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Abstract

While vision models are highly capable, their internal
mechanisms remain poorly understood– a challenge which
sparse autoencoders (SAEs) have helped address in lan-
guage, but which remains underexplored in vision. We ad-
dress this gap by training SAEs on CLIP’s vision trans-
former and uncover key differences between vision and lan-
guage processing, including distinct sparsity patterns for
SAEs trained across layers and token types. We then provide
the first systematic analysis on the steerability of CLIP’s
vision transformer by introducing metrics to quantify how
precisely SAE features can be steered to affect the model’s
output. We find that 10-15% of neurons and features are
steerable, with SAEs providing thousands more steerable
features than the base model. Through targeted suppres-
sion of SAE features, we then demonstrate improved per-
formance on three vision disentanglement tasks (CelebA,
Waterbirds, and typographic attacks), finding optimal dis-
entanglement in middle model layers, and achieving state-
of-the-art performance on defense against typographic at-
tacks.

1. Introduction
Vision transformers have become fundamental to mod-
ern computer vision and have achieved remarkable per-
formance across diverse tasks [7, 13, 31, 40]. However,
despite their widespread adoption and success, we lack a
deep understanding of how these models process and repre-
sent visual information internally. Although recent progress
has been made in understanding the features of language
models using decomposition techniques like sparse autoen-
coders (SAEs) [6, 9], similar interpretability advances in vi-
sion transformers remain limited.

Figure 1. Our method improves performance on vision disentan-
glement tasks by detecting and suppressing features with CLIP
SAEs. For CelebA, we suppress blondeness to improve gender
classification. For details, see Section 7.1.

Our work addresses this gap by applying an SAE-based
analysis to CLIP’s vision transformer [40], revealing funda-
mental differences between vision and language processing
mechanisms. This analysis is particularly important as vi-
sion transformers increasingly serve as building blocks for
larger multimodal systems [15, 30, 31], where understand-
ing their internal representations becomes crucial for safety
and reliability.

We make several key contributions. First, we train SAEs
on CLIP’s vision encoder. We observe properties about the
sparsity of the resulting SAEs, as measured by the L0-norm,
or the number of SAE features that activate for a given input
token. The L0 values of SAEs trained on the spatial tokens
are higher at the center of the image. Spatial tokens have
much higher L0s than the CLS token and SAEs trained on a
language model, suggesting fundamental differences in the
sparsity of vision and language distributions.
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Continuing to characterize our SAEs, we introduce a
steerability metric S, which measures how precisely SAE
features can be manipulated to influence model outputs.
Our analysis shows that approximately 10-15% features are
steerable (as determined by a threshold on S). While SAEs
and the base model have similar proportions of steerable
components, SAEs’ higher dimensionality yields a much
larger absolute number of steerable elements. The S mea-
surement provides a concrete framework for assessing the
downstream utility of our SAEs.

Finally, we demonstrate the practical utility of our SAEs
through improving the performance on three challenging
vision disentanglement tasks: CelebA attribute separation,
Waterbirds background suppression, and defense against ty-
pographic attacks. By selectively suppressing specific SAE
features, we achieve improved performance on these tasks,
with the most effective steering occurring in the middle lay-
ers of the model. For defense against typographic attacks,
our method beats state-of-the-art performance.

Our findings not only advance our theoretical under-
standing of CLIP vision transformers but also provide prac-
tical tools for improving model behavior. We release our
trained SAE models and code to facilitate further research
in vision transformer interpretability. Our work establishes
a foundation for more systematic approaches to understand-
ing and controlling these increasingly important models.

Figure 2. The top activating images show that base net features are
polysemantic, while SAE features capture task-relevant attributes:
blondeness (CelebA), land/water backgrounds (Waterbirds), and
typographic images (typographic attacks). Feature selection de-
tails are in Section 7.1 and more examples are in Appendix 12,
Figure 10.

2. Background
2.1. CLIP-ViT preliminaries
2.1.1. Contrastive Pre-training
CLIP [40] is trained via a contrastive loss to produce image
representations from weak text supervision. The model in-
cludes an image encoder Mimage and a text encoder Mtext
that map images and text descriptions to a shared latent
space Rd. The two encoders are trained jointly to maxi-
mize the cosine similarity between the output representa-
tions Mimage(I) and Mtext(t) for matching input text-image
pairs (t, I):

sim(I, t) =
⟨Mimage(I),Mtext(t)⟩

∥Mimage(I)∥2∥Mtext(t)∥2
. (1)

2.1.2. Zero-shot Classification with CLIP
Given a set of classes, the name of each class ci (e.g.,
the class “tabby cat”) is mapped to a fixed template(ci)
(e.g., “A photo of a {class}”), and encoded via the text en-
coder Mtext(template(ci)). The classification prediction for
a given image I is the class ci whose text representation is
most similar to the image representation:

argmax
ci

sim(I, template(ci)).

2.1.3. CLIP-ViT Architecture
The CLIP-ViT image encoder consists of a Vision Trans-
former followed by a linear projection1. Denoting the pro-
jection matrix by P ∈ Rd×d′

:

Mimage(I) = P (ViT(I)). (2)

The input I to ViT is first split into K non-overlapping im-
age patches that are encoded into K d′-dimensional image
tokens. An additional learned token, called the class (CLS)
token, is included and used later as the output token. To-
kens are processed simultaneously by applying L alternat-
ing residual layers of multi-head self-attention (MSA) and
MLP blocks.

2.2. Feature disentanglement with sparse autoen-
coders

One major challenge in neural network interpretability lies
in the often non-interpretable and polysemantic nature of
individual neurons [16]. Motivated by the sparse feature
hypothesis Olshausen and Field [36], recent advancements
in sparse dictionary learning Bricken et al. [6], Cunning-
ham et al. [9] have shown that sparse autoencoders (SAEs)
can effectively identify interpretable monosemantic direc-
tions in the latent space. For an input activation x ∈ Rdmodel

1The Vision Transformer (ViT) is applied to the input image I ∈
RH×W×3 to obtain a d′-dimensional representation ViT(I)
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from these components, the SAE computes the following
decomposition:

x̂+ ϵ(x) =

dSAE∑
j=1

fj(x)nj + b+ ϵ(x). (3)

This formulation decomposes the input into a reconstruc-
tion x̂ through a sparse combination of feature vectors nj ∈
Rdmodel , where each nj is normalized to unit length. The
feature activations fj(x) ∈ R serve as sparse coefficients,
while b ∈ Rdmodel represents a bias term. The model is op-
timized using a combination of L2 reconstruction loss and
L1 regularization to enforce sparsity in the activations.

