distribution is identical to the uncoupled path case. Therefore, the contrastive learning
method can be readily applied to train ZϕZ

.

Besides training-based ZϕZ
, we can also use Monte Carlo estimation to obtain Zt. Notice that by using importance sampling,

we have

Zt = Ex1∼p(x0,x1|xt)[e
−J(x1)] = Ex1∼p(x0,x1)

[
p(xt|x0, x1)

p(xt)
e−J(x1)

]
. (41)

As long as p(xt|x0, x1) is known (which is often the case (Lipman et al., 2023; Tong et al., 2024)), we can estimate Zt by
sampling N pairs of xi

0, x
i
1 from p(x0, x1) and estimate

Z̃t =

N∑
i

(
p(xi

0, x
i
1|xt)∑N

j p(xj
0, x

j
1|xt)

e−J(xi
1)

)
. (42)

A similar technique is used in Section 3.2.

A.7. Guidance Matching Losses

Here, we prove that the loss in guidance matching is correct and show there are three other equivalent training losses
ℓVGM, ℓRGM, ℓMRGM. The expressions of different losses are summarized below, and their proof follows.

VF-added Guidance Matching (VGM) Loss. By utilizing the learned VF vθ(xt, t) into Eq. (11), we have

ℓVGM
ϕ =

∥∥∥∥gϕ(xt, t) + vθ(xt, t)−
e−J(x1)

ZϕZ ,sg(xt, t)
vt|z(xt|z)

∥∥∥∥2
2

. (43)
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Reweight Guidance Matching (RGM) Loss. ℓVGM
ϕ can be further shown equivalent to

ℓRGM
ϕ =

e−J(x1)

ZϕZ ,sg(xt, t)

∥∥gϕ(xt, t) + vθ(xt, t)− vt|z(xt|z)
∥∥2
2
. (44)

This training loss steers gϕ to where e−J(x1) is larger by assigning a large loss to steer gt towards high e−J(x1) regions.

Marginalized Reweight Guidance Matching (MRGM) Loss. The above loss can be re-assigned a weight, which will
result in the same optimal gϕ2

(xt, t) as in Eq. (11). Specifically, by changing ZϕZ ,sg(xt, t) to its expectation under pt(xt),
we have the following equivalent loss

ℓMRGM
ϕ =

e−J(x1)

Z
∥gϕ2(xt, t) + vθ(xt, t)− vt|z(xt|z)∥22, (45)

where Z = Ex1∼p(x1)[e
−J(x1)]. ℓMRGM

ϕ is identical to a newly proposed fine-tuning loss in Zhang et al. (2025). It can also
be derived via importance sampling in Eq. 10 and similar reweighting-based fine-tuning losses have been studied in the
literature of diffusion models (Fan et al., 2023).

(1) Guidance Matching Loss ℓGM By using proposition 3.5, the following conditional loss

LGM
ϕ = Et∼U(0,1),z∼p(z),xt∼p(xt|z)


∥∥∥∥gϕ(xt, t)− (

e−J(x1)

ZϕZ ,sg(xt, t)
− 1)vt|z(xt|z)

∥∥∥∥2
2︸ ︷︷ ︸

=ℓGM

 (46)

has a gradient that is equivalent to the marginal loss

Et∼U(0,1),z∼p(z)xt∼p(xt|z)


∥∥∥∥∥∥∥∥∥gϕ(xt, t)− Ez∼p(z|xt)

[
(

e−J(x1)

ZϕZ ,sg(xt, t)
− 1)vt|z(xt|z)

]
︸ ︷︷ ︸

=gt(xt)

∥∥∥∥∥∥∥∥∥
2

2

 . (47)

Therefore, using the loss LϕZ
we can train gϕ to matching gt. Recall that L in Eq. (11) is identical to LϕZ

, and we proved
the validity of the guidance matching training.

(2) VF-added Guidance Matching Loss ℓVGM. By replacing the learned VF vθ(xt, t) into Eq. (46), we show that

LVGM
ϕ = Et∼U(0,1),z∼p(z),xt∼p(xt|z)

[∥∥∥∥gϕ(xt, t) + vθ(xt, t)−
e−J(x1)

ZϕZ ,sg(xt, t)
vt|z(xt|z)

∥∥∥∥2
2

]
, (48)

has a gradient equal to that of Lϕ in Eq. (46).

Expand Eq. (46) to get

LGM
ϕ = Et∼U(0,1),z∼p(z),xt∼p(xt|z)

[∥∥∥∥gϕ(xt, t)− (
e−J(x1)

ZϕZ ,sg(xt, t)
− 1)vt|z(xt|z)

∥∥∥∥2
2

]

= Et∼U(0,1),z∼p(z),xt∼p(xt|z)[∥ gϕ(xt, t)∥22︸ ︷︷ ︸
dependent on ϕ

+∥ e−J(x1)

ZϕZ ,sg(xt, t)
vt|z(xt|z)∥22 + ∥vt|z(xt|z)∥22

−2⟨gϕ(xt, t),
e−J(x1)

ZϕZ ,sg(xt, t)
vt|z(xt|z)⟩︸ ︷︷ ︸

dependent on ϕ

−2⟨ e−J(x1)

ZϕZ ,sg(xt, t)
vt|z(xt|z), vt|z(xt|z)⟩−2⟨vt|z(xt|z), gϕ(xt, t)⟩︸ ︷︷ ︸

dependent on ϕ

]. (49)
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After taking gradient w.r.t. ϕ, only the terms

∇ϕEt∼U(0,1),z∼p(z),xt∼p(xt|z)

[
∥gϕ(xt, t)∥22 − 2⟨gϕ(xt, t),

e−J(x1)

ZϕZ ,sg(xt, t)
vt|z(xt|z)⟩ − 2⟨vt|z(xt|z), gϕ(xt, t)⟩

]
(50)

survive. Therefore, by assuming a perfectly learned vθ(xt, t), i.e.,

vθ(xt, t) = Ez∼p(z|xt)

[
vt|z(xt|z)

]
, (51)

we have

Et∼U(0,1),z∼p(z),xt∼p(xt|z)
[
⟨vt|z(xt|z), gϕ(xt, t)⟩

]
=Et∼U(0,1),z∼p(z|xt),xt∼p(xt)

[
⟨vt|z(xt|z), gϕ(xt, t)⟩

]
=Ez̃∼p(z̃|xt)

[
Et∼U(0,1),z∼p(z|xt),xt∼p(xt)

[
⟨vt|z(xt|z), gϕ(xt, t)⟩

]]
=Ez̃∼p(z̃|xt)

[
Et∼U(0,1),xt∼p(xt)

[
⟨Ez∼p(z|xt)[vt|z(xt|z)], gϕ(xt, t)⟩

]]
=Ez∼p(z|xt)

[
Et∼U(0,1),xt∼p(xt)

[
⟨Ez̃∼p(z̃|xt)[vt|z(xt|z)], gϕ(xt, t)⟩

]]
=Et∼U(0,1),z∼p(z|xt),xt∼p(xt) [⟨vθ(xt, t), gϕ(xt, t)⟩] , (52)

so by adding back terms that the gradient is agnostic to, we can see that the new loss L(1)
ϕ in Eq. (48) is equivalent to Lϕ in

Eq. (46)

∇ϕLGM
ϕ = ∇ϕEt∼U(0,1),z∼p(z),xt∼p(xt|z)

[∥∥∥∥gϕ(xt, t)− (
e−J(x1)

ZϕZ ,sg(xt, t)
− 1)vt|z(xt|z)

∥∥∥∥2
2

]

= ∇ϕEt∼U(0,1),z∼p(z),xt∼p(xt|z)[∥gϕ(xt, t)∥22 + ∥
e−J(x1)

ZϕZ ,sg(xt, t)
vt|z(xt|z)∥22 + ∥vθ(xt, t)∥22︸ ︷︷ ︸

Vanishes after ∇ϕ

−2⟨gϕ(xt, t),
e−J(x1)

ZϕZ ,sg(xt, t)
vt|z(xt|z)⟩ − 2⟨ e−J(x1)

ZϕZ ,sg(xt, t)
vt|z(xt|z), vt|z(xt|z)⟩ −2⟨vθ(xt, t), gϕ(xt, t)⟩︸ ︷︷ ︸

Changed vt|z to vθ using Eq. (52)

] (53)

= ∇ϕEt∼U(0,1),z∼p(z),xt∼p(xt|z)


∥∥∥∥gϕ(xt, t) + vθ(xt, t)−

e−J(x1)

ZϕZ ,sg(xt, t)
vt|z(xt|z)

∥∥∥∥2
2︸ ︷︷ ︸

:=ℓVGM


= ∇ϕLVGM

ϕ . (54)

(3) Reweighted Guidance Matching Loss ℓRGM. Eq. Replacing ℓGM in (46) with ℓVGM:

e−J(x1)

ZϕZ ,sg(xt, t)
∥gϕ(xt, t) + vθ(xt, t)− vt|z(xt|z)∥22, (55)

and the loss LGM
ϕ becomes LVGM

ϕ , which are shown equivalent in the following.

