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This paper provides a finite-time analysis of linear stochastic approximation (LSA) algorithms with fixed
step size, a core method in statistics and machine learning. LSA is used to compute approximate solutions
of a d-dimensional linear system Āθ = b̄, for which (Ā, b̄) can only be estimated through (asymptotically)
unbiased observations {(A(Zn),b(Zn))}n∈N. We consider here the case where {Zn}n∈N is an i.i.d. sequence
or a uniformly geometrically ergodic Markov chain, and derive p-moments inequality and high probability
bounds for the iterates defined by LSA and its Polyak-Ruppert averaged version. More precisely, we establish
bounds of order (pαtmix)

1/2d1/p on the p-th moment of the last iterate of LSA. In this formula α is the
step size of the procedure and tmix is the mixing time of the underlying chain (tmix = 1 in the i.i.d. setting).
We then prove finite-time instance-dependent bounds on the Polyak-Ruppert averaged sequence of iterates.
These results are sharp in the sense that the leading term we obtain matches the local asymptotic minimax
limit, including tight dependence on the parameters (d, tmix) in the higher order terms.

Key words : linear stochastic approximation; Polyak–Ruppert averaging; stability of random matrix
product
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1. Introduction This paper is concerned with the linear stochastic approximation (LSA)
algorithm for solving the linear system Āθ = b̄ with unique solution θ⋆, based on a sequence of
observations {(A(Zn),b(Zn))}n∈N. Here A : Z→ Rd×d, b : Z→ Rd are measurable functions, and
(Zk)k∈N is

1. either an i.i.d. sequence taking values in a state space (Z,Z) with distribution π satisfying
E[A(Z1)] = Ā and E[b(Z1)] = b̄;

2. or a Z-valued ergodic Markov chain with unique invariant distribution π, such that
limn→+∞E[A(Zn)] = Ā and limn→+∞E[b(Zn)] = b̄.

For a fixed step size α > 0, burn-in period n0 ∈N, and initialization θ0, consider the sequences of
estimates {θn}n∈N,{θ̄n0,n}n≥n0+1 given by

θk = θk−1 −α{A(Zk)θk−1 −b(Zk)} , k≥ 1,

θ̄n0,n = (n−n0)
−1
∑n−1

k=n0
θk , n≥ n0 +1 .

(1)
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The sequence {θk}k∈N are the standard LSA iterates, while {θ̄n0,n}n≥n0+1 corresponds to the Polyak-
Ruppert (PR) averaged iterates; see Ruppert [35],Polyak and Juditsky [32].
LSA algorithms is a core algorithms in statistics and machine learning. It plays a central role in

linear system identification Eweda and Macchi [14], Widrow and Stearns [40], Benveniste et al. [4],
Kushner and Yin [23]. More recently, they have reignited interest in machine learning, particularly
for high-dimensional least squares estimation and reinforcement learning (RL) problems; Bertsekas
and Tsitsiklis [6], Bottou et al. [9], Sutton [37], Bertsekas [5], Watkins and Dayan [39]. LSA and
LSA-PR recursions (1) have been the subject of a wealth of works and it is difficult to give a
proper credit to all the contributions. Polyak and Juditsky [32], Kushner and Yin [23], Borkar
[8], Benveniste et al. [4] provided asymptotic convergence guarantees (almost sure convergence,
central limit theorem) under both the i.i.d. and Markovian settings. In particular, it has been
established that LSA-PR can accelerate LSA and satisfies a central limit theorem with a covariance
matrix which is minimax optimal asymptotically.
Although asymptotic convergence guarantees are of theoretical interest, the current trend is to

obtain non-asymptotic guarantees that take into account both the limited sample size and the
dimension of the parameter space. For these reasons, non-asymptotic analysis of both i.i.d. and
Markovian SA procedures has recently attracted much attention.
In the i.i.d. setting, Rakhlin et al. [33], Nemirovski et al. [28], Jain et al. [20, 21] studied the mean

squared error in finite time, Durmus et al. [13] provided tight high probability bounds for the LSA
sequence {θn}n∈N. For least squares regression problems, whereA(Zn) is a symmetric matrix almost
surely, Bach and Moulines [3], Jain et al. [19] showed that for a constant step size, the mean squared
error (MSE) of θ̄n0,n − θ⋆ converges as O(1/n). For general LSA, which includes instrumental
variable methods for linear system identification and temporal difference in reinforcement learning
(TD), Lakshminarayanan and Szepesvari [24] showed a rate of convergence of the mean squared
error O(1/n). Close to the present work, Mou et al. [26] provided a non-asymptotic high-probability
bounds for LSA-PR with independent observations. However, the proof of their main result Mou
et al. [26, Theorem 3] relies on tools from Markov chain theory which assume strong conditions on
{(A(Zn),b(Zn)}n∈N and it is not clear how to adapt their method to the general case. Our first
contribution is to extend and improve this result using a total different approach relying on the
stochastic expansion for LSA (1) introduced in Aguech et al. [1]. More precisely, we derive sharp
finite-time bounds on p-th moment of {∥θn − θ⋆∥}n∈N and {∥θ̄n0,n − θ⋆∥}n∈N. As a corollary, we
provide optimized high probability bounds for the LSA and LSA-PR iterates for a fixed tolerance
parameter δ ∈ (0,1) and number of iterations n, choosing appropriately the stepsize α. For LSA-
PR, the leading term of these bounds matches the one of the central limit theorem making appear
the same asymptotic covariance matrix up to numerical constants.
Regarding the Markovian setting, the literature is scarcer. Assuming a mixing time upper-bound

bound on the Markov chain, a projected variant of the linear SA was analyzed by Bhandari et al. [7],
which report non-asymptotic rates for the mean squared error that are sharp in their dependence
on sample size, but not on the dimension. This result was later extended by Srikant and Ying [36],
which analyzed LSA without the projection step - and obtained the same convergence rate. In Chen
et al. [10] the authors obtained sharp MSE bound for the last iterate of the linear SA procedure for
the observations being V -uniformly ergodic Markov chain and the decreasing sequence of stepsizes
αk = 1/k. Recently, Mou et al. [27] established p-moment bounds for the last iterates of LSA
and showed that the mean-square error obtained with Polyak-Ruppert averaged LSA matches the
local asymptotic minimax optimal limit. Our second contribution is to improve and extend their
result. First, we derive sharper p-moments bounds on {∥θn − θ⋆∥}n∈N. Second, we provide the
same type of results for LSA-PR which allows us to provide high-probability bounds which are
natural counterpart to the i.i.d. setting. To the best of our knowledge, this results for Markovian
observations are new. Moreover, our bound for mean-square error with Markovian noise improves
the dependence upon the problem dimension compared to the results of Mou et al. [27, Theorem 1].
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The paper is organized as follows. In Section 2 we introduce the decomposition of the error which
is key to our proof (see Aguech et al. [1]) and formulate our main assumptions. In Section 3 we
present our results in the independent setting. In Section 4 we extend our results when {Zn}n∈N∗

is a uniformly geometrically ergodic Markov chain. The proofs are postponed to the appendix.
For reader’s convenience the notations and key constants appearing in the text are summarized in
Section A.

2. Stochastic expansions for LSA and LSA-PR As an introduction, we present tools
and some preliminary results that will be central to our analysis of LSA and LSA-PR which will
be used for the case where {Zn}n∈N∗ is i.i.d. but also where this sequence is a Markov chain. Set

Ã(z) =A(z)− Ā , b̃(z) = b(z)− b̄ , ε(z) = Ã(z)θ⋆ − b̃(z) , (2)

and denote by Γ
(α)
1:n the product of random matrices

Γ(α)
m:n =

∏n

i=m(I−αA(Zi)) , m,n∈N∗, m≤ n . (3)

The definition (1) implies the following decomposition θn − θ⋆ = θ̃(tr)n + θ̃(fl)n where θ̃(tr)n is a tran-
sient term (reflecting the forgetting of initial condition) and θ̃(fl)n is a fluctuation term (reflecting
misadjustement noise)

θ̃(tr)n =Γ
(α)
1:n{θ0 − θ⋆} , θ̃(fl)n =−α

∑n

j=1Γ
(α)
j+1:nε(Zj) . (4)

We first bound the p-th moments for {∥θ̃(tr)n ∥ : n∈N} by establishing that the sequence of random
matrices {A(Zi)}i∈N∗ is exponentially stable (see Guo and Ljung [15], Ljung [25]): for q ≥ 1, there
exist aq,Cq > 0 and α∞,q <∞ such that, for any step size α≤ α∞,q, m,n∈N, m<n,

E[∥Γ(α)
m:n∥q]≤Cq exp (−aqα(n−m)) . (5)

In the sequel, this result is established in Theorem 1 for the i.i.d. setting and in Theorem 3
in the Markovian setting. Intuitively, exponential stability means that the q-th moment of the
product of random matrices Γ(α)

m:n behaves similarly to that of the product of deterministic matrices
(I−αĀ)n−m, form,n∈N,m≤ n, under the assumption that −Ā is Hurwitz, i.e., for any eigenvalue
λ of Ā, we have Re(λ)> 0.

Proposition 1 ([12, Proposition 1]). Assume that −Ā is Hurwitz. There exists a unique
symmetric positive definite matrix Q satisfying the Lyapunov equation Ā⊤Q+QĀ= I. In addition,
setting

a= ∥Q∥−1/2 , and α∞ = (1/2)∥Ā∥−2
Q ∥Q∥−1 ∧∥Q∥ , (6)

for any α∈ [0, α∞], it holds that ∥I−αĀ∥2Q ≤ 1− aα, and αa≤ 1/2.

Finally, note that the condition that −Ā is Hurwitz implies the existence of a unique solution θ⋆

to Āθ= b̄.
For the fluctuation term, we use the perturbation-expansion technique introduced in [1] that

recursively decomposes θ̃(fl)n . It is important to note that the expansion order is chosen to achieve
the desired approximation accuracy. Indeed, by definition of θ̃(fl)n (see (4)), it satisfies the recurrence

θ̃(fl)n = (I−αA(Zn))θ̃
(fl)
n−1 −αε(Zn) .

Using the definition of Ã (see (2)), and an induction argument, it is easy to verify that the following
decomposition holds for any n∈N:

θ̃(fl)n = J (0)
n +H(0)

n , (7)
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where the latter terms are defined by the following pair of recursions

J (0)
n =

(
I−αĀ

)
J

(0)
n−1 −αε(Zn) , J

(0)
0 = 0 ,

H(0)
n = (I−αA(Zn))H

(0)
n−1 −αÃ(Zn)J

(0)
n−1 , H

(0)
0 = 0 .

(8)

Furthermore, the same decomposition can be applied to H(0)
n to obtain higher order expansions.

Fix L≥ 1 to be the desired expansion order. Then a double recursion in ℓ ∈ {1, . . . ,L} and n ∈N
shows that

H(0)
n =

∑L

ℓ=1 J
(ℓ)
n +H(L)

n , (9)

where for any ℓ∈ {1, . . . ,L},

J (ℓ)
n =

(
I−αĀ

)
J

(ℓ)
n−1 −αÃ(Zn)J

(ℓ−1)
n−1 , J

(ℓ)
0 = 0 ,

H(L)
n = (I−αA(Zn))H

(L)
n−1 −αÃ(Zn)J

(L)
n−1 , H

(L)
0 = 0 .

(10)

The choice of parameter L controls the desired approximation accuracy. Combining (7) and (9),
we obtain the decomposition which is the cornerstone of our analysis:

θn − θ⋆ = θ̃(tr)n +
∑L

ℓ=0 J
(ℓ)
n +H(L)

n , (11)

where {J (ℓ)
n : ℓ ∈ {1, . . . , ℓ}} and H(L)

n are defined in (10) and (8) respectively. Following Durmus
et al. [12], this decomposition can be used to obtain sharp bounds on the p-th moment of the final
LSA iterate θn. We refine the bounds obtained in Durmus et al. [12] with respect to the dimension
d in the i.i.d. setting in Proposition 3 and then provide extensions to the Markovian setting in
Proposition 7.
In addition, (11) naturally leads to a decomposition for the PR averaged sequence θ̄n0,n − θ⋆

starting from the observation that by definition (1), for any n,n0 ∈N, n0 ≤ n,

Ā
(
θ̄n0,n − θ⋆

)
= {α(n−n0)}−1(θn0

− θn)− (n−n0)
−1
∑n−1

t=n0
e (θt,Zt+1) , (12)

e(θ, z) = Ã(z)θ− b̃(z) = ε(z)+ Ã(z)(θ− θ⋆) . (13)

Using (11), we may further decompose∑n−1

t=n0
e (θt,Zt+1) =Etr

n0,n
+Efl

n0,n
, (14)

where we have set

Etr
n0,n

=
∑n−1

t=n0
Ã(Zt+1)Γ

(α)
1:t {θ0 − θ⋆} ,

Efl
n0,n

=
∑n−1

t=n0
ε(Zt+1)+

∑L

ℓ=0

∑n−1

t=n0
Ã(Zt+1)J

(ℓ)
t +

∑n−1

t=n0
Ã(Zt+1)H

(L)
t .

Based on the decompositions (12) and (14), our analysis of the PR recursion proceeds in bounding
the three terms {α(n−n0)}−1(θn0

− θn), E
tr
n0,n

and Efl
n0,n

separately. For the first one, we use the
bounds derived on the p-th moment of θk−θ⋆, for k ∈N. For the second one, we use the exponential
stability for {Γ(α)

m:n : m,n ∈ N, m ≤ n} (5). Finally, the fluctuation term Efl
n0,n

is dealt with the
conditions we impose on the sequence {Zn}n∈N∗ .
Throughout this paper, we impose the following assumption regarding z 7→ Ã(z) and Ā.
A1. CA = supz∈Z ∥A(z)∥ ∨ supz∈Z ∥Ã(z)∥ <∞ and the matrix −Ā is Hurwitz.
We further require the following assumptions on the noise term ε(z) and the stationary distri-

bution π of the sequence {Zn}n∈N∗ .
A2. There exists Cε <+∞, such that for any z ∈ Z, ∥ε(z)∥ ≤Cε

√
TrΣε, where

Σε =
∫
Z
ε(z)ε(z)⊤dπ(z) . (15)

The assumption A2 is considered in Vershynin [38, Theorem 5.6.1]. It can be generalized in some
sense, leaving the basic ingredients of our proof unchanged. In particular, in Section C we provide
the counterparts of the results of Section 3 under a sub-Gaussian moment assumption for ε(Zn).

Our main results are presented and discussed in the following two sections. Section 3 focuses on
the i.i.d. case, while Section 4 deals with the Markovian setting.
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3. Finite-time Moment and High-probability Bounds in the Independent Noise Set-
ting Consider the following assumption:
IND 1. {Zk}k∈N is a sequence of i.i.d. random variables defined on a probability space (Ω,F ,P)

with distribution π.
We begin our analysis by deriving sharp bounds for the p-th moment on {∥θn− θ⋆∥ : n∈N} based
on the decomposition (11). Our first step is to estimate the transient term θ̃(tr)n . Using the notations
of Proposition 1, we define under the assumption A1 for q≥ 2

κQ = λmax(Q)/λmin(Q) , bQ = 2
√
κQCA , (16)

αq,∞ = α∞ ∧ cA /q , cA = a/{2b2Q} . (17)

A key property from which we derive our bounds is an exponential stability result for the p-th
moment of the product of Γ

(α)
1:n.

Theorem 1 (Durmus et al. [12, Corollary 1]). Assume A 1 and IND 1. Then, for any
p, q ∈N, 2≤ p≤ q, α∈ (0, αq,∞] and n∈N∗, it holds

E1/p
[
∥Γ(α)

1:n∥p
]
≤√

κQd
1/q(1− aα+(q− 1)b2Qα

2)n/2 .