3. Related Work
3.1. CLIP Interpretability
Several works have explored interpreting CLIP’s behavior
and representations. Studies have investigated CLIP’s bi-
ases [45], attention layers [18, 25], and neurons [19, 21].
Recent works [4, 47] introduce task-agnostic concept dis-
covery, demonstrating that CLIP’s internal representations
naturally align with human-interpretable concepts. Our
work builds upon these findings by using SAEs not only to
understand CLIP’s representations at a finer degree of res-
olution, but also to actively steer CLIP’s behavior through
identified interpretable features.

3.2. Concept Bottleneck Models and Interpretabil-
ity

Recent efforts to make deep neural networks more in-
terpretable have led to various approaches, with Concept
Bottleneck Models (CBMs) emerging as a promising di-
rection. Traditional CBMs [26] require manually speci-
fied concepts and labeled attribute datasets, limiting their
scalability. Recent work leverages large language models
(LLMs) and vision-language models to overcome this lim-
itation [8, 35, 38]. However, these approaches are subject
to the biases of LLMs and still rely on pre-selecting con-
cepts based on downstream tasks, which may not align with
the model’s learned representations. In contrast, our work
uses SAEs, which extract unsupervised features from the
model’s internal representations.

3.3. Sparse Autoencoders for Model Interpretabil-
ity

Sparse autoencoders (SAEs) have recently gained atten-
tion as tools for mechanistic interpretability [6, 9]. These
works demonstrate that SAEs can effectively decompose
neural networks into interpretable features, particularly in
language models.

Recent studies have expanded the application of SAEs
to vision tasks. Abdulaal et al. [1], Fry [17] and Daujo-
tas [10, 11] explored how SAEs can extract interpretable

Figure 3. Typographic Attack on CLIP: On the left, an ImageNet-
100 sample. On the right, the same image with ’tiger’ written on
it. As demonstrated by Goh et al. [21], this simple text overlay
can mislead CLIP’s zero-shot classification towards the attacker’s
intended label.

features from CLIP’s vision encoder, and Daujotas showed
their potential in modifying image generation with diffu-
sion models. Meanwhile, Rao et al. [41] leveraged CLIP
embeddings to label SAE-derived concepts, enabling task-
agnostic concept bottleneck models. Gorton [22] applied
SAEs to InceptionV1, uncovering missing curve detectors.
Additionally, Lim et al. [28] introduced PatchSAE for spa-
tially localized attributions for fine-grained concept extrac-
tion.

Our paper builds upon past insights, uncovering novel
vision-specific sparsity patterns in the SAEs’ feature space,
performing the first systematic and quantitative analysis on
the steerability of CLIP’s features, and applying CLIP SAEs
to practical disentanglement tasks, achieving state-of-the-
art performance on defense against typographic attacks.

3.4. Typographic Attacks in CLIP Models
Typographic attacks [21] are a specific attack vector target-
ing vision-language models like CLIP, arising from their
multimodal pretraining. These attacks involve inserting
human-readable text into an input image to manipulate the
model’s prediction, as illustrated in Figure 3.

To improve robustness against such attacks,
Materzyńska et al. [33] proposed a learned transfor-
mation applied to CLIP’s output. PAINT [24] fine-tunes
on synthetically generated images of typographic attacks
and uses weight interpolation of the fine-tuned and the
original model, to gain a more robust model. Azuma
and Matsui [3] introduced Defense-Prefixes (DPs) which
extend the idea of “class-prefix learning” [27, 29, 42, 44]
towards defending against typographic attacks by inserting
a learned token before the class name, leading to improved
robustness without changing the model’s parameters.

4. Training CLIP Vision SAEs
We train two variants of SAEs on activations from the
residual stream of each layer of the CLIP-ViT-B-32 model.
The Vanilla SAEs use the ReLU activation function with
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the sparsity induced by L1 regularization, while the Top-K
SAEs [20] use the Top-K activation function with a fixed
sparsity as defined by the hyperparameter k. Both sets of
SAEs are trained in general and task-specific settings. The
general purpose SAEs are trained on ImageNet-1K to pop-
ulate the dictionary with as many features as possible from
the ViT’s latent space, whereas the task-specific SAEs are
trained on CelebA and Waterbirds datasets to populate the
dictionary with features that are task-relevant. Full training
and evaluation details of our SAEs are in Appendix 10.

5. Properties of CLIP SAEs
5.1. Comparing Spatial and CLS Token Behaviors
The L0 metric, which measures the number of activated fea-
tures per patch and serves as a key indicator of SAE spar-
sity, reveals distinct activation patterns in CLIP SAEs. Spa-
tial tokens maintain high activation counts (300-700), with
central patches showing a higher L0, suggesting greater in-
formation density in these regions (Figure 4 a). The spatial
bias in L0 persists up through the final layer, showing that
some spatial information is retained (Appendix 9, Figure
8). The CLS token follows a distinct pattern from the spa-
tial tokens, transitioning from sparse to rich representations
around layers 6-7 (Figure 4 b, c). The L0 of the spatial
tokens has a high degree of variance, reflecting high norm
tokens (Figure 4).

5.2. Comparing CLIP and Language Model Spar-
sity

When contrasting CLIP with GPT-2, we find striking differ-
ences in the L0 values of the SAEs trained on their repre-
sentations (Figure 4c). CLIP’s spatial tokens maintain sub-
stantially higher L0 values, showing 3-14x higher activa-
tion counts than GPT-2 tokens (which average L0 = 20-50).
Interestingly, CLIP’s CLS token exhibits sparsity patterns
more similar to those of language models in early layers
before diverging.

These patterns suggest fundamental differences in infor-
mation processing strategies. While language models main-
tain relatively consistent sparsity throughout their layers,
CLIP demonstrates a dual behavior: spatial tokens preserve
rich local features while the CLS token captures the com-
pression, which aligns with observations in [2].

