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Abstract

Language model training and inference ignores
a fundamental fact about language— the depen-
dence between sequences of text that come
from the same person. Prior work had shown
that addressing this form of ecological fallacy
can greatly improve performance of a smaller
language model, a 110 M parameter GPT-2
model. In this work, we ask if addressing the
ecological fallacy by modeling the author’s lan-
guage context with a specific LM task (called
HuLM) can provide similar benefits for a larger
scale model, an 8B Llama model. To this
end, we explore variants which process an au-
thor’s language in the context of their other
temporally ordered texts. We study the effect
of pre-training with this author context using
the HuLM objective, as well as using it dur-
ing fine-tuning with author context. Empirical
comparisons show that addressing the ecolog-
ical fallacy during fine-tuning alone improves
the performance of the larger 8B model over
standard fine-tuning, as well as prompting with
an instruction-tuned variant. These results in-
dicate the utility and importance of modeling
language in the context of its original genera-
tors, the authors.

1 Introduction

To date, if one asks an LLM to complete the phrase,
“Language is generated by __”, they will get ‘hu-
mans’ or ‘people’ as the two most likely words to
follow. Yet, the standard language modeling task
itself does not model the dependence between the
token sequences and the people behind language, a
so-called ecological fallacy of assuming sequences
from the same person are independent (or treated
the same as those from different people). This
leaves models with imperfect representations of the
world and little means to directly address biases
(Soni et al., 2024) as they consistently lack variance
in their expressed psychological traits (Varadarajan
et al., 2025).

In this work, we ask: does addressing this eco-
logical fallacy help large language models? In
particular, we explore the impact of processing
language within the author’s context as modeled
by their previous texts. Recent work has suggested
that addressing the ecological fallacy during contin-
ued pretraining by turning the LM task into human
language modeling (HuLM) can improve perfor-
mance both in terms of LM perplexity and down-
stream applicaitons for a small scale model (a vari-
ant of the 124M parameter GPT-2 model) (Soni
et al., 2022). Language was modeled during pre-
training in the context of the temporally ordered
texts from the same user (we refer to this as the
HulLM context).

However, it is not clear a priori that the more
powerful larger models need this additional author
HuLM context. One may posit that LLMs with
billions of parameters trained over trillions of to-
kens, capture language from a large population of
humans and may overcome any representational or
distributional shortcomings that arise from lack of
processing in the author’s context.

To address this, we explore different ways of
incorporating author contexts into 8B sized mod-
els derived from the open source Llama weights.
First, we consider continued pre-training of the
Llama weights the HuLM objective from (Soni
et al., 2022). This adds the author HuLM context
to pretraining. Second, we also setup tasks where
we inject the author HuLLM context in fine-tuning.
For each task instance, we also have the author’s
history which we process into the HuLM context
of temporally ordered message sequence. We com-
pare the performance of these models against other
standard ways of using Llama 8B models (both in
fine-tuning and prompting).

Our empirical results highlight several impor-
tant findings: (i) Modeling language in the author’s
context provides substantial improvements on mul-
tiple tasks. (ii) HuLM style pretraining doesn’t



add gains when compared to directly fine-tuning
Llama-8B with HuLLM author contexts. (iii) For
most tasks fine-tuning with HuLM author contexts
outperforms simply prompting (instruction-tuned)
Llama with history. These results clearly show that
addressing the ecological fallacy clearly benefits
even larger 8B scale models.

In summary, we make the following contribu-
tions in this work: 1) an empirical demonstration
of the value in addressing the ecological fallacy
in larger language models. 2) developed a bigger
HuLLM model (in the range of 8B parameters) and
a diverse and substantial HuLM data corpus con-
sisting of texts from Reddit (Giorgi et al., 2024a;
Liu et al., 2024), Blog Authorship Corpus (Schler
et al., 2006), Twitter (Giorgi et al., 2024b; Soni
et al., 2022), gutenberg books (Bejan, 2021), Ama-
zon Product Reviews (Hou et al., 2024), and stack
exchange (Lambert et al., 2023). 3) expanded
tasks and dataset with author context via author’s
historical texts.