Starting from Eq. (49), we can extract e−J(x1)

ZϕZ
from the three terms depended on ϕ, and thus showing the resulting loss is

indeed ℓRGM. Notice that because ZϕZ
= Ez∼p(z|xt)[e

−J(z)],

Ez∼p(z|xt)[
e−J(z)

ZϕZ
(xt)

f(xt, t)] = f(xt, t). (56)
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Thus, we have:

LGM
ϕ = Et∼U(0,1),z∼p(z),xt∼p(xt|z)[∥ gϕ(xt, t)∥22︸ ︷︷ ︸

dependent on ϕ

+∥ e−J(x1)

ZϕZ ,sg(xt, t)
vt|z(xt|z)∥22 + ∥vt|z(xt|z)∥22

−2⟨gϕ(xt, t),
e−J(x1)

ZϕZ ,sg(xt, t)
vt|z(xt|z)⟩︸ ︷︷ ︸

dependent on ϕ

−2⟨ e−J(x1)

ZϕZ ,sg(xt, t)
vt|z(xt|z), vt|z(xt|z)⟩−2⟨vt|z(xt|z), gϕ(xt, t)⟩︸ ︷︷ ︸

dependent on ϕ

]

= Et∼U(0,1),z∼p(z),xt∼p(xt|z)[∥
e−J(x1)

ZϕZ
(xt)

gϕ(xt, t)∥22 + ∥
e−J(x1)

ZϕZ ,sg(xt, t)
vt|z(xt|z)∥22 + ∥vt|z(xt|z)∥22

−2⟨gϕ(xt, t),
e−J(x1)

ZϕZ ,sg(xt, t)
vt|z(xt|z)⟩ − 2⟨ e−J(x1)

ZϕZ ,sg(xt, t)
vt|z(xt|z), vt|z(xt|z)⟩ − 2

e−J(x1)

ZϕZ
(xt)
⟨vt|z(xt|z), gϕ(xt, t)⟩]

= Et∼U(0,1),z∼p(z),xt∼p(xt|z)

 e−J(x1)

ZϕZ ,sg(xt, t)
∥gϕ(xt, t) + vθ(xt, t)− vt|z(xt|z)∥22︸ ︷︷ ︸

=ℓRGM

 (57)

= LRGM
ϕ . (58)

Where we used the conclusion of Eq. (52), and inserted terms that vanish after∇ϕ to make ℓRGM.

(3) Marginalized Reweighted Guidance Matching Loss ℓMRGM. The above loss Eq. (55) can be re-assigned a
weight, which will result in the same optimal gϕ(xt, t) as in Eq. (11). Specifically, by changing 1

ZϕZ,sg(xt,t)
to

1
Ext∼p(xt)

[ZϕZ,sg(xt,t)]
= 1∫

p(xt)ZϕZ,sg(xt,t)dxt
, we have

e−J(x1)∫
e−J(x1)p(z)dz

∥gϕ(xt, t) + vθ(xt, t)− vt|z(xt|z)∥22. (59)

We only need to prove that ∫
p(xt)Zt(xt)dxt =

∫
e−J(x1)p(z)dz. (60)

Recall that
Zt(xt) =

∫
p(z|xt)e

−J(x1)dz, (61)

so ∫
p(xt)Zt(xt)dxt =

∫
p(xt)

∫
p(z|xt)e

−J(x1)dxtdz (62)

=

∫
p(z)e−J(x1)dz = Z. (63)

Eq. (45) can also be derived by applying importance sampling Ez∼ 1
Z p(z)e−J(x1)

[
∥ · ∥22

]
= Ez∼p(z)

[
e−J(x1)

Z ∥ · ∥22
]

to the

flow matching objective of the new VF for the new target distribution p′(xt) =
1
Z p(xt)e

−J(xt).

Discussions The losses have the same expected gradient, but their performance may differ. Among the four losses, ℓMRGM
ϕ

is the only one that does not require the auxiliary model ZϕZ
. However, ℓRGM

ϕ assigns loss weight dependent on xt. The
weight is emphasized when the expectation of e−J(x1) under p(x1|xt) is small. Compared to these two losses, ℓGM

ϕ , ℓVGM
ϕ

do not reweight the loss. The variance of ℓGM
ϕ will be smaller if J is smooth, while ℓVGM

ϕ is better when vt is more complex.

A.8. Algorithm Details and Variants of gMC

The pseudocode for computing gMC is as follows.
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Algorithm 1 Monte Carlo estimation of the guidance gt(xt)

Require: Current t, xt, known pt(xt|z).
1: Sample zi ∼ p(z), where i = 1, 2, ..., N // Recall zi = (xi

1, x
i
0)

2: p̃t(xt)← 1
N

∑
i pt(xt|zi)

3: Z̃t(xt)← 1
N

∑
i e

−J(xi
1) pt(xt|zi)

p̃(xt)

4: gMC
t (xt)← 1

N

∑
i(

e−J(xi
1)

Z̃t(xt)
− 1)vt|z(xt|zi)pt(xt|zi)

p̃t(xt)

5: return gMC
t (xt)

Independent Couplings. Although we introduced the flow matching using the condition z = (x0, x1), it can also be
chosen as x0 or x1 (Lipman et al., 2024). When we z := x1, Algorithm 1 can be readily adopted for the x0 condition. This
way, the Monte Carlo estimation reduces the integration region dimensionality to half of the original one, thus becoming
more efficient.

In the case where z = (x0, x1) and the data coupling is independent π(x0|x1) = p(x0), we show here that the MC
estimation can be simplified to the x1-conditioned case that is more efficient:

gMC-x1
t (xt)

∆
= Ex1∼p(x1)

[
(
e−J(x1)

Zt
− 1)vt|x1

(xt|x1)
pt(xt|x1)

pt(xt)

]
, (64)

ZMC-x1
t (xt) = Ex1∼p(x1)

[
e−J(x1)

pt(xt|x1)

pt(xt)

]
. (65)

Obviously, as Zt =
∫
p(x0, x1|xt)e

−J(x1)dx0dx1 =
∫
p(x0|x1, xt)p(x1|xt)e

−J(x1)dx0dx1, integrating out x0 gives
Zt = ZMC-x1

t . Therefore, to prove the above simplification, we only need to prove that:

Ex0,x1∼p(x0,x1|xt)

[
(
e−J(x1)

Zt
− 1)v(xt|x0, x1)

]
= Ex1∼p(x1|xt)

[
(
e−J(x1)

Zt
− 1)v(xt|x1)

]
. (66)

The proof is simply integrating out x0:∫
p(x0, x1|xt)(

e−J(x1)

Zt
− 1)v(xt|x0, x1)dx0dx1

=

∫ ∫
p(x0|x1, xt)v(xt|x0, x1)dx0︸ ︷︷ ︸

:=v(xt|x1)

(
e−J(x1)

Zt
− 1)p(x1|xt)dx1

=

∫
v(xt|x1)(

e−J(x1)

Zt
− 1)p(x1|xt)dx1. (67)

It should be noted that v(xt|x1) is defined to be generally different from v(xt|x0, x1), and to do MC estimation via
importance sampling, we need the forward probability path p(xt|x1) to have a known density. The variance-reducing variant
of gMC is summarized in Algorithm 2.

