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Abstract001

Language model training and inference ignores002
a fundamental fact about language– the depen-003
dence between sequences of text that come004
from the same person. Prior work had shown005
that addressing this form of ecological fallacy006
can greatly improve performance of a smaller007
language model, a 110 M parameter GPT-2008
model. In this work, we ask if addressing the009
ecological fallacy by modeling the author’s lan-010
guage context with a specific LM task (called011
HuLM) can provide similar benefits for a larger012
scale model, an 8B Llama model. To this013
end, we explore variants which process an au-014
thor’s language in the context of their other015
temporally ordered texts. We study the effect016
of pre-training with this author context using017
the HuLM objective, as well as using it dur-018
ing fine-tuning with author context. Empirical019
comparisons show that addressing the ecolog-020
ical fallacy during fine-tuning alone improves021
the performance of the larger 8B model over022
standard fine-tuning, as well as prompting with023
an instruction-tuned variant. These results in-024
dicate the utility and importance of modeling025
language in the context of its original genera-026
tors, the authors.027

1 Introduction028

To date, if one asks an LLM to complete the phrase,029

“Language is generated by __”, they will get ‘hu-030

mans’ or ‘people’ as the two most likely words to031

follow. Yet, the standard language modeling task032

itself does not model the dependence between the033

token sequences and the people behind language, a034

so-called ecological fallacy of assuming sequences035

from the same person are independent (or treated036

the same as those from different people). This037

leaves models with imperfect representations of the038

world and little means to directly address biases039

(Soni et al., 2024) as they consistently lack variance040

in their expressed psychological traits (Varadarajan041

et al., 2025).042

In this work, we ask: does addressing this eco- 043

logical fallacy help large language models? In 044

particular, we explore the impact of processing 045

language within the author’s context as modeled 046

by their previous texts. Recent work has suggested 047

that addressing the ecological fallacy during contin- 048

ued pretraining by turning the LM task into human 049

language modeling (HuLM) can improve perfor- 050

mance both in terms of LM perplexity and down- 051

stream applicaitons for a small scale model (a vari- 052

ant of the 124M parameter GPT-2 model) (Soni 053

et al., 2022). Language was modeled during pre- 054

training in the context of the temporally ordered 055

texts from the same user (we refer to this as the 056

HuLM context). 057

However, it is not clear a priori that the more 058

powerful larger models need this additional author 059

HuLM context. One may posit that LLMs with 060

billions of parameters trained over trillions of to- 061

kens, capture language from a large population of 062

humans and may overcome any representational or 063

distributional shortcomings that arise from lack of 064

processing in the author’s context. 065

To address this, we explore different ways of 066

incorporating author contexts into 8B sized mod- 067

els derived from the open source Llama weights. 068

First, we consider continued pre-training of the 069

Llama weights the HuLM objective from (Soni 070

et al., 2022). This adds the author HuLM context 071

to pretraining. Second, we also setup tasks where 072

we inject the author HuLM context in fine-tuning. 073

For each task instance, we also have the author’s 074

history which we process into the HuLM context 075

of temporally ordered message sequence. We com- 076

pare the performance of these models against other 077

standard ways of using Llama 8B models (both in 078

fine-tuning and prompting). 079

Our empirical results highlight several impor- 080

tant findings: (i) Modeling language in the author’s 081

context provides substantial improvements on mul- 082

tiple tasks. (ii) HuLM style pretraining doesn’t 083
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add gains when compared to directly fine-tuning084