Theorem 1 implies that supn∈N∗ E[∥Γ(α)
1:n∥p]<+∞ for any α∈ (0, αq,∞] and 2≤ p≤ q. This condition

relating the choice of the stepsize α with p and q is unavoidable; see Durmus et al. [12, Example 1].
Decomposition (11) applied with L = 0 is enough to obtain tight MSE bound for LSA-PR

procedure. We first provide p-moment bounds for the sequence {J (0)
n : n∈N}.

Proposition 2. Assume A1, A 2, and IND 1. Then, for any α∈ (0, α∞], p≥ 2, and n∈N, it
holds

E1/p
[
∥J (0)

n ∥p
]
≤D1

√
αapTrΣε , where D1 =

√
2κQCε /a . (18)

Proof. Expanding the recurrence (8), we represent

J (0)
n =−α

∑n

k=1(I−αĀ)n−kε(Zk) . (19)

Now the bound (18) follows from a Hoeffding-type bound for sums of independent random vec-
tors (see [31, Theorem 3.1]) combined with Proposition 1. Detailed argument is postponed to
Section B.1.
In the statement of (18) we could simplify the term a−1 occurring in D1 and the same factor in√
αapTrΣε. However, for homogeneity reasons, we have chosen to state it in this form. Indeed, if

we multiply Ā by a positive constant M , then the quantities a,CA,Cε should also scale similarly,
implying that D1 remains unchanged. We adhere to this reasoning for all bounds we derive below
to obtain constants that remain unchanged under a scaling factor.
We emphasise that J (0)

n is the leading (in terms of the step size α) term in the error decomposition
(11). Indeed, (18) and the stability result (Theorem 1) are sufficient to obtain a rough bound
E1/p[∥H(0)

n ∥p] ≤ C
√
α for a constant C ≥ 0 (see (8) for the definition of H(0)

n ). Combining these
results gives the following p-th moment bound for the LSA error ∥θn − θ⋆∥:

Proposition 3. Assume A1, A 2, and IND 1. Then, for any p, q ∈N, 2≤ p≤ q, α∈ (0, αq,∞],
n∈N, and θ0 ∈Rd it holds

E1/p [∥θn − θ⋆∥p]≤ d1/qκ
1/2
Q (1−αa/4)

n ∥θ0 − θ⋆∥+ d1/qD2

√
αapTrΣε , (20)

where the constant D2 is given by

D2 = (2κQ)
1/2Cε a

−1(1+4κ
1/2
Q CA a−1) .
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Proof. Using the decomposition (11) and Minkowski’s inequality,

E1/p [∥θn − θ⋆∥p]≤E1/p
[
∥Γ(α)

1:n(θ0 − θ⋆)∥p
]
+E1/p

[
∥J (0)

n ∥p
]
+E1/p

[
∥H(0)

n ∥p
]
. (21)

Applying Theorem 1, using that αa≤ 1/2 by Proposition 1, and (1− t)1/2 ≤ 1− t/2 for t∈ [0,1],

E1/p
[
∥Γ(α)

1:n(θ0 − θ⋆)∥p
]
≤ κ

1/2
Q d1/q(1−αa/4)n∥θ0 − θ⋆∥ . (22)

With Proposition 2, we get E1/p[∥J (0)
n ∥p] ≤ D1

√
αapTrΣε. It remains to bound E1/p[∥H(0)

n ∥p].
Expanding the recurrence (8), we represent

H(0)
n =−α

∑n

j=1Γ
(α)
j+1:nÃ(Zj)J

(0)
j−1 .

Using Minkowski’s inequality and since Ã(Zj) and J
(0)
j−1 are independent under IND 1, we obtain

with A1, that

E1/p
[
∥H(0)

n ∥p
]
≤ αCA

∑n

j=1E1/p
[
∥Γ(α)

j+1:n∥p
]
E1/p

[
∥J (0)

j−1∥p
]
.

Now (22) and Proposition 2 yield

E1/p
[
∥H(0)

n ∥p
]
≤ c1 d

1/q
√
αapTrΣε , where c1 = 4D1CA κ

1/2
Q /a .

Combining the bounds above in (21) completes the proof.
The bound of Proposition 3 can be used to derive a high-probability bound for a particular

choice of step size α when the number of iterations n is fixed.

Corollary 1. Assume A 1, A 2, IND 1 and set δ ∈ (0,1). Then, for any θ0 ∈Rd, sample size
n∈N satisfying

n/ logn≥ (a/4)
{
α−1

∞ ∨ c−1
A (1+ logd) log (2e/δ)

}
, (23)

and step size α= 4 logn/(an), it holds with probability at least 1− δ, that

∥θn − θ⋆∥ ≤ 4eD2

√
{TrΣε} logn log(2e/δ)

n
+

2eκ
1/2
Q ∥θ0 − θ⋆∥

n
.

Proof. Under (23), the step size α= 4 logn/(an) satisfies α≤ α(1+logd) log (2e/δ),∞. Now the state-
ment follows from Proposition 3 applied with p = log (2e/δ), q = (1 + logd) log (2e/δ), and the
Markov inequality applied with the same p.
Corollary 1 is closely related to Durmus et al. [12, Theorem 1]. We choose the probability

tolerance parameter δ > 0 and optimize the moment p, which implies a constraint on the number
of iterations (23) and the step size α, while in Durmus et al. [12, Theorem 1] the authors fix p
and derive high probability bounds that hold for any α ∈ (0, αp,∞]. Note that at the cost of the
logarithmic dependence of α on dimension, we can get rid of the dependence of d in (20).
Now we have all the ingredients to state our first main result for a bound on the mean square

error of n-steps LSA-PR θ̄⌈n/2⌉,n−θ⋆. The leading term we obtain is related to the noise covariance
matrix Σε defined in (15). The other terms depending on ∆(tr)

n,α and ∆(fl)
n,α correspond to the transient

and fluctutation components of the LSA error and are defined as

∆(tr)
n,α = 32eκQ/(α

2n)+ 64eκQC2
A /(7αan) , ∆(fl)

n,α = 64eD2
2/(αn)+ 8eαD2

2 . (24)

For this result we only need the decomposition of the LSA- PR error (12) together with the p-th
moment boundary for the LSA error given in Proposition 3. Subsequent p-th moment bounds for
the LSA-PR error require further exploitation of the decomposition (14).
For t ∈ N, we define the filtration Ft = σ(Zs : 1 ≤ s ≤ t), F0 = {∅,Z}, and denote by EFt the

conditional expectation with respect to Ft.
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Proposition 4. Assume A 1, A 2, and IND 1. Then, for any n ∈ N, α ∈ (0, α∞ ∧ cA /{2 +
2 logd}), θ0 ∈Rd, it holds

(n/2)E
[
∥Ā
(
θ̄⌈n/2⌉,n − θ⋆

)
∥2
]
≤ 4TrΣε +∆(fl)

n,αTrΣε +∆(tr)
n,α∥θ0 − θ⋆∥2(1−αa/4)n .

Proof. Let q ≥ 2 be a number to be fixed later, and assume that α ∈ (0, αq,∞). We need this
additional degree of freedom to ensure that our bounds are dimension-free. Our proof is based
on the decomposition (12). Under IND 1, EFt [e(θt,Zt+1)] = 0 P-a.s., showing that e(θt,Zt+1) is an
Ft-martingale increment. Thus, exploiting (12), we obtain

E
[
∥Ā
(
θ̄n0,n − θ⋆

)
∥2
]
≤ T1 +T2 , (25)

where we set

T1 =
2
∑n−1

t=n0
E
[
∥e(θt,Zt+1)∥2

]
(n−n0)2

, T2 =
2E[∥θn0

− θn∥2]
α2(n−n0)2

.

Now we estimate the terms T1 and T2 separately. To control the remainder term T2, we apply
Proposition 3 with p= 2, and obtain

T2 ≤
16d2/qκQ∥θ0 − θ⋆∥2(1−αa/4)2n0

α2(n−n0)2
+

32d2/qD2
2aTrΣε

α(n−n0)2
.

Now we bound T1. Recall that for θ ∈Rd, z ∈ Z, e(θ, z) = ε(z)+ Ã(z)(θ− θ⋆). Hence,

E
[
∥e(θt,Zt+1)∥2

]
≤ 2TrΣε +2E

[
∥Ã(Zt+1){θt − θ⋆}∥2

]
,

where we used that E[∥εt∥2] = TrΣε. Proposition 3, the fact that α≤ α∞ and αa≤ 1/2 by Propo-
sition 1, give∑n−1

t=n0
E
[
∥e(θt,Zt+1)∥2

]
≤ 2(n−n0)TrΣε +8αa(n−n0)d

2/qD2
2C

2
ATrΣε

+
32d2/qκQC2

A ∥θ0 − θ⋆∥2

7αa
(1−αa/4)2n0 .

It remains to combine the bounds above in (25), choose q = 2(1+ logd), n0 = ⌈n/2⌉, and use the
elementary inequality d2/(2+2 logd) ≤ e.
The bounds above can be simplified under a particular choice of α, depending on n. The fluctu-

ation error ∆(fl) in (24) suggests that α should scale with n as n−1/2. Let us choose

α(n,d) = (α∞ ∧ cA /{2+2 logd})n−1/2 .

Then Proposition 4 implies the MSE bound

E
[
∥Ā
(
θ̄⌈n/2⌉,n − θ⋆

)
∥2
]
≲

TrΣε

n
+

TrΣε

n3/2
+ ∥θ0 − θ⋆∥2 exp

{
−(α∞ ∧ cA)

√
n

8(1+ logd)

}
, (26)

where ≲ stands for inequality up to a constant, depending on κQ, a, CA, Cε, and polylogarithmic
factors in d. Note that the bound (26) shows the same (optimal) leading term n−1TrΣε as in Mou
et al. [27, Theorem 1], improving the dependence upon sample size n in the remainder term.
To obtain the above MSE bound, we used the expansions (9)–(11) with L= 0. But this choice is

not sufficient to show scale separation with respect to the step size α between {J (0)
n : n ∈N} and

{H(0)
n : n ∈N}. More precisely, we have only proved in Proposition 4 that supn∈NE1/p[∥H(0)

n ∥p]≤
Cα1/2 for α small enough and some constant C ≥ 0. In fact, the expansion (9) allows to refine this
bound and obtain that supn∈NE1/p[∥H(0)

n ∥p]≤Cα if α is small enough, for some constant C ≥ 0.
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Proposition 5. Assume A1, A 2, and IND 1. Then, for any α∈ (0, α∞], p≥ 2, and n∈N, it
holds

E1/p
[
∥J (1)

n ∥p
]
≤D3αap

3/2{TrΣε}1/2 , where D3 = 2κQCACε /a
2 . (27)

Moreover, for any 2≤ p≤ q and α∈ (0, αq,∞], n∈N,

E1/p
[
∥H(1)

n ∥p
]
≤D4αap

3/2d1/q{TrΣε}1/2 , where D4 = 4κ
1/2
Q CAD3/a . (28)

Proof. The proof is provided in Section B.2. We stress that the constants D3 and D4 depend
only in the constants in A1 and A2, and do not depend on the dimension d.

We use Proposition 5 to obtain the p-th moment error bound for LSA-PR procedure. Similarly
to (24), we introduce the fluctuation and transient components of the LSA-PR error

∆(fl)
n,p,α =

4e1/pD2p
1/2

(αn)1/2
+e1/pCA(D3 +D4)αap

5/2 +

√
2CRm,2Cε p

n1/2

+CAD1α
1/2p3/2 ,

∆(tr)
n,p,α = e1/pκ

1/2
Q (2

√
2/(αn1/2)+ 2−1/2n1/2CA) .

(29)

Theorem 2. Assume A 1, A 2, IND 1. Then, for any n ∈ N, p ≥ 2, α ∈ (0, α∞ ∧ cA /{p(1 +
logd)}), θ0 ∈Rd, it holds

(n/2)1/2E1/p
[
∥Ā
(
θ̄⌈n/2⌉,n − θ⋆

)
∥p
]
≤CRm,1{TrΣε}1/2p1/2 + {TrΣε}1/2∆(fl)

n,p,α

+∆(tr)
n,p,α (1−αa/4)

n/2 ∥θ0 − θ⋆∥ ,

where CRm,i, i= 1,2 are defined in Section A.

Proof. Let q≥ 2 be a number to be fixed later, and assume that α∈ (0, αq,∞). The proof is based
on exploiting the representation (12), and the LSA error decomposition (11) with L = 1. Below
we use shorthand notations Ãt,At, εt for Ã(Zt),A(Zt), and ε(Zt), respectively. Applying (12) and
Minkowski’s inequality, we get

(n−n0)E1/p
[
∥Ā
(
θ̄n0,n − θ⋆

)
∥p
]
≤ T1 +T2 , (30)

T1 =E1/p
[
∥
∑n−1

t=n0
e(θt,Zt+1)∥p

]
, T2 = α−1E1/p[∥θn0

− θn∥p] .

The term T2 is a remainder one, which is controlled with Proposition 3 and Minkowski’s inequality:

T2 ≤ 2α−1d1/qκ
1/2
Q (1−αa/4)

n0 ∥θ0 − θ⋆∥+2α−1/2d1/qD2(apTrΣε)
1/2 .

Now we proceed with the leading term T1. Using Minkowski’s inequality, (13), and (11) with L= 1,

T1 ≤E1/p
[
∥
∑n−1

t=n0
εt+1∥p

]
+E1/p[∥

∑n−1

t=n0
Ãt+1θ̃

(tr)
t ∥p]

+E1/p[∥
∑n−1

t=n0
Ãt+1J

(0)
t ∥p] +E1/p[∥

∑n−1

t=n0
Ãt+1J

(1)
t ∥p] +E1/p[∥

∑n−1

t=n0
Ãt+1H

(1)
t ∥p] .

(31)

We first estimate the leading term E1/p
[
∥
∑n−1

t=n0
εt+1∥p

]
. Applying Rosenthal’s inequality for mar-

tingales from Pinelis [31, Theorem 4.1], and using that E[∥ε(Z)∥2] = TrΣε, we obtain

E1/p
[
∥
∑n−1

t=n0
εt+1∥p

]
≤CRm,1 p

1/2(n−n0)
1/2{TrΣε}1/2

+CRm,2 pE1/p[maxt∈{n0,...,n−1} ∥εt+1∥p] .

With the assumption A2, we get from the previous bound

E1/p
[
∥
∑n−1

t=n0
εt+1∥p

]
≤CRm,1 p

1/2(n−n0)
1/2{TrΣε}1/2 +CRm,2Cε{TrΣε}1/2p .
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Now we proceed with the other terms. The term
∑n−1

t=n0
Ãt+1θ̃

(tr)
t is controlled with Minkowski’s

inequality and Theorem 1:

E1/p
[
∥
∑n−1

t=n0
Ãt+1θ̃

(tr)
t ∥p

]
≤CA(n−n0)κ

1/2
Q d1/q(1−αa/4)n0∥θ0 − θ⋆∥ .