6. CLIP SAE Feature Steering
Building on our analysis of CLIP SAEs, we explore their
potential for model control through feature activation steer-
ing—manipulating SAE features to influence model outputs
predictably [46]. This investigation raises several key ques-
tions: how to measure the impact of feature manipulations
on outputs, how SAE steering compares to direct model
steering, how steering effectiveness varies across layers,

and what proportion of features can be effectively steered.
To address these questions, we introduce a metric called

steerability, which quantitatively characterizes an SAE fea-
ture’s steering performance. This metric measures output
probability distribution changes in response to changing the
activation of a given feature, enabling systematic compar-
isons between SAE features, across SAE layers, and be-
tween SAEs and their base networks. Below, we define
steerability metrics and use them to analyze properties of
our CLIP SAEs.

6.1. Steerability Metrics
We conduct our analysis in the context of zero-shot CLIP
classification. Following [41], we use CLIP’s text encoder
to encode a vocabulary V = v1, v2, . . . , vm containing
thousands of potential feature names into a library of text
embeddings T = t1, t2, . . . tm.

For a given image i ∈ I , we first obtain its embedding
iemb through CLIP’s vision encoder. Computing the dot
product between iemb and T followed by a softmax oper-
ation yields CLIP’s probability distribution Pi ∈ R|V| over
the vocabulary V . To measure steering effects, we then se-
lect a feature f and replace its feature activation across all
patches with a steering strength s during the forward pass.
Let P̃i ∈ R|V| CLIP’s steered probability distribution over
the vocabulary V .

We now define feature-level metrics that help us to
compare the steering capabilities of different features, and
furthermore propose metrics to help us to compare SAE
feature-level and neuron-level representations with regard
to steerability.

6.1.1. Feature Level Steerability Metrics
The average probability difference of a feature f across im-
ages I is given by:

∆Pf =

∣∣∣∣∣ 1

|I|
∑
i∈I

(P̃i − Pi)

∣∣∣∣∣ , (4)

where P̃i and Pi are the predicted probabilities after and
before feature activation, respectively.

Furthermore, we quantify f ’s steerability by:

Sf =

∣∣∣∣∣ 1

|I|
∑
i∈I

(P̃i − Pi)
2

∣∣∣∣∣ . (5)

Sf is designed to quantify how a feature distributes its
weight across concept vocabulary elements. For a feature
with probability mass uniformly distributed among its top
nc concepts with value 1

nc
, the metric has the property:∑nc

i=1

(
1
nc

)2

= nc ·
(

1
nc

)2

= 1
nc

. This formulation ensures
that polysemantic features with approximately uniform dis-
tributions will have the desirable property that a feature with
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Figure 4. A visualization of the L0 values for an x64 vanilla SAE trained on all patches of CLIP-B-32 for Layer 0. a) A heatmap of average
L0 per patch, overlaid on the original image grid, shows that there is a bias toward the center. The center bias remains constant for all
layers (see Appendix 9). b) A box plot of L0s per patch reflects high-norm spatial tokens and a low-norm CLS token. c) A comparison
between the L0s SAEs trained on the residual stream of GPT-2 and CLIP.

nc − 1 top concepts always scores higher than one with nc

top concepts.

6.1.2. Layer Level Steerability Metrics
The layer-level metrics provide a more comprehensive view
of steerability across the features within a layer. First, we
define the average steerability of a layer, which reflects the
overall steerability of all features in that layer:

S =
1

|F |
∑
f∈F

Sf , (6)

where F denotes the set of all features in the layer and Sf

is the steerability of feature f . This metric aggregates the
individual steerabilities of all features to give a sense of how
well the layer as a whole can be steered.

To identify how many features within a layer are steer-
able, we define the number of steerable features as the
proportion of features whose steerability exceeds a given
threshold γ:

#S =
1

|F |
∑
f∈F

1[Sf > γ], (7)

where 1[·] is the indicator function. This metric indicates
how many features exhibit significant steerability, charac-
terizing how steering a given layer impacts the model’s out-
put.

Finally, we quantify concept coverage as the number of
features whose steerability exceeds a higher threshold β,
corresponding to a meaningful increase in concept proba-
bility:

#C =
∑
f∈F

1[Sf > β]. (8)

The #C metric only indicates the number of vocabu-
lary concepts a feature adheres to, without capturing the se-

mantic relationships between promoted concepts. Thus, a
feature may exhibit high specificity while remaining poly-
semantic (e.g., equally promoting semantically distant con-
cepts like “carrot” and “organization”). We elaborate on this
limitation in Appendix 11.2 and leave further exploration to
future work.

6.2. Empirical Results on CLIP SAE Steerability
Our analysis reveals three key findings about steerable fea-
tures in CLIP shown in Figures 5, 6, and 7. First, we dis-
cover features that can strongly influence CLIP’s output dis-
tribution when steered, including “perfectly” steerable fea-
tures that direct all probability mass towards one concept
when steered to its asymptote. Second, using our layer-level
metrics, we quantify how common these steerable features
are. In CLIP’s deeper layers, typically 10-15% of features
are steerable, where #S > |F | · 0.10 (Eq. 7). Finally, we
empirically show that steering at the feature-level provides
much better control over concept space than neuron-level
steering, achieving more than 10 times the concept cover-
age #C (Eq. 8) compared to the base model.

6.2.1. Some Properties of Steerable Features
When we amplify features to their maximum strength2,
their effect on probability distribution varies. Some fea-
tures, like the ‘Dragon’ feature shown in Figure 5, strongly
concentrate probability mass toward a single concept—in
this case, the dragon logit—or a small cluster of related con-
cepts. Other features, however, have a more diffuse effect:
some appear to have little to no impact on the probability
distribution, while others spread probability mass across a
broad range of concepts, sometimes affecting hundreds or
even thousands of them.

2We determine a value of 150 to be sufficient, as larger values produced
no additional changes. This threshold may vary by SAE and base model.
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This second pattern could have several explanations:
these features might not meaningfully affect CLIP’s out-
put, they might need to work in concert with other fea-
tures (suggesting our steering pushes activations too out-of-
distribution), or our vocabulary might lack terms that accu-
rately capture the feature’s true semantic direction in CLIP’s
concept space (Appendix 11, Figure 9) 3.

6.2.2. The Frequency of Steerable Features
Using Eq. 5, we analyze the prevalence of steerable fea-
tures in an SAE. Figure 6 presents our findings for a Vanilla
SAE trained on layer 11 of CLIP’s residual stream. Due
to computational constraints, we analyze a subset of 12,000
features. Using a steerability threshold of γ = 0.10 we
find 1,322 steerable features among 12,000 total features.
While these constitute a minority, they still form a substan-
tial subset of controllable features, including approximately
100 that are “perfectly” steerable. This metric provides a
valuable tool for practitioners to optimize SAE training, in-
creasing the number of steerable features and identifying
suboptimal training outcomes.