Algorithm 2 Monte Carlo estimation of the guidance gt(xt)

Require: Current t, xt, known pt(xt|x1).
1: Sample xi

1 ∼ p(x1), where i = 1, 2, ..., N
2: p̃t(xt)← 1

N

∑
i pt(xt|xi

1)

3: Z̃t(xt)← 1
N

∑
i e

−J(xi
1) pt(xt|xi

1)
p̃(xt)

4: g̃t(xt)← 1
N

∑
i(

e−J(xi
1)

Z̃t(xt)
− 1)vt|z(xt|xi

1)
pt(xt|xi

1)
p̃t(xt)

5: return g̃t(xt)
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A.9. Localized Approximation

To get glocal, we presume p(z|xt) is localized, and we can use a point estimation to approximate Zt:

Zt(xt) =

∫
p(z|xt)e

−J(x1)dz ≈ e−J(x̂1) (68)

where x̂1 := Ex0,x1∼p(z|xt)[x1], and then expanding gt to the first order

gt(xt) ≈ gt(xt)
local = Ez∼p(z|xt)

[
(
e−J(x1)

e−J(x̂1)
− 1)vt|z(xt|z)

]
≈ Ez∼p(z|xt)

[
(
e−J(x̂1)(1−∇x̂1

J(x̂1)(x1 − x̂1))

e−J(x̂1)
− 1)vt|z(xt|z)

]
= −Ex1∼p(x1|xt)

[
(x1 − x̂1)vt|z(xt|z)

]
∇x̂1

J(x̂1). (69)

To quantify the approximation error, we have

∥δg∥2 := ∥gt − glocal∥22

=

∥∥∥∥Ez∼p(z|xt)

[
(
e−J(x1)

Zt(xt)
− 1)vt|z(xt|z)

]
− Ez∼p(z|xt)

[
(
e−J(x̂1)(1−∇x̂1

J(x̂1)(x1 − x̂1))

e−J(x̂1)
− 1)vt|z(xt|z)

] ∥∥∥∥2
2

=

∥∥∥∥Ez∼p(z|xt)

[
(
e−J(x1)

Zt(xt)
− e−J(x̂1)(1−∇x̂1J(x̂1)(x1 − x̂1))

e−J(x̂1)
)vt|z(xt|z)

]∥∥∥∥2
2

(70)

where
Zt(xt) = Ez∼p(z|xt)[e

−J(x1)]. (71)

We start by computing the error bound of approximating Zt with e−J(x̂1). Using Taylor expansion and the Taylor Remainder
Theorem 9,

∥∥∥Zt(xt)− e−J(x̂1)
∥∥∥2
2
=

∥∥∥∥∥Ez∼p(z|xt)[
∑
k=2

1

k!
Dk

x1
e−J(x)

∣∣
x1=x̂1

(x1 − x̂1)
k]

∥∥∥∥∥
2

2

≤ Ez∼p(z|xt)


∥∥∥∥∥∥∥∥∥
1

2
(x1 − x̂1)

T ∇x1
∇x1

e−J(x)
∣∣
x1=x̂1+t(x1−x̂1)︸ ︷︷ ︸

:=h
(J)
t

(x1 − x̂1)

∥∥∥∥∥∥∥∥∥
2

2

 , (72)

where t ∈ [0, 1].

If we set the L2 norm of the covariance matrix Ez∼p(z|xt)[(x1 − x̂1)(x1 − x̂1)
T ] as σ1, and the eigenvalue with the largest

absolute value of maxt,x1
|h(J)

t | to be λh, we can show that∥∥∥Zt(xt)− e−J(x̂1)
∥∥∥
2
≤Ez∼p(z|xt)[(x1 − x̂1)

Th
(J)
t (x1 − x̂1)]

≤Ez∼p(z|xt)[(x1 − x̂1)
Tλh(x1 − x̂1)]

≤λhEz∼p(z|xt)[(x1 − x̂1)
T (x1 − x̂1)]

≤λhtrΣ11

≤λhσ1d, (73)

9The notations here neglect the order of vector/matrix products, but this does not matter as all of them will be scaled using the triangle
inequality.
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where Σ11 is the covariance matrix of p(x1|xt), d is the dimensionality of x ∈ Rd. The last inequality follows from
trA =

∑n
i λi ≤ nmaxi λi, and the L2 norm of a matrix is its largest singular value, i.e., for the covariance matrix, that is

the largest eigenvalue.

Then,

δg = Ez∼p(z|xt)

[(
e−J(x1)

Zt(xt)
− e−J(x̂1)(1−∇x̂1

J(x̂1)(x1 − x̂1))

e−J(x̂1)

)
vt|z

]

= Ez∼p(z|xt)


e−J(x1)

Zt(xt)
− e−J(x1)

e−J(x̂1)︸ ︷︷ ︸
Using the error bound of Zt

+
e−J(x1)

e−J(x̂1)
− e−J(x̂1)(1−∇x̂1

J(x̂1)(x1 − x̂1))

e−J(x̂1)

 vt|z

 . (74)

Therefore,

∥δg∥22 ≤
∥∥∥∥− λhσ1d

Zt(xt)e−J(x̂1)
Ez∼p(z|xt)[e

−J(x1)vt|z]

∥∥∥∥2
2

+

∥∥∥∥Ez∼p(z|xt)

[
e−J(x1) − e−J(x̂1)(1−∇x̂1

J(x̂1)(x1 − x̂1))

e−J(x̂1)
vt|z

]∥∥∥∥2
2

=

∥∥∥∥− λhσ1d

Zt(xt)e−J(x̂1)
Ez∼p(z|xt)[e

−J(x1)vt|z]

∥∥∥∥2
2

+

∥∥∥∥Ez∼p(z|xt)

[
e−J(x̂1)(1−∇x̂1

J(x̂1)(x1 − x̂1)) +R2 − e−J(x̂1)(1−∇x̂1
J(x̂1)(x1 − x̂1))

e−J(x̂1)
vt|z

] ∥∥∥∥2
2

. (75)

By using the Taylor Remainder Theorem again, we have

R2 =
1

2
(x1 − x̂1)

T ∇ξ∇ξe
−J(ξ)

∣∣
ξ=x̂1+t(x1−x̂1)︸ ︷︷ ︸

=h
(J)
t

(x1 − x̂1). (76)

Thus,

∥δg∥22 ≤
∥∥∥∥λhσ1d

E[e−J(x1)v(xt|z)]
E[e−J(x1)]e−J(x̂1)

∥∥∥∥2
2

+

∥∥∥∥Ez∼p(z|xt)

[
1

2e−J(x̂1)
(x1 − x̂1)

Th
(J)
t (x1 − x̂1)vt|z

] ∥∥∥∥2
2

≤
∥∥∥∥λhσ1d

E[e−J(x1)v(xt|z)]
E[e−J(x1)]e−J(x̂1)

∥∥∥∥2
2

+

[
Ez∼p(z|xt)

∥∥∥∥ 1

2e−J(x̂1)
(x1 − x̂1)

Th
(J)
t (x1 − x̂1)

∥∥∥∥2
2

] [
Ez∼p(z|xt) ∥v(xt|z)∥22

]
≤
∥∥∥∥λhσ1d

E[e−J(x1)v(xt|z)]
E[e−J(x1)]e−J(x̂1)

∥∥∥∥2
2

+

∥∥∥∥ λhσ1d

2e−J(x̂1)

∥∥∥∥2
2

E
[
∥v(xt|z)∥22

]
. (77)

Then we have

∥δg∥22 ≤
∥∥∥∥λhσ1d

E[e−J(x1)v(xt|z)]
E[e−J(x1)]e−J(E[x1])

∥∥∥∥2
2

+

∥∥∥∥ λhσ1d

2e−J(E[x1])

∥∥∥∥2
2

E
[
∥v(xt|z)∥22

]

=

∣∣∣∣ λhσ1d

e−J(E[x1])

∣∣∣∣2

∥∥∥∥E[e−J(x1)v(xt|z)]

E[e−J(x1)]

∥∥∥∥2
2︸ ︷︷ ︸

C1

+
1

4
E
[
∥v(xt|z)∥22

]
︸ ︷︷ ︸

C2

 , (78)
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where we omit z ∼ p(z|xt) in Ez∼p(z|xt)[·] and simplify the notation to E[·]. Therefore, the approximation error of glocal is
bounded by (λhσ1d)

2(C1+C2)/|e−J(E[x1])|, where λh is the largest eigenvalue of h(J)
t , the Hessian matrix of the objective

function e−J , σ1 is the L2 norm of the covariance matrix, d is the sample dimensionality, C1 is a constant that has to do
with the norm of the new VF, and C2 is the variance of the original conditional VF. Some intuitions can be emphasized:

1. The error is small when J is smooth, in which case the Hessian of e−J will approach zero. This corresponds to the
mild guidance, where approximation-based glocal works well.

2. The error is small when σ1 is small, i.e. the covariance matrix Σ11 has a small Frobenius norm. This is the case when
the flow time t→ 1 (and σt = 0), where xt predicts x1 well.

3. The magnitude of |e−J(E[x1])| reflects how well how well the estimated generated sample E[x1] matches the objective J
given the current xt. If E[x1] lies inside the region where J is small, i.e., E[x1] is a good sample, then the approximate
guidance will be more accurate as the optimization is conducted locally, and gradient can reflect the landscape well. If
J(E[x1]) is large, the gradient is almost randomly exploring the sample space, producing a larger approximation error.

4. The cases where C1 and C2 are small are not necessarily those where the guidance is of better accuracy. Because of the
small norm of the VF, the error in the guidance VF will likely cause a larger deviation due to increased relative error.