Note that the sequences {Ãt+1J
(0)
t }n−1

t=n0
, {Ãt+1J

(1)
t }n−1

t=n0
, and {Ãt+1H

(1)
t }n−1

t=n0
are (Ft)t∈N-martingale

increments. Hence, applying the Burkholder inequality Osekowski [29, Theorem 8.6] and the
Minkowski inequality,

E1/p
[
∥
∑n−1

t=n0
Ãt+1H

(1)
t ∥p

]
≤ p
(∑n−1

t=n0
E2/p[∥Ãt+1H

(1)
t ∥p]

)1/2

≤CAD4(n−n0)
1/2p5/2αad1/q{TrΣε}1/2 ,

where the last inequality follows from Proposition 5. Similarly, using Proposition 2 and Proposi-
tion 5, we get

E1/p[∥
∑n−1

t=n0
Ãt+1J

(0)
t ∥p]≤ p

(∑n−1

t=n0
E2/p[∥Ãt+1J

(0)
t ∥p]

)1/2

≤CAD1(n−n0)
1/2p3/2{αaTrΣε}1/2 .

By the same reasoning, with Proposition 5, we get

E1/p[∥
∑n−1

t=n0
Ãt+1J

(1)
t ∥p]≤CAD3(n−n0)

1/2p5/2αa{TrΣε}1/2 .

It remains to choose q= p(1+ logd), n0 = ⌈n/2⌉, and combine the bounds above in (30).
We again can simplify the bounds of Theorem 2 with a special choice of the step size α, proceeding

as in (26). The fluctuation error term (29) suggests that α should scale with n as n−1/2, therefore
we set

α(n,d, p) = (α∞ ∧ cA /{1+ logd}) (pn1/2)−1 . (32)

Then Theorem 2 implies the following p-th moment bound:

E1/p
[
∥Ā
(
θ̄⌈n/2⌉,n − θ⋆

)
∥p
]
≲ {TrΣε}1/2p1/2

n1/2 + {TrΣε}1/2
(

p

n3/4 +
p3/2

n

)
(33)

+ (p+
√
n)∥θ0 − θ⋆∥ exp

{
− (α∞∧cA)

√
n

8p(1+logd)

}
,

where ≲ stands for inequality up to a constant, depending on κQ, a, CA, Cε, and polylogarithmic
factors in d. Note that the bound (33) can be formulated as a high-probability bound using the
Markov inequality with p= log(3e/δ).

Corollary 2. Assume A 1, A 2, IND 1 and set δ ∈ (0,1). Then, for any θ0 ∈Rd, n ∈N, with
α= α(n,d, log(3e/δ)) (see (32)), it holds with probability at least 1− δ, that

(n/2)1/2∥Ā
(
θ̄⌈n/2⌉,n − θ⋆

)
∥ ≤ 3eCRm,1

√
{TrΣε} log(3e/δ)+ c2∆

(HP)(n, θ0, δ) ,

where

∆(HP)(n, θ0, δ) = n−1/4{TrΣε}1/2 log3/2(3e/δ)

+ (log(3e/δ)+
√
n)∥θ0 − θ⋆∥ exp

{
− (α∞ ∧ cA)

√
n

8(1+ logd) log(3e/δ)

}
,

and the constant c2, defined in (52), depends only on κQ, a, CA, Cε, and polylogarithmic factors
in d.
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For completeness, we provide statements of (33) and Corollary 2 with exact constants in Propo-
sition 9. We compare below Corollary 2 to Mou et al. [26, Theorem 3]. It has the same leading
term, but makes a covariance matrix appear which is different from ours. Namely, the leading term
in Mou et al. [26, Theorem 3] is the asymptotic covariance matrix associated with the {θk}k∈N
when considered as a Markov chain: Σ(α)

ε = n−1 limn→+∞E[
∑n

i=1(θi − θ⋆)(θi − θ⋆)⊤]. Durmus et al.
[12, Proposition 6] shows that ∥Σ(α)

ε −Σε∥ = O(α) with α→ 0. This explains why, compared to
Mou et al. [26, Theorem 3], Corollary 2 has an additional term of order α1/2. It is worth noting
that the conclusions of Mou et al. [26, Theorem 3] regarding the choice of the optimal step size
and the resulting high probability bounds differ slightly from ours, since in their optimization the
dependence on the step size α in the covariance Tr(Σ(α)

ε ) is omitted. Corollary 2 accounts for this
additional factor in the optimization, leading to an optimal choice for α of order n−1/2 and a resid-
ual term in n−1/4, while the optimal choice of α derived by the authors according to Mou et al. [26,
Theorem 3] is of order n−1/3, leading to a residual term in n−1/3. Moreover, Corollary 2 improves
the scaling of the residual term with respect to log(1/δ), and shows exponential forgetting of the
initial condition in contrast to Mou et al. [26, Theorem 3]. Finally, an inspection of the proof of
Mou et al. [26, Theorem 3] shows that it relies heavily on results from Joulin and Ollivier [22].
However, the application of these results requires very strong log-Sobolev conditions on the noise
distribution (ε(Zn))n∈N, e.g., Gaussian distribution, and these results do not apply to the general
framework considered here.

4. Finite-time Moment and High-probability Bounds in the Markovian Noise Set-
ting We now consider the Markov case. Let (Z,dZ) be a Polish space endowed with its Borel
σ-field denoted by Z and let (ZN,Z⊗N) be the corresponding canonical space. Consider a Markov
kernel Q on Z×Z and denote by Pξ and Eξ the corresponding probability distribution and expec-
tation with initial distribution ξ. Without loss of generality, assume that (Zk)k∈N is the associated
canonical process. By construction, for any A ∈ Z, Pξ (Zk ∈A |Zk−1) = Q(Zk−1,A), Pξ-a.s. In the
case ξ = δz, z ∈ Z, Pξ and Eξ are denoted by Pz and Ez. Consider the following assumption.
UGE 1. The Markov kernel Q is uniformly geometrically ergodic, that is, there exists tmix ∈N∗

such that for all k ∈N∗,

∆(Qk) = sup
z,z′∈Z

(1/2)∥Qk(z, ·)−Qk(z′, ·)∥TV ≤ (1/4)⌊k/tmix⌋ . (34)

Here, tmix is the mixing time of Q. With (34) it is easy to see that∑∞
k=0∆(Qk) =

∑tmix−1

ℓ=0

∑∞
r=0∆(Qℓ+rtmix)≤ (4/3)tmix . (35)

UGE 1 implies that Q has a unique invariant distribution which is denoted by π. UGE 1 is
equivalent to the condition that Q satisfies a uniform minorization condition (see Douc et al.
[11, Theorem 18.2.5], i.e., there exist a probability measure ν, such that, for all z ∈ Z, A ∈ Z,
Qtmix(z,A)≥ (3/4)ν(A).
Under A1, we define the quantity

α(M)
∞ =

[
α∞ ∧κ

−1/2
Q C−1

A ∧a/(6eκQCA)
]
×⌈8κ1/2

Q CA /a⌉
−1

, (36)

where α∞, a,κQ are defined in (6) and (16), respectively. For any q≥ 2, we introduce

CΓ = 4(κ
1/2
Q CA+a/6)2 ×⌈8κ1/2

Q CA /a⌉ .

Now we use α(M)
∞ and CΓ to define, for q≥ 2,

α(M)
q,∞ = α(M)

∞ ∧ c
(M)
A /q , c

(M)
A = a/{12CΓ} . (37)
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We will see that α(M)
q,∞t−1

mix is a natural counterpart of the stability threshold αq,∞ from (17). Now
we aim to extend the exponential stability result for product of random matrices (cf. Theorem 1)
to UGE 1 scenario, provided that α∈ (0;α(M)

q,∞t−1
mix].

Theorem 3. Assume A 1 and UGE 1. Then, for any p, q ∈ N, 2 ≤ p ≤ q, α ∈ (0, α(M)
∞ t−1

mix],
n∈N, and any probability distribution ξ on (Z,Z), it holds

E1/p
ξ

[
∥Γ(α)

1:n∥p
]
≤√

κQe
2d1/q exp{−n(aα/6+ (q− 1)CΓα

2)} ,

where α(M)
∞ is defined in (36).

Proof. Our proof is based on a simplification of the arguments in Durmus et al. [13] together
with a new result about the product of general dependent random matrices based on Huang et al.
[18]. Denote by h ∈N a block length, the value of which is determined later. Define the sequence
j0 = 0, jℓ+1 =min(jℓ + h,n). By construction jℓ+1 − jℓ ≤ h. Let N = ⌈n/h⌉. Now we introduce the
decomposition

Γ
(α)
1:n =

N∏
ℓ=1

Yℓ , where Yℓ =

jℓ∏
i=jℓ−1

(I−αA(Zi)) , ℓ∈ {1, . . . ,N} .

Using a crude bound ∥YN∥ ≤ (1+αCA)
h, we get

E1/p
ξ [∥Γ(α)

1:n∥p]≤ (1+αCA)
hE1/p

ξ [∥
∏N−1

ℓ=1 Yℓ∥p] .

Now we aim to bound E1/p
ξ [∥

∏N−1

ℓ=1 Yℓ∥p] with the technique introduced in Proposition 13. To do
so, we define, for ℓ ∈ {1, . . . ,N − 1}, the filtration Hℓ = σ(Zk : k ≤ jℓ) and establish almost sure

bounds on ∥EHℓ−1
ξ [Yℓ]∥Q and ∥Yℓ − EHℓ−1

ξ [Yℓ]∥Q for ℓ ∈ {1, . . . ,N − 1}. More precisely, by the
Markov property, it is sufficient to show that there exist m ∈ (0,1] and σ > 0 such that for any
probabilities ξ, ξ′ on (Z,Z),

∥Eξ′ [Y1]∥2Q ≤ 1− m and ∥Y1 −Eξ′ [Y1]∥Q ≤ σ , Pξ-a.s. . (38)

Such bounds require the blocking procedure, since (38) not necessarily holds with h= 1. Set

h= ⌈8κ1/2
Q CA /a⌉tmix .

Applying Lemma 1 and Lemma 2, we show that (38) hold with m= aαh/6 and σ = Cσ αh, with
Cσ = 2(κ

1/2
Q CA+a/6). Then, applying Proposition 13,

E1/p
ξ

[
∥Γ(α)

1:n∥p
]
≤E1/q

ξ

[
∥Γ(α)

1:n∥q
]
≤√

κQd
1/qeαCA h

∏N−1

ℓ=1 (1− aαh/6+ (q− 1)C2
σ α

2h2)

≤√
κQd

1/qeαCA he−aαh(N−1)/6+(q−1)α2 C2
σ h2(N−1)

≤√
κQd

1/qeαh(CA +a/6)e−aαn/6+(q−1)α2nC2
σ h

≤√
κQe

2d1/qe−aαn/6+(q−1)CΓ α2n .

Here we used that by definition of h and since α∈ (0, α(M)
∞ t−1

mix], αhCA ≤ 1, and αha/6≤ 1 by (67).

Corollary 3. Assume A1 and UGE 1. For any 2≤ p≤ q, α∈ (0, α(M)
q,∞t−1

mix] with α(M)
q,∞ defined

in (37), probability distribution ξ on (Z,Z), and n∈N,

E1/p
ξ

[
∥Γ(α)

1:n∥p
]
≤√

κQe
2d1/qe−aαn/12 .
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Similarly to i.i.d. setting, decomposition (11) applied with L = 0 is enough to bound the p-th
moment of LSA error ∥θn − θ⋆∥. We begin with bounding E1/p

ξ

[
∥J (0)

n ∥p
]
.

Proposition 6. Assume A 1, A 2, and UGE 1. Then, for any α ∈ (0, α∞], p≥ 2, probability
ξ on (Z,Z), and n∈N, it holds

E1/p
ξ

[
∥J (0)

n ∥p
]
≤D(M)

1

√
αaptmix{TrΣε} , (39)

where
D(M)

1 = 27/2κ
1/2
Q Cε a

−1{e−1/4 +
√
2πeCA a−1} . (40)

Proof. By definition (19), J (0)
n is a linear statistics of the Markov chain (Zk)k∈N. Thus the desired

result follows from a Mac-Diarmid type inequality under UGE 1 (see Paulin [30, Corollary 2.10]).
Detailed argument is provided in Section D.2. Note that the bound (39) is equivalent to the one
established in Proposition 2 up to an additional

√
tmix factor.

Proposition 7. Assume A 1, A 2, and UGE 1. Let 2≤ p≤ q/2 and α(M)
q,∞ be defined in (37).

Then, for any α∈ (0, α(M)
q,∞t−1

mix], θ0 ∈Rd, probability ξ on (Z,Z), and n∈N, it holds

E1/p
ξ [∥θn − θ⋆∥p]≤√

κQe
2d1/qe−αan/12∥θ0 − θ⋆∥+D(M)

2 d1/q
√

αaptmix{TrΣε} ,

where D(M)
2 =D(M)

1 (1+24
√
2e2

√
κQCA a−1) and D(M)

1 is defined in (40).

Proof. Proceeding as in (21), we get

E1/p
ξ [∥θn − θ⋆∥p]≤E1/p

ξ

[
∥Γ(α)

1:n(θ0 − θ⋆)∥p
]
+E1/p

ξ

[
∥J (0)

n ∥p
]
+E1/p

ξ

[
∥H(0)

n ∥p
]
.

The first two terms are bounded using Corollary 3 and Proposition 6, respectively. Regarding the
last one, the recurrence (8), H(0)

n =−α
∑n

j=1Γ
(α)
j+1:nÃ(Zj)J

(0)
j−1, and Minkowski’s inequality yields

E1/p
ξ

[
∥H(0)

n ∥p
]
≤ α

∑n

j=1

{
Eξ

[
∥Γ(α)

j+1:n∥2p
]}1/2p{Eξ

[
∥Ã(Zj)J

(0)
k−1∥2p

]}1/2p
.

Using Proposition 6 and e−x ≤ 1−x/2, valid for x∈ [0,1], we get

E1/p
ξ

[
∥H(0)

n ∥p
]
≤ αd1/qe2

√
κQCAD(M)

1

√
2αaptmix{TrΣε}

∑n

j=1(1− aα/24)n .

This completes the proof.
Proposition 7 improves Mou et al. [27, Proposition 1]. First, we obtain a better scaling with

respect to p for the fluctuation term. Indeed, Mou et al. [27, Proposition 1] implies that this term
scales with p3/2, while we obtain p1/2. Moreover, the constraints on the step size α are relaxed.
Proposition 7 holds for α(M)

p,∞ ≈ 1/[p(1+ log(d))], while Mou et al. [27, Proposition 1] requires that
α≲ 1/[p3d]. We state below a counterpart of Proposition 5:

Proposition 8. Assume A 1, A 2, and UGE 1. Then, for any 2≤ p≤ q/2, α ∈ (0, α(M)
q,∞t−1

mix],
probability ξ on (Z,Z), and n∈N, it holds

E1/p
ξ [∥H(0)

n ∥p]≤ d1/q{TrΣε}1/2(αatmix)
{
D(M)

3

√
log (1/αa)p2 +D(M)

4 (αatmix)
1/2p1/2

}
,

where D(M)
3 and D(M)

4 are given in (75).

Proof. Expanding the recurrence (10) yields J (1)
n = α2

∑n−1

ℓ=1 Sℓ+1:nε(Zℓ), where

Sℓ+1:n =
∑n

k=ℓ+1(I−αĀ)n−kÃ(Zk)(I−αĀ)k−1−ℓ . (41)

Unlike the i.i.d.-noise scenario, J (1)
n is no longer a martingale, so we cannot directly apply Rosenthal-

type inequalities to upper bound E1/p
ξ [∥J (1)

n ∥p]. Instead, we rely on Berbee’s lemma (Rio [34, Lemma

5.1]). For a detailed argument, see Section D.3. We emphasise that the constants D(M)
3 and D(M)

4

do not depend on α or tmix.
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With the estimates above, we are ready to state and prove the Markov counterpart of Theorem 2.
Under A2 and UGE 1, we define the asymptotic covariance matrix

Σ(M)
ε =Eπ[ε(Z0)ε(Z0)

⊤] + 2
∑∞

ℓ=0Eπ[ε(Z0)ε(Zℓ)
⊤] . (42)

We also introduce the fluctuation and transient components of the LSA-PR error

R
(fl)
n,p,α,tmix

=
4D(M)

2 e1/p
√
aptmix√

αn
+

21/2DRos,1Cε pt
3/5
mix

n1/10
+

+4e1/p
(
D(M)

3 αatmix

√
log (1/αa)p2 +D(M)

4 (αatmix)
3/2p1/2

)
(α−1n−1/2 +n1/2CA) ;

R
(tr)
n,p,α,tmix

= e2+1/pκ
1/2
Q

(
2

αn1/2
+2−1/2n1/2CA

)
, (43)

Here DRos,1 is given in (88) and is a universal constant. The quantities above corresponds to the
fluctuation and transient terms in (29), respectively.

