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ABSTRACT

Type Ia Supernovae (SNe Ia) have become the most precise distance indicators
in astrophysics due to their incredible observational homogeneity. Increasing dis-
covery rates, however, have revealed multiple sub-populations with spectroscopic
properties that are both diverse and difficult to interpret using existing physical
models. These peculiar events are hard to identify from sparsely sampled ob-
servations and can introduce systematics in cosmological analyses if not flagged
early; they are also of broader importance for building a cohesive understanding
of thermonuclear explosions. In this work, we introduce DiTSNe-Ia, a varia-
tional diffusion-based generative model conditioned on light curve observations
and trained to reproduce the observed spectral diversity of SNe Ia. In experi-
ments with realistic light curves and spectra from radiative transfer simulations,
DiTSNe-Ia achieves significantly more accurate reconstructions than the widely
used SALT3 templates across a broad range of observation phases (from 10 days
before peak light to 30 days after it). DiTSNe-Ia yields a mean squared error of
0.108 across all phases—five times lower than SALT3’s 0.508—and an after-peak
error of just 0.0191, an order of magnitude smaller than SALT3’s 0.305. Addi-
tionally, our model produces well-calibrated credible intervals with near-nominal
coverage, particularly at post-peak phases. DiTSNe-Ia is a powerful tool for
rapidly inferring the spectral properties of SNe Ia and other transient astrophysi-
cal phenomena for which a physical description does not yet exist.

1 INTRODUCTION

Spectral diversity of Type Ia Supernovae. Type Ia supernovae (SNe Ia) are the thermonuclear
explosions of white dwarfs in binary systems as they approach the Chandrasekhar limit (Hoyle &
Fowler, 1960; Liu et al., 2023). Since their use in confirming the accelerated expansion of the uni-
verse (Riess et al., 1998; Perlmutter et al., 1999), SNe Ia have been widely adopted as cosmological
distance indicators. SNe Ia are standardizable candles: they exhibit correlations in their observa-
tional properties that can be corrected to infer their distance (such as the “Phillips relation” between
an explosion’s maximum luminosity and its dimming rate; Pskovskii, 1977; Phillips, 1993; Phillips
et al., 1999).

Growing sample sizes of SNe Ia have complicated the story. Wide-field imaging surveys such as the
Zwicky Transient Facility (Bellm et al., 2018) have discovered otherwise-typical SNe Ia with addi-
tional observational oddities (e.g., early and late-time re-brightening episodes), along with multiple
sub-populations that defy the expected observational correlations. These include both red and un-
derluminous SNe Ia (named “SNe Ia 1991bg-like” after their archetypal event; as well as SNe Iax,
alternatively known as “SNe 2002cx-like”; Filippenko et al., 1992a); and overluminous SNe Ia
(SNe Ia 1991T-like events; Filippenko et al., 1992b). Spectra of these SNe, which measure their
wavelength-specific emission, have revealed important differences between the temperatures, veloc-
ities, and compositions of these more peculiar explosions. Nonetheless, our growing understanding
of this observational diversity has only raised more questions about the physics of these explosions
(Soker, 2019; Liu et al., 2023).
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Legacy Survey of Space and Time. The upcoming Vera C. Rubin Observatory Legacy Survey
of Space and Time (LSST, Ivezić et al., 2019), which will image the full Southern Sky every 3-
4 days for ten years beginning in 2025, is expected to discover ∼1 M SNe each year (Ivezić et al.,
2019). Half of them will be SNe Ia. While discovery rates of these explosions will break exponential
scaling as a result of the survey, our spectroscopic resources will only be able to observe the smallest
subset (at most ∼0.1%). Rapid and unbiased predictions of the spectroscopic behavior of discovered
SNe Ia from measurements of their time-evolving brightness (light curves) will allow astronomers to
rapidly prioritize the most scientifically valuable events for spectroscopic observation. These data,
in turn, will improve our ability both to precisely standardize the most homogeneous SNe Ia for
cosmology and to launch exploratory studies into the explosion properties of the most diverse.