Llama-8B with HuLM author contexts. (iii) For085

most tasks fine-tuning with HuLM author contexts086

outperforms simply prompting (instruction-tuned)087

Llama with history. These results clearly show that088

addressing the ecological fallacy clearly benefits089

even larger 8B scale models.090

In summary, we make the following contribu-091

tions in this work: 1) an empirical demonstration092

of the value in addressing the ecological fallacy093

in larger language models. 2) developed a bigger094

HuLM model (in the range of 8B parameters) and095

a diverse and substantial HuLM data corpus con-096

sisting of texts from Reddit (Giorgi et al., 2024a;097

Liu et al., 2024), Blog Authorship Corpus (Schler098

et al., 2006), Twitter (Giorgi et al., 2024b; Soni099

et al., 2022), gutenberg books (Bejan, 2021), Ama-100

zon Product Reviews (Hou et al., 2024), and stack101

exchange (Lambert et al., 2023). 3) expanded102

tasks and dataset with author context via author’s103

historical texts.104

2 Related Work105

A wealth of past work has shown the efficacy106

of looking at language within the larger context107

of who the author is or their demographics in108

multiple applications, such as sentiment analy-109

sis (Mireshghallah et al., 2021) or reducing social110

biases (Garimella et al., 2022). In the realm of111

large LLMs, prior work has shown benefits in con-112

sidering a person’s dynamic emotional states to113

generate empathetic dialogs (Wang et al., 2022), or114

enhancing personalized responses (Tan et al., 2025)115

by injecting memory within model parameters us-116

ing multiple LoRA modules, inspired by human117

memory mechanisms (Zhang et al., 2025).118

Recent works (Soni et al., 2022) suggest includ-119

ing the author’s context within the pre-training task120

of next word prediction. Soni et al. introduce121

the task of human language modeling (HuLM),122

where they predict the next word given the previ-123

ous words and an additional author’s context in124

terms of the author’s prior language. They build a125

Human-aware Recurrent Transformer (HaRT) pre-126

trained for the HuLM task. We briefly describe127

HaRT’s architecture here as out work builds on128

the concept of HuLM and assessing the impact of129

processing language within the author’s context in130

larger LLMs.131

HaRT is an autoregressive model consisting of132

12-layers initialized with GPT-2 small weights. It133

modifies GPT-2’s architecture to use a user state 134

U at an initial layer (layer 2) in the self-attention 135

computation. This U is concatenated to the hid- 136

den states from the first layer and transformed to 137

create the query vector in layer 2. Additionally, 138

the user state is recurrently updated by adding the 139

previous user state to the hidden states from a later 140

layer (layer 11) using transformations and tanh ac- 141

tivation. Essentially, the model latently learns the 142

user state by recurrently processing long contexts 143

of temporally-ordered texts written by the same 144

author. 145

At the same time, larger LLMs have demon- 146

strated remarkable performances in many 147

tasks (OpenAI, 2023; Hendrycks et al., 2021; 148

Jimenez et al., 2023; Singhal et al., 2022). How- 149

ever, larger LLMs are not yet evaluated for the 150

effects of processing language within the author’s 151

context when continued to pre-train or when 152

fine-tuned for downstream tasks. In this study, we 153

extend the concept of HuLM into larger LLMs 154

in terms of continued QLoRA pre-training and 155

fine-tuning for downstream tasks. 156

3 Models and Methods 157

We seek to evaluate the effectiveness of processing 158

language within the author’s context, i.e., mitigat- 159

ing the ecological fallacy, in larger LLMs. This can 160

be assessed at different levels: pre-training, fine- 161

tuning, and prompting. Prior works have built hu- 162

man language models at smaller scales (Soni et al., 163

2022) and fine-tuned them for downstream tasks 164

by collectively processing language written by the 165

same author (i.e., within the author’s context), or 166

experimented with user-centric prompting (Salemi 167

et al., 2023). However, the need to evaluate larger 168

LLMs for fine-tuning within the author’s context 169

or pre-training for the HuLM task remains. Here, 170

we consider continued pre-training for the HuLM 171

task with QLoRA (Dettmers et al., 2023) for larger 172

LLMs, fine-tuning for downstream tasks with and 173

without the author’s context, and briefly comparing 174

prompting for downstream tasks within the author’s 175

context for completeness. 176

To this end, we select Llama 3.1 8B (Grattafiori 177

et al., 2024) as our base model. It adopts a decoder- 178

only transformer architecture, enabling us to adapt 179

it to the autoregressive HuLM task easily. Here, 180

we build 2 variants of bigger HuLM models: HU- 181

Llama and HaRTLlama, following the data processing 182

and HaRT architecture from Soni et al. (2022) re- 183
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Dataset Epochs Users Docs Tokens UTF-8 bytes
(millions) (millions) (GB)