Theorem 4. Assume A 1, A 2, and UGE 1. Then, for any p≥ 2, step size α ∈ (0, α(M)
∞ t−1

mix ∧
c
(M)
A t−1

mix/{p(1+ logd)}), n≥ 4, θ0 ∈Rd, and probability ξ on (Z,Z), it holds

(n/2)1/2E1/p
ξ

[
∥Ā
(
θ̄⌈n/2⌉,n − θ⋆

)
∥p
]
≤CRm,1{TrΣ(M)

ε }1/2p1/2 + {TrΣε}1/2R(fl)
n,p,α,tmix

+(8/3)Cε{TrΣε}1/2n1/5t
2/5
mix exp

{
− n1/5 ln 2

(2tmix)1/5

}
+R

(tr)
n,p,α,tmix

∥θ0 − θ⋆∥ exp
{
−αan

24

}
,

where CRm,1 is defined in Section A.

Proof. Let p≥ 2 and q≥ p be a number to be fixed later. In addition assume that α∈ (0, αq,∞t−1
mix],

and set n0 = ⌈n/2⌉. Below we use shorthand notations Ãt,At, εt for Ã(Zt),A(Zt), and ε(Zt),
respectively. Proceeding as in (30) and (31), we decompose the p-th moment of LSA-PR error as

(n−n0)E1/p
ξ

[
∥Ā
(
θ̄n0,n − θ⋆

)
∥p
]
≤E1/p

ξ

[
∥
∑n−1

t=n0
εt+1∥p

]
+T

(M)
1 +T

(M)
2 +T

(M)
3 (44)

T
(M)
1 = α−1E1/p

ξ [∥θn0
− θn∥p] , T

(M)
2 =E1/p

ξ

[
∥
∑n−1

t=n0
Ãt+1θ̃

(tr)
t ∥p

]
,

T
(M)
3 =E1/p

ξ

[
∥
∑n−1

t=n0
Ãt+1J

(0)
t ∥p

]
+E1/p

ξ

[
∥
∑n−1

t=n0
Ãt+1H

(0)
t ∥p

]
.

Now we bound each term in the decomposition (44). We begin with the first term. Applying
Corollary 5, we get

E1/p
ξ

[
∥
∑n−1

t=n0

εt+1∥p
]
≤CRm,1 p

1/2(n−n0)
1/2{TrΣ(M)

ε }1/2

+DRos,1Cε{TrΣε}1/2p(n−n0)
2/5t

3/5
mix +(8/3)Cε{TrΣε}1/2(n−n0)

3/5t
2/5
mix2

−{(n−n0)/tmix}1/5 .

Applying Proposition 7 and Minkowski’s inequality, we get

T
(M)
1 ≤ 2α−1√κQe

2d1/qe−αan0/12∥θ0 − θ⋆∥+2D(M)
2 d1/qα−1/2

√
aptmix{TrΣε} .

Applying Corollary 3, Minkowski’s inequality, and using A1, (4), we get

T
(M)
2 ≤ (n−n0)

√
κQe

2d1/q CA e−aαn0/12∥θ0 − θ⋆∥ .

It remains to proceed with T
(M)
3 . Using the representation (8),∑n−1

t=n0
H

(0)
t+1 =

∑n−1

t=n0
{I−αA(Zt+1)}H(0)

t −α
∑n−1

t=n0
Ãt+1J

(0)
t ,

which yields ∑n−1

t=n0
Ãt+1J

(0)
t = α−1(H(0)

n0
−H(0)

n )−
∑n−1

t=n0
A(Zt+1)H

(0)
t .
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Applying again Minkowski’s inequality, we get

E1/p
ξ

[
∥
∑n−1

t=n0
Ãt+1J

(0)
t ∥p

]
≤ {2α−1 +(n−n0)CA} supt∈N∗ E1/p

ξ

[
∥H(0)

t ∥p
]
.

Now it remains to combine the bounds above in (44), use Proposition 8, and set q = p(1 + logd),
n0 = ⌈n/2⌉.
Remark 1. It is important to highlight that the bound we establish in the proof of Theorem 4

for T
(M)
3 cannot be improved with further expansion of H

(0)
t . Contrary to the i.i.d. scenario, the

term
∑n−1

t=n0
Ãt+1J

(0)
t is no longer a martingale, moreover, in general Eξ[Ãt+1J

(0)
t ] ̸= 0. As shown in

Lemma 6,
∥Eξ[Ãt+1J

(0)
t ]∥ ≤D(M)

4 αatmix{TrΣε}1/2 .

This bound is of the same order w.r.t. step size α (up to the factor
√

log 1/αa ), as the bound for

H
(0)
t obtained in Proposition 8. Therefore, it is not possible to obtain better bounds by further

expanding the H
(0)
t term.

Proceeding as in (33), we refine the bound of Theorem 4 under the special choice of the step size
α. The fluctuation error term (43) suggests that α should scale with n as n−2/3 and therefore we
set

α(M)(n,d, p, tmix) =
(
α(M)

∞ ∧ c
(M)
A /{1+ logd}

)
(pn2/3t

1/3
mix)

−1 . (45)

With the step size above, Theorem 4 implies, for n≥ tmix, the following p-th moment bound:

E1/p
ξ

[
∥Ā
(
θ̄n0,n − θ⋆

)
∥p
]
≲

{TrΣ(M)
ε }1/2p1/2

n1/2
+ {TrΣε}1/2

(
t
3/5
mixp

n3/5
+

tmixp
2

n

)
(46)

+p(tmix/n)
2/5 exp

{
− n1/5 ln 2

(2tmix)1/5

}
+ pn1/2∥θ0 − θ⋆∥ exp

{
− (α(M)

∞ ∧ c
(M)
A )n1/3

24pt
1/3
mix(1+ logd)

}
,

where ≲ stands for inequality up to a constant, depending on κQ, a, CA, Cε, and polylogarithmic
factors in d and n. Similarly to Corollary 2, the bound above can be reformulated as a high-
probability bound using the Markov inequality.

Corollary 4. Assume A1, A2, UGE 1, and set δ ∈ (0,1). Then, for any θ0 ∈Rd, sample size
n∈N∗, n≥ 4∨ tmix, step size α= α(M)(n,d, log(3e/δ), tmix) defined in (45), it holds with probability
at least 1− δ, that

(n/2)1/2∥Ā
(
θ̄⌈n/2⌉,n − θ⋆

)
∥ ≤ 3eCRm,1

√
{TrΣ(M)

ε } log(3e/δ)+ c
(M)
1 R(HP)(n, θ0, δ, tmix) ,

where

R(HP)(n, θ0, δ, tmix) = {TrΣε}1/2 log(3e/δ){n−1/10t
3/5
mix +n−1/2tmix log(3e/δ)}

+(n1/6t
1/3
mix log(3e/δ)+n1/2)∥θ0 − θ⋆∥ exp

{
− (α(M)

∞ ∧ c
(M)
A )n1/3

24t
1/3
mix(1+ logd) log(3e/δ)

}
+n1/10t

2/5
mix log(3e/δ) exp

{
− n1/5 ln 2

(2tmix)1/5

}
,

and c
(M)
1 depends only on κQ, a, CA, Cε, and polylogarithmic factors in d in n.

Theorem 4 generalizes and improves the results of Mou et al. [27, Theorem 1]. First, Mou et al. [27,
Theorem 1] only consider the mean square error, while in Theorem 4 we derive bounds for arbitrary
p-th moments of the LSA-PR error. These bounds are further used to derive high probability
bounds in Corollary 4. Second, the refined bound (46) for p = 2 yields the same leading term
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of order {TrΣ(M)
ε }1/2n−1/2 and improves the dependence of the residual term on the dimension.

Namely, for comparison with Mou et al. [27, Theorem 1], assume that TrΣε ≈ d. This leads to
a residual term with dependence of order d1/2 in Theorem 4 instead of d4/3 in Mou et al. [27,
Theorem 1]. Moreover, the step size α in (46) scales with d as (1 + logd)−1, unlike d−1/3 in Mou
et al. [27, Theorem 1].

Appendix A: Notations and Constants Denote N∗ =N\{0} and N− =Z\N∗. Let d∈N∗

and Q be a symmetric positive definite d×d matrix. For x∈Rd, we denote ∥x∥Q = {x⊤Qx}1/2. For
brevity, we set ∥x∥ = ∥x∥Id . We denote ∥A∥Q =max∥x∥Q=1 ∥Ax∥Q, and the subscriptless norm ∥A∥ =
∥A∥I is the standard spectral norm. For a function g : Z→Rd, we denote ∥g∥∞ := supz∈Z ∥g(z)∥.
We denote Sd−1 = {x ∈ Rd| ∥x∥ = 1}. Let A1, . . . ,AN be d-dimensional matrices. We denote∏j

ℓ=iAℓ =Aj . . .Ai if i≤ j and by convention
∏j

ℓ=iAℓ = I if i > j. We say that a centered random
variable (r.v.) X is subgaussian with variance proxy factor σ2 and denote X ∈ SG(σ2) if for all
λ∈R, logE[eλX ]≤ λ2σ2/2.
The readers can refer to the following table on the variables and constants that are used across

the paper for references.
Variable Description Reference
Q Solution of Lyapunov equation for Ā Proposition 1
κQ λ−1

min(Q)λmax(Q) Proposition 1
a Real part of minimum eigenvalue of Ā Proposition 1
Γ(α)
m:n Product of random matrices with step size α (3)

ε(Zn) Noise in LSA procedure (2)

θ̃(tr)n , θ̃(fl)n Transient and flutuation terms of LSA error (4)
αp,∞ (resp. α(M)

p,∞) Stability threshold for Γ(α)
m:n to have bounded

p-th moment under IND 1 (resp. UGE 1)

(17)

J (0)
n Dominant term in θ̃(fl)n (8)

H(0)
n Residual term θ̃(fl)n −J (0)

n (8)
J (ℓ)
n ,H(ℓ)

n , ℓ≥ 1 Stochastic terms from expansion of H(0)
n (9)-(10)

Σε Noise covariance E[ε1ε⊤1 ] A2
Σ(M)

ε Asymptotic covariance matrix under Markovian noise (42)
CRm,1 = 60e Constant in martingale Rosenthal’s inequality [31, Theorem 4.1]
CRm,2 = 60 Constant in martingale Rosenthal’s inequality [31, Theorem 4.1]
DRos,1 Constant in Rosenthal’s inequallity under UGE 1 (88)

Appendix B: Independent case bounds In the lemmas below we use shorthand notation
Ãn,An, εn for Ã(Zn),A(Zn), and ε(Zn), respectively, where ε(z) :Z→Rd is defined in (2).

B.1. Proof of Proposition 2 With decomposition (8), we expand J (0)
n as

J (0)
n = α

∑n

j=1

(
I−αĀ

)n−j
εj =: α

∑n

j=1 ηn,j , where ηn,j =
(
I−αĀ

)n−j
εj .

Proposition 1 implies that ∥
(
I−αĀ

)n−j∥ ≤ κ
1/2
Q (1− αa)(n−j)/2. Hence, using the Hoeffding-type

bound of Lemma 11 and assumption A2, we get for any t≥ 0 that

P(∥J (0)
n ∥ ≥ t)≤ 2exp{−t2/(2σ2

α,n)} ,

where, with Σε defined in (15),

σ2
α,n = α2κQC2

εTr(Σε)
∑n

j=1(1−αa)n−j ≤ ακQTr(Σε)C
2
ε /a .

Combining this result with the moment bound of Lemma 10 yields (18).
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B.2. Proof of Proposition 5

B.2.1. Moment bounds for J (1)
n We begin with the bound (27). Expanding the recurrence

(10) with ℓ= 1 and using that J
(0)
k−1 =−α

∑k−1

i=1 (I−αĀ)k−i−1εi yields

J (1)
n = α2

∑n−1

i=1 S
(1)
i+1:nεi, where S

(1)
i+1:n =

∑n

k=i+1(I−αĀ)n−kÃk(I−αĀ)k−1−i . (47)

Recall for k ∈ N, Fk = σ(Zs : 1 ≤ s ≤ k), F0 = {∅,Z}. It is easy to check that the sequence
{S(1)

i+1:nεi}n−1
i=1 is a martingale-difference with respect to the filtration (Fk)k∈N: E[S(1)

i+1:nεi|Fi−1] = 0.
Applying the Burkholder inequality Osekowski [29, Theorem 8.6] and the Minkowski inequality,
we get

E[∥J (1)
n ∥p]≤ ppα2pE[(

∑n−1

i=1 ∥S(1)
i+1:nεi∥2)p/2] (48)

≤ ppα2p(
∑n−1

i=1 E2/p[∥S(1)
i+1:nεi∥p])p/2 .

Let us denote vi = εi/∥εi∥. Then, using IND 1, we get

E[∥S(1)
i+1:nεi∥p] =E

[
∥εi∥pEFi

[
∥S(1)

i+1:nvi∥p
]]

≤E[∥εi∥p] sup
u∈Sd−1

E[∥S(1)
i+1:nu∥p] .

A1 and Proposition 1 imply that ∥(I−αĀ)n−kÃk(I−αĀ)k−1−i∥ ≤ κQCA(1−αa)(n−i−1)/2. Hence,
applying Lemma 11, we get for any t≥ 0 and u∈ Sd−1 that

P
(
∥S(1)

i+1:nu∥ ≥ t
)
≤ 2exp

{
− t2

2κ2
QC2

A(n− i)(1−αa)n−i−1

}
.

Applying Lemma 10, we get for any u∈ Sd−1

E2/p[∥S(1)
i+1:nu∥p]≤ 2pC2

A κ2
Q(n− i)(1−αa)n−i−1 . (49)

Combining (48), (49), and A2, we get

E1/p[∥J (1)
n ∥p]≤ 2{TrΣε}1/2p3/2α2CA κQCε(

∑n−1

i=1 (n− i)(1−αa)n−i−1)1/2

≤D3αap
3/2{TrΣε}1/2 ,

(50)

where D3 is defined in (27). In the above we have used that
∑∞

k=1 kρ
k−1 = (1− ρ)−2 for ρ ∈ [0,1)

together with αa≤ 1/2.

B.2.2. Moment bounds for H(1)
n The decomposition (10) implies that

H(1)
n =−α

∑n

ℓ=1Γ
(α)
ℓ+1:nÃℓJ

(1)
ℓ−1 .

Hence, using Minkowski’s inequality together with IND 1,

E1/p[∥H(1)
n ∥p]≤ α

∑n

ℓ=1E1/p[∥Γ(α)
ℓ+1:nÃℓ∥p]E1/p[∥J (1)

ℓ−1∥p] .