Goal: spectra inference and generation. Motivated by the need for low-latency physical inference
in SN Ia science, we consider the task of inferring spectra from light curves, with both obtained
at optical wavelengths. These measurements are correlated slices of an event’s spectral energy dis-
tribution (SED): light curves measure the evolution of an explosion’s flux at specific wavelengths
over time, while spectra measure flux changes in wavelength at a single moment in time (Zhang
et al., 2024). As a result, one can infer an explosion’s spectral properties in time by sampling from a
posterior of SN Ia spectra conditioned on its light curve and time. This casts the inference problem
as a conditional generation task.

2 A MODEL FOR CONDITIONAL SPECTRA GENERATION

Variational diffusion transformer for spectra. We used a variational diffusion model for spectral
generation (Kingma et al., 2021). We used a transformer (DiT) architecture for the score model
(Peebles & Xie, 2023) because of the flexibility of modeling sequences that are not from a regular
grid such as light curves and spectra. Each DiT block consists of one attention block and one cross-
attention block separated by one layer normalization block. Each (cross)attention block also consists
of multi-headed (cross)attention, layer normalization, and a Multi-Layer Perceptron (MLP), as well
as skip connections (Figure 1).

An ongoing challenge in training neural networks from astronomical observations is that the se-
quence may not be regularly-spaced over time and wavelength. Our model addresses this challenge
by embedding wavelength/time (“positional”) information first with a set of fixed sinusoidal func-
tions, where we employ exponentially-changing frequencies as in the original transformer model
(Vaswani, 2017) taking input of (normalized) wavelengths/times.

We start with a sinusoidal embedding of dimension 2Dsin; P denotes the sinusoidal encoding of
positional data (wavelength and time), with s ∈ S for dimension 2i, 2i+1 and i = 0, . . . , Dsin. The
final positional embedding E is then given by

P2i(s) = sin

(
s

10, 0002i/Dsin

)
P2i+1(s) = cos

(
s

10, 0002i/Dsin

)
E(s) = MLP (P (s))

(1)

We then pass the encoding of size [Lspec, 2Dsin], with Lspec being the length of spectra, through
an MLP to reshape it into the model dimension D. This is a similar treatment as diffusion time in
Peebles & Xie (2023).

For our spectral observations, we embed wavelength data with the above treatment, add it to a linear
embedding of flux, and project to the model dimension. This will yield an internal representation of
size [Lspec, D] with D being the dimension of the model and Lspec being the length of the spectrum.
We then pass it through diffusion transformer blocks to predict the added noise. We discuss our
treatment of light curve observations below.

Conditioning and photometric embedding. In our conditional generation framework, there are
three datasets to condition on: the diffusion time of the model, the phase of the observation (the time
relative to the supernova’s maximum light, in days), and the light curve observations themselves. We
adopt a cross-attention strategy in our model due to the correlated information between these data
and the complexity of the unstructured light curve sequences. Diffusion time and phase were first
passed through the fixed sinusoidal functions (Figure 1) and then projected to the model dimension

2



Published as a workshop paper at Frontiers in Probabilistic Inference Workshop (ICLR 2025)

using an MLP with learnable weights. Each of them yield a representation of size [1, D] for model
dimension D.

Light curve data were embedded similar to spectra: we first embedded phase using fixed sinusoidal
functions, passed the output to a learnable MLP, and then added these to a linear embedding of
the brightness measurements in magnitudes. To the combined vector, we also add an embedding
of the transmission filter of the observation. These transmission filters were treated as categorical
variables and the embeddings are simple look-up tables. This filter information encodes the range
of wavelengths at which the brightness of the supernova was measured. This will yield a sequence
embedding for the light curve of size [LLC , D], with LLC being the sequence length of the light
curves and D being the common model dimension size.

Representations of light curve, phase and diffusion time are then concatenated in the sequence di-
mension to get a conditional representation of size [LLC + 2, D].

We show an overview of the DiTSNe-Ia architecture in Figure 1. The model has a dimension
D = 256. The MLP used in each DiT block consists of a single hidden layer with dimension 512.
In both multi-headed attention and cross-attention, we use 4 heads and 6 layers of DiT blocks.

Figure 1: The architecture of our diffusion transformer for generation of SN Ia spectra conditioned
on light curve data. Positional embeddings are used to preserve correlations from data irregularly
sampled in both time and wavelength.