2 Related Work

A wealth of past work has shown the efficacy
of looking at language within the larger context
of who the author is or their demographics in
multiple applications, such as sentiment analy-
sis (Mireshghallah et al., 2021) or reducing social
biases (Garimella et al., 2022). In the realm of
large LLMs, prior work has shown benefits in con-
sidering a person’s dynamic emotional states to
generate empathetic dialogs (Wang et al., 2022), or
enhancing personalized responses (Tan et al., 2025)
by injecting memory within model parameters us-
ing multiple LoRA modules, inspired by human
memory mechanisms (Zhang et al., 2025).

Recent works (Soni et al., 2022) suggest includ-
ing the author’s context within the pre-training task
of next word prediction. Soni et al. introduce
the task of human language modeling (HuLM),
where they predict the next word given the previ-
ous words and an additional author’s context in
terms of the author’s prior language. They build a
Human-aware Recurrent Transformer (HaRT) pre-
trained for the HuLM task. We briefly describe
HaRT’s architecture here as out work builds on
the concept of HULM and assessing the impact of
processing language within the author’s context in
larger LLMs.

HaRT is an autoregressive model consisting of
12-layers initialized with GPT-2 small weights. It

modifies GPT-2’s architecture to use a user state
U at an initial layer (layer 2) in the self-attention
computation. This U is concatenated to the hid-
den states from the first layer and transformed to
create the query vector in layer 2. Additionally,
the user state is recurrently updated by adding the
previous user state to the hidden states from a later
layer (layer 11) using transformations and fanh ac-
tivation. Essentially, the model latently learns the
user state by recurrently processing long contexts
of temporally-ordered texts written by the same
author.

At the same time, larger LLMs have demon-
strated remarkable performances in many
tasks (OpenAl, 2023; Hendrycks et al., 2021;
Jimenez et al., 2023; Singhal et al., 2022). How-
ever, larger LLLMs are not yet evaluated for the
effects of processing language within the author’s
context when continued to pre-train or when
fine-tuned for downstream tasks. In this study, we
extend the concept of HuLM into larger LLMs
in terms of continued QLoRA pre-training and
fine-tuning for downstream tasks.

3 Models and Methods

We seek to evaluate the effectiveness of processing
language within the author’s context, i.e., mitigat-
ing the ecological fallacy, in larger LLMs. This can
be assessed at different levels: pre-training, fine-
tuning, and prompting. Prior works have built hu-
man language models at smaller scales (Soni et al.,
2022) and fine-tuned them for downstream tasks
by collectively processing language written by the
same author (i.e., within the author’s context), or
experimented with user-centric prompting (Salemi
et al., 2023). However, the need to evaluate larger
LLMs for fine-tuning within the author’s context
or pre-training for the HuLM task remains. Here,
we consider continued pre-training for the HuLM
task with QLoRA (Dettmers et al., 2023) for larger
LLMs, fine-tuning for downstream tasks with and
without the author’s context, and briefly comparing
prompting for downstream tasks within the author’s
context for completeness.

To this end, we select Llama 3.1 8B (Grattafiori
et al., 2024) as our base model. It adopts a decoder-
only transformer architecture, enabling us to adapt
it to the autoregressive HuLM task easily. Here,
we build 2 variants of bigger HuLM models: HU-
Llama and HaRTwum, following the data processing
and HaRT architecture from Soni et al. (2022) re-



Dataset Epochs Users Docs Tokens UTF-8 bytes
(millions)  (millions) (GB)
Amazon 1 30,902 2.276 208.37 0.86
Blogs 3 19,525 0.322 91.99 0.36
Books 1 3,425 0.005 262.21 1.09
Twitter 3 20,135 2414 66.00 0.24
Reddit 3 28,229 1.482 177.15 0.73
StackExchange 1 15,440 0.564 83.69 0.35
Total 117,656 7.063 889.41 3.64

Table 1: Subset of Large Human Language Corpus (LHLM) used as our pre-training data. Token counts are based

on LLaMA 3.1 tokenizer.

spectively. Further, we assess the impact of human-
level fine-tuning (HuFT), i.e., fine-tuning for down-
stream tasks by processing text documents within
the author’s context, over traditional fine-tuning,
i.e., fine-tuning for downstream tasks by indepen-
dently processing text documents written by the
same author.

We describe the models and methods we use
below. More details on training and fine-tuning
processes can be found in section 5.