Applying Theorem 1 and (50), we get using the definition (28) of D4

E1/p[∥H(1)
n ∥p]≤ κ

1/2
Q CAD3α

2ad1/q{TrΣε}1/2p3/2
n∑

ℓ=1

(1−αa/4)n

≤D4d
1/q{TrΣε}1/2αap3/2 .
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B.3. Version of Corollary 2 with exact constants

Proposition 9. Under the assumptions of Theorem 2 with the step size α= α(n,d, p) specified
in (32), it holds that

(n/2)1/2E1/p
[
∥Ā
(
θ̄⌈n/2⌉,n − θ⋆

)
∥p
]
≤CRm,1{TrΣε}1/2p1/2 (51)

+ e1/p{TrΣε}1/2
(
c3(1+ logd)1/2p

n1/4
+

c4p
3/2

n1/2

)
+e1/pc5(1+ logd)p∥θ0 − θ⋆∥ exp

{
−(α∞ ∧ cA)

√
n

8p(1+ logd)

}
,

where c3, c4 and c5 are given by

c3 =
4D2

(α∞ ∧ cA)1/2
+
√
2CRm,2Cε+(α∞ ∧ cA)

1/2CAD1 , c5 = κ
1/2
Q

(
2
√
2

α∞ ∧ cA
+CA

)
,

c4 =CA(D3 +D4)a(α∞ ∧ cA) .

Moreover, Corollary 2 holds with

c2 = 3e
(
(c3 + c4)(1+ logd)1/2 ∨ c5(1+ logd)

)
. (52)

Proof. The bound (51) automatically follows from Theorem 2 after substituting the step size
α(n,d, p). Now Corollary 2 with c2 defined in (52) follows from the Markov inequality applied with
p= log(3e/δ)> 2.

Appendix C: Independent case bounds under subgaussian noise assumption
Assumption A2 can be relaxed to a subgaussian-type conditions on the noise variable ε(Z). Con-
sider the following assumption:
A3. For any u∈ Sd−1, and λ∈R, log{E[exp(λu⊤ε(Z))]} ≤ λ2σ2

ε/2, where Z is a random variable
with distribution π.
Note that A 2 implies A 3, and A 3 can be written more concisely as u⊤ε(Z) ∈ SG(σ2

ε) for any
u ∈ Sd−1. For instance, this condition holds when ε(Zt+1) is an outer product of sub-Gaussian
random variables in the canonical coordinates; see Mou et al. [27, Assumption 2]1. Note that, for
any u∈ Sd−1, and t≥ 0,

P(|u⊤ε(Z)| ≥ t)≤ 2exp(−t2/(2σ2
ε)) . (53)

Below we state the counterpart of Proposition 2 and Proposition 3.

Proposition 10. Assume A 1, IND 1 and A 3. Then, for any α ∈ (0, α∞], p≥ 2, u ∈ Sd and
n∈N,

E1/p
[∣∣u⊤J (0)

n

∣∣p]≤D1

√
αapσ2

ε , (54)

where D1 is given in (18). Moreover, for any p, q ∈ N, 2≤ p≤ q, α ∈ (0, αq,∞], n ∈ N, u ∈ Sd and
θ0 ∈Rd,

E1/p
[
|u⊤(θn − θ⋆)|p

]
≤ d1/qκ

1/2
Q (1−αa/4)

n ∥θ0 − θ⋆∥+Dd1/q
√

αapσ2
ε , (55)

where the constant D is given by

D= (2κQ)
1/2a−1(1+4κ

1/2
Q CA a−1)

1 The condition can be further relaxed to cover heavier-tail setting in which ε(Zt+1) has only a finite number of
moments or is sub-exponential (instead of sub-gaussian).
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Proof. We first show the bound (54). Expanding (8), we get for any u∈ Sd−1, that

u⊤J (0)
n = α

∑n

j=1 ηn,j , where ηn,j = u⊤
(
I−αĀ

)n−j
εj . (56)

Note that {ηn,j}nj=1 are sub-Gaussian random variables. With Proposition 1, for any λ∈R,

logE[exp{ληn,j}]≤ (1/2)λ2∥u⊤
(
I−αĀ

)n−j ∥2σ2
ε ≤ (1/2)λ2κQ(1−αa)n−jσ2

ε .

Hence, ηn,j ∈ SG(σ2
n,j), where σ2

n,j = κQ(1− αa)n−jσ2
ε . IND 1 and (56) imply that u⊤J (0)

n is also
sub-Gaussian random variable, that is,

u⊤J (0)
n ∈ SG(σ2

α,n) , σ2
α,n = α2

∑n

j=1 σ
2
n,j ≤ a−1κQσ

2
εα .

Using (53) and applying Lemma 10, we obtain for p≥ 2 that

E1/p
[∣∣u⊤J (0)

n

∣∣p]≤D1σε

√
αap , where D1 = 2κ

1/2
Q a−1 .

Now the proof of the bound (55) follows the same line as the proof of Proposition 3 and is omitted.

Proposition 11. Assume A 1, IND 1 and A 3. Then, for any n ∈ N, α ∈ (0, α∞ ∧ [cA /{2 +
2 logd}]), θ0 ∈Rd, u∈ Sd−1, it holds

(n/2)E
[
|u⊤Ā

(
θ̄⌈n/2⌉,n − θ⋆

)
|2
]
≤ 4u⊤Σεu+∆(fl)

n,α +∆(tr)
n,α∥θ0 − θ⋆∥2(1−αa/4)n/n ,

where ∆(fl)
n,α,∆

(tr)
n,α are given in (24).

Proof. The proof follows the same line as Proposition 4 using Proposition 10 instead of Propo-
sition 2 and Proposition 3.

Proposition 12. Assume A1, A3, and IND 1. Then, for any α∈ (0, α∞], p≥ 2, u∈ Sd−1 and
n∈N, it holds

E1/p
[
|u⊤J (1)

n |p
]
≤D3αap

2σε , where D3 = 4κQCA /a2 . (57)

Moreover, for any 2≤ p≤ q and α∈ (0, αq,∞], n∈N,

E1/p
[
|u⊤H(1)

n |p
]
≤D4αap

2d1/qσε , where D4 = 4κ
1/2
Q CAD3/a

2 . (58)

Proof. We begin with the bound (57). We use (47). The sequence {S(1)
i+1:nεi}n−1

i=1 is a martingale-
difference with respect to the filtration (Fk)k∈N: Applying Burkholder’s inequality Osekowski [29,
Theorem 8.6] and Minkowski’s inequality, we get

E[|u⊤J (1)
n |p]≤ ppα2pE[(

∑n−1

i=1 (u
⊤S

(1)
i+1:nεi)

2)p/2] (59)

≤ ppα2p(
∑n−1

i=1 E2/p[|u⊤S
(1)
i+1:nεi|p])p/2 .

Set vi+1:n = [S
(1)
i+1:n]

Tu. Then, using IND 1, we get

E[|v⊤i+1:nεi|p]≤E
[
∥vi+1:n∥p

]
sup

v∈Sd−1

E[|v⊤εi|p] .

Using the same arguments as in Proposition 5, we get

P
(
∥vi+1:n∥ ≥ t

)
≤ 2exp

{
− t2

2κ2
QC2

A(n− i)(1−αa)n−i−1

}
.
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Hence, applying Lemma 10, we get for any u∈ Sd−1

E2/p[∥vi+1:n∥p]≤ 4pC2
A κ2

Q(n− i)(1−αa)n−i−1 . (60)

Combining (59), (60), and A2, we get

E1/p[|u⊤J (1)
n |p]≤ 4σεp

2α2CA κQ(
∑n−1

i=1 (n− i)(1−αa)n−i−1)1/2

≤D3αap
2σε .

(61)

We now consider (58). Recall thatH(1)
n =−α

∑n

ℓ=1Γ
(α)
ℓ+1:nÃℓJ

(1)
ℓ−1. Hence, using Minkowski’s inequal-

ity together with IND 1,

E1/p[∥H(1)
n ∥p]≤ α

∑n

ℓ=1E1/p[∥Γ(α)
ℓ+1:nÃℓ∥p] supu∈Sd−1 E1/p[|u⊤J

(1)
ℓ−1|p] .

Applying Theorem 1 and (61), we get using the definition (28) of D4

E1/p[∥H(1)
n ∥p]≤ κ

1/2
Q d1/q CAD3α

2σεp
2
∑n

ℓ=1(1−αa/4)n ≤D4d
1/qσεαap

2 .

Using the bounds of Proposition 11, we obtain the p-th moment error bound for LSA-PR pro-
cedure similarly to Theorem 2. Proceeding as in (29), we introduce the fluctuation and transient
components of the LSA-PR error

∆(fl)
n,p,α =

4e1/pD2p
1/2

(αn)1/2
+e1/pCA(D3 +D4)αap

3 +
3
√
2CRm,2

√
log{en}p3/2

n1/2

+CAD1α
1/2p3/2 ,

∆(tr)
n,p,α = e1/pκ

1/2
Q (2

√
2/(αn1/2)+ 2−1/2n1/2CA) .

(62)

Theorem 5. Assume Assume A 1, IND 1, and A 3. Then, for any n ∈N, p≥ 2, α ∈ (0, α∞ ∧
cA /{p(1+ logd)}), θ0 ∈Rd, u∈ Sd−1, it holds

(n/2)1/2E1/p
[
|u⊤Ā

(
θ̄⌈n/2⌉,n − θ⋆

)
|p
]
≤CRm,1{u⊤Σεu}1/2p1/2 +σε∆

(fl)
n,p,α

+∆(tr)
n,p,α (1−αa/4)

n/2 ∥θ0 − θ⋆∥ ,

where CRm,i, i= 1,2 are defined in Section A.

Proof. The proof follows the lines of Theorem 2 and is omitted. The only difference with the men-
tioned proof is related with the term E1/p

[
|
∑n−1

t=n0
u⊤εt+1|p

]
. Application of Rosenthal’s inequality

yields

E1/p
[
|
∑n−1

t=n0
u⊤εt+1|p

]
≤CRm,1 p

1/2(n−n0)
1/2{u⊤Σεu}1/2

+CRm,2 pE1/p[maxt∈{n0,...,n−1} |u⊤εt+1|p] .

Since u⊤εt+1 ∈ SG(σ2
ε) for any t∈N∗, we obtain using Durmus et al. [12, Lemma 4], that

E1/p[maxt∈{n0,...,n−1} |u⊤εt+1|p]≤ 3σεp
1/2
√

1+ log{n−n0} .

This modification affects the fluctuation term ∆(fl)
n,p,α in (62).

Appendix D: Markov case bounds
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D.1. Proof of Theorem 3 We first provide a result on the product of dependent random
matrices. The proof is based on Huang et al. [18]. Let (Ω,F,{Fℓ}ℓ∈N,P) be a filtered probability
space. For the matrix B ∈Rd×d we denote by (σℓ(B))dℓ=1 its singular values. For q≥ 1, the Shatten
q-norm is denoted by ∥B∥q = {

∑d

ℓ=1 σ
q
ℓ (B)}1/q. For q, p ≥ 1 and a random matrix X we write

∥X∥q,p = {E[∥X∥pq ]}1/p.

Proposition 13. Let {Yℓ}ℓ∈N be a sequence of random matrices adapted to the filtration
{Fℓ}ℓ∈N and P be a positive definite matrix. Assume that for each ℓ∈N∗ there exist mℓ ∈ (0,1] and
σℓ > 0 such that

∥EFℓ−1 [Yℓ]∥2P ≤ 1− mℓ and ∥Yℓ −EFℓ−1 [Yℓ]∥P ≤ σℓ P-a.s. .

Define Zn =
∏n

ℓ=0Yℓ =YnZn−1, for n≥ 1. Then, for any 2≤ p≤ q and n≥ 1,

∥Zn∥2q,p ≤ κP

∏n

ℓ=1(1− mℓ +(q− 1)σ2
ℓ )∥P 1/2Z0P

−1/2∥2q,p ,

where κP = λmax(P )/λmin(P ) and λmax(P ), λmin(P ) correspond to the largest and smallest eigenvalues
of P .

Proof. Let n∈N∗ and 2≤ p≤ q. We begin with the decomposition

Zn =YnZn−1 = (Yn −EFn−1 [Yn])Zn−1 +EFn−1 [Yn]Zn−1 .

Let us define fP :Rd×d →Rd×d as fP (B) = P 1/2BP−1/2. Therefore, for any n∈N, it holds fP (Zn) =
An +Bn, where

An = fP ((Yn −EFn−1 [Yn])Zn−1) , Bn = fP (EFn−1 [Yn])fP (Zn−1) .

Since EBn [An] =EBn [EFn−1 [An]] = 0, Huang et al. [18, Proposition 4.3] implies that

∥fP (Zn)∥2q,p ≤ ∥Bn∥2q,p +(q− 1)∥An∥2q,p . (63)

It remains to bound the two terms on the right-hand side. To this end, we use Hiai and Petz [17,
Theorem 6.20] which implies that for any B1,B2 ∈Rd×d,

∥B1B2∥q,p ≤ ∥B1∥∥B2∥q,p . (64)

Combining (64) with ∥B∥P = ∥fP (B)∥, and ∥Yn −EFn−1 [Yn]∥P ≤ σn, we get

∥An∥q,p =
(
E
[
∥fP (Yn −EFn−1 [Yn])fP (Zn−1)∥pq

])1/p
≤
(
E
[
∥Yn −EFn−1 [Yn]∥pP∥fP (Zn−1)∥pq

])1/p ≤ σn∥fP (Zn−1)∥q,p . (65)

Similarly, applying ∥EFn−1 [Yn]∥2P ≤ 1− mn

∥Bn∥2q,p =
(
E
[
∥fP (EFn−1 [Yn])fP (Zn−1)∥pq

])2/p
≤
(
E
[
∥EFn−1 [Yn]∥pP∥fP (Zn−1)∥pq

])2/p ≤ (1− mn)∥fP (Zn−1)∥2q,p . (66)

Combining (65) and (66) in (63) yields

∥fP (Zn)∥2q,p ≤ (1− mn +(q− 1)σ2
n)∥fP (Zn−1)∥2q,p ≤

∏n

i=1(1− mi +(q− 1)σ2
i )∥fP (Z0)∥2q,p .

The proof is completed using (64) which implies that

∥Zn∥q,p = ∥P−1/2fP (Zn)P
1/2∥q,p ≤

√
κP∥fP (Zn)∥q,p .
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In the lemmas below we aim to prove the bound (38). Recall that Y1 =
∏h

i=1(I−αA(Zi)).

Lemma 1. Assume A 1 and UGE 1. Then for any α ∈ (0, α(M)
∞ t−1

mix] with α(M)
∞ defined in (36),

and any probability ξ on (Z,Z),

∥Eξ[Y1]∥2Q ≤ 1− aαh/6 , where h= 1∨ ⌈8κ1/2
Q CA tmix/a⌉ . (67)

Proof. We decompose the matrix product Y1 as follows:

Y1 = I−αhĀ−S1 +R1 , (68)

where S1 = α
∑h

k=1

{
A(Zk)− Ā

}
is linear statistics in {A(Zk)}hk=1, and the remainder R1 collects

the higher-order terms in the products

R1 =
h∑

r=2

(−1)rαr
∑

(i1,...,ir)∈Iℓr

r∏
u=1

A(Ziu) .

with Iℓr = {(i1, . . . , ir) ∈ {1, . . . , h}r : i1 < · · ·< ir}. Using ∥M∥Q = ∥Q1/2MQ−1/2∥, it is straightfor-
ward to check that P-a.s. it holds

∥R1∥Q ≤
h∑

r=2

(ακ
1/2
Q CA)

r

(
h

r

)
≤ (κ

1/2
Q CAαh)2(1+κ

1/2
Q CAα)h = T2 . (69)

On the other hand, using UGE 1, we have for any k ∈N∗, that

∥Eξ[A(Zk)− Ā]∥ = sup
u,v∈Sd−1

[Eξ[u
⊤A(Zk)v]−u⊤Āv]≤CA∆(Qk) .