Loss and training. We train our model to minimize the variational lower bound (VLB) on the
marginal likelihood (as in Equation 11 of Kingma et al., 2021).

3 EXPERIMENTS

Data, preprocessing, and training scheme. We use the model grid of Goldstein & Kasen (2018)
to train and validate DiTSNe-Ia. Goldstein & Kasen (2018) ran 4,500 simulations of SNe Ia with
the radiation transport code Sedona (Kasen, 2006) to produce a full SED surface in temporal bins
of 1 day and wavelength bins of 30 Å. The simulated SNe Ia span a broad range of ejecta masses
(Mej ∈ [0.7 M⊙, 2.5 M⊙]), velocities

(
vK ∈ [8000 km s−1, 15000 km s−1]

)
, masses of the ex-

ploding star (m ∈ [1 M⊙, 2.5 M⊙]) (where the traditional Chandrasekhar limit corresponding to a
thermonuclear explosion is ≈ 1.4 M⊙); and fractions of the ejecta composed of both radioactive
56Ni (fNi ∈ [0.1, 0.8]) and C/O (fCO ∈ [0.00, 0.07]). We split the sample into 80% training, 20%
testing. We then generated LSST-like light curves by integrating the SED surfaces through the pub-
lished transmission curves of the LSST filters from the SVO Filter Profile Service1. We model the
light curve cadence using the baseline v3.3 simulations of LSST’s Wide-Fast-Deep survey and as-
sume a random distribution of events in space across the survey footprint and in time since survey
start. We have assumed that all SNe occur at a distance of 10 pc; in future work, we plan to adopt

1http://svo2.cab.inta-csic.es/
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a SN Ia volumetric rate to evaluate the robustness of the model on light curves with realistic noise
properties.

We impose quality cuts on our generated light curves, requiring at least 10 total measurements across
all filters and with observations in any band before and after the explosion’s peak brightness. For
our simulated spectra, we calculate the flux directly from the SED surface in 10-day windows from
10 days before peak light to 30 days following peak light; we apply a median filter with bandwidth
3 to these data to mimic the finite resolution of a spectrograph. We then train the model using the
log of the flux values in units of erg s−1 cm−2 Hz−1.

We standardized all flux, wavelength, phase, and magnitude values to z-scores for training, and con-
vert them back to physical units at inference time. We also pad the light curves to 10 measurements
in each band, resulting in uniform light curve arrays of length 60.

We train DiTSNe-Ia in jax (Bradbury et al., 2018) using the AdamW optimizer (Loshchilov
et al., 2017). We used a warm-up cosine decay schedule as the learning rate with 500 warm-up steps
and 3000 decay steps, a maximum learning rate of 3× 10−3, an initial learning rate of 10−5, and a
batch size of 64.

We tested our method and the baseline model on 300 SNe from the test set at five phases (-10 to 30
days relative to peak light in 10-day bins). For each light curve and phase combination, we took 100
samples of each conditional generation, used averages as point estimates, and calculate equal-tail
credible intervals of each prediction (CI).

Test metric We used three metrics to test the proposed method, one for prediction accuracy and two
for uncertainty quantification

• Residual of point estimate: the difference between point estimate of the model and ground
truth spectra at different days after peak. We also quantify the accuracy using the mean
squared error (MSE).

• Coverage: the empirical probability that the posterior CI contains the ground truth value
as a function of wavelength.

• CI width: the difference between the upper quantile and lower quantile of the CI for a
given level.

Baseline. We compare our prediction to SALT3 (Kenworthy et al., 2021; Guy et al., 2007), a popular
template-matching technique for SN Ia spectra. The SALT3 model consists of linear combinations
of SN Ia SED components, whose contributions are determined by parameters (x0, x1, and c) fit to
light curves in multiple filters. We used the implementation of the SALT3 surfaces in the python
package sncosmo (Barbary et al., 2016) and fit the surface to our re-sampled light curves with an
MCMC to quantify fit uncertainties.