HU-Llama. We continue to pre-train Llama for
the next word prediction task using the LHLC (see
Section 4.1), however, we do so over temporally-
ordered documents written by a particular author,
concatenated using a special insep token, instead
of randomly sampling documents and processing
them independently. This results in each instance
representing an author, inducing an explicit au-
thor’s context by introducing dependence on lan-
guage written by the same author.

HaRTuama. Although Llama efficiently handles
long contexts (i.e., 8192 tokens), we seek to scale
HaRT’s recurrence architecture (Soni et al., 2022)
(see section 2 for a brief overview) into larger
LLMs to compare with smaller-scale recurrent
HuLLM models. Thus, we implement a similar re-
current architecture HaRTruma using user states at
an initial layer (layer 2) and updating the user states
using hidden states from a later layer (layer 31).

Llama, Llamaiuic, HaRTcrr2me. We com-
pare the bigger HuLM models with their coun-
terpart non-HuLM models: Llama and Llamatnic.
We adapt Llama to our pre-training data corpus
(LHLC) and call it Llamainc. Additionally, we
fine-tune the publicly available HaRT model (we
call it HaRTcpr2wt) for our downstream tasks as
well as report published numbers from the paper
(we call it HaRTcpr24wen) (Soni et al., 2022).

HuFT: Human-level Fine-tuning. We com-
pare the performance of fine-tuning HU-Llama and

Llamainic models for downstream tasks in two
ways: with no author’s context (traditional FT),
and with author’s context (HuFT). More details
on experimenting with traditional fine-tuning and
HuFT can be found in sections 5.3 and 5.2.

Prompting within Author’s Context. We
compare the results on downstream tasks against
prompting the Llama 3.1 8B instruction-tuned
model in two ways: input one document at a time,
and inducing the author’s context by providing a
list of temporally-ordered documents written by a
particular author (details in Appendix A).

4 Datasets and Tasks

4.1 Pre-training Data: Large Human
Language Corpus (LHLC)

Human language modeling requires pre-training
datasets that can provide language in the au-
thor’s context, i.e., where text can be attributed
to its source (author) while maintaining the pri-
vacy of a person’s identity. Despite the abun-
dant availability of datasets with meta-data con-
sisting of anonymous user identifiers, to the best
of our knowledge, there is no cleaned and pro-
cessed dataset available to use directly. To facilitate
progress in human language modeling and person-
alized modeling research, we build and release the
first version of our pre-training dataset, LHLC—a
large, multi-source corpus containing millions of
documents across more than 150K authors, and
a data report containing the details of our dataset
construction and design principles [REDACTED].
Briefly, LHLC creation steps include: 1) removing
missing data, 2) data deduplication, 3) english fil-
tering, 4) text formatting (encoding, URLSs, etc.),
5) toxicity filtering, 6) anonymization. Here, we
use a subset of this data summarized in Table 1.



Task Users Docs Labels med#wpd max#wpd med#dpa max#dpa med#wpa max #wpa
Age_blogs 15,942 210,253 15,942 100 350 9 353 1189 4999
Age_wassa 729 3,264 729 72 166 5 10 350 1256
Occupation 3,539 47,500 3,539 95 350 8 337 1166 4999

Table 2: We curate three person-level task datasets using documents from the blogs and WASSA essays corpora.
We apply an inclusion criteria resulting in the above statistics. Here, wpd = words per document, dpa = documents
per author, wpa = words per author. Additionally, we have a minimum of 10 words per document in blogs and 40 in
WASSA essays, and a minimum of 250 words per author in blogs and 50 words per author in WASSA essays.

Task Train Dev Test

Users Docs Labels Users Docs Labels Users Docs Labels
Age blogs 10,354 135,594 10,354 2402 32,773 2,402 3,186 41,886 3,186
Age_wassa 434 1,961 434 75 346 75 220 957 220
Sentiment 6,246 28,808 6,461 1,000 4,548 1,030 2,859 13,924 2,994
Stance 1,361 11,318 1,658 332 1,996 418 768 4,097 945
Occupation 2,135 28,199 2,135 532 7,770 532 872 11,531 872

Table 3: Train, Dev, and Test split statistics for each dataset across tasks, including number of users, documents, and
labels. Here, we use the splits from SemEval tasks for stance and sentiment (Nakov et al., 2013; Mohammad et al.,
2016), and the author’s context from Lynn et al. (2019); Soni et al. (2022). For the person-level tasks, we stratify on
the number of words per user and maintain a consistent label-proportions and no overlapping authors in each split.