Hence, with the triangle inequality and (35),

∥Eξ[S1]∥Q ≤ ακ
1/2
Q

∑h

k=1 ∥Eξ[A(Zk)− Ā]∥ ≤ ακ
1/2
Q CA

∑h

k=1∆(Qk)

≤ (4/3)αtmixκ
1/2
Q CA = T1 .

This result combined with (69) in (68) implies that

∥Eξ[Y1]∥Q ≤ ∥I−αhĀ∥Q +T1 +T2 .

First, by definition (67) of h , we have

T1 ≤ αah/6 . (70)

With the definition of α(M)
∞ in (36), α≤ α(M)

∞ ≤ (κ
1/2
Q CA h)−1 ∧ [a/(6eκQC2

A h)], and

T2 ≤ (κ
1/2
Q CAαh)2e≤ αah/6 . (71)

Finally, Proposition 1 implies that, for αh≤ α∞,

∥I−αhĀ∥Q ≤ 1−αah/2 . (72)

Combining (70), (71), and (72) yield ∥Eξ[Y1]∥Q ≤ 1−αah/6, and the statement follows.

Lemma 2. Assume A 1 and UGE 1, and let α ∈ (0, α(M)
∞ t−1

mix]. Then, for any probability ξ on
(Z,Z), we have

∥Y1 −Eξ[Y1]∥Q ≤Cσ αh , where Cσ = 2(κ
1/2
Q CA+a/6) ,

and h is given in (67).
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Proof. Using (68), we obtain

∥Y1 −Eξ[Y1]∥Q ≤ α
∑h

k=1 ∥A(Zk)−Eξ[A(Zk)]∥Q + ∥R1 −Eξ[R1]∥Q .

Applying the definition of R1 in (69), the definition of h,α(M)
∞ , and T2 in (71), we get from the

above inequalities

∥Y1 −Eξ[Y1]∥Q ≤ 2ακ
1/2
Q CA h+αah/3 ,

and the statement follows.

D.2. Proof of Proposition 6 We first apply the Abel transform to J (0)
n . Using the repre-

sentation (8), we obtain that

J (0)
n = α

∑n

j=1

(
I−αĀ

)n−j
ε(Zj) (73)

= α
(
I−αĀ

)n−1∑n

k=1 ε(Zk)−α2
∑n−1

j=1

(
I−αĀ

)n−j−1
Ā
∑n

k=j+1 ε(Zk) .

Note that π(ε) = 0, and for any z, z′ ∈ Z, A2 implies ∥ε(z)− ε(z′)∥ ≤ 2Cε

√
TrΣε. Hence, applying

Lemma 12, we get for any j ∈N and t > 0, that

Pξ

(
∥
∑n

k=j+1
ε(Zk)∥ ≥ t

)
≤ 2exp

{
−t2/(2β2

n−j)
}
, (74)

where for ℓ∈N∗,

βℓ = 8Cε

√
ℓtmix{TrΣε} .

Lemma 10 and (74) imply that, for any p≥ 2,

E1/p
ξ

[
∥
∑n

k=j+1 ε(Zk)∥p
]
≤ 27/2Cε

√
(n− j)ptmix{TrΣε} .

Then, applying Minkowski’s inequality to (73), we get

E1/p
ξ

[
∥J (0)

n ∥p
]
≤ 27/2Cεα∥

(
I−αĀ

)n−1∥
√

nptmix{TrΣε}
+27/2Cεα

2
∑n−1

j=1 ∥
(
I−αĀ

)n−j−1
Ā∥
√
(n− j)ptmix{TrΣε} .

Using A 1 and Proposition 1, for j ∈ {1, . . . , n}, ∥
(
I−αĀ

)n−j∥ ≤ √
κQ(1 − αa)(n−j)/2. Note also

that, since aα≤ 1/2,

n−1∑
j=1

(1−αa)(n−j−1)/2
√

n− j ≤ eαa
n−1∑
k=1

exp{−αa(k+1)/2}
√
k

≤ 23/2eαa

(αa)3/2

∫ +∞

0

exp{−y}√y dy≤ 21/2π1/2e1/2

(αa)3/2
.

It remains to combine the previous bounds with an elementary inequality, using αa≤ 1/2, for any
x> 0,

(1−αa)(x−1)/2
√
x≤ eαa/2 exp{−αax/2}

√
x≤ e1/4

(αa)1/2
sup
u≥0

{ue−u}1/2 ≤ 1

(αa)1/2e1/4
.

Combining the bounds above yield (39) with the constant D(M)
1 defined in (40).
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D.3. Proof of Proposition 8 Using (10), we decompose H(0)
n = J (1)

n +H(1)
n . Now the state-

ment follows from Minkowski’s inequality, Lemma 3 and Lemma 5. The constants D(M)
3 ,D(M)

4 are
given by

D(M)
3 =D(M)

J,1

(
1+96a−1CA e2κ

1/2
Q

)
,

D(M)
4 =D(M)

J,2

(
1+48a−1CA e2κ

1/2
Q

)
.

(75)

with D(M)
J,1 and D(M)

J,2 defined in (76).

Lemma 3. Assume A1, A2, and UGE 1. Then, for any α∈ (0, α∞], p≥ 2 any initial probability
ξ on (Z,Z), it holds that

E1/p
ξ [∥J (1)

n ∥p]≤ {TrΣε}1/2(αatmix){D(M)
J,1

√
log (1/αa)p2 +D(M)

J,2 (αatmix)
1/2p1/2} ,

where

D(M)
J,1 = 64κQCACε a

−2
(
(
√
2+κ

1/2
Q )/

√
2 log 2+2π1/2κ

1/2
Q +κ

1/2
Q /

√
log 2

)
D(M)

J,2 =
128

3
κ
3/2
Q CACε a

−2 .
(76)

To proceed with Berbee’s lemma, we consider the extended measurable space Z̃N = ZN × [0,1]
endowed with the σ-field Z̃N =Z⊗N⊗B([0,1]). For any probability measure ξ on (Z,Z), we consider
the probability measure P̃ξ = Pξ ⊗Unif([0,1]) and denote by Ẽξ the corresponding expectation.
Finally, we denote by (Z̃k)k∈N the canonical process Z̃k : ((zi)i∈N, u)∈ Z̃N 7→ zk and U : ((zi)i∈N, u)∈
Z̃N 7→ u. Under P̃ξ, by construction {Z̃k}k∈N is a Markov chain with initial distribution ξ and Markov
kernel Q independent of U . The distribution of U under P̃ξ is uniform over [0,1].

Lemma 4. Assume UGE 1, let m ∈N∗ and ξ be a probability measure on (Z,Z). Then, there
exists a random process (Z̃⋆

k)k∈N defined on (Z̃N, Z̃N, P̃ξ) such that for any k ∈N,
(a) Z̃⋆

k is independent of F̃k+m = σ{Z̃ℓ : ℓ≥ k+m};
(b) P̃ξ(Z̃

⋆
k ̸= Z̃k)≤∆(Qm);

(c) the random variables Z̃⋆
k and Z̃k have the same distribution under P̃ξ.

Proof. Berbee’s lemma Rio [34, Lemma 5.1] ensures that for any k, there exists Z̃⋆
k satisfying

(a), (c) and P̃ξ(Z̃
⋆
k ̸= Z̃k) = βξ(σ(Z̃k), F̃k+m). In this formulae for two σ-fields F, G on Z̃N,

βξ(F,G) =
1

2
sup

∑
i∈I

∑
j∈J

|P̃ξ(Ai ∩Bj)− P̃ξ(Ai)P̃ξ(Bj)| ,

and the supremum is taken over all pairs of partitions {Ai}i∈I ∈ FI and {Bj}j∈J ∈GJ of Z̃N with I
and J finite. Applying Douc et al. [11, Theorem 3.3] with UGE 1 completes the proof.
Proof. Recall that J (1)

n = α2
∑n−1

ℓ=1 Sℓ+1:nε(Zℓ), where Sℓ+1:n is given in (41). We first set a con-
stant block size m ∈ N⋆,m≥ tmix (to be determined later). In order to proceed with Sℓ+1:nε(Zℓ),
we split Sℓ+1:n into a part measurable with respect to Fn

ℓ+m = σ(Zk : k ≥m+ ℓ) and a remainder
term. Indeed, using its definition (41),

Sℓ+1:n = (I−αĀ)n−m−ℓSℓ+1:ℓ+m +Sℓ+m+1:n(I−αĀ)m .

Let N = ⌊(n − 1)/m⌋. With these notations, we can decompose J (1)
n as a sum of three terms:

J (1)
n = T1 +T2 +T3, with

T1 = α2

m(N−1)∑
ℓ=1

(I−αĀ)n−m−ℓSℓ+1:ℓ+mε(Zℓ)

T2 = α2

m(N−1)∑
ℓ=1

Sℓ+m+1:n(I−αĀ)mε(Zℓ) , T3 = α2

n−1∑
ℓ=m(N−1)+1

Sℓ+1:nε(Zℓ) .
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We bound the terms T1, T2 and T3 separately. Using Minkowski’s inequality together with Propo-
sition 1, Lemma 7, and the definition (41), we get

E1/p
ξ

[
∥T1∥p

]
≤ α2

m(N−1)∑
ℓ=1

κQ
1/2(1−αa)(n−m−ℓ)/2E1/p

ξ

[
∥Sℓ+1:ℓ+mε(Zℓ)∥p

]
≤ 16α2κ

3/2
Q CACεD

(M)
S

√
mtmix{TrΣε}p

m(N−1)∑
ℓ=1

(1−αa)(n−ℓ−1)/2

≤ 32κ
3/2
Q CACε a

−1α
√

mtmix{TrΣε}p ,

where for the last inequality, we additionally used that
√
1−x≤ 1− x/2 for x ∈ [0,1]. Similarly,

with Minkowski’s inequality and Lemma 7, we bound T3:

E1/p
ξ

[
∥T3∥p

]
≤ α2

n−1∑
ℓ=m(N−1)+1

E1/p
ξ

[
∥Sℓ+1:nε(Zℓ)∥p

]
≤ 16

√
2α2κQCACε

√
mtmix{TrΣε}p

n−1∑
ℓ=m(N−1)+1

(1−αa)(n−ℓ−1)/2

≤ 32
√
2κQCACε a

−1α
√

mtmix{TrΣε}p .

In the bound above we used that n− 1−m(N − 1)≤ 2m. Combining the above,

E1/p
ξ

[
∥T1∥p

]
+E1/p

ξ

[
∥T3∥p

]
≤ c

(M)
1 αa

√
mtmix{TrΣε}p , (77)

where c
(M)
1 = 32κQCACε a

−2(
√
2 + κ

1/2
Q ). It remains to bound E1/p

ξ [∥T2∥p]. We switch to the

extended space (Z̃N, Z̃N, P̃ξ),and, using Lemma 4, we get that E1/p
ξ [∥T2∥p] = Ẽ1/p

ξ ∥T̃2∥p] with T̃2 =

α2
∑m(N−1)

ℓ=1 S̃ℓ+m+1:n(I − αĀ)mε(Z̃ℓ). Here S̃ℓ+m+1:n is a counterpart of Sℓ+m+1:n defined on the
extended space, that is,

S̃ℓ+m+1:n =
∑n

k=ℓ+m+1(I−αĀ)n−kÃ(Z̃k)(I−αĀ)k−1−ℓ .

We further decompose T̃2 = T̃2,1 + T̃2,2, where

T̃2,1 = α2

N−2∑
k=0

m∑
i=1

S̃(k+1)m+i+1:n(I−αĀ)mε(Z̃⋆
km+i) ,

T̃2,2 = α2

N−2∑
k=0

m∑
i=1

S̃(k+1)m+i+1:n(I−αĀ)m{ε(Z̃km+i)− ε(Z̃⋆
km+i)} . (78)

We begin with bounding T̃2,2. Set Vℓ = ε(Z̃ℓ)− ε(Z̃⋆
ℓ ) and F̃⋆

ℓ = σ(Z̃k, Z̃
⋆
k : k ≤ ℓ). Using Lemma 4

we get with the convention 0/0 = 0,

Ẽ1/p
ξ [∥S̃(k+1)m+i+1:n(I−αĀ)mVkm+i∥p]

= Ẽ1/p
ξ [∥S̃(k+1)m+i+1:n(I−αĀ)mVkm+i1{Z̃km+i ̸=Z̃⋆

km+i
}∥p]

≤ Ẽ1/p
ξ

[
∥Vkm+i∥pẼF̃⋆

km+i

[
∥S̃(k+1)m+i+1:n(I−αĀ)mVkm+i/∥Vkm+i∥∥p

]]
≤ Ẽ1/p

ξ

[
∥Vkm+i∥p sup

u∈Sd−1 , ξ′∈P(Z)

Ẽξ′ [∥S̃(k+1)m+i+1:n(I−αĀ)mu∥p]
]
,
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where P(Z) is the set of probability measure on (Z,Z). Applying Lemma 8 and Proposition 1, for
any u∈ Sd−1 and probability measure ξ′,

Ẽ1/p

ξ′ [∥S̃(k+1)m+i+1:n(I−αĀ)mu∥p] =E1/p

ξ′ [∥S(k+1)m+i+1:n(I−αĀ)mu∥p]
≤ 16κ

3/2
Q CA[(n− (k+1)m− i)tmix(1−αa)n−km−i−1p]1/2 .

Moreover, under A 2 and UGE 1, ∥Vkm+i∥ ≤ 2Cε{TrΣε}1/21{Z̃km+i ̸= Z̃⋆
km+i}, and P̃ξ(Z̃

⋆
km+i ̸=

Z̃km+i)≤∆(Qm)≤ (1/4)⌊m/tmix⌋ by Lemma 4 and UGE 1. Combining the bounds above,

Ẽ1/p
ξ [∥S̃(k+1)m+i+1:n(I−αĀ)mVkm+i∥p]≤ 32κ

3/2
Q CACε(1/4)

(1/p)⌊m/tmix⌋× (79)[
(n− (k+1)m− i)(1−αa)(n−km−i−1)tmix{TrΣε}p

]1/2
.

Substituting (79) into the definition (78) of T̃2,2, and using∑m(N−1)

ℓ=1

√
n− ℓ(1−αa)(n−ℓ+1)/2 ≤

∫ +∞
0

t1/2e−αat/2dt= 23/2(aα)−3/2Γ(3/2) ,

we get
Ẽ1/p

ξ

[
∥T̃2,2∥p

]
≤ c

(M)
2 (αa)1/2(1/4)(1/p)⌊m/tmix⌋

√
tmix{TrΣε}p , (80)

where c
(M)
2 = 64π1/2κ

3/2
Q CACε a

−2. To obtain (80) we have additionally used that m≥ 1 and αa≤
1/2.

Now we bound T̃2,1. Define the function g(z) : Z 7→Rd, g(z) = (I−αĀ)mε(z). A2 and Proposition 1

imply ∥g∥∞ ≤ κ
1/2
Q (1−αa)m/2Cε{TrΣε}1/2 and π(g) = 0. Then we apply Lemma 4 and Lemma 9,

and obtain

Ẽ1/p
ξ

[
∥T̃2,1∥p

]
≤ α2

m∑
i=1

[
2p∥g∥∞

{∑N−2

k=0 supu∈Sd−1 Ẽ2/p
ξ [∥S̃(k+1)m+i+1:nu∥p]

}1/2
+

N−2∑
k=0

∥ξQkm+ig∥ sup
u∈Sd−1

E1/p
ξ

[
∥S(k+1)m+i+1:nu∥p

]]
.