6.2.3. Feature Steering vs. Neuron Steering
Our comparison of feature-level and neuron-level steering
reveals a significant advantage for feature-level. While in-
dividual steerable neurons can match the steering strength
of features, they are far rarer and provide access to a much
smaller concept space (Figure 7). In a sample of 25% of fea-
tures and neurons from layer 11, neuron steering accessed
only 1% of concepts (about 50 concepts from our 5000-
word vocabulary) in V (Eq. 8), while feature steering ac-
cessed approximately 11% (about 550 concepts).

7. Improving on Disentanglement Tasks with
CLIP SAE Feature Steering

In this section, we apply our CLIP SAEs to three distinct
downstream tasks designed to assess their disentanglement
capabilities and demonstrate the universality of the learned
features.

Our first objective is to evaluate the effectiveness of
SAEs in suppressing spurious correlations, drawing inspira-
tion from frameworks such as Pahde et al. [37] and Dreyer
et al. [14]. To achieve this, we adopt experimental settings
similar to those used in Nam et al. [34], Idrissi et al. [23],
and Pham et al. [39]:
1. Waterbirds [43]: is an artificially generated dataset

which combines bird photographs in the Caltech-UCSD
Birds dataset[48] with background images from the
Places dataset[49]. The goal is to classify the binary tar-
get attribute Y = waterbird and Y = landbird
given the spurious correlations with the background

3We choose #V = 5, 000 to balance coverage and compute; a larger
vocabulary could mitigate this limitation.

Figure 5. Asymptotic Feature Steerability Plot showing ∆Pf (dot-
ted) and Sf (solid) versus steering strength. The “dragon” fea-
ture achieves perfect steering to a single concept, while “tree”
and “apache” have similar Sf but different ∆Pf - ’tree’ steers
precisely to tree concepts, whereas “apache” disperses across
helicopter-related concepts (e.g., “aircraft”, “aviation”, “rescue”).

Figure 6. Log-Scale SAE Feature Steerability Histogram. Steer-
ability scores at s = 150.0 for a Vanilla SAE trained on the residual
stream of Layer 11. This is a sample of 12,000 features (represent-
ing roughly 25% of a total 49,152), of which 1,322 are steerable
(Sf > 0.10).

Figure 7. Concept Space Coverage, Feature vs Neurons, by Layer
(Residual Stream). Notably, at layer 11, feature steering allows
access to more than 10x the span of concept space that neuron
steering does.
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CelebA Waterbirds

Original Model SAE Original Model SAE

Overall Worst Overall Worst Overall Worst Overall Worst

Baseline 92.78 77.78 - - 68.81 22.43 - -

Layer 0 92.78 78.89 93.19 79.44 68.81 22.43 69.42 22.43
Layer 1 92.78 77.78 92.92 78.89 68.81 22.43 68.81 22.43
Layer 2 92.78 77.78 93.47 79.44 68.81 22.43 71.95 *24.61
Layer 3 92.78 77.78 93.06 78.89 68.81 22.43 69.54 24.14
Layer 4 92.78 77.78 93.19 80.00 68.81 22.43 68.93 23.21
Layer 5 92.78 77.78 93.19 78.89 68.81 22.43 69.05 22.74
Layer 6 92.78 77.78 93.19 80.00 68.81 22.43 68.81 22.43
Layer 7 92.64 77.78 93.61 *81.11 68.81 22.43 68.81 22.43
Layer 8 92.64 77.78 93.47 *81.11 68.81 22.43 68.81 22.43
Layer 9 92.78 77.78 93.06 79.44 68.81 22.43 70.19 22.74
Layer 10 92.78 77.78 93.47 80.00 68.81 22.43 68.81 22.43
Layer 11 92.50 77.22 93.33 80.56 68.81 22.43 68.81 22.43

Table 1. Performance comparison showing overall and worst-group accuracy across different layers and tasks after targeted zero-ablations
on the original model neurons (control), and targeted SAEs zero-ablations of the strict feature set F l

τ∗ (our method) (See Section 7.1).
Ablations using SAE feature outperform ablations on the base model, due to SAE’s finer level of granularity in representing the spurious
feature. We pick the top-performing SAE for each layer and task. Full results for all SAE types, random controls, and the relaxed condition
are in Appendix 13.

landscape A = water background and A =
land background

2. CelebA [32]: consists of the face pictures of celebrities,
featuring annotations on a variety of features. We use
the binary gender label4 as the target attribute Y =
male and Y = female and utilize the feature
A = blond and A = not blond as a spurious cor-
relation.
Secondly, we aim to assess the utility of our SAEs in

safety-critical applications by evaluating their effectiveness
in enhancing the robustness of the CLIP model against typo-
graphic attacks. To this end, we follow the evaluation setup
of Azuma and Matsui [3], using ImageNet-1005, a subset of
the ImageNet dataset [12], for tuning our method. We then
benchmark our approach on RTA-100 [3], PAINT [24], and
the dataset published by Materzyńska et al. [33].

7.1. Suppressing Spurious Correlations
To suppress the spurious correlations, we identify the SAE
features that are most closely aligned to the spurious cor-
relation A (Figure 1). To achieve this, we split the train
dataset D into two subsets, DA and DA, based on whether
the spurious correlation is present in the datapoint. Then,
for each layer l, select the SAE features F l whose average
activation on DA is at least τ higher than their average acti-

4While we acknowledge that gender is not binary, we follow this bench-
mark as it is standard in the literature.

5https : / / www . kaggle . com / datasets / ambityga /
imagenet100

vation on DA. Formally,

F l =
{
j
∣∣ Ex∼DA

[f l
j(x)] > Ex∼DA

[f l
j(x)] + τ

}
, (9)

where f l
j(·) is the activation of the jth SAE feature of the

lth layer, and τ ∈ R is a scalar threshold.
We evaluate the CLIP model on the validation set, ap-

plying zero ablation to the set of SAE features F l indepen-
dently for each layer.