4.2 Downstream Datasets and Tasks

We evaluate the effectiveness of human language
modeling and human-level fine-tuning on five
downstream tasks. These tasks can be categorized
into two types: document-level and person-level.
In the first type, given a target text sequence (docu-
ment) written by a person, the model is required to
predict the label (e.g., stance of a person on a topic
like atheism). In the second type, given multiple
text sequences (documents) written by a person,
the model is required to predict/estimate the label
(e.g., the occupation or age of the person).

Document-Level. We evaluate the HuLM and
HuFT models on the publicly available datasets
consisting of authors’ context (Soni et al., 2022) for
the stance detection and sentiment analysis tasks
from SemEval (Nakov et al., 2013; Mohammad
et al., 2016) using ditto train, validation, and test
splits.

Person-Level. Similar to LHLC, we curate three
person-level downstream task datasets from ex-
isting sources—blogs (Schler et al., 2006) and
WASSA essays (Barriere et al., 2022, 2023; Giorgi
et al., 2024c)—that we will release publicly. We
evaluate HuFT on the tasks of classifying a person’s
occupation from the blogs written by them, and
estimating a person’s age from the blogs written by
them (Age nwgs) Or from the essays written by them
(Age_wassa). We limit the occupation classification

data to consist of the top 5 occupations from blogs
corpus (student, technology, arts, communication
and media, and education). We clean, process, and
apply inclusion criteria to the datasets and create
train, validation, and test splits. Details on stats
and splits can be found in Tables 2 and 3.

S Training and Experiments

This section describes the training framework for
building bigger HuLM models, and the fine-tuning
and HuFT processes on downstream tasks. We
build on code from the Hugging Face (HF) li-
brary (Wolf et al., 2020).

5.1 HuLM Pre-training

Here, each input instance represents an author’s lan-
guage, where text documents written by the same
author are concatenated using the special insep to-
ken as the separator in a temporal order. HU-Llama
caps the context length at 8192 tokens for each
author-level instance. For consistency, HaRTvima
caps the maximum blocks to 8 with a block size
of 1024, resulting in 8192 tokens per author-level
input instance. Similarly, we adapt Llamacm.c by
continuing pre-training at the document-level us-
ing ditto tokens, i.e., each document is processed
independently.

We train these models using low-rank adapters
and 4-bit quantized weights (QLoRA) (Dettmers
et al., 2023) in a distributed environment using Ac-



Model Document-Level Person-Level

Stance r1y Sentiment (r1) Occupation (r1) Age blogs()  AGE_wassa ()
Llama 56.52 78.19 54.28 0.887 0.543
Llamaumic 57.83 77.87 53.74 0.887 0.547
HuFT-Llamatuic 66.55% 77.27 57.07%* 0.919 0.617*

Table 4: Role of HuFT, Human-level Fine-Tuning, for downstream tasks: We find substantial gains by processing
language in the author’s context as modeled by their previously written texts. Results are reported in weighted
F1 for Stance, Sentiment, and Occupation classification, and pearson r for estimating age. Bold indicates best in
column and * indicates statistical significance with p < .0001 and ** with p < 0.05. We use a permutation test for
classification tasks and paired t-test for regression tasks for HuFT-Llamacnic against Llamatuic.

Model Document-Level Person-Level

Stance =1y Sentiment =1y Occupation 71y Age blogs)  AZE _wassa ()
HaRTocpro-twt 70.48* 74.31 42.80 0.710 0.245
Soneral o0 7L 78.25 : : :
HaRTvLiama 63.10 49.49 49.23 0.908 0.327
HU-Llama 67.39 76.98 57.69 0.916 0.592
HuFT-Llamacnc 66.55 77.27 57.07 0.919* 0.617*

Table 5: Role of scale of LLMs in HuLM models: We find simply HuFT-Llamatxic to be similar to HU-Llama
fine-tuned for the downstream tasks. Additionally, the recurrent HuLM architecture (HaRT) does not appear to
scale for larger LLMs. However, this may be attributed to various factors such as training only a few model
parameters due to compute limitations. Interestingly, smaller-scale HuLM models demonstrate better performance
on document-level tasks as compared to larger-scale HuLM models. Bold indicates best in column and * indicates

statistical significance with p <.0001.