Amazon 1 30,902 2.276 208.37 0.86
Blogs 3 19,525 0.322 91.99 0.36
Books 1 3,425 0.005 262.21 1.09
Twitter 3 20,135 2.414 66.00 0.24
Reddit 3 28,229 1.482 177.15 0.73
StackExchange 1 15,440 0.564 83.69 0.35

Total 117,656 7.063 889.41 3.64

Table 1: Subset of Large Human Language Corpus (LHLM) used as our pre-training data. Token counts are based
on LLaMA 3.1 tokenizer.

spectively. Further, we assess the impact of human-184

level fine-tuning (HuFT), i.e., fine-tuning for down-185

stream tasks by processing text documents within186

the author’s context, over traditional fine-tuning,187

i.e., fine-tuning for downstream tasks by indepen-188

dently processing text documents written by the189

same author.190

We describe the models and methods we use191

below. More details on training and fine-tuning192

processes can be found in section 5.193

HU-Llama. We continue to pre-train Llama for194

the next word prediction task using the LHLC (see195

Section 4.1), however, we do so over temporally-196

ordered documents written by a particular author,197

concatenated using a special insep token, instead198

of randomly sampling documents and processing199

them independently. This results in each instance200

representing an author, inducing an explicit au-201

thor’s context by introducing dependence on lan-202

guage written by the same author.203

HaRTLlama. Although Llama efficiently handles204

long contexts (i.e., 8192 tokens), we seek to scale205

HaRT’s recurrence architecture (Soni et al., 2022)206

(see section 2 for a brief overview) into larger207

LLMs to compare with smaller-scale recurrent208

HuLM models. Thus, we implement a similar re-209

current architecture HaRTLlama using user states at210

an initial layer (layer 2) and updating the user states211

using hidden states from a later layer (layer 31).212

Llama, LlamaLHLC, HaRTGPT2-twt. We com-213

pare the bigger HuLM models with their coun-214

terpart non-HuLM models: Llama and LlamaLHLC.215

We adapt Llama to our pre-training data corpus216

(LHLC) and call it LlamaLHLC. Additionally, we217

fine-tune the publicly available HaRT model (we218

call it HaRTGPT2-twt) for our downstream tasks as219

well as report published numbers from the paper220

(we call it HaRTGPT2-twt-fb) (Soni et al., 2022).221

HuFT: Human-level Fine-tuning. We com-222

pare the performance of fine-tuning HU-Llama and223

LlamaLHLC models for downstream tasks in two 224

ways: with no author’s context (traditional FT), 225

and with author’s context (HuFT). More details 226

on experimenting with traditional fine-tuning and 227

HuFT can be found in sections 5.3 and 5.2. 228

Prompting within Author’s Context. We 229

compare the results on downstream tasks against 230

prompting the Llama 3.1 8B instruction-tuned 231

model in two ways: input one document at a time, 232

and inducing the author’s context by providing a 233

list of temporally-ordered documents written by a 234

particular author (details in Appendix A). 235

4 Datasets and Tasks 236

4.1 Pre-training Data: Large Human 237

Language Corpus (LHLC) 238

Human language modeling requires pre-training 239

datasets that can provide language in the au- 240

thor’s context, i.e., where text can be attributed 241

to its source (author) while maintaining the pri- 242

vacy of a person’s identity. Despite the abun- 243

dant availability of datasets with meta-data con- 244

sisting of anonymous user identifiers, to the best 245

of our knowledge, there is no cleaned and pro- 246

cessed dataset available to use directly. To facilitate 247

progress in human language modeling and person- 248

alized modeling research, we build and release the 249

first version of our pre-training dataset, LHLC—a 250

large, multi-source corpus containing millions of 251

documents across more than 150K authors, and 252

a data report containing the details of our dataset 253

construction and design principles [REDACTED]. 254

Briefly, LHLC creation steps include: 1) removing 255

missing data, 2) data deduplication, 3) english fil- 256

tering, 4) text formatting (encoding, URLs, etc.), 257

5) toxicity filtering, 6) anonymization. Here, we 258

use a subset of this data summarized in Table 1. 259
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Task Users Docs Labels med #wpd max #wpd med #dpa max #dpa med #wpa max #wpa