A.10. Estimation of x̂1

Under the affine path assumption (Assumption 3.2), we can estimate the expectation of x1 under the distribution p(z|xt).
This is a well-known trick (Lipman et al., 2024; Pokle et al., 2024), but our analysis includes the dependent coupling case.

Since the flow matching model learns

vθ(xt, t) ≈ vt(xt) = Ez∼p(z|xt) [v(xt|z)] , (79)

using the affine path assumption (xt = αtx1 + βtx0 + σtσ̇tε),

v(xt|z) =
d

dt
xt = (α̇x1 + β̇tx0 + σ̇tε), (80)

so
vt(xt) = Ez∼p(z|xt)

[
α̇x1 + β̇tx0 + σ̇tε

]
. (81)

Meanwhile, taking the expectation of xt under p(z|xt) yields

Ez∼p(z|xt)[xt] = xt︸ ︷︷ ︸
because

∫
zp(z|xt)dz=1

= Ez∼p(z|xt)[αtx1 + βtx0 + σtε]. (82)

Then, by using Eq. 81 and 82, we can eliminate either x̂0 or x̂1 in each other’s expression:

x̂0 := Ez∼p(z|xt)[x0] =
α̇txt − αtvt(xt)

βtα̇t − β̇tαt

+ Ez∼p(z|xt)

[
−α̇tσtε+ αtσ̇tε

βtα̇t − β̇tαt

]
︸ ︷︷ ︸

:=ζ0
t

(83)

x̂1 := Ez∼p(z|xt)[x1] =
−β̇txt + βtvt(xt)

βtα̇t − β̇tαt

+ Ez∼p(z|xt)

[
β̇tσtε− βtσ̇tε

βtα̇t − β̇tαt

]
︸ ︷︷ ︸

:=ζ1
t

. (84)

It should be noted that we have assumed that σt is small and thus ζ0t and ζ1t are also small in the affine path assumption
(Assumption 3.2):

ζ0t =
−α̇tσt + αtσ̇t

βtα̇t − β̇tαt

Ez∼p(z|xt)[ε]

=
−α̇tσt + αtσ̇t

βtα̇t − β̇tαt

∫
p(xt|x0, x1)π(x0, x1)

p(xt)
εdx0dx1

=
−α̇tσt + αtσ̇t

βtα̇t − β̇tαt

∫
1

p(xt)
Eε∼pε(ε) [π(x0(xt, x1, ε), x1)ε] dx1. (85)
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Since π(x0(xt, x1, ε), x1) is a probability distribution that is assumed to be bounded, we denote
maxε ∥π(x0(xt, x1, ε), x1)∥ ≤ M(x1, xt), and thus

lim
σt→0,σ̇t→0

ζ0t ≤ lim
σt→0,σ̇t→0

∣∣∣∣−α̇tσt + αtσ̇t

βtα̇t − β̇tαt

∣∣∣∣ · ∫ ∥∥∥∥ 1

p(xt)

∥∥∥∥2
2

·
∥∥Eε∼pε(ε)∥ε∥2M(x1, xt)

∥∥2
2
dx1 = 0. (86)

Since everything in the integral is independent of ε, x0, or σt, as σt → 0 ζ0 simply converges to zero. A similar approach
can prove that limσt→0,σ̇t→0 ζ

1
2 is also zero.

Next, we explain why we specifically care about the case where the small σt assumption holds. In independent coupling
flow matching, σtε is exactly zero since we can use two of xt, x0, and x1 to express the third one. In dependent coupling
flow matching, this assumption also holds for famous methods such as optimal transport conditional flow matching or
Schrodinger Bridge conditional flow matching (Tong et al., 2024), where ε ∼ N (0, I) and σt is set as a small constant.
Therefore, the assumption that σtε is small in affine path assumption is general and applies to many existing flow matching
methods. Hence, by approximating ζ0t and ζ1t as zero, we have the final estimation of x̂1

x̂0 ≈
α̇txt − αtvθ(xt, t)

βtα̇t − β̇tαt

(87)

x̂1 ≈
−β̇txt + βtvt(xt)

βtα̇t − β̇tαt

, (88)

where Eq. (88) is just Eq. (5). Note the approximations become exact under Assumption 3.3.

A.11. Proof of gcov

Here, we prove that under the affine path assumption (Assumption 3.2), Eq. (6)

glocal
t ≈ gcov

t = − α̇tβt − β̇tαt

βt︸ ︷︷ ︸
schedule

Σ1|t∇x̂1
J(x̂1), (89)

where
glocal
t = −Ez∼p(z|xt)

[
(x1 − x̂1)v1|t(xt|z)

]
∇x̂1J(x̂1). (90)

Under the affine path xt = αtx1 + βtx0 + σtε the conditional vector field v1|t follows

v1|t(xt) = α̇tx1 + β̇tx0 + σ̇tε. (91)

Plugging this into the definition of glocal and we get

glocal
t =− Ez∼p(z|xt)[(x1 − x̂1)(α̇tx1 + β̇tx0 + σ̇tε︸ ︷︷ ︸

substitute x0 with x1, σtε, and xt

)]∇x̂1
J(x̂1)

=− Ez∼p(z|xt)[(x1 − x̂1)(α̇tx1 +
β̇t

βt
(xt − αtx1 − σtε) + σ̇tε)]∇x̂1

J(x̂1)

=− Ez∼p(z|xt)

[
(x1 − x̂1)

((
βtα̇t − αtβ̇t

βt

)
x1 +��xt + (σ̇t − σt)ε

)]
∇x̂1

J(x̂1)

=− α̇tβt − β̇tαt

βt
Σ1|t∇x̂1

J(x̂1) + (σt − σ̇t)Ez∼p(z|xt)[(x1 − x̂1)ε]∇x̂1
J(x̂1)︸ ︷︷ ︸

:=Υ, limσt→0,σ̇t→0 ∥Υ∥2
2=0

, (92)

where the xt term is canceled out because
∫
p(z|xt)(x1 − Ez∼p(z|xt)[x1])dz =

∫
p(z|xt)x1dz − Ez∼p(z|xt)[x1] = 0,

Σ1|t := Ez∼p(z|xt) [(x1 − x̂1)(x1 − x̂1)], and the residual term that characterizes the approximation error (denoted as ∥Υ∥22)
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in Eq. (6) (restated in Eq. (89)) is

Υ =(σt − σ̇t)Ez∼p(z|xt)[(x1 − x̂1)ε]∇x̂1
J(x̂1)

=(σt − σ̇t)∇x̂1J(x̂1)

∫
p(xt|z)p(z)

p(xt)
(x1 − x̂1)εdx1dx0

=(σt − σ̇t)∇x̂1
J(x̂1)

∫
p(σtε)π(x0|x1)p(x1)

p(xt)
(x1 − x̂1)

1

σt
(xt − αtx1 − βtx0)dx1dx0

=(σt − σ̇t)∇x̂1
J(x̂1)

∫
p(x1)

p(xt)
(x1 − x̂1)dx1

∫
p(σtε)π(x0|x1)εdx0

=(σt − σ̇t)∇x̂1
J(x̂1)

∫
p(x1)

p(xt)
(x1 − x̂1)Eε∼pε(ε)

[
π

(
1

βt
(xt − αtx1 − σtε) | x1

)
ε

]
dx1, (93)

where pε(ε) is the marginal distribution of ε. Suppose ∥π
(

1
βt
(xt − αtx1 − σtε) | x1

)
∥22 = ∥π (x0 | x1) ∥22 ≤M(x1, xt)

(which is a function independent of ε, then

∥Υ∥22

≤∥(σt − σ̇t)∇x̂1J(x̂1)∥22 ·
∥∥∥∥∫ p(x1)

p(xt)
(x1 − x̂1)Eε∼pε(ε)

[
π

(
1

βt
(xt − αtx1 − σtε) | x1

)
ε

]
dx1

∥∥∥∥2
2

≤|(σt − σ̇t)| ∥∇x̂1
J(x̂1)∥22︸ ︷︷ ︸
:=G

·
∫ ∥∥∥∥p(x1)

p(xt)
(x1 − x̂1)

∥∥∥∥2
2︸ ︷︷ ︸

:=Q

·
∥∥∥∥Eε∼pε(ε)

[
π

(
1

βt
(xt − αtx1 − σtε) | x1

)
ε

]∥∥∥∥2
2︸ ︷︷ ︸

≤(MEε∼pε(ε)[∥ε∥2])
2≤M2Varpε

dx1

≤|(σt − σ̇t)|G(xt)

∫
Q(x1, xt))M2(x1, xt)Varpε

dx1, (94)

all of which are independent on x0 or σt. Thus,

lim
σ→0,σt→0

∥Υ∥22 = 0. (95)

A.12. The Jacobian Trick

We prove the Jacobian Trick here.