To systematically determine an appropriate threshold,
we perform a grid search over τ ∈ [10−6, 1.0] for each layer
l. For each threshold value, we obtain a corresponding fea-
ture set, denoted as F l

τ . These feature sets are evaluated
to assess their impact using two metrics: F l

τ∗ , which maxi-
mizes both overall accuracy and worst-group accuracy; and
F l
τ ′ , which allows for a controlled performance drop (≤ 4%

drop in accuracy) in non-target groups while prioritizing im-
provements in the worst-performing group.

These thresholds F l
τ∗ and F l

τ ′ are chosen to balance
overall model performance with fairness considerations.
The 4% threshold is chosen to ensure that gains for the
worst-performing group are achieved without excessive
degradation in other groups.

7.1.1. Evaluation
We evaluate the CLIP model on the held out test set, while
ablating the SAE features sets F l

τ∗ and F l
τ ′ . Addition-

ally, we apply the same technique to CLIP’s original fea-
ture space to verify that the SAE enhances disentanglement
compared to the unmodified CLIP representation. To fur-
ther validate our approach, we perform random ablations in
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both the SAE and original CLIP feature spaces, ensuring
that our method accurately identifies the relevant features.

7.1.2. Results
Targeted feature suppression with SAEs consistently im-
proves disentanglement for every layer of the model for
CelebA, and for many layers for Waterbirds (Table 1).
Based on maximally activating images for F l

τ∗ , the base
model neurons are highly polysemantic, while SAE features
show the task-relevant attribute (Figure 2).

The optimal layer for disentanglement is Layers 7 and
8 of CelebA, with worst group accuracy improving from
77.78% to 81.11%, and Layer 2 for Waterbirds, with worst
group accuracy improving from 22.43% to 24.61% (Table
1). Under the relaxed condition, the best-performing accu-
racy goes up to 86.67% at Layer 9 for CelebA (Appendix
13, Table 6) and to 36.6% at Layer 5 for Waterbirds (Ap-
pendix 13, Table 8). We hypothesize that more diffuse fea-
tures (like land and water backgrounds) may be optimally
disentangled in earlier layers, before they become entangled
with other features during the forward pass. More local-
ized features (like blonde hair) may be better disentangled
in later layers.

7.2. Suppressing Typographic Attacks

Defense RTA 100 PAINT Materzyńska et al. [33]

No Defense 0.66 0.63 0.54
DP 0.73 0.66 0.83
SAE (Ours) 0.72 0.67 0.79

DP + Ours 0.73 0.67 0.88

Table 2. Performance comparison of our method, Defense-Prefix
(SoA), and their combination across three standard benchmarks
for typographic attacks. See more in Section 7.2

.

To obtain a set of SAE features that encode typographic
knowledge, we follow a similar approach to Section 7.1.
For clarity, we focus our study of typographic attacks on
CLIP’s last residual layer. Throughout the remainder of this
section, we omit the layer superscript (e.g., l) for readabil-
ity.

We define two datasets: ImageNet-100 serves as DT ,
while DT is constructed by applying a synthetically gen-
erated typographic attack to each image in ImageNet-100.
Accordingly, the SAE feature set F is obtained following
Equation 9.

Next, we construct a simple extension to F to improve
the recall of typographic features. Specifically, for each fea-
ture direction nj , we check whether it has a cosine similar-
ity higher than λ with any nm for m ∈ M = {m | fm ∈
F}. If so, it is added to an enhanced set of features F ∗,

thereby capturing additional relevant features that may not
have been initially selected.

7.2.1. Evaluation
Similar to Section 7.1, we perform a sweep over the λ and
τ values on the validation set. The test results on the three
benchmarks—RTA-100 [3], PAINT [24], and the dataset
published by Materzyńska et al. [33]—are reported in Ta-
ble 2.

Additionally, we report the results of Azuma and Mat-
sui [3], who train a Defense-Prefix (DP) to improve CLIP’s
robustness against typographic attacks, as it represents the
current state-of-the-art (SOTA). We also evaluate the com-
bination of our method with DP. This integration is straight-
forward, as DP modifies only the input to CLIP’s text trans-
former, while our approach exclusively affects the vision
transformer.

7.2.2. Results
We conduct our tests with λ = 0.2 and τ = 1, which re-
sult in F ∗ containing 495 out of 49,152 possible SAE fea-
tures (∼ 1%). The drop in ImageNet top-1 accuracy was
0.7 percentage points. Our method outperforms the current
state-of-the-art on the PAINT dataset and remains competi-
tive with DP on the [3] and Materzyńska et al. [33] datasets.
When combining our method with the SOTA, we achieve
top performance across all benchmarks (Table 2).

8. Conclusion
In this work, we train sparse autoencoders (SAEs) on
CLIP’s vision transformer, revealing sparsity differences
between vision and language processing. We find that 10-
15% of features in deeper layers are steerable, with CLIP
SAE features providing 10x better concept coverage than
base neurons. Through these steerable features, we demon-
strate improved disentanglement capabilities and achieved
state-of-the-art performance on typographic attack defense.
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Steering CLIP’s vision transformer with sparse autoencoders

Supplementary Material

9. L0 comparison details
The L0 values for language SAEs were collected from
open source sparse autoencoders trained on GPT2-s resid-
ual stream [5].

Figure 8. Heatmap of average L0 per layer shows patch sparsity
still retains its spatial bias even in Layer 11.

10. SAE training details and statistics
10.1. Training procedure
Architecture and Optimization. The SAEs were con-
figured with an expansion factor of 64, mapping the base
model’s 768-dimensional activation space to a dictionary
of 49,152 features. For initialization, we set the encoder
weights to be the transpose of the decoder weights. The
SAEs were trained using the Adam optimizer, sweeping
the initial learning rate from 1e-5 to 1e-1, and employed
a cosine annealing learning rate schedule with a 200-step
warmup. Training used a batch size of 4096 samples.

Sparsity and Losses. Two SAE variants were trained
to minimize the MSE reconstruction loss while enforcing
sparsity through different mechanisms: (1) Top-K SAEs,
which enforced fixed sparsity levels (k ∈ {64, 128, 256})
via masking, and (2) Vanilla SAEs, which used ℓ1 reg-
ularization with the coefficient swept over [10−12, 1], to
induce variable sparsity. To prevent dead features that
rarely activate, ghost grads auxiliary loss was used.

Training Data. General-purpose SAEs were trained
on ImageNet1k for 1 epoch. For task-specific SAEs, we
used CelebA and an augmented Waterbirds dataset, both
trained for 2 epochs. The Waterbirds dataset augmentations
included rotations (±10◦, ±20◦), 5–15% edge cropping,
contrast enhancements (factors of 1.1–1.3), and horizontal
flips.