Age_blogs 15,942 210,253 15,942 100 350 9 353 1189 4999
Age_wassa 729 3,264 729 72 166 5 10 350 1256
Occupation 3,539 47,500 3,539 95 350 8 337 1166 4999

Table 2: We curate three person-level task datasets using documents from the blogs and WASSA essays corpora.
We apply an inclusion criteria resulting in the above statistics. Here, wpd = words per document, dpa = documents
per author, wpa = words per author. Additionally, we have a minimum of 10 words per document in blogs and 40 in
WASSA essays, and a minimum of 250 words per author in blogs and 50 words per author in WASSA essays.

Task Train Dev Test

Users Docs Labels Users Docs Labels Users Docs Labels

Age_blogs 10,354 135,594 10,354 2,402 32,773 2,402 3,186 41,886 3,186
Age_wassa 434 1,961 434 75 346 75 220 957 220
Sentiment 6,246 28,808 6,461 1,000 4,548 1,030 2,859 13,924 2,994
Stance 1,361 11,318 1,658 332 1,996 418 768 4,097 945
Occupation 2,135 28,199 2,135 532 7,770 532 872 11,531 872

Table 3: Train, Dev, and Test split statistics for each dataset across tasks, including number of users, documents, and
labels. Here, we use the splits from SemEval tasks for stance and sentiment (Nakov et al., 2013; Mohammad et al.,
2016), and the author’s context from Lynn et al. (2019); Soni et al. (2022). For the person-level tasks, we stratify on
the number of words per user and maintain a consistent label-proportions and no overlapping authors in each split.

4.2 Downstream Datasets and Tasks260

We evaluate the effectiveness of human language261

modeling and human-level fine-tuning on five262

downstream tasks. These tasks can be categorized263

into two types: document-level and person-level.264

In the first type, given a target text sequence (docu-265

ment) written by a person, the model is required to266

predict the label (e.g., stance of a person on a topic267

like atheism). In the second type, given multiple268

text sequences (documents) written by a person,269

the model is required to predict/estimate the label270

(e.g., the occupation or age of the person).271

Document-Level. We evaluate the HuLM and272

HuFT models on the publicly available datasets273

consisting of authors’ context (Soni et al., 2022) for274

the stance detection and sentiment analysis tasks275

from SemEval (Nakov et al., 2013; Mohammad276

et al., 2016) using ditto train, validation, and test277

splits.278

Person-Level. Similar to LHLC, we curate three279

person-level downstream task datasets from ex-280

isting sources—blogs (Schler et al., 2006) and281

WASSA essays (Barriere et al., 2022, 2023; Giorgi282

et al., 2024c)—that we will release publicly. We283

evaluate HuFT on the tasks of classifying a person’s284

occupation from the blogs written by them, and285

estimating a person’s age from the blogs written by286

them (Age_blogs) or from the essays written by them287

(Age_wassa). We limit the occupation classification288

data to consist of the top 5 occupations from blogs 289

corpus (student, technology, arts, communication 290

and media, and education). We clean, process, and 291

apply inclusion criteria to the datasets and create 292

train, validation, and test splits. Details on stats 293

and splits can be found in Tables 2 and 3. 294

5 Training and Experiments 295

This section describes the training framework for 296

building bigger HuLM models, and the fine-tuning 297

and HuFT processes on downstream tasks. We 298

build on code from the Hugging Face (HF) li- 299

brary (Wolf et al., 2020). 300

5.1 HuLM Pre-training 301

Here, each input instance represents an author’s lan- 302

guage, where text documents written by the same 303

author are concatenated using the special insep to- 304

ken as the separator in a temporal order. HU-Llama 305

caps the context length at 8192 tokens for each 306

author-level instance. For consistency, HaRTLlama 307

caps the maximum blocks to 8 with a block size 308

of 1024, resulting in 8192 tokens per author-level 309

input instance. Similarly, we adapt LlamaLHLC by 310

continuing pre-training at the document-level us- 311

ing ditto tokens, i.e., each document is processed 312

independently. 313

We train these models using low-rank adapters 314

and 4-bit quantized weights (QLoRA) (Dettmers 315

et al., 2023) in a distributed environment using Ac- 316

4



Model Document-Level Person-Level
Stance (F1) Sentiment (F1) Occupation (F1) Age_blogs (r) Age_wassa (r)