Proposition A.5. The Jacobian trick. Under Assumption 3.3, the inverse covariance matrix of p(x1|xt), Σ1|t, is affine to
the Jacobian of the VF ∂vt

∂xt
, and is proportional to the Jacobian ∂x̂1

∂xt
:

Σ1|t =
β2
t

αt(α̇tβt − β̇tαt)
(−β̇t + βt

∂vt
∂xt

) =
β2
t

αt

∂x̂1

∂xt
.

Proof.

To begin with, we prove Σ1|t =
β2
t

αt

∂x̂1

∂xt
. A similar conclusion has been proved in Ye et al. (2024). We generalize their proof

to affine Gaussian path flow matching:

Recall from Eq. (88) that

x̂1 = − β̇t

α̇tβt − β̇tαt

xt +
βt

α̇tβt − β̇tαt

vt (96)

and
x̂0 =

α̇t

α̇tβt − β̇tαt

xt −
αt

α̇tβt − β̇tαt

vt. (97)

So we have the Jacobian trick
∂x̂1

∂xt
= − β̇t

α̇tβt − β̇tαt

+
βt

α̇tβt − β̇tαt

∂vt(xt)

∂xt
, (98)
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and because the VF is associated with the score

vt(xt) =
βt(α̇tβt − β̇tαt)

αt
∇xt

log pt(xt) +
α̇t

αt
xt. (99)

Next, we try to prove

∇xt∇xt log pt(xt) = −
1

β2
t

+
α2
t

β4
t

Σx1x1 , (100)

which allows us to connect the derivative of the score∇2
xt

log p(xt)
10with the covariance matrix Σ1|t.

∇2
xt

log p(xt) =
∇2

xt
p(xt)

p(xt)
−∇xt log p(xt)∇xt log p(xt)

=
1

p(xt)

∫
p(x1) ∇2

xt
p(xt|x1)︸ ︷︷ ︸

using ∇2p=p∇2 log p+p(∇ log p)2

dx1 −∇xt log p(xt)∇xt log p(xt)

=
1

p(xt)

∫
p(x1)(p(xt|x1)∇2

xt
log p(xt|x1) + p(xt|x1)∇xt

log p(xt|x1)∇xt
log p(xt|x1))dx1

−∇xt log p(xt)∇xt log p(xt)

=Ex1∼p(x1|xt)

[
∇2

xt
log p(xt|x1) +∇xt

log p(xt|x1)∇xt
log p(xt|x1)

]
−∇xt

log p(xt)∇xt
log p(xt)

=Ex1∼p(x1|xt)

[
− 1

β2
t

+

(
xt − αtx1

β2
t

)2
]
−
(
xt − αtEx1∼p(x1|xt)[x1]

β2
t

)2

=− 1

β2
t

+
α2
t

β4
t

(
E[x1x

T
1 ]− E[x1]E[x1]

T
)

=− 1

β2
t

+
α2
t

β4
t

Σx1x1 . (101)

Then by combining Eq. (99) and (100) we have

∂x̂1

∂xt
= − β̇t

α̇tβt − β̇tαt

+
βt

α̇tβt − β̇tαt

(
βt(α̇tβt − β̇tαt)

αt
∇xt
∇xt

log pt(xt) +
α̇t

αt

)

= − β̇t

α̇tβt − β̇tαt

+
βt

α̇tβt − β̇tαt

(
βt(α̇tβt − β̇tαt)

αt
(− 1

β2
t

+
α2
t

β4
t

Σx1x1
) +

α̇t

αt

)
=

αt

β2
t

Σx1x1
. (102)

Inserting back Eq. (88) and we prove

Σ1|t =
β2
t

αt(α̇tβt − β̇tαt)
(−β̇t + βt

∂vt
∂xt

). (103)

A.13. Proof for gsim-inv
t

We begin with

gsim-inv
t (xt) =

∫ (
e−J(x1)

Z̃t

− 1

)
vt|z(xt|z)p̃(z|xt)dz, (104)

where Z̃t =

∫
e−J(x1)p̃(z|xt)dz, (105)

10We use ∇∇ and ∇2 interchangeably, with a little abuse of notation. It should not cause confusion since the size of the terms in the
equations must match.
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and approximate p(x1|xt) with N (x1; x̂1,Σt) where x̂1 := Ez∼p(z|xt)[x1] and Σt is already known.

With Assumption 3.2 and assuming e−J(x1) = N (Hx1; y, σyI), we have

Z̃t =

∫
e−J(x1)p̃(z|xt)dz

=

∫
e
− 1

2σ2
y
∥y−Hx1∥2

2− 1
2 (z−ẑ)TΣ−1

t (z−ẑ)
dz (106)

where ẑ = (x̂0, x̂1) is the expectation of z under p(z|xt). Note H operates on x1 only, and we pad the blocks related to x0

with zero in H .

Then, by inserting the Gaussian approximation

gsim-inv
t (xt) ≈

∫ (
e−J(x1)

Z̃t

− 1

)
(α̇tx1 + β̇tx0) p̃(z|xt)︸ ︷︷ ︸

Gaussian

dz (107)

=

∫
1

Z̃t

exp

(
− 1

2σ2
y

∥y −Hx1∥22 −
1

2
(z − ẑ)TΣ−1

t (z − ẑ)

)
︸ ︷︷ ︸

:=˜̃p(z|xt)

(α̇tx1 + β̇tx0)dz − vt(xt). (108)

Remark A.6. Note that Σ−1
t couples x0 and x1. This is a fundamental feature of dependent couplings π(x0, x1). However,

it may seem tempting to further assume that Σ−1
t is diagonal or even a scalar. It should be noted that this assumption

completely discards the dependency of x0 and x1 in the coupling, and thus, we try to avoid that in the dependent coupling
case.

For clarity, we need to express Σ−1
t with

Σ−1
t

∆
=

(
Ξ00 Ξ01

Ξ10 Ξ11

)
. (109)

Then, the distribution exp
(
− 1

2σ2
y
∥y −Hx1∥22 − 1

2 (z − ẑ)TΣ−1
t (z − ẑ)

)
is still a Gaussian, and to estimate the expectation

of z = (x0, x1) we need to simply the probability density of this Guassian into a standard form.

Z̃t
˜̃p(z|xt) = exp

(
− 1

2σ2
y

∥y −Hx1∥22 −
1

2
(z − ẑ)TΣ−1

t (z − ẑ)

)

=exp

− 1

2σ2
y

(
∥y∥2 − 2⟨y,Hx1⟩+ ∥Hx1∥22

)
− 1

2
zTΣ−1

t z − 1

2
ẑTΣ−1

t ẑ + ⟨z,Σ−1
t ẑ⟩︸ ︷︷ ︸

since Σ−1
t =Σ−1

t
T


=exp

(
−1

2

(
zT
(
HTH

σ2
y

+Σ−1
t

)
z − 2⟨z, H

T

σ2
y

y +Σ−1
t ẑ⟩+

(
1

2σ2
y

∥y∥2 + 1

2
ẑTΣ−1

t ẑ

)))
, (110)

It is obvious that the mean of this Gaussian is

µ =

(
HTH

σ2
y

+Σ−1
t︸ ︷︷ ︸

:=P

)−1(
HT

σ2
y

y +Σ−1
t ẑ

)
, (111)

where we can find P ’s blocks to be

P =

(
Ξ00 Ξ01

Ξ10 Ξ11 +
HTH
σ2
y

)
. (112)

Then, by computing µ = (ˆ̂x0, ˆ̂x1) we can compute gsim-inv
t + vt, where ˆ̂x0, ˆ̂x1 are the x0 and x1 term in the integral of Eq.

(108), because
gsim-inv
t + vt = Ez∼ ˜̃p(z|xt)

[α̇tx1 + β̇x0]. (113)
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To simplify, insert back vt to get

gsim-inv
t = Ez∼ ˜̃p(z|xt)

[α̇tx1 + β̇x0]− Ez∼p̃(z|xt)[α̇tx1 + β̇x0]

=
(
β̇tI α̇tI

)
P−1

((
0

HT

σ2
y
y

)
+

((
Ξ00 Ξ01

Ξ10 Ξ11

)
− P

)(
x̂0

x̂1

))

=
(
β̇tI α̇tI

)
P−1

((
0

HT

σ2
y
y

)
+

(
0 0

0 −HTH
σ2
y

)(
x̂0

x̂1

))

=
(
β̇tI α̇tI

)
P−1

(
0

HT

σ2
y
y − HTH

σ2
y

x̂1

)
. (114)

Usually,
(
β̇tI α̇tI

)
P−1 is difficult to obtain:

gsim-inv
t = (β̇tP

−1
01 + α̇tP

−1
11 )

(
HT

σ2
y

y − HTH

σ2
y

x̂1

)
, (115)

where P−1
01 and P−1

11 requires computing the inversion of P and thus in general intractable. Using block matrix inversion,
we have

gsim-inv
t =

(
− β̇tΞ

−1
11 Ξ01

(
Ξ11 +

HTH

σ2
y

− Ξ10Ξ
−1
11 Ξ01

)−1

+ α̇t

(
Ξ11 +

HTH

σ2
y

− Ξ10Ξ
−1
11 Ξ01

)−1
)(

HT

σ2
y

y − HTH

σ2
y

x̂1

)
.