Results. We provide a summary of our results in Table 1, and in Figure 2. We find that DiTSNe-Ia
achieves better predictive performance across the test set while having a lower average bias than the
SALT3 method. DiTSNe-Ia yields an overall mean squared error of 0.108—five times lower than
SALT3’s 0.508—and an after-peak error of just 0.0191, an order of magnitude smaller than SALT3’s
0.305. Uncertainty quantification achieves coverage near nominal values in predictions greater than
10 days after peak light with an overall coverage of 0.845 for 90% interval (see also last row in
Figure 2); although the predictions at earlier phases (especially 10 days before peak) are under-
covered. This is unsurprising given the limited photometric information available at early times.
SALT3, in contrast, has small CIs but is severely under-covered.

Figure 3 shows the spectra posteriors for two randomly-selected SNe Ia in the test set as a function
of phase. Qualitatively, we find that our method not only recovers the broad shape of each spectrum
(which encodes information about the temperature and explosion energy of the SN); but also finer-
scale features (which encode the explosion’s composition and velocity structure) more precisely
than the baseline model. We plan to quantify the constraints on these physical properties in a future
study.
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Figure 2: DiTSNe Prediction - Ground Truth and associated 1σ uncertainties (First Row) for spectra
from the test set predicted over five different phases and conditioned on realistic LSST light curves.
The prediction of the baseline SALT3 model is shown in green. Our method achieves a lower mean
error rate than SALT3 at all phases. We also show coverage plots (Second Row) from the model,
finding values near nominal starting +10 days after peak light; as well as the width of the width
of the 90% CI from DiTSNe predictions (Third Row) and its realized coverage as a function of
nominal coverage (Fourth Row).

Metric Method -10 days 0 days 10 days 20 days 30 days Mean After Peak
MSE SALT3 1.49 0.467 0.232 0.247 0.279 0.508 0.305

DiTSNe-Ia 0.465 0.0183 0.015 0.0164 0.0267 0.108 0.0191
CI Coverage SALT3 0.0639 0.115 0.134 0.137 0.131 0.116 0.129

DiTSNe-Ia 0.634 0.79 0.883 0.854 0.853 0.803 0.845
CI Width SALT3 0.187 0.154 0.157 0.165 0.174 0.165 0.161

DiTSNe-Ia 0.548 0.332 0.353 0.336 0.369 0.387 0.347

Table 1: Average MSE, CI coverage, and CI widths over all SNe in the test set as a function of phase
(number of days relative to the peak brightness of each SN). Our method shows better performance
than the SALT3 baseline but can be under-covered. Coverage and widths are shown for the 90%
CI of predicted DiTSNE-Ia spectra. SALT3, in contrast, has shorter CIs but is severely under-
covered.
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Figure 3: Upper: Spectra and light curves for two randomly chosen SNe Ia from the test set, with
zoom-in of finer-scale features. The flux was calculated in units of erg s−1cm−2 Hz−1 and light
curves are in absolute magnitude. Lower: Zoom-in view of each model’s predictions 10 days after
peak. Our method can recover finer-scale spectral features associated with the physical properties
of the explosion that are not well-captured by SALT3.

4 DISCUSSION

We have presented DiTSNe-Ia, a state-of-the-art generative model for inferring SN Ia spectra at
multiple phases during an explosion using light curve information under idealized observing condi-
tions. The method performs well when applied to simulated SNe Ia from Goldstein & Kasen (2018),
demonstrating the potential of diffusion-based generative models in SN science.

Our follow-up work will focus on connecting the model’s performance, measured by MSE and CI
coverage, to physical parameters in the simulation to identify systematic patterns. Several challenges
remain. For instance, although our approach is motivated by observational constraints, the current
training data are still based on simulations, potentially producing a model that underestimates the
true diversity observed in real data. Additionally, we assume that the training light curves and spectra
are corrected for observational effects such as redshift. However, in practice, redshift is not always
fully known and carries its own uncertainties.

Another area for improvement is the representation of light curves, particularly in incorporating
translation invariance—a property useful when the exact time of SN peak is unknown. Relative
positional encoding (Shaw et al., 2018) does not directly generalize to cross-attention mechanisms,
as it requires both sequences to exist in the same space with well-defined positional distances, which
is not the case for light curves and spectra. A promising direction may be to apply convolutional
layers before the attention mechanism to extract translation-invariant features, a strategy commonly
used in the computer vision community (Wu et al., 2021; Xiao et al., 2021). We will investigate
these improvements to the model in future work.
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