Llama 56.52 78.19 54.28 0.887 0.543
LlamaLHLC 57.83 77.87 53.74 0.887 0.547
HuFT-LlamaLHLC 66.55* 77.27 57.07** 0.919 0.617*

Table 4: Role of HuFT, Human-level Fine-Tuning, for downstream tasks: We find substantial gains by processing
language in the author’s context as modeled by their previously written texts. Results are reported in weighted
F1 for Stance, Sentiment, and Occupation classification, and pearson r for estimating age. Bold indicates best in
column and * indicates statistical significance with p < .0001 and ** with p < 0.05. We use a permutation test for
classification tasks and paired t-test for regression tasks for HuFT-LlamaLHLC against LlamaLHLC.

Model Document-Level Person-Level
Stance (F1) Sentiment (F1) Occupation (F1) Age_blogs (r) Age_wassa (r)

HaRTGPT2-twt 70.48* 74.31 42.80 0.710 0.245
HaRTGPT2-twt-fb

(Soni et al., 2022) 71.1 78.25 - - -

HaRTLlama 63.10 49.49 49.23 0.908 0.327
HU-Llama 67.39 76.98 57.69 0.916 0.592
HuFT-LlamaLHLC 66.55 77.27 57.07 0.919* 0.617*

Table 5: Role of scale of LLMs in HuLM models: We find simply HuFT-LlamaLHLC to be similar to HU-Llama
fine-tuned for the downstream tasks. Additionally, the recurrent HuLM architecture (HaRT) does not appear to
scale for larger LLMs. However, this may be attributed to various factors such as training only a few model
parameters due to compute limitations. Interestingly, smaller-scale HuLM models demonstrate better performance
on document-level tasks as compared to larger-scale HuLM models. Bold indicates best in column and * indicates
statistical significance with p < .0001.

celerate (Gugger et al., 2022), accommodating for317

compute availability. Additionally, we use mixed-318

precision training, performing operations in half-319

precision format to speed up computation. We use320

the PEFT library (Han et al., 2024) integrated in321

HF to train weights associated with Q, K, V, O, and322

additionally for HaRTLlama, weights associated with323

modified Q in layer 2 and the recurrent user states324

module weights associated with U (user states) and325

hidden states H from layer 31. At the 8B scale, this326

setup enables us to continue HuLM pre-training327

with a batch size of 3 per GPU on our hardware328

and 8192 tokens per author-instance. Similarly, we329

use a batch size of 123 with each instance (repre-330

senting each document) limited to 200 tokens for331

LlamaLHLC continued pre-training. We run initial332

experiments with smaller data samples using learn-333

ing rates 1e-6, 3e-4, and 5e-5, and resort to 5e-5334

when training with full data. We train on full data335

incrementally, and the details on the number of336

epochs each data source was trained can be found337

in Table 1.338

5.2 HuFT: Human-level Fine-tuning for 339

Downstream Tasks 340

Here, similar to pre-training input instances, we 341

concatenate temporally-ordered documents written 342

by the same author, separated by the special insep 343

token. For document-level tasks, the models pro- 344

cess all the tokens in the concatenated sequence 345

and use the target document’s last token’s hidden 346

states (from the last layer) to predict the author’s 347

stance or sentiment. For person-level tasks, the 348

models process the author’s language similarly and 349

use the averaged token embeddings across all to- 350

kens from an author to predict/estimate the person’s 351

occupation or age. This way of HuFT allows miti- 352

gating the ecological fallacy in larger LLMs at the 353

fine-tuning level. 354

While HuLM models are designed to adopt 355

HuFT, standard LLMs are not known to use this 356

approach, usually due to the limitation of context 357

lengths. However, larger LLMs that can process 358

larger contexts have not been evaluated for HuFT. 359

So in addition to the HuLM models (HU-Llama, 360

HaRTLlama, HaRTGPT2-twt), we also evaluate LlamaLHLC 361

using HuFT for downstream tasks, leveraging its 362

capacity to process long contexts. 363
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Model Document-Level Person-Level
Stance (F1) Sentiment (F1) Occupation (F1) Age_blogs (r) Age_wassa (r)