11. Steering Metric
11.1. More steering curves

Figure 9. Feature Concept Space Throughout Steering. This is
a plot of the top three logits for each steering strength run. This
visualizes the causal link between steering strength and CLIP pre-
diction, and indicates whether a feature is semantically coherent
or polysemantic.

11.2. Limitations of the steerability metric
To address the limitation of the steerability metric not cap-
turing the relationship between semantic concepts, we pro-
pose measuring the weighted distance between promoted
concepts and the mean vocabulary vector:

µV =
1

|V |
∑
v∈V

v (10)

For a feature f , we compute:

Df =
∑
v∈V

P (v|f)∥v − µV ∥2 (11)

where P (v|f) is the probability assigned to vocabulary
element v by feature f . This metric shows positive corre-
lation with qualitatively observed monosemantic/steerable
features.

The metric is theoretically justified when vocabulary el-
ements are uniformly distributed on the unit sphere (imply-
ing µV ≈ 0), as semantically related concepts cluster to-
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gether while unrelated concepts are approximately orthog-
onal. We leave the rest to future work.

3
Accepted to the CVPR 2025 Workshop on Mechanistic Interpretability for Vision (MIV)



12. Maximally Activating Images
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Figure 10. The top activating images show that base net features are polysemantic, while SAE features capture task-relevant attributes:
blondeness (CelebA), land/water backgrounds (Waterbirds), and typographic images (typographic attacks).

4
Accepted to the CVPR 2025 Workshop on Mechanistic Interpretability for Vision (MIV)



12.1. SAE Evaluations
12.1.1. Vanilla SAEs (all patches)

L1 Coef. Exp. Var. L0 Layer Sublayer Avg Img L0 Avg CLS L0 Cos Sim Recon Cos Sim CE Recon CE Zero Abl CE CE Rec
1e-4 0.892 57.31 0 mlp out 2862.89 3.39 0.954 0.978 3.412 3.501 4.339 90.35
8e-5 0.910 84.88 0 mlp out 4094.50 5.13 0.962 0.982 3.415 3.491 4.342 91.77
5e-5 0.943 160.48 0 mlp out 7718.12 8.24 0.974 0.988 3.411 3.467 4.336 93.93
1e-5 0.987 598.23 0 mlp out 29296.53 36.43 0.994 0.998 3.414 3.430 4.341 98.37
1e-4 0.817 249.88 1 mlp out 11700.90 3.69 0.910 0.897 3.414 4.521 16.305 91.42
8e-5 0.851 329.70 1 mlp out 15910.30 5.28 0.928 0.921 3.417 4.252 16.309 93.52
5e-5 0.907 592.62 1 mlp out 28769.50 6.85 0.955 0.953 3.413 3.895 16.308 96.27
1e-5 0.984 1478.89 1 mlp out 72397.80 88.58 0.992 0.994 3.415 3.477 16.309 99.52
8e-5 0.850 390.00 2 mlp out 19407.09 13.54 0.936 0.984 3.413 3.504 6.179 96.71
1e-4 0.817 294.43 2 mlp out 14676.46 12.23 0.922 0.979 3.411 3.541 6.176 95.31
5e-5 0.903 690.89 2 mlp out 33472.50 21.24 0.958 0.991 3.412 3.460 6.180 98.28
1e-5 0.981 1939.23 2 mlp out 88634.21 364.95 0.992 0.999 3.413 3.421 6.183 99.71
1e-4 0.777 417.00 3 mlp out 20666.06 7.29 0.905 0.988 3.415 3.497 4.581 92.93
8e-5 0.823 572.56 3 mlp out 27773.92 8.99 0.924 0.991 3.413 3.479 4.582 94.37
5e-5 0.886 972.85 3 mlp out 48126.45 16.30 0.952 0.995 3.413 3.451 4.582 96.82
1e-5 0.982 1977.63 3 mlp out 93453.44 628.76 0.993 0.999 3.415 3.423 4.583 99.36
1e-4 0.771 406.16 4 mlp out 20074.38 16.24 0.903 0.990 3.409 3.481 4.789 94.84
8e-5 0.816 560.38 4 mlp out 27463.11 20.32 0.923 0.992 3.411 3.465 4.788 96.09
5e-5 0.883 984.73 4 mlp out 48444.25 35.74 0.951 0.995 3.409 3.440 4.786 97.73
1e-5 0.982 1975.18 4 mlp out 94364.62 1113.69 0.993 0.999 3.412 3.416 4.789 99.72
1e-4 0.768 368.31 5 mlp out 18387.25 31.38 0.903 0.990 3.409 3.470 5.142 96.46
8e-5 0.810 506.74 5 mlp out 25240.54 39.93 0.921 0.992 3.412 3.461 5.144 97.22
5e-5 0.882 930.02 5 mlp out 46145.45 93.39 0.951 0.995 3.414 3.438 5.145 98.58
1e-5 0.983 1840.60 5 mlp out 87745.34 1284.78 0.994 0.999 3.407 3.410 5.139 99.85

Table 3. CLIP-ViT-B-32 vanilla sparse autoencoder performance metrics for all patches.

12.1.2. Top-K SAEs (all patches)

Exp. Var. L0 Layer Sublayer Cos Sim Recon Cos Sim CE Recon CE Zero Abl CE CE Rec
0.83 64 1 resid post 0.888 1.0 6.762 6.762 6.908 100.0
0.68 64 2 resid post 0.779 1.0 6.762 6.762 6.908 100.0
0.70 64 3 resid post 0.790 1.0 6.762 6.762 6.908 100.0
0.80 64 4 resid post 0.858 1.0 6.762 6.762 6.908 100.0
0.69 64 5 resid post 0.791 1.0 6.762 6.762 6.908 100.0
0.78 64 6 resid post 0.863 1.0 6.762 6.762 6.908 100.0
0.79 64 7 resid post 0.881 1.0 6.762 6.762 6.908 100.0
0.81 64 8 resid post 0.897 1.0 6.762 6.762 6.908 100.0
0.83 64 9 resid post 0.906 1.0 6.762 6.762 6.908 100.0
0.82 64 10 resid post 0.893 1.0 6.762 6.762 6.908 100.0
0.78 64 11 resid post 0.883 1.0 6.762 6.762 6.908 100.0

Table 4. CLIP-ViT-B-32 Top-K sparse autoencoder performance metrics for all patches.