celerate (Gugger et al., 2022), accommodating for
compute availability. Additionally, we use mixed-
precision training, performing operations in half-
precision format to speed up computation. We use
the PEFT library (Han et al., 2024) integrated in
HF to train weights associated with Q, K, V, O, and
additionally for HaRTwuuma, weights associated with
modified Q in layer 2 and the recurrent user states
module weights associated with U (user states) and
hidden states H from layer 31. At the 8B scale, this
setup enables us to continue HuLM pre-training
with a batch size of 3 per GPU on our hardware
and 8192 tokens per author-instance. Similarly, we
use a batch size of 123 with each instance (repre-
senting each document) limited to 200 tokens for
Llamarnic continued pre-training. We run initial
experiments with smaller data samples using learn-
ing rates le-6, 3e-4, and 5e-5, and resort to Se-5
when training with full data. We train on full data
incrementally, and the details on the number of
epochs each data source was trained can be found
in Table 1.

5.2 HuFT: Human-level Fine-tuning for
Downstream Tasks

Here, similar to pre-training input instances, we
concatenate temporally-ordered documents written
by the same author, separated by the special insep
token. For document-level tasks, the models pro-
cess all the tokens in the concatenated sequence
and use the target document’s last token’s hidden
states (from the last layer) to predict the author’s
stance or sentiment. For person-level tasks, the
models process the author’s language similarly and
use the averaged token embeddings across all to-
kens from an author to predict/estimate the person’s
occupation or age. This way of HuFT allows miti-
gating the ecological fallacy in larger LLMs at the
fine-tuning level.

While HuLM models are designed to adopt
HuFT, standard LL.Ms are not known to use this
approach, usually due to the limitation of context
lengths. However, larger LLMs that can process
larger contexts have not been evaluated for HuFT.
So in addition to the HuLM models (HU-Llama,
HaRTwim, HaRTcpr2wt), we also evaluate Llamacuic
using HuFT for downstream tasks, leveraging its
capacity to process long contexts.



Model Document-Level Person-Level

Stance (r1) Sentiment (1) QOccupation (r1) Age bogs)  Age_wassa ()
Llama 56.52 78.19 54.28 0.887 0.543
Llamaruic 57.83 77.87 53.74 0.887 0.547
HU-Llama 4096 No-HurT 57.56 78.13 54.02 0.887 0.550
HU-Llama 4096 67.39* 76.98 57.69** 0.916 0.592*
HU-Llama s - - 57.26 0.919* -

Table 6: Role of the amount of author’s context on HuLM models downstream task performances: We find these
results to show that using the author’s context helps across the board. Additionally, showing plateauing performance
when increasing the amount of author’s context further. Bold indicates best in column and * indicates statistical
significance with p <.0001 and ** with p < 0.05.

Model Document-Level Person-Level

Stance (r1) Sentiment (1) QOccupation (r1) Age bogs)  Age_wassa (r)
Llama prompt 68.44 65.75 - - -
Hamapompl . 69.92% 64.91 37.09 0.145 0.246
Llama 56.52 78.19 54.28 0.887 0.543
Llamaruic 57.83 77.87 53.74 0.887 0.547
HuFT-Llamainic 66.55 77.27 57.07%* 0.919 0.617*

Table 7: We find prompting to be insufficient to understand language in the author’s context for person-level
tasks. At the same time, we see gains in stace detection. Bold indicates best in column and * indicates statistical
significance with p <.0001 and ** with p < 0.05.
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Figure 1: We look at some examples in the stance detection task where HuFT-Llamacuic predicted the correct
stance and Llamaruic was incorrect. We highlight some of the selected text from the respective author’s context that
suggests having helped the HuFT model better understand language within the author’s context.



We load the respective pre-trained adapted
weights into the bigger HuLM models and fine-
tune the same PEFT modules as in pre-training for
each downstream task. We train all models for 5
epochs with a learning rate of 5e-5 and an early
stopping threshold set to 6 on the evaluation loss.
We cap the training tokens to 4096 per instance
(i.e., per author) with a batch size of 4.