Llama 56.52 78.19 54.28 0.887 0.543
LlamaLHLC 57.83 77.87 53.74 0.887 0.547
HU-Llama 4096 No-HuFT 57.56 78.13 54.02 0.887 0.550
HU-Llama 4096 67.39* 76.98 57.69** 0.916 0.592*
HU-Llama 8192 - - 57.26 0.919* -

Table 6: Role of the amount of author’s context on HuLM models downstream task performances: We find these
results to show that using the author’s context helps across the board. Additionally, showing plateauing performance
when increasing the amount of author’s context further. Bold indicates best in column and * indicates statistical
significance with p < .0001 and ** with p < 0.05.

Model Document-Level Person-Level
Stance (F1) Sentiment (F1) Occupation (F1) Age_blogs (r) Age_wassa (r)

Llama prompt 68.44 65.75 - - -
Llama prompt
within Author’s context 69.92* 64.91 37.09 0.145 0.246

Llama 56.52 78.19 54.28 0.887 0.543
LlamaLHLC 57.83 77.87 53.74 0.887 0.547
HuFT-LlamaLHLC 66.55 77.27 57.07** 0.919 0.617*

Table 7: We find prompting to be insufficient to understand language in the author’s context for person-level
tasks. At the same time, we see gains in stace detection. Bold indicates best in column and * indicates statistical
significance with p < .0001 and ** with p < 0.05.

Figure 1: We look at some examples in the stance detection task where HuFT-LlamaLHLC predicted the correct
stance and LlamaLHLC was incorrect. We highlight some of the selected text from the respective author’s context that
suggests having helped the HuFT model better understand language within the author’s context.
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We load the respective pre-trained adapted364