13. Disentanglement Task Full Results
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Table 5. Layer-wise Accuracies (%) for CelebA, under the strict condition

Vanilla Top K=64 Top K=128 CelebA K=64 CelebA K=128

Layer Overall Worst Overall Worst Overall Worst Overall Worst Overall Worst

SAE Feature Ablation

L0 92.78 78.89 92.78 77.78 93.19 79.44 92.78 77.78 92.78 77.78
L1 92.92 77.78 92.78 77.78 92.92 78.89 92.78 77.78 92.78 77.78
L2 92.78 77.78 93.47 79.44 92.64 78.33 92.78 77.78 - -
L3 92.64 78.33 92.78 77.78 93.06 78.89 92.78 77.78 92.78 77.78
L4 92.92 78.33 92.78 77.78 93.19 80.0 92.78 77.78 92.78 77.78
L5 93.06 78.89 92.92 78.33 93.19 78.89 93.19 78.89 92.64 78.33
L6 93.19 79.44 93.19 79.44 93.06 79.44 93.06 79.44 93.19 80.0
L7* 93.06 80.56 93.47 80.56 93.33 *81.11 93.33 80.56 93.61 *81.11
L8* 93.61 80.56 93.47 *81.11 93.33 80.56 93.19 80.0 92.92 78.33
L9 92.92 78.89 92.92 78.33 92.92 78.33 93.06 79.44 - -
L10 93.47 80.0 92.92 78.89 92.78 77.78 92.92 79.44 92.78 77.78
L11 93.33 80.56 92.78 77.78 92.92 78.33 92.92 78.89 93.19 78.89

Random SAE Feature Ablation

L0 92.78 77.78 92.78 77.78 92.78 77.78 92.78 77.78 92.78 77.78
L1 92.64 77.78 92.78 77.78 92.78 77.78 92.78 77.78 92.78 77.78
L2 92.64 77.78 92.78 77.78 92.78 77.78 92.78 77.78 - -
L3 92.64 77.78 92.78 77.78 92.78 77.78 92.78 77.78 92.78 77.78
L4 92.64 77.78 92.78 77.78 92.78 77.78 92.78 77.78 92.78 77.78
L5 92.78 77.78 92.78 77.78 92.78 77.78 92.78 77.78 92.78 77.78
L6 92.78 77.78 92.78 77.78 92.64 77.78 92.64 77.78 92.78 77.78
L7 92.78 77.78 92.78 77.78 92.78 77.78 92.64 77.78 92.78 77.78
L8 92.64 77.78 92.78 77.78 92.78 77.78 92.78 77.78 92.78 77.78
L9 92.78 77.78 92.78 77.78 92.78 77.78 92.78 77.78 - -
L10 92.64 77.78 92.78 77.78 92.78 77.78 92.78 77.78 92.78 77.78
L11 92.78 77.78 92.78 77.78 92.78 77.78 92.78 77.78 92.78 77.78

Base Network Neuron Ablation

L0 92.78 78.89 - - - - - - - -
L1 92.78 77.78 - - - - - - - -
L2 92.78 77.78 - - - - - - - -
L3 92.78 77.78 - - - - - - - -
L4 92.78 77.78 - - - - - - - -
L5 92.78 77.78 - - - - - - - -
L6 92.78 77.78 - - - - - - - -
L7 92.64 77.78 - - - - - - - -
L8 92.64 77.78 - - - - - - - -
L9 92.78 77.78 - - - - - - - -
L10 92.78 77.78 - - - - - - - -
L11 92.5 77.22 - - - - - - - -
Note: Results on the CelebA disentanglement task with targeted ablation of SAE features on the residual stream. The baseline values
are 92.78% for overall accuracy and 77.78% for worst group accuracy. Bolded values show an improvement over baseline. The best-
performing layers (by worst group accuracy) and their corresponding SAEs are marked with an asterisk. The base network ablation does
not depend on SAE type, so the value is the same across all SAE types.
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Table 6. Layer-wise Accuracies (%) for CelebA, under the relaxed condition

Vanilla Top K=64 Top K=128 CelebA K=64 CelebA K=128

Layer Overall Worst Overall Worst Overall Worst Overall Worst Overall Worst

SAE Feature Ablation

L0 92.78 78.89 92.08 76.11 93.61 81.67 92.92 78.33 93.06 78.33
L1 93.06 80.56 93.33 79.44 93.89 80.0 93.33 80.56 92.78 77.78
L2 93.89 82.78 92.92 81.11 93.47 79.44 94.17 82.22 - -
L3 94.03 83.33 93.19 81.11 93.06 78.89 93.75 80.56 93.47 82.22
L4 93.33 79.44 93.06 78.33 93.19 80.0 93.19 80.56 93.47 79.44
L5 93.61 80.56 93.47 80.0 93.06 79.44 93.19 78.89 92.64 78.33
L6 93.47 81.11 92.5 81.11 93.06 79.44 92.36 77.78 93.19 80.0
L7 93.06 80.56 93.75 84.44 93.47 81.67 94.03 84.44 94.03 84.44
L8 94.03 82.78 93.47 81.11 94.03 85.0 93.89 83.89 94.17 85.56
L9* 94.72 *86.67 93.06 79.44 93.47 81.11 93.89 86.11 - -
L10 93.47 80.0 92.92 78.89 92.78 77.78 93.19 79.44 94.17 83.89
L11 94.31 83.33 92.78 77.78 92.36 78.33 92.92 78.89 93.19 79.44

Random SAE Feature Ablation

L0 92.78 77.78 92.78 77.78 92.92 78.33 92.78 77.78 92.64 77.78
L1 92.64 77.78 92.78 77.78 92.78 77.78 92.78 77.78 92.78 77.78
L2 92.64 77.78 92.78 77.78 92.78 77.78 92.5 78.33 - -
L3 92.5 77.22 92.78 77.78 92.78 77.78 92.78 77.78 92.78 77.78
L4 92.78 77.78 92.78 77.78 92.78 77.78 92.78 77.78 92.78 77.78
L5 92.64 77.78 92.64 77.78 92.64 77.78 92.78 77.78 92.78 77.78
L6 92.78 78.89 92.92 77.78 92.64 77.78 92.78 77.78 92.78 77.78
L7 92.78 77.78 92.64 77.78 92.5 77.22 92.64 77.78 92.64 77.78
L8 92.78 78.33 92.78 77.78 92.64 77.22 92.64 77.78 92.92 78.33
L9 92.64 77.78 92.78 77.78 92.64 77.78 92.92 78.89 - -
L10 92.64 77.78 92.78 77.78 92.78 77.78 92.78 77.78 92.64 77.78
L11 92.78 77.78 92.78 77.78 92.78 77.78 92.78 77.78 92.5 77.22