Assumption UGE 1 with π(g) = 0 implies ∥ξQkm+ig∥ ≤ ∆(Qkm+i)∥g∥∞. Combining it with
Lemma 8,

m∑
i=1

N−2∑
k=0

∥ξQkm+ig∥ sup
u∈Sd−1

E1/p
ξ

[
∥S(k+1)m+i+1:nu∥p

]
≤ 16κ

3/2
Q CACε(1−αa)(m−1)/2 sup

x≥1

{x(1−αa)x}1/2
√

tmix{TrΣε}p
+∞∑
ℓ=0

∆(Qℓ)

≤ 64

3e1/2
(aα)−1/2κ

3/2
Q CACε(1−αa)(m−1)/2t

3/2
mix

√
{TrΣε}p ,

where we have used for the last inequality (35), aα ≤ 1/2, and supx≥1{x(1 − αa)x}1/2 ≤
e−1/2(aα)−1/2. Jensen’s inequality together with Lemma 8 yields

m∑
i=1

{∑N−2

k=0 supu∈Sd−1 E2/p
ξ [∥S(k+1)m+i+1:nu∥p]

}1/2
≤
√
m
{∑m(N−1)

ℓ=1 supu∈Sd−1 E2/p
ξ [∥Sℓ+m+1:nu∥p]

}1/2
≤ 16κQCA(mtmixp)

1/2
{∑m(N−1)

ℓ=1 (n− ℓ−m)(1−αa)n−ℓ−m−1
}1/2

≤ 16
√
2κQCA(mtmixp)

1/2(αa)−1 .
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Combining the bounds above with ∥g∥∞ ≤ κ
1/2
Q (1−αa)m/2Cε{TrΣε}1/2, we get

Ẽ1/p
ξ

[
∥T̃2,1∥p

]
≤ [32

√
2κ

3/2
Q CACε a

−2]
√
mtmix{TrΣε}αap3/2 (81)

+ [(64/3e−1/2)κ
3/2
Q CACε a

−2]{TrΣε}1/2(αatmix)
3/2p1/2 .

Now the proof is completed combining (77), (80), and (81), setting

m= tmix

⌈
p log(1/αa)

2 log(2)

⌉
,

and using p1/2 ≤ p and t
1/2
mix ≤ tmix. Indeed, with this choice of m, (1/4)(1/p)⌊m/tmix⌋ ≤

√
αa, m≥ tmix.

In addition, note that m≤ 2tmixp log(1/αa)/(2 log(2)) using αa≤ 1/2 and p≥ 2.

Lemma 5. Assume A1, A2, and UGE 1. Let 2≤ p≤ q/2. Then, for any α∈ (0, α(M)
q,∞t−1

mix] with
α(M)

q,∞ defined in (37), and any initial probability ξ on (Z,Z), it holds that

E1/p
ξ [∥H(1)

n ∥p]≤ d1/q{TrΣε}1/2(αatmix)
[
D(M)

H,1

√
log (1/αa)p2 +D(M)

H,2(αatmix)
1/2p1/2

]
,

where
D(M)

H,1 = 96a−1CA e2κ
1/2
Q D(M)

J,1 , D(M)
H,2 = 48a−1CA e2κ

1/2
Q D(M)

J,2 .

Proof. The decomposition (10) implies

H(1)
n =−α

∑n

ℓ=1Γ
(α)
ℓ+1:nÃ(Zℓ)J

(1)
ℓ−1 .

Hence, with Minkowski’s and Holder’s inequalities,

E1/p
ξ [∥H(1)

n ∥p]≤ α
∑n

ℓ=1E
1/2p
ξ [∥Γ(α)

ℓ+1:nÃ(Zℓ)∥2p]E1/2p
ξ [∥J (1)

ℓ−1∥2p] .

Applying Corollary 3 and Lemma 3,

E1/p
ξ [∥H(1)

n ∥p]≤ 4e2κ
1/2
Q CAD(M)

J,1 tmix{TrΣε}1/2d1/qp2α2a
√

log (1/αa)
n∑

ℓ=1

e−aαn/12

+2e2κ
1/2
Q d1/qD(M)

J,2 {TrΣεp}1/2(αatmix)
3/2

n∑
ℓ=1

e−aαn/12 .

Now the proof follows from elementary bound e−x ≤ 1−x/2, x∈ [0,1].

D.4. Auxiliary lemma for Theorem 4

Lemma 6. Assume A 1, A 2, and UGE 1. Then, for any α∈ (0, α∞], t∈N⋆ and initial proba-
bility ξ on (Z,Z), it holds that

∥Eξ[Ã(Zt+1)J
(0)
t ]∥ ≤D(M)

4 αatmix{TrΣε}1/2 , (82)

where D(M)
4 = (4/3)κ

1/2
Q CεCA a−1.

Proof. Using (8), we get

∥Eξ[Ã(Zt+1)J
(0)
t ]∥ = sup

u∈Sd−1

Eξ[αu
⊤Ã(Zt+1)

∑t

j=1
(I−αĀ)t−jε(Zj)] .

Define for z ∈ Z and j ∈ {1, . . . , t}, the function gj,t(z) : Z 7→Rd as

gj,t(z) =
∫
Z
Ã(z′)(I−αĀ)t−jε(z)Qt−j+1(z,dz′)
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Using that π(Ã) = 0 together with Proposition 1 and UGE 1, for any u∈ Sd−1,∣∣u⊤gj,t(z)
∣∣≤ κ

1/2
Q (1−αa)(t−j)/2CACε{TrΣε}1/2∆(Qt−j+1) .

Using the Markov property of (Zk)k∈N and the definition of tmix (see UGE 1), we get from the
previous bound that∣∣Eξ[αu

⊤Ã(Zt+1)
∑t

j=1
(I−αĀ)t−jε(Zj)]

∣∣≤ ακ
1/2
Q CACε{TrΣε}1/2

∑∞

ℓ=0
∆(Qℓ)

≤D(M)
4 αatmix{TrΣε}1/2 ,

and (82) follows.

Appendix E: Technical bounds: Markov case Recall that Sℓ+1:ℓ+m is defined, for ℓ,m∈
N∗, as

Sℓ+1:ℓ+m =
∑ℓ+m

k=ℓ+1Bk(Zk) , with Bk(z) = (I−αĀ)ℓ+m−kÃ(z)(I−αĀ)k−1−ℓ . (83)

Lemma 7. Assume A 1, A 2, and UGE 1. Then, for any p ≥ 2, any initial probability ξ on
(Z,Z), ℓ,m∈N∗, it holds that

E1/p
ξ [∥Sℓ+1:ℓ+mε(Zℓ)∥p]≤D(M)

S m1/2(1−αa)(m−1)/2
√

tmixpTrΣε ,

where D(M)
S = 16κQCεCA.

Proof. Now, with Fℓ = σ{Zj, j ≤ ℓ}, it holds that

E1/p
ξ [∥Sℓ+1:ℓ+mε(Zℓ)∥p] =E1/p

ξ

[
∥ε(Zℓ)∥pEFℓ [Sℓ+1:ℓ+mε(Zℓ)/∥ε(Zℓ)∥]

]
≤E1/p

ξ

[
∥ε(Zℓ)∥p sup

u∈Sd−1, ξ′∈P(Z)

Eξ′ [∥Sℓ+1:ℓ+mu∥p]
]
,

where P(Z) denotes the set of probability measure on (Z,Z). Combining the above bounds with
Lemma 8 and A2 yields the statement.

Lemma 8. Assume A 1, A 2, and UGE 1. For any ℓ,m ∈ N∗, t ≥ 0, u ∈ Sd−1, and initial
probability ξ on (Z,Z), it holds that

Pξ

(
∥Sℓ+1:ℓ+mu∥ ≥ t

)
≤ 2exp

{
− t2

2γ2
m

}
, where γm = 8κQCA[mtmix(1−αa)m−1]1/2 .

Moreover,

supu∈Sd−1 E1/p
ξ [∥Sℓ+1:ℓ+mu∥p]≤ 16κQCA[mtmix(1−αa)m−1p]1/2 .

Proof. Define gk(z) : Z 7→ Rd as gk(z) =Bk(z)u where Bk is given in (83). Note that under A
1 and applying Proposition 1, π(gk) = 0 and supz∈Z ∥gk(z)∥ ≤ κQCA(1− αa)(m−1)/2 for any k ∈
{ℓ+1, . . . , ℓ+m}. The proof then follows from Lemma 12 and Lemma 10.

Lemma 9. Let (Ω,G,P) be a probability space, {Wk,W
⋆
k }k∈N be a sequence of Z2-valued random

variables, and {Ǎk}k∈{2,...,N+1} be a sequence of d× d random matrices. Denote Gk = σ(Wℓ, ℓ≥ k)
for k ∈N∗. Assume that for k ∈N∗, that Ǎk is Gk-measurable and σ(W ⋆

k ) and Gk+1 are independent.
Then, for any family of measurable functions {gk}Nk=1 from Z to Rd, with maxk∈{1,...,N} ∥gk∥∞ ≤ 1,
and p≥ 2,

E1/p
[
∥
∑N

k=1
Ǎk+1gk(W

⋆
k )∥p

]
≤ 2p

{∑N

k=1
sup

u∈Sd−1

E2/p
[
∥Ǎk+1u∥p

]}1/2
+E1/p

[
∥
∑N

k=1
Ǎk+1EGk+1 [gk(W

⋆
k )]∥p

]
.



Durmus et al.: Polyak-Ruppert averaged LSA
28 Mathematics of Operations Research 00(0), pp. 000–000, © 0000 INFORMS

Proof. Applying Minkowski’s inequality,

E1/p
[
∥
∑N

k=1
Ǎk+1gk(W

⋆
k )∥p

]
≤E1/p

[
∥
∑N

k=1
Ǎk+1EGk+1 [gk(W

⋆
k )]∥p

]
+E1/p

[
∥
∑N

k=1
Ǎk+1{gk(W ⋆

k )−EGk+1 [gk(W
⋆
k )]}∥p

]
.

The sequence {Ǎk

(
gk(W

⋆
k )−EGk+1 [gk(W

⋆
k )]
)
}Nk=1 is a reversed martingale difference sequence with

respect to {Gk}k≥1. Hence, applying the Burkholder inequality (see Osekowski [29, Theorem 8.6]),
we obtain

E1/p
[
∥
∑N

k=1
Ǎk{gk(W ⋆

k )−EGk+1 [gk(W
⋆
k )]}∥p

]
≤ p
(∑N

k=1
E2/p[∥Ǎk+1{gk(W ⋆

k )−EGk+1 [gk(W
⋆
k )]}∥p]

)1/2
.

E.1. Rosenthal inequality under UGE 1 In this section we derive a sharp Rosenthal
inequality for the Markov chain {Zn}n∈N under UGE 1. We preface the proof by some definitions
and properties of coupling. Let (X,X ) be a measurable space. In all this section, Q and Q′ denote
two probability measures on the canonical space (XN,X⊗N). Fix x∗ ∈X. For any X-valued stochas-
tic process X = {Xn}n∈N and any N̄-valued random variable T , define the X-valued stochastic
process ST X by ST X = {XT+k, k ∈ N} on {T <∞} and ST X = (x∗, x∗, x∗, . . .) on {T =∞}. For
any measure Q on (XN,X⊗N) and any σ-field G ⊂ X⊗N, we denote by (µ)G the restriction of the
measure µ to G. Moreover, for all n∈N, define the σ-field Gn =

{
S−1
n (A) : A∈X⊗N

}
. We say that

(Ω,F ,P,X,X ′, T ) is an exact coupling of (Q,Q′) (see Douc et al. [11, Definition 19.3.3]), if
• for all A∈X⊗N, P(X ∈A) =Q(A) and P(X ′ ∈A) =Q′(A),
• ST X =ST X ′ , P − a.s.
The integer-valued random variable T is a coupling time. An exact coupling (Ω,F ,P,X,X ′, T ) of
(Q,Q′) is maximal (see Douc et al. [11, Definition 19.3.5]) if for all n∈N,∥∥(Q)Gn

− (Q′)Gn

∥∥
TV

= 2P(T > n) .

Assume that (X,X ) is a complete separable metric space and let Q and Q′ denote two probability
measures on (XN,X⊗N). Then, there exists a maximal exact coupling of (Q,Q′).
We now turn to the special case of Markov chains. Let P be a Markov kernel on (X,X ). Denote

by {Xn}n∈N the coordinate process and define as before Gn =
{
S−1
n (A) : A∈X⊗N

}
. By Douc et al.

[11, Lemma 19.3.6], for any probabilities µ,ν on (X,X ), we have∥∥(Pµ)Gn
− (Pν)Gn

∥∥
TV

= ∥µPn − νPn∥TV .

Moreover, if (X,X ) is Polish, then, there exists a maximal and exact coupling of (Pµ,Pν); see Douc
et al. [11, Theorem 19.3.9].
We apply this construction for the Markov kernel Q defined on the complete separable metric

space (Z,dZ). For any two probabilities ξ, ξ′ on (Z,Z), there exists a maximal exact coupling
(Ω,F , P̃ξ,ξ′ ,Z,Z

′, T ) of PQ
ξ and PQ

ξ′ , that is,

∥ξQn − ξ′Qn∥TV = 2P(T > n) . (84)

We write Ẽξ,ξ′ for the expectation with respect to P̃ξ,ξ′ .
Under UGE 1, it is known that n−1/2

∑n−1

i=0 {f(Zi) − π(f)} converges in distribution to the
zero-mean Gaussian law with variance

σ2
π(f) = lim

n→∞
n−1Eπ

[∥∥∥∑n−1

i=0
{f(Zi)−π(f)}

∥∥∥2] . (85)

We first start this section with a preliminary result.
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Theorem 6. Assume UGE 1. Then, for any measurable function f : Z→ Rd, ∥f∥∞ ≤ 1, κ ∈
N∗, p≥ 2, q ∈N∗, it holds

E2/p
π [∥

∑q−1

i=0 f(Ziκtmix
)−π(f)∥p/2]≤ (16/3){1+ pq1/2} .

Proof. Without loss of generality, we assume that π(f) = 0 and for notational conciseness we set
tm = tmix. Note that the function gκ =

∑+∞
i=0 Q

iκtmf is well-defined under UGE 1. Moreover, (34)
implies that ∥gκ∥∞ ≤ 2/(1− 2−2κ)≤ 8/3 by definition of tm. The function gκ is a solution to the
Poisson equation associated with the κtm-th iterates of Q: gκ −Qκtmgκ = f . Therefore, we write∑q−1

i=0 f(Ziκtm) = {gκ(Z0)− gκ(Zqtm)}+
∑q

i=1∆M gκ
i ,

where we have set, for i∈N∗, ∆M gκ
i = gκ(Ziκtm)−Qκtmgκ(Z(i−1)tm). By construction, {∆M gκ

i }i∈N∗

is a sequence of {Fiκtm}i∈N∗-martingale increments, and ∥∆M gκ
i ∥∞ ≤ 2∥gκ∥∞. Minkowski’s inequal-

ity implies

E2/p
π [∥

∑q−1

i=0 f(Zitm)∥p/2]≤E2/p
π [∥

∑q

i=1∆M gκ
i ∥p/2] + 2∥gκ∥∞ .

Using Osekowski [29, Theorem 8.6], Lyapunov’s inequality, we get that

E2/p
π

[
∥
∑q

i=1∆M f
i ∥p/2

]
≤E1/p

π

[
∥
∑q

i=1∆M gκ
i ∥p

]
≤ pE1/p

π

[(∑q

i=1 ∥∆M gκ
i ∥2

)p/2]≤ 2∥gκ∥∞pq1/2 .