weights into the bigger HuLM models and fine-365

tune the same PEFT modules as in pre-training for366

each downstream task. We train all models for 5367

epochs with a learning rate of 5e-5 and an early368

stopping threshold set to 6 on the evaluation loss.369

We cap the training tokens to 4096 per instance370

(i.e., per author) with a batch size of 4.371

For consistency, we use 512 tokens per instance372

with a batch size of 32 for non-HuLM baselines.373

We optimize training using cross-entropy loss for374

classification tasks and mean squared error loss for375

regression tasks.376

5.3 Fine-tuning for Downstream Tasks377

Here, we adopt the standard fine-tuning approach378

where the model is given one document and asked379

to predict the label. For document-level tasks, this380

translates to not using the author’s context. For381

person-level tasks, we adopt a prior common ap-382

proach (Soni et al., 2022) of asking the model to383

independently predict a person-level attribute for384

each document written by the author and averaging385

the predictions across all documents to arrive at a386

person-level prediction. We use this approach to387

compare Llama, LlamaLHLC, and HU-Llama over388

downstream performance.389

We set up the training environment to replicate390

that of HuFT, and for consistency, use 512 tokens391

per instance with a batch size of 32. We optimize392

training using cross-entropy loss for classification393

tasks and mean squared error loss for regression394

tasks for both FT and HuFT.395

5.4 Hardware396

We use a pair of NVIDIA H100 80GB GPUs for397

continued pre-training of HU-Llama, HaRTLlama,398

and LlamaLHLC. We run fine-tuning experiments on399

a single NVIDIA H100 80GB or an RTX A6000400

48GB GPU.401

6 Results and Discussion402

6.1 Effect of HuFT on Larger LLMs403

In general, we find HuFT for downstream tasks404

to perform better than fine-tuning without the au-405

thor’s context. HuFT-LlamaLHLC performs better406

than Llama and LlamaLHLC in four downstream tasks407

and is similar in the fifth task (see Table 4). Collec-408

tively processing an author’s language helps across409

all person-level tasks. For document-level tasks,410

stance detection shows substantial gains owing to411

the personal nature of the task, whereas sentiment 412

detection has no statistically significant difference 413

in performance. 414

6.2 Role of Scale in HuLM Models 415

We find HuLM training and fine-tuning (HU- 416

Llama) to benefit downstream performance, but 417

simply HuFT to be similar in most tasks (see Ta- 418

ble 5). We also find that scaling up the HuLM- 419

based HaRT’s recurrent architecture to a bigger 420

Llama model—HaRTLlama—does not show benefits 421

over the non-recurrent HuLM-based HU-Llama. In- 422

terestingly, we find smaller-scale recurrent HuLM 423

models (HaRTGPT2-twt and HaRTGPT2-twt-fb) to perform 424

better on the document-level tasks of stance and 425

sentiment detection. 426

6.3 Role of Author’s Context 427

Empirical Findings Regarding the Amount of 428

Author’s Context. We further assess the effect of 429

the amount of author’s context on the performances 430

of smaller- and bigger-HuLM-based models. We 431

find that not using the author’s context when fine- 432

tuning HU-Llama affects the performance on all 433

downstream tasks, achieving similar results as 434

LlamaLHLC not-HuFT (see Table 6). This further 435

supports the benefits of HuFT that we discuss in 436

Section 6.1. Additionally, while an author’s context 437

helps HU-Llama’s downstream performance, fur- 438

ther increasing the context length when fine-tuning 439

(see HU-Llama8192 in Table 6) does not provide sig- 440

nificant gains in results for the tasks of estimating 441

age (in blogs) and occupation, where additional 442

author’s context was available. 443

Qualitative Analysis. We look at some examples 444

from the stance detection and occupation classifi- 445

cation tasks to find where the models benefit from 446

processing language within the author’s context as 447

opposed to when text documents written by the 448

same author are processed independently. We show 449

some of the examples in Figure 1 and 2 suggest- 450

ing LlamaLHLC better understands language within 451

the author’s context, i.e., when we adopt HuFT for 452

respective downstream tasks. 453

6.4 Comparison with Prompting 454

Prompting performs poorly (see Table 7) for 455

person-level classification (i.e., occupation) and 456

regression tasks (i.e., age estimation) where Llama 457

instruction-tuned versions are prompted with his- 458

torical language from an author to estimate the 459

7



Model Stance(F1) Occupation(F1)

Seed 42 Seed 1234 Seed 3 Seed 42 Seed 1234 Seed 3
LlamaLHLC 57.83 60.46 61.63 53.74 53.50 54.41
HU-Llama 67.39 67.54 67.49 57.69 57.76 58.06

Table 8: Role of random seeds: We run experiments with three seeds for LlamaLHLC and HU-Llama across two
downstream tasks, and find similar trends in results.

Figure 2: We look at some examples in the occupation
classification task where HuFT-LlamaLHLC predicted the
correct label and LlamaLHLC was incorrect. We highlight
some of the selected text from the respective author’s
context that suggests having helped the HuFT model
better understand language within the author’s context.