Base Network Neuron Ablation

L0 93.19 80.0 - - - - - - - -
L1 93.47 80.56 - - - - - - - -
L2 93.47 79.44 - - - - - - - -
L3 92.78 77.78 - - - - - - - -
L4 92.92 77.78 - - - - - - - -
L5 92.92 77.78 - - - - - - - -
L6 92.78 77.78 - - - - - - - -
L7 93.75 80.0 - - - - - - - -
L8 92.64 77.78 - - - - - - - -
L9 92.78 77.78 - - - - - - - -
L10 92.78 77.78 - - - - - - - -
L11 93.33 79.44 - - - - - - - -
Note: The baseline values are 92.78% for overall accuracy and 77.78% for worst group accuracy. Base network ablation is not dependent
on the SAE type, so the value is the same across all SAE types.

7
Accepted to the CVPR 2025 Workshop on Mechanistic Interpretability for Vision (MIV)



Table 7. Layer-wise Accuracies (%) for Waterbirds, under the strict condition

Vanilla Top K=64 Waterbirds K=64

Layer Overall Worst Overall Worst Overall Worst

SAE Feature Ablation

L0 68.81 22.43 69.42 20.25 68.81 22.43
L1 68.81 22.43 68.81 22.43 68.81 22.43
L2* 68.99 *24.61 71.95 21.65 68.81 22.43
L3 69.54 24.14 68.81 22.43 68.81 22.43
L4 68.93 23.21 68.81 22.43 68.81 22.43
L5 69.05 22.74 68.81 22.43 68.81 22.43
L6 68.81 22.43 68.81 22.43 68.81 22.43
L7 68.81 22.43 68.81 22.43 68.81 22.43
L8 68.81 22.43 68.81 22.43 68.81 22.43
L9 70.19 22.74 68.81 22.43 68.81 22.43
L10 68.81 22.43 68.81 22.43 68.81 22.43
L11 68.81 22.43 68.81 22.43 68.81 22.43

Random SAE Feature Ablation

L0 68.81 22.43 68.81 22.43 68.81 22.43
L1 68.81 22.43 68.81 22.43 68.81 22.43
L2 68.81 22.43 64.2 22.27 68.81 22.43
L3 68.85 22.27 68.81 22.43 68.81 22.43
L4 68.81 22.43 68.81 22.43 68.81 22.43
L5 68.81 22.43 68.81 22.43 68.81 22.43
L6 68.81 22.43 68.81 22.43 68.81 22.43
L7 68.81 22.43 68.81 22.43 68.81 22.43
L8 68.81 22.43 68.81 22.43 68.81 22.43
L9 68.81 22.43 68.81 22.43 68.81 22.43
L10 68.81 22.43 68.81 22.43 68.81 22.43
L11 68.81 22.43 68.81 22.43 68.81 22.43

Base Network Neuron Ablation

L0 68.81 22.43 - - - -
L1 68.81 22.43 - - - -
L2 68.81 22.43 - - - -
L3 68.81 22.43 - - - -
L4 68.81 22.43 - - - -
L5 68.81 22.43 - - - -
L6 68.81 22.43 - - - -
L7 68.81 22.43 - - - -
L8 68.81 22.43 - - - -
L9 68.81 22.43 - - - -
L10 68.81 22.43 - - - -
L11 68.81 22.43 - - - -
Note: The baseline values are 68.81% for overall accuracy and 22.43% for worst group accuracy.
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Table 8. Layer-wise Accuracies (%) for Waterbirds, under the relaxed condition

Vanilla Top K=64 Waterbirds K=64

Layer Overall Worst Overall Worst Overall Worst

SAE Feature Ablation

L0 68.81 22.43 69.42 20.25 68.81 22.43
L1 68.81 22.43 69.68 30.84 70.26 19.16
L2 68.99 24.61 71.95 21.65 71.94 23.68
L3 68.86 33.96 68.81 22.43 70.25 19.31
L4 70.19 27.73 68.83 27.26 68.81 22.43
L5* 70.07 *36.6 70.76 25.55 68.81 22.43
L6 70.04 33.18 69.0 24.14 71.37 30.22
L7 70.62 28.66 68.81 22.43 68.81 22.43
L8 71.3 24.92 68.81 22.43 68.81 22.43
L9 70.19 22.74 68.81 22.43 68.66 22.43
L10 68.73 22.27 68.81 22.43 68.81 22.43
L11 69.12 23.83 69.68 22.59 70.25 21.18

Random SAE Feature Ablation

L0 68.81 22.43 68.81 22.43 68.81 22.43
L1 68.81 22.43 68.81 22.43 68.81 22.43
L2 68.81 22.43 64.2 22.27 68.81 22.43
L3 68.83 22.43 68.81 22.43 68.78 22.43
L4 68.8 22.12 68.81 22.43 68.81 22.43
L5 68.62 22.43 68.85 22.43 68.81 22.43
L6 68.59 22.27 68.81 22.43 68.83 22.59
L7 68.92 22.43 68.81 22.43 68.81 22.43
L8 68.76 22.43 68.81 22.43 68.81 22.43
L9 68.81 22.43 68.81 22.43 68.81 22.43
L10 68.81 22.43 68.81 22.43 68.81 22.43
L11 68.83 22.59 68.81 22.43 68.8 22.43

Base Network Neuron Ablation

L0 68.81 22.43 - - - -
L1 68.81 22.43 - - - -
L2 68.81 22.43 - - - -
L3 68.81 22.43 - - - -
L4 68.81 22.43 - - - -
L5 68.81 22.43 - - - -
L6 68.81 22.43 - - - -
L7 68.81 22.43 - - - -
L8 68.81 22.43 - - - -
L9 68.81 22.43 - - - -
L10 68.81 22.43 - - - -
L11 68.81 22.43 - - - -
Note: The baseline values are 68.81% for overall accuracy and 22.43% for worst group accuracy.
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