(116)

For general (possibly coupled) affine path flow matching, we can make approximations and set the blocks in Σ−1
t to scalars.

It should be noted that this Gaussian assumption can still capture some coupling between x0 and x1 since the off-diagonal
blocks Ξ01 and Ξ10 are not set to zero. Specifically, we have

gsim-inv-A
t = −λt

(σ2
y

r2t
+HTH

)−1

HT (y −Hx̂1) , (117)

where λt and r2t are hyperparameters. λt approximates α̇t − β̇tΞ
−1
11 Ξ01, absorbing the flow schedule.

Special case: the non-coupled affine Gaussian path

Next, we prove that gsim-inv
t covers ΠGDM (Song et al., 2023a) and OT-ODE (Pokle et al., 2024) as special cases. Under the

uncoupled affine Gaussian path assumption (Assumption 3.3), one may think that the covariance matrix is block diagonal,
but it is false: x0 and x1 are still dependent on each other in the distribution p(z|xt) = p(x0, x1|xt) even if the coupling
is independent. In the uncoupled case, the probability graph is x0 → xt ← x1, so although x0 and x1 are marginally
independent (π(x0, x1) = p(x0)p(x1)), their conditional can be dependent p(x0, x1|xt) ̸= p(x0|xt)p(x1|xt). Then, we
notice the uncoupled path is

xt = αtx1 + βtx0, (118)

so we actually should not have approximated the distribution pz|xt
as a Gaussian in the uncoupled case. Fortunately, there is

a workaround to make x0 almost entirely dependent on x1. We can set x0 = −αt

βt
x1 +

1
βt
xt + ξϵ, where ϵ ∼ N (0, I), and

setting ξ → 0 gives our desired uncoupled path results. The covariance matrix of x0 and x1 to:

Σt =

(
α2

t

β2
t
Σx1x1 + ξ2I −αt

βt
Σx1x1

−αt

βt
Σx1x1

Σx1x1

)
(119)

Note that Σ−1
x1x1

̸= Ξ11 as Ξ11 is a block in the inversion of the larger matrix Σt. Next we compute Σ−1
t :

Σ−1
t =

( 1
ξ2 I − a

ξ2 I

− a
ξ2 I

(
Σx1x1

− a2Σx1x1
(a2Σx1x1

+ ξ2I)−1Σx1x1

)−1

)

=

( 1
ξ2 I

αt

βtξ2
I

αt

βtξ2
I
(
Σx1x1

− Σx1x1
(Σx1x1

+
β2
t

α2
t
ξ2I)−1Σx1x1

)−1

)
. (120)
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where a = −αt

βt
. Therefore, Ξ11 → ∞, Ξ01 = Ξ10 = αt

βtξ2
I → ∞, and Ξ00 = 1

ξ2 I → ∞. Thus, we need more detailed
calculations to get the result:

gsim-inv-diffusion
t =

(
− β̇t Ξ

−1
11 Ξ01︸ ︷︷ ︸
→αt

βt
I

(
Ξ11︸︷︷︸
→∞

+
HTH

σ2
y

− Ξ10Ξ
−1
11 Ξ01︸ ︷︷ ︸

→∞

)−1

+ α̇t

(
Ξ11︸︷︷︸
→∞

+
HTH

σ2
y

− Ξ10Ξ
−1
11 Ξ01︸ ︷︷ ︸

→∞

)−1
)

(
HT

σ2
y

y − HTH

σ2
y

x̂1

)
. (121)

Obviously we want to find the finite term left in Ξ11 − Ξ10Ξ
−1
11 Ξ01:

lim
ξ→0

Ξ11 − Ξ10Ξ
−1
11 Ξ01

= lim
ξ→0

(
Σx1x1

− Σx1x1
(Σx1x1

+
β2
t

α2
t

ξ2I)−1Σx1x1

)−1

− Ξ10Ξ
−1
11 Ξ01

= lim
ξ→0

(
Σx1x1

− Σx1x1
(Σx1x1

+
β2
t

α2
t

ξ2I)−1Σx1x1

)−1

− α2
t

β2
t ξ

2

= lim
ξ→0

(
Σx1x1

(
Σx1x1

+
β2
t

α2
t

ξ2I

)−1(
(���Σx1x1

+
β2
t

α2
t

ξ2I)−���Σx1x1

))−1

− α2
t

β2
t ξ

2

= lim
ξ→0

α2
t

β2
t ξ

2

(
Σx1x1

(
Σx1x1

+
β2
t

α2
t

ξ2I

)−1

− 1

)
=Σ−1

x1x1
. (122)

Now we have

gsim-inv-diffusion
t =

α̇tβt − β̇tαt

βt

(
Σ−1

x1x1
+

HTH

σ2
y

)−1(
HT

σ2
y

y − HTH

σ2
y

x̂1

)
. (123)

This is essentially the same formulation as in ΠGDM (Song et al., 2023a) and OT-ODE (Pokle et al., 2024). Next, we will
make some trivial conversions to cover the formulations exactly.

In diffusion paths (Assumption 3.4) we proved that ∂x̂t

∂xt
= αt

β2
t
Σ1|t where Σ1|t is just what we denote Σx1x1

here. Equiva-
lently,

∂xt

∂x̂1
=

β2
t

αt
Σ−1

x1x1
. (124)

Thus,

gsim-inv-diffusion
t =

α̇tβt − β̇tαt

βt

(
Σ−1

x1x1
+

HTH

σ2
y

)−1(
HT

σ2
y

y − HTH

σ2
y

x̂1

)
=
α̇tβt − β̇tαt

βt
Σx1x1

(
σ2
yI +Σx1x1H

TH
)−1

HT (y −Hx̂1)

=
α̇tβt − β̇tαt

βt

β2
t

αt

∂x̂1

∂xt

(
σ2
yI +Σx1x1

HTH
)−1 (

HT y −HTHx̂1

)
=
βt(α̇tβt − β̇tαt)

αt

(
∂x̂1

∂xt

(
σ2
yI +Σx1x1

HTH
)−1 (

HT y −HTHx̂1

))
=
βt(α̇tβt − β̇tαt)

αt

(
(y −Hx̂1)

T
H
(
σ2
yI +Σx1x1

HTH
)−1 ∂x̂1

∂xt

)T

. (125)
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Now we make the same approximation in ΠGDM that Σx1x1
= r2t I . Then by noticing that(

σ2
yI + r2tHHT

)
H =H

(
σ2
yI + r2tH

TH
)

H
(
σ2
yI + r2tH

TH
)−1

=
(
σ2
yI + r2tHHT

)−1
H (126)

We exactly cover

gsim-inv-ΠGDM
t =

βt(α̇tβt − β̇tαt)

αt

(
(y −Hx̂1)

T (
σ2
yI + r2tH

TH
)−1

H
∂x̂1

∂xt

)T

, (127)

and the scheduler βt(α̇tβt−β̇tαt)
αt

in the path αt = t, βt = 1− t becomes 1−t
t , which exactly covers the schedule in OT-ODE

which takes the same path. In addition, we can also directly compute Σx1x1
using ∂x̂1

∂xt
instead of approximating it with rt.

This corresponds to the approach in Boys et al. (2023), which uses the Jacobian to acquire the covariance and then remove
the approximation error in computing

(
σ2
yI +Σx1x1

HTH
)−1

.
Remark A.7. Starting from the more general assumption of affine path flow matching, we derived the guidance compatible
with dependent coupling flow matching, including OT-CFM. The fact that our guidance can exactly cover classical diffusion
guidance like ΠGDM and affine Gaussian path flow matching guidance like OT-ODE verifies the validity of our theory.

B. Experiment Details
B.1. Synthetic Dataset Experiment Details

The training of flow matching models involves sampling x0 from a source distribution of {Circle,8 Gaus-
sians,Uniform,Gaussian} and sampling x1 from the target distribution of {S-Curve,Moons,8 Guassians}. The model
backbone is an MLP of 4 layers with a hidden dimension of 256. The models are trained 1e5 steps.