For consistency, we use 512 tokens per instance
with a batch size of 32 for non-HuLLM baselines.
We optimize training using cross-entropy loss for
classification tasks and mean squared error loss for
regression tasks.

5.3 Fine-tuning for Downstream Tasks

Here, we adopt the standard fine-tuning approach
where the model is given one document and asked
to predict the label. For document-level tasks, this
translates to not using the author’s context. For
person-level tasks, we adopt a prior common ap-
proach (Soni et al., 2022) of asking the model to
independently predict a person-level attribute for
each document written by the author and averaging
the predictions across all documents to arrive at a
person-level prediction. We use this approach to
compare Llama, Llamatsc, and HU-Llama over
downstream performance.

We set up the training environment to replicate
that of HuFT, and for consistency, use 512 tokens
per instance with a batch size of 32. We optimize
training using cross-entropy loss for classification
tasks and mean squared error loss for regression
tasks for both FT and HuFT.

5.4 Hardware

We use a pair of NVIDIA H100 80GB GPUs for
continued pre-training of HU-Llama, HaRTviiam,
and Llamainic. We run fine-tuning experiments on
a single NVIDIA H100 80GB or an RTX A6000
48GB GPU.

6 Results and Discussion

6.1 Effect of HuFT on Larger LLMs

In general, we find HuFT for downstream tasks
to perform better than fine-tuning without the au-
thor’s context. HuFT-Llamaiuic performs better
than Llama and Llamavni.c in four downstream tasks
and is similar in the fifth task (see Table 4). Collec-
tively processing an author’s language helps across
all person-level tasks. For document-level tasks,
stance detection shows substantial gains owing to

the personal nature of the task, whereas sentiment
detection has no statistically significant difference
in performance.

6.2 Role of Scale in HuLM Models

We find HuLM training and fine-tuning (HU-
Llama) to benefit downstream performance, but
simply HuFT to be similar in most tasks (see Ta-
ble 5). We also find that scaling up the HuLM-
based HaRT’s recurrent architecture to a bigger
Llama model—HaRTuam—does not show benefits
over the non-recurrent HuLM-based HU-Llama. In-
terestingly, we find smaller-scale recurrent HuLM
models (HaRTcpr2-we and HaRTapr2-wem) to perform
better on the document-level tasks of stance and
sentiment detection.

6.3 Role of Author’s Context

Empirical Findings Regarding the Amount of
Author’s Context. We further assess the effect of
the amount of author’s context on the performances
of smaller- and bigger-HuLM-based models. We
find that not using the author’s context when fine-
tuning HU-Llama affects the performance on all
downstream tasks, achieving similar results as
Llamaiuic not-HuFT (see Table 6). This further
supports the benefits of HuFT that we discuss in
Section 6.1. Additionally, while an author’s context
helps HU-Llama’s downstream performance, fur-
ther increasing the context length when fine-tuning
(see HU-Llamasio in Table 6) does not provide sig-
nificant gains in results for the tasks of estimating
age (in blogs) and occupation, where additional
author’s context was available.

Qualitative Analysis. We look at some examples
from the stance detection and occupation classifi-
cation tasks to find where the models benefit from
processing language within the author’s context as
opposed to when text documents written by the
same author are processed independently. We show
some of the examples in Figure 1 and 2 suggest-
ing Llamarnc better understands language within
the author’s context, i.e., when we adopt HuFT for
respective downstream tasks.

6.4 Comparison with Prompting

Prompting performs poorly (see Table 7) for
person-level classification (i.e., occupation) and
regression tasks (i.e., age estimation) where Llama
instruction-tuned versions are prompted with his-
torical language from an author to estimate the



Model Stancewr Occupation
Seed 42 Seed 1234 Seed3 Seed 42 Seed 1234 Seed 3
Llamaime  57.83 60.46 61.63 53.74 53.50 54.41
HU-Llama  67.39 67.54 67.49 57.69 57.76 58.06

Table 8: Role of random seeds: We run experiments with three seeds for Llamaruc and HU-Llama across two

downstream tasks, and find similar trends in results.
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Figure 2: We look at some examples in the occupation
classification task where HuFT-Llamacnic predicted the
correct label and Llamacinic was incorrect. We highlight
some of the selected text from the respective author’s
context that suggests having helped the HuFT model
better understand language within the author’s context.

person’s job or age. This is potentially due to the
lack of training the model to process language in
the author’s context, and being inadequate in per-
forming tasks at the person-level. HuFT-Llamarm.c
performs substantially better than prompting for the
person-level tasks, further providing evidence for
impressive improvements when fine-tuning within
the author’s context. We note here that we use the
instruction-tuned version of Llama, which is known
for its strong performance at document-level tasks.
While not the main question under our study, we
see marginal gains in using the author’s context
when prompting for stance detection.