person’s job or age. This is potentially due to the460

lack of training the model to process language in461

the author’s context, and being inadequate in per-462

forming tasks at the person-level.HuFT-LlamaLHLC463

performs substantially better than prompting for the464

person-level tasks, further providing evidence for465

impressive improvements when fine-tuning within466

the author’s context. We note here that we use the467

instruction-tuned version of Llama, which is known468

for its strong performance at document-level tasks.469

While not the main question under our study, we470

see marginal gains in using the author’s context471

when prompting for stance detection.472

6.5 Randomness and Hardware Variability473

We test for the effects of random seeds on our474

model performances by running experiments with475

three seeds using LlamaLHLC and HU-Llama and476

find similar result trends. We observe a degree477

of variability in the results depending on the type478

of GPU used, and we note it as an infrastructural479

limitation for our study.480

7 Conclusion 481

Scaling has delivered impressive advances for lan- 482

guage models. However, these models ignore the 483

larger dependence between sequences of text that 484

come from the same user. This work studied the im- 485

pact of remedying this issue in large-scale language 486

models (with 8B parameters) by modeling the au- 487

thor’s prior language contexts. A simple change to 488

the target task fine-tuning, where we incorporate 489

the author’s prior language, led to significant im- 490

provements over standard ways of fine-tuning. Pre- 491

training with author context based language model- 492

ing objective did not yield additional benefits in the 493

8B models unlike with the smaller 110M parameter 494

GPT-2 model. These results together demonstrate 495

the utility of modeling the primary generators of 496

language, the humans, in large language models. 497

Limitations 498

The purpose of our study is to consider the effects 499

of processing language within the author’s con- 500

text in larger LLMs within the scope of continued 501

pre-training and fine-tuning. We resort to quan- 502

tized low rank adaptation of some model parame- 503

ters as we are limited by the compute availability. 504

This may result in reduced efficacy of the contin- 505

ued pre-training of the HuLM task within larger 506

LLMs. Thus, we note that assessing the full im- 507

pact of HuLM pre-training in larger LLMs remains 508

an open question. Additionally, we note that the 509

author’s context may be dependent on the quality 510

of the text documents used from their previously 511

written language. This is a whole other research 512

question yet to be explored and beyond the scope 513

of our study. Furthermore, our study’s scope does 514

not include prompt engineering or assessing the 515

efficacy of prompting in various conditions with 516

the author’s context. We include basic prompting 517

experiments for completeness of comparison only. 518

Ethical Considerations 519

The multi-level human-document-word architec- 520

ture of HuLM enables large language models to in- 521

8



corporate dependencies across an individual user’s522

prior language, rather than treating each text sam-523

ple in isolation. This shift toward modeling the hu-524

man generators of language unlocks new potential525

for improving fairness, personalization, and contex-526

tual understanding. However, the same capability527

that allows for richer user-level context also raises528

important ethical concerns—particularly regarding529

the risks of misuse, such as behavioral profiling or530

manipulation based on language history.531

To mitigate these risks, we systematically review532

each dataset incorporated into the corpus, identify-533

ing and removing user identifiers. This process was534

followed by thorough manual checks to ensure that535

no personally identifiable information remained.536

These safeguards were essential for protecting user537

privacy and reducing the likelihood of unintended538

exposure of sensitive information from social me-539

dia content.540

Additionally, our models/architecture doesn’t ex-541

plicitly rely on or encode user attributes during pre-542

training. By focusing solely on patterns in language543

use—rather than incorporating static user-level fea-544

tures—we aim to preserve privacy while still cap-545

turing the richness of human communication. This546

approach aligns with our broader objective of build-547

ing ethically responsible, human-centered language548

models.549
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Task Prompt Template

Stance Topic Identify the stance of the given target text towards {topic}. Select one of the three: In Favor, or Against, or Neutral.
Here is the target text:
{text}
Do not include any extra information.

Stance Topic with
Author Context

Identify the stance of the given target text towards {topic}. Select one of the three: In Favor, or Against, or Neutral.
Here is a list of the previous messages written by the person in chronological order to learn more about the person:
{messages}
Here is the target text:
{text}
Do not include any extra information.

Sentiment Identify the sentiment of the given target text. Select one of the three: Positive, or Negative, or Neutral.
Here is the target text:
{text}
Do not include any extra information.

Sentiment with Au-
thor Context

Identify the sentiment of the given target text. Select one of the three: Positive, or Negative, or Neutral.
Here is a list of the previous messages written by the person in chronological order to learn more about the person:
{messages}
Here is the target text:
{text}
Do not include any extra information.

Job Classification Given a list of messages written by a person, predict their most relevant job category as only one of the following:
Education, Student, Technology, Arts, Communications-Media.
Here is a list of the person’s written messages in chronological order:
{messages}
Now predict the person’s job category.
Do not include any extra information.

Age Estimation Given a list of messages written by a person, estimate the person’s age.
Here is a list of the person’s written messages in chronological order:
{messages}
Now just give the person’s age as a real valued number without any explanation.
Give only the age value between 0 to 100 and no other text.

Table 9: Topic = [Hillary Clinton, atheism, feminism, legalization of abortion, climate change as a real concern],
{messages} are separated by a line.
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