To evaluate the asymptotic exactness of gMC, we compute the Wasserstain-2 (W2) distance of the samples generated under
guidance, with the ground truth energy-weighted distribution p(x1)e

−J(x1)/Z. Since the source distribution p(x1) is learned,
the flow matching model itself has a small error w, which can also be quantified using theW2 distance. In principle, this
error w characterizes the performance upper bound of the guided distribution: theW2 distance of the guided distribution
will, in principle, not be significantly lower than w. The result is shown in Figure 4, where w is demonstrated using the
dashed line.

B.2. Planning Experiment Details

Settings. The experiment leverages the D4RL (Datasets for Deep Data-Driven Reinforcement Learning) dataset (Fu et al.,
2020), specifically the Locomotion datasets, which is a common choice to evaluate offline reinforcement learning methods,
as well as offline planning methods (Janner et al., 2022; Dou & Song, 2024). The datasets contain non-expert behaviors
from which the model is required to learn the optimal policy, such as a mixture of expert and medium-level experts, or the
training replay buffer of an RL agent.

To evaluate the performance of different guidance methods, we conduct experiments on offline RL tasks where generative
models have been used as planners (Janner et al., 2022; Chen & Lipman, 2024). Our setting is based on that of a classical
generative planner called Diffuser (Janner et al., 2022), where a generative model generates a state-action pair sequence of
multiple future steps, and another critic model that predicts the future reward11 of the generated plans. The generative model
then optimizes its plans using guidance for higher future rewards. Following the formulation in Levine (2018); Janner et al.
(2022), the optimization is realized through sampling from 1

Z p(x1)e
R(x1), where R is the critic model. This aligns with the

goal of guidance which we discussed in this paper, so we chose this experiment to evaluate different guidance methods.

Baseline Methods. The results of the two baselines are collected from the literature (Janner et al., 2022). Behavior cloning
refers to using a Gaussian distribution to fit the offline behavior distribution. Diffuser refers to using a diffusion model
to learn the offline behavior and then guiding the model to generate plans with higher expected future returns. Note that
the Diffuser also adopts training-based guidance, which requires re-training the guidance model when switching to a new
objective function. On the contrary, the training-free guidances gcov-A, gcov-G, gsim-MC, and gMC has zero-shot generalization

11Formally, it predicts the discounted return-to-go.
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Figure 4: Error scaling with Monte Carlo sample number. In the synthetic dataset, the guidance performance (W2 distance
between the generated distribution and the ground truth energy weighted distribution p(x1)e

−J(x1)/Z) decreases as the
number of Monte Carlo samples increases. The dashed lines denote the W2 distance between the learned unguided
distribution and the original ground truth distribution p(x1). The reason why the guided generation errors (crosses) do not
converge to the dashed lines is that they measure theW2 distance of p(x1) and p(x1)e

−J(x1)/Z, respectively.

ability for (Zhou et al., 2024) the objective function. In the experiment results, we do not highlight the results of baselines as
we focus on the comparison between different guidance methods.

Hyperparameters. As we mentioned, a generative model is first trained on the offline dataset as a behavior-cloning
method but captures the actual action distribution rather than approximating it with a Gaussian. The generative model we
consider here is the CFM or mini-batch optimal transport CFM with affine paths αt = t, βt = 1− t, and whose backbones
are an 8-layer Transformer with a hidden dimension of 256. The models are trained with 1e5 steps, a batch size of 32, a
learning rate of 2e-4, and the cosine annealing learning rate scheduler. As for the critic model, it is trained with the same
backbone model using the last token as the value output and trained 1e4 steps, batch size of 64, and a learning rate of 2e-4.
The value discount factor is set to 0.99 for all 3 datasets. We use a planning horizon of 20 steps and the planning stride 1.
We exclude tricks such as using the inverse dynamics model, planning with stride, and using sample-and-select methods (Lu
et al., 2025). During evaluation, the same base model is utilized for different guidance methods to ensure a fair comparison.
We report the normalized score (Fu et al., 2020) where 100 is the expert RL agent’s return.

For different guidance methods, different hyperparameter combinations are tuned. We elaborate on them here.

• gcov-A: We tune λt in {constant, cosine decay, exponential decay, linear decay} with a scaler {0.01, 0.1, 1.0, 10.0},
where the schedule functions are normalized to [0, 1].

• gcov-G: The same hyperparameters are tuned as in gcov-A.

• gMC: We tune the scale of J in {0.2, 1, 2, 3, 5}. The Monte Carlo sample number is limited to be smaller than {128}.
We also include a small number ϵ to enhance numerical stability. We conduct an ablation study to show the performance
is insensitive to ϵ, as shown in Table 6.

• gsim-MC: We tune scale before J in {0.1, 1, 10} and the assumed standard deviation of p(x1|xt) in {0.1, 0.5, 1, 10},
and do extra schedule and scale of the estimated guidance with schedule tuned in {linear decay, constant} and the
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scale tuned in {0.1, 1, 10}. It is worth noting that if the objective function J is properly normalized, the scale does not
require extensive tuning.

• gϕ: Training-based methods have many hyperparameters involving model architecture and the training settings. We
switch between different model depth and hidden dimensions, and different training losses. The best results for each
loss are provided in Table 4 and 5.

Finally, for each pre-trained VF (CFM or OT-CFM), we try adding different guidance VFs (also CFM or OT-CFM), and
then the best result is reported.

Estimation of the ground truth distribution of J . Suppose the unguided model generates x ∼ p(x), and J(x) follows
the distribution pJ(J). Then, if x′ ∼ 1

Z p(x)e−J(x), then J ′ follows

p′(J) = p′(x)det
(

∂x

∂J(x)

)
=

1

Z
p(x)e−J(x)det

(
∂x

∂J(x)

)
. (128)

Since for the original distribution

p(J) = p(x)det
(

∂x

∂J(x)

)
, (129)

so
p′(J) =

1

Z
e−Jp(J). (130)

Therefore, by sampling from the unguided model and then reweighting the distribution of J , we can compute the ground
truth distribution p′(J) for the J under ideal guidance. Note that in the planning experiment, J = −R.

It should be noted that although gradient-based guidances gcov-A and gcov-G result in distributions where the estimated
return R is higher, it does not necessarily mean that their performance is better: first, the goal of the guidance is the gray
line, what we assume here is that the methods produce a distribution close to the gray line is better; second, practically
speaking, the high return is predicted by the critic model, but gradient methods may produce plans that the critic has not
seen during training, which is called distribution shift, thus cheating the critic. On the contrary, the target guided distribution
p(x1)e

R(x1)/Z regularizes the guided distribution on the support of p(x1), alleviating the problem of distribution shift.

Additional Results on the Distribution of Generated R. The additional results of the distribution of R in different
environments with different guidance scales (the α in p′(R) = p(R)e−αR/Z) are shown in Figure 5.

Additional Results. The complete results, including standard deviations, are provided in Table 4 and 5.

Table 4: Full experiment results on D4RL Locomotion datasets. The base model is mini-batch optimal transport conditional
flow matching. Entries with ≥ 95% score than the best per task are highlighted in bold. Baselines are excluded from the
ranking.

w/o g gcov-A gcov-G gsim-MC gMC gϕ GM gϕ VGM gϕ RGM gϕ MRGM

Medium-Expert HalfCheetah 61.9 ± 13.3 64.8 ± 12.7 73.2 ± 9.5 78.1 ± 3.2 86.4 ± 0.8 59.5 ± 18.4 57.7 ± 14.1 57.5 ± 13.1 70.2 ± 18.1
Hopper 95.2 ± 20.4 101.8 ± 22.2 112.3 ± 1.8 112.3 ± 0.8 112.7 ± 0.9 85.2 ± 23.3 98.1 ± 16.3 90.3 ± 24.1 89.3 ± 18.7
Walker2d 79.1 ± 35.2 97.3 ± 9.4 107.2 ± 1.4 101.0 ± 10.2 107.5 ± 1.0 87.0 ± 16.7 90.5 ± 10.0 88.0 ± 17.2 91.3 ± 11.7

Medium HalfCheetah 34.7 ± 9.6 42.2 ± 0.8 42.9 ± 0.9 43.1 ± 1.7 43.1 ± 0.4 42.7 ± 1.4 43.0 ± 1.2 42.7 ± 0.8 43.4 ± 0.9
Hopper 63.3 ± 4.6 75.1 ± 14.9 89.8 ± 13.6 76.2 ± 13.2 79.8 ± 14.8 79.7 ± 12.4 71.6 ± 9.2 77.4 ± 6.6 72.5 ± 6.0
Walker2d 72.4 ± 13.3 82.7 ± 5.3 81.3 ± 2.0 83.4 ± 1.9 83.0 ± 3.4 80.6 ± 2.2 80.2 ± 2.0 78.4 ± 3.9 76.6 ± 6.1