Combining the previous inequalities completes the proof.
Now we prove a version of Rosenthal inequality under the stationary distribution π.

Theorem 7. Assume UGE 1. Then, for any measurable function f : Z→Rd, ∥f∥∞ ≤ 1, p≥ 2,
and n≥ tmix, it holds

E1/p
π [∥

∑n−1

i=0 f(Zi)−π(f)∥p]≤CRm,1 p
1/2n1/2σπ(f)+C

(M)
Ros,1 pn

2/5t
3/5
mix +(8/3)n3/5t

2/5
mix2

−(n/tmix)
1/5

,

where

C
(M)
Ros,1 =CRm,1{(16 ln4/

√
3)+2(16/3)3/2CRm,1}+(16/3)CRm,2+19/3 ,

CRm,1,CRm,2 are given in Section A and σ2
π(f) is defined in (85).

Proof. Without loss of generality, we assume that π(f) = 0 and for notational conciseness we set
tm = tmix. We also introduce an additional integer κ to be fixed later. First, we note that, using
Minkowski’s inequality and ∥f∥∞ ≤ 1, we obtain that

E1/p
π [∥

∑n−1

i=0 f(Zi)∥p]≤E1/p
π [∥

∑⌊n/κtm⌋κtm−1

i=0 f(Zi)∥p] +κtm .

Define qκ = ⌊n/κtm⌋ and consider now nκ = κtmqκ. Proceeding as in Theorem 6, we define

gκ =
∑∞

ℓ=0Q
ℓκtmf , (86)

which satisfies ∥gκ∥∞ ≤ 2/(1− 2−2κ) ≤ 8/3 since ∥f∥∞ ≤ 1. The function gκ is a solution to the
Poisson equation associated with the κtm-th iterate Qκtm , i.e., gκ −Qκtmgκ = f . We consider the
decomposition

nκ−1∑
i=0

f(Zi) =

κtm−1∑
r=0

qκ∑
q=1

{gκ(Zqκtm+r)−Qκtmgκ(Z(q−1)κtm+r)}+
κtm−1∑
r=0

{gκ(Zr)− gκ(Zqκκtm+r)} .
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Set, for q ∈N∗, ∆M gκ
q =

∑tm−1

r=0 {gκ(Zqtm+r)−Qtmgκ(Z(q−1)tm+r)}. By construction {∆M gκ
q }q∈N is

a martingale increment sequence with respect to the filtration {Fqκtm}q∈N. Note that ∥∆M gκ
q ∥ ≤

2∥gκ∥∞κtm ≤ (16/3)κtm. We get using Minkowski’s inequality that

E1/p
π

[
∥
∑nκ−1

i=0 f(Zi)∥p
]
≤A1 +(16/3)κtm , with A1 =E1/p

π

[
∥
∑qκ

q=1∆M g
q ∥p
]
.

Applying the Pinelis [31, Theorem 4.1] version of the Rosenthal inequality yields

A1 ≤CRm,1 p
1/2A2 +(16/3)CRm,2 κtmp , A2 =E1/p

π

[
∥
∑qκ−1

q=0 ḡκ(Zqκtm)∥p/2
]

where we have set ḡκ(z) =Ez[∥∆M gκ
q ∥2]. Applying Minkowski’s inequality again, we obtain

A2
2 ≤ qκπ(ḡκ)+E2/p

π

[
∥
∑qκ−1

q=0 {ḡκ(Zqtm)−π(ḡκ)}∥p/2
]
.

Then, since ∥ḡκ∥∞ ≤ (16/3)2κ2t2m, Theorem 6 implies that

E1/p
π

[
∥
∑qκ−1

q=0 {ḡκ(Zqtm)−π(ḡκ)}∥p/2
]
≤ (16/3)3/2κtm{1+ p1/2q1/4κ } .

Using that nκ = qκκtm, we finally get

A2 ≤ {qκπ(ḡκ)}1/2 +(16/3)3/2p1/2n1/4(κtm)
3/4 +(16/3)3/2κtm . (87)

Finally, we establish the identity qκπ(ḡκ) ∼ nσ2
π(f). To this end, we first rewrite qκπ(ḡκ) into a

more explicit form. Note first that

π(ḡκ) =A3 +2A4

where, using πQ= π,

A3 =

κtm−1∑
r=0

Eπ[∥gκ(Zκtm+r)−Qκtmgκ(Zr)∥2] = κtmEπ[∥gκ(Zκtm)−Qκtmgκ(Z0)∥2] ,

A4 =
∑

0≤r1<r2≤κtm−1
Eπ[{gκ(Zκtm+r1)−Qκtmgκ(Zr1)}

⊤{gκ(Zκtm+r2)−Qκtmgκ(Zr2)}] .

Consider first A3. Using that Qκtmgκ = gκ − f , we get

A3 = κtm{π(∥gκ∥2)−π(∥Qκtmgκ∥2)}= κtm{2π(f⊤gκ)−π(∥f∥2)} .

Consider now A4. Using the Markov property, πQ= π, we obtain

A4 =
∑κtm−1

r=1 (κtm − r)
{
π(g⊤κ Q

rgκ)−π({Qκtmgκ}⊤Qκtm−rgκ)
}

=
∑κtm−1

r=1 (κtm − r)π(f⊤Qrgκ)+
∑κtm−1

r=1 (κtm − r)π({Qκtmgκ}⊤Qrgκ)

−
∑κtm−1

r=1 (κtm − r)π({Qκtmgκ}⊤Qκtm−rgκ)

=
∑κtm−1

r=1 (κtm − r)π(f⊤Qrgκ)+
∑κtm−1

r=1 (κtm − 2r)π({Qκtmgκ}⊤Qrgκ) .

Therefore, using that σ2
π(f) = 2

∑κtm−1

r=0 π(f⊤Qrgκ)−π(∥f∥2), we obtain that

π(ḡκ) = κtmσ
2
π(f)− 2

∑κtm−1

r=0 rπ(f⊤Qrgκ)+κtm
∑κtm−1

r=1 (1− 2r
κtm

)π(Qκtmg⊤κ Q
rgκ) .

Note that (86) implies that π(gκ) = 0, hence, ∥Qrgκ∥∞ ≤ ∥gκ∥∞(1/4)⌊r/tm⌋, and∣∣∣κtm∑κtm−1

r=1 (1− 2r
κtm

)π(Qκtmg⊤κ Q
rgκ)

∣∣∣≤ (κtm)
2(1/4)κ∥gκ∥2∞ ≤ (8/3κtm)

2(1/4)κ .
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Similarly, using ∥f∥∞ ≤ 1,∣∣∣∑κtm−1

r=0 rπ(f⊤Qrgκ)
∣∣∣≤ ∥gκ∥∞

∑∞
r=0 r(1/4)

⌊r/tm⌋ ≤ 4∥gκ∥∞(1− (1/4)1/tm)−2

≤ c1t
2
m ,

where c1 = 16 · (8/3) · (ln4)2. In the last inequality we used that 1− e−x ≥ 1−x/2 for x∈ [0; log 4].
Combining the above inequalities, we obtain that

π(ḡκ)≤ κtmσ
2
π(f)+ 2c1t

2
m +(8/3κtm)

2(1/4)κ .

Substituting into (87) together with nκ = κtmqκ ≤ n yields

A2 ≤ n1/2σπ(f)+ (16 ln4/
√
3)n1/2(tm/κ)

1/2 +(8/3)n1/2(κtm)
1/2(1/4)κ/2+

(16/3)3/2p1/2n1/4(κtm)
3/4 +(16/3)3/2κtm .

Optimizing the above expression with respect to κ yields κ= (n/tm)
1/5. Then the previous bound

implies

A2 ≤ n1/2σπ(f)+ (16 ln4/
√
3)n2/5t3/5m +(8/3)n3/5t2/5m (1/4)(n/tm)1/5/2+
(16/3)3/2p1/2n2/5t3/5m +(16/3)3/2n1/5t4/5m .

Corollary 5. Assume UGE 1. Then, for any measurable function f : Z → Rd, ∥f∥∞ ≤ 1,
p≥ 2, n≥ tmix, and initial probability ξ on (Z,Z), it holds

E1/p
ξ [∥

∑n−1

i=0 f(Zi)−π(f)∥p]≤CRm,1 p
1/2n1/2σπ(f)+DRos,1 pn

2/5t
3/5
mix +(8/3)n3/5t

2/5
mix2

−(n/tmix)
1/5

,

where
DRos,1 =C

(M)
Ros,1+12

√
2/ ln 4 . (88)

Proof. With the triangle inequality and maximal exact coupling construction (84), we obtain

E1/p
ξ [∥

n−1∑
i=0

f(Zi)−π(f)∥p]≤E1/p
π [∥

n−1∑
i=0

f(Zi)−π(f)∥p] + {Ẽξ,π

[
∥
n−1∑
i=0

(
f(Zi)− f(Z ′

i)
)
∥p
]
}1/p .

The first term is bounded with Theorem 7. Moreover, with (84) and ∥f∥∞ ≤ 1, we get

∥
n−1∑
i=0

(
f(Zi)− f(Z ′

i)
)
∥p ≤ 2p

(n−1∑
i=0

1{Zi ̸=Z′
i}

)p

= 2p
(n−1∑

i=0

1{T>i}

)p

≤ 2p
(n−1∑

k=1

k1{T=k} +n1{T>n}

)p

≤ 2pT p .

We obtain combining the previous bounds that

E1/p
ξ [∥

∑n−1

i=0 f(Zi)−π(f)∥p]≤E1/p
π [∥

∑n−1

i=0 f(Zi)−π(f)∥p] + 2{Ẽξ,π

[
T p
]
}1/p .

Assumption UGE 1 implies that ∆(Qk)≤ 4(1/4)k/tmix for any k ∈N. Hence, setting ρ= (1/4)1/tmix ,
we get

Ẽξ,π

[
T p
]
= 1+

∑∞
k=2{kp − (k− 1)p} P̃ξ,π

(
T > k− 1

)
≤ 1+

∑∞
k=2{kp − (k− 1)p}∆(Qk−1)

≤ 1+4ρ−1
(
1− ρ

)∑∞
k=1 k

pρk .

Now we use the upper bound, for ρ∈ (0,1),∑∞
k=1 k

pρk ≤ ρ−1
∫ +∞
0

xpρx dx≤ ρ−1 (lnρ−1)
−p−1

Γ(p+1) .

Combining the bounds above and the elementary inequality 1− ρ≤ lnρ−1, we obtain

Ẽξ,π

[
T p
]
≤ 1+4ρ−2

(
lnρ−1

)−p
Γ(p+1)≤ 1+64(tmix/ ln 4)

pΓ(p+1) .

To complete the proof, we use an upper bound Γ(p+ 1)≤ (p+ 1)p+1/2e−p due to Guo et al. [16,
Theorem 2] and apply an elementary inequality (p+1)1/2 ≤ 2p/2.
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Appendix F: Technical lemmas We start by a standard moment bounds for sub-Gaussian
random variable, which is proven for completeness.

Lemma 10. Let X be an Rd-valued random variable satisfying P(∥X∥ ≥ t)≤ 2exp(−t2/(2σ2))
for any t≥ 0 and some σ2 > 0. Then, for any p≥ 2, it holds that E[∥X∥p]≤ 2pp/2σp.

Proof. Using Fubini’s theorem and the change of variable formula,

E[∥X∥p] =
∫∞
0

ptp−1P(∥X∥ ≥ t)dt= p2p/2σpΓ(p/2) ,

where Γ is the Gamma function. It remains to apply the bound Γ(p/2)≤ (p/2)p/2−1, which holds
for p≥ 2 due to Anderson and Qiu [2, Theorem 1.5].

Now we present the general version of Hoeffding inequality for martingale-difference sequences,
taking values in Banach spaces. This result is due to Pinelis [31, Theorem 3.5]. Below we specify
this inequality to the special case of sum of zero-mean independent random vectors.

Lemma 11. Let X1, . . . ,Xn ∈Rd be independent random vectors satisfying ∥Xi∥ ≤ βi P-a.s. and
E[Xi] = 0, i∈ {1, . . . , n}. Then, for any t≥ 0, it holds

P

(
∥

n∑
i=1

Xi∥ ≥ t

)
≤ 2exp

{
− t2

2
∑n

j=1 β
2
j

}
.

The result above can be generalized for bounded Rd-valued functions of the Markov chains with
kernel satisfying UGE 1.

Lemma 12. Assume UGE 1. Let {gi}ni=1 be a family of measurable functions from Z to Rd

such that ∥g∥∞ =maxi∈{1,...,n} ∥gi∥∞ <∞ and π(gi) = 0 for any i∈ {1, . . . , n}. Then, for any initial
probability ξ on (Z,Z), n∈N, t≥ 0, it holds

Pξ

(
∥
∑n

i=1
gi(Zi)∥ ≥ t

)
≤ 2exp

{
− t2

2u2
n

}
, where un = 8∥g∥∞

√
n
√
tmix . (89)

Proof. The function φ(z1, . . . , zn) := ∥
∑n

i=1 gi(zi)∥ on Zn satisfies the bounded differences prop-
erty. Hence, since (1/2) supz,z′∈Z ∥Qtmix(z, ·)−Qtmix(z′, ·)∥TV ≤ 1/4 by definition of tmix under UGE
1, applying Paulin [30, Corollary 2.10], we get for t≥Eξ[∥

∑n

i=1 gi(Zi)∥],

Pξ

(
∥
∑n

i=1
gi(Zi)∥ ≥ t

)
≤ exp

{
−
2(t−Eξ[∥

∑n

i=1 gi(Zi)∥])2

9n∥g∥2∞tmix

}
.

It remains to upper bound Eξ[∥
∑n

i=1 gi(Zi)∥]. Note that

Eξ[∥
∑n

i=1
gi(Zi)∥2] =

∑n

i=1
Eξ[∥gi(Zi)∥2] + 2

∑n−1

k=1

∑n−k

ℓ=1
Eξ[gk(Zk)

⊤gk+ℓ(Zk+ℓ)] .

and, using UGE 1 and π(gk+ℓ) = 0, we obtain∣∣Eξ[gk(Zk)
⊤gk+ℓ(Zk+ℓ)]

∣∣= ∣∣∣∣∫
Z

gk(z)
⊤ (Qℓgk+ℓ(z)−π(gk+ℓ)

)
ξQk(dz)

∣∣∣∣≤ ∥g∥2∞∆(Qℓ) .

Together with (35), this implies∑n−1

k=1

∑n−k

ℓ=1 |Eξ[gk(Zk)
⊤gk+ℓ(Zk+ℓ)]| ≤

∑n−1

k=1 ∥g∥2∞∆(Qℓ)≤ (4/3)|g|2∞tmixn .

Combining the bounds above, we upper bound Eξ[∥
∑n

i=1 gi(Zi)∥] as

Eξ[∥
∑n

i=1
gi(Zi)∥]≤

{
Eξ[∥

∑n

i=1
gi(Zi)∥2]

}1/2 ≤ 2
√
n∥g∥∞

√
tmix =: vn .
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Plugging this result in (89), we obtain that

Pξ

(
∥
∑n

i=1
gi(Zi)∥ ≥ t

)
≤

{
1, t < vn,

exp
{
− 2(t−vn)

2

3v2n

}
, t≥ vn .

(90)

Now it is easy to see that right-hand side of (90) is upper bounded by 2exp{−t2/(8v2n)} for any
t≥ 0, and the statement follows.
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