Medium-Replay HalfCheetah 25.6 ± 13.0 31.7 ± 3.4 36.1 ± 5.1 36.8 ± 1.8 40.0 ± 1.6 33.4 ± 2.6 35.5 ± 1.8 32.9 ± 1.8 34.7 ± 3.1
Hopper 40.1 ± 3.7 57.7 ± 15.4 74.1 ± 5.1 60.9 ± 13.1 88.6 ± 11.6 54.6 ± 14.8 48.1 ± 15.2 46.6 ± 11.9 55.3 ± 19.4
Walker2d 31.2 ± 6.0 62.5 ± 16.8 82.5 ± 10.8 64.4 ± 9.7 88.1 ± 2.1 45.6 ± 17.2 37.8 ± 14.5 44.3 ± 23.1 52.4 ± 20.6

B.3. Image Experiment Details

We pre-trained a CFM and mini-batch optimal transport CFM model with affine path αt = t, βt = 1− t on CelebA-HQ
256×256 dataset. The flow matching model utilizes the backbone of a U-Net following (Pokle et al., 2024). The pretraining
was conducted with a learning rate of 1e-4 and a batch size of 128 for 500 epochs. The run time was roughly 3 days on two
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(a): HalfCheetah, scale 0.001.
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(b): Walker2d, scale 0.001.
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(c): Hopper, scale 0.001.
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(d): HalfCheetah, scale 0.01.
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(e): Walker2d, scale 0.01.
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(f): Hopper, scale 0.01.
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(g): HalfCheetah, scale 0.05.
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(h): Walker2d, scale 0.05.
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Figure 5: The complete results of the distribution of R. The distribution of J under gMC matches the ground truth value
(gray dashed line) very well.

Table 5: Full experiment results on D4RL Locomotion datasets. The base model is conditional flow matching. Entries with
≥ 95% score than the best per task are highlighted in bold. Baselines are excluded from the ranking.

w/o g gcov-A gcov-G gsim-MC gMC gϕ GM gϕ VGM gϕ RGM gϕ MRGM

Medium-Expert HalfCheetah 46.4 ± 10.1 63.4 ± 17.8 68.5 ± 6.2 83.5 ± 4.2 87.7 ± 1.8 61.2 ± 17.1 81.5 ± 7.7 64.2 ± 20.7 66.4 ± 19.2
Hopper 83.4 ± 19.2 93.9 ± 22.5 113.3 ± 1.8 88.5 ± 28.0 113.3 ± 0.9 91.4 ± 16.1 84.2 ± 22.2 86.2 ± 18.7 86.5 ± 22.4
Walker2d 65.7 ± 12.1 100.4 ± 10.7 106.9 ± 0.8 107.0 ± 0.8 107.1 ± 0.4 96.2 ± 13.7 102.3 ± 9.2 100.9 ± 9.4 98.2 ± 12.3

Medium HalfCheetah 41.8 ± 0.9 43.6 ± 0.6 43.3 ± 1.2 43.8 ± 1.0 43.8 ± 1.0 43.7 ± 0.7 43.7 ± 1.0 42.9 ± 0.7 43.8 ± 1.1
Hopper 73.2 ± 5.4 79.1 ± 9.8 82.7 ± 11.9 82.1 ± 9.2 88.0 ± 11.3 81.4 ± 14.0 85.2 ± 15.5 74.0 ± 16.3 71.6 ± 14.7
Walker2d 72.2 ± 5.9 80.7 ± 1.1 82.5 ± 2.8 81.9 ± 5.4 81.9 ± 1.4 67.5 ± 23.7 72.9 ± 2.1 63.3 ± 21.4 55.9 ± 28.6

Medium-Replay HalfCheetah 22.2 ± 14.9 33.4 ± 7.1 39.3 ± 2.0 37.9 ± 1.4 40.6 ± 2.0 36.9 ± 2.3 39.1 ± 1.7 37.3 ± 2.1 36.8 ± 4.4
Hopper 55.1 ± 17.2 63.0 ± 17.5 69.3 ± 16.4 61.0 ± 22.6 80.9 ± 15.7 51.4 ± 22.6 63.5 ± 12.7 48.6 ± 10.9 57.3 ± 24.0
Walker2d 28.3 ± 7.3 64.9 ± 20.2 76.6 ± 10.7 58.9 ± 18.9 70.9 ± 21.7 57.5 ± 20.6 70.3 ± 4.9 53.1 ± 22.0 54.6 ± 18.7
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Table 6: Ablation study of the impact of the epsilon to the performance of gMC. The best results and the second best per task
are highlighted in bold and underlined.

1 1e−3 5e−3 1e−2 5e−2

HalfCheetah
Medium 42.5 ± 1.6 43.1 ± 0.6 39.8 ± 8.4 41.7 ± 2.9 43.2 ± 1.5

Medium-Expert 68.2 ± 15.5 66.9 ± 17.1 75.6 ± 12.6 74.6 ± 12.1 72.7 ± 16.6
Medium-Replay 33.5 ± 9.9 31.7 ± 12.6 39.7 ± 2.0 34.7 ± 10.9 37.3 ± 6.3

Hopper
Medium 69.0 ± 10.6 67.6 ± 4.9 73.1 ± 9.4 72.2 ± 10.0 72.6 ± 12.3

Medium-Expert 95.4 ± 19.5 103.2 ± 19.2 108.0 ± 12.3 107.1 ± 14.3 101.5 ± 20.8
Medium-Replay 53.8 ± 18.7 59.1 ± 17.0 68.2 ± 18.7 68.1 ± 18.1 74.3 ± 18.8

Walker2d
Medium 74.6 ± 6.5 75.1 ± 15.2 74.0 ± 10.6 71.1 ± 13.8 74.4 ± 11.0

Medium-Expert 79.0 ± 26.4 95.7 ± 17.8 94.2 ± 22.0 100.9 ± 17.6 103.0 ± 7.9
Medium-Replay 48.7 ± 21.5 49.5 ± 16.7 54.7 ± 20.6 57.6 ± 22.3 56.7 ± 18.6

H800 GPUs. For the CelebA dataset, we employed a train-validation-test split of 8:1:1. The test data was subsequently used
for three downstream tasks: central box inpainting, superresolution by four times, and Gaussian deblurring which is all
common benchmarks.

Settings for the experiments. We evaluated the guidance methods using 3,000 images randomly sampled from the test set
across the three inverse problems. Specifically, for deblurring, we apply a 61×61 Gaussian kernel with a standard deviation
of σb = 1.0. For super-resolution, we perform 4 × downsampling on the CelebA images. In the case of box-inpainting, we
use a centered 40×40 mask. Furthermore, for all three tasks, we add Gaussian noise after the degradation operation with a
standard deviation of σ = 0.05 to the images.

Metrics. In this paper, we use four commonly adopted metrics for image quality assessment: FID (Fréchet Inception
Distance), which measures the distance between generated and real image distributions; LPIPS (Learned Perceptual Image
Patch Similarity), which evaluates the perceptual similarity between images; and PSNR (Peak Signal-to-Noise Ratio) and
SSIM (Structural Similarity Index) to quantify image quality in terms of signal preservation and structural consistency,
respectively.

Why is gMC bad at image inverse problems? As can be seen from Figure 6 and Figure 7, the images generated by gMC do
not respect the reference degraded image. This is largely due to the variance of the MC estimation being too high given the
limited number of samples. Specifically, to estimate gt, one needs to obtain samples from regions where e−J is significantly
higher than average, which corresponds to the images that already look like the degraded image. Sampling such images
requires an infeasibly large number of samples. More advanced MC sampling techniques may help address this shortcoming,
such as the control variable method (Owen, 2013). Combining gMC and methods that are biased but with lower variance,
such as glocal or gsim, may also boost the performance.

However, on tasks such as conditional generation, as long as the condition often appears in the dataset, it will be easier to
obtain an accurate estimation of gt using gMC

t . Such scenarios include property-conditioned molecular structure generation,
label-conditioned image generation, and decision-making tasks, which are included in our experiments.

Visualizations. We provide visualizations of the results of the inverse problems in Figure 6 and 7.
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Figure 6: The visualization of the image inverse problems with the base flow matching model of mini-batch optimal
transport conditional flow matching (OT-CFM). Three rows show the results of Gaussian deblurring, box-inpainting, and
super-resolution from top to bottom.
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Figure 7: The visualization of the image inverse problems with the base flow matching model of conditional flow matching
(CFM). Three rows show the results of Gaussian deblurring, box-inpainting, and super-resolution from top to bottom.
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