6.5 Randomness and Hardware Variability

We test for the effects of random seeds on our
model performances by running experiments with
three seeds using Llamainc and HU-Llama and
find similar result trends. We observe a degree
of variability in the results depending on the type
of GPU used, and we note it as an infrastructural
limitation for our study.

7 Conclusion

Scaling has delivered impressive advances for lan-
guage models. However, these models ignore the
larger dependence between sequences of text that
come from the same user. This work studied the im-
pact of remedying this issue in large-scale language
models (with 8B parameters) by modeling the au-
thor’s prior language contexts. A simple change to
the target task fine-tuning, where we incorporate
the author’s prior language, led to significant im-
provements over standard ways of fine-tuning. Pre-
training with author context based language model-
ing objective did not yield additional benefits in the
8B models unlike with the smaller 110M parameter
GPT-2 model. These results together demonstrate
the utility of modeling the primary generators of
language, the humans, in large language models.

Limitations

The purpose of our study is to consider the effects
of processing language within the author’s con-
text in larger LLMs within the scope of continued
pre-training and fine-tuning. We resort to quan-
tized low rank adaptation of some model parame-
ters as we are limited by the compute availability.
This may result in reduced efficacy of the contin-
ued pre-training of the HuLM task within larger
LLMs. Thus, we note that assessing the full im-
pact of HuLM pre-training in larger LLMs remains
an open question. Additionally, we note that the
author’s context may be dependent on the quality
of the text documents used from their previously
written language. This is a whole other research
question yet to be explored and beyond the scope
of our study. Furthermore, our study’s scope does
not include prompt engineering or assessing the
efficacy of prompting in various conditions with
the author’s context. We include basic prompting
experiments for completeness of comparison only.

Ethical Considerations

The multi-level human-document-word architec-
ture of HuLM enables large language models to in-



corporate dependencies across an individual user’s
prior language, rather than treating each text sam-
ple in isolation. This shift toward modeling the hu-
man generators of language unlocks new potential
for improving fairness, personalization, and contex-
tual understanding. However, the same capability
that allows for richer user-level context also raises
important ethical concerns—particularly regarding
the risks of misuse, such as behavioral profiling or
manipulation based on language history.

To mitigate these risks, we systematically review
each dataset incorporated into the corpus, identify-
ing and removing user identifiers. This process was
followed by thorough manual checks to ensure that
no personally identifiable information remained.
These safeguards were essential for protecting user
privacy and reducing the likelihood of unintended
exposure of sensitive information from social me-
dia content.

Additionally, our models/architecture doesn’t ex-
plicitly rely on or encode user attributes during pre-
training. By focusing solely on patterns in language
use—rather than incorporating static user-level fea-
tures—we aim to preserve privacy while still cap-
turing the richness of human communication. This
approach aligns with our broader objective of build-
ing ethically responsible, human-centered language
models.
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A Prompting

We use llama3.1-8b-Instruct-hf model and the
vLLM framework (Kwon et al., 2023) for our
prompting experiments. For prompting, we use
2 different methods (with and without author con-
text). We are using llama3.1-8b-Instruct-hf model
for prompting. Prompt details are given in Table 9.
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Task

Prompt Template

Stance Topic

Identify the stance of the given target text towards {topic}. Select one of the three: In Favor, or Against, or Neutral.
Here is the target text:

{text}

Do not include any extra information.

Stance Topic with

Identify the stance of the given target text towards {topic}. Select one of the three: In Favor, or Against, or Neutral.

Author Context Here is a list of the previous messages written by the person in chronological order to learn more about the person:
{messages}
Here is the target text:
{text}
Do not include any extra information.
Sentiment Identify the sentiment of the given target text. Select one of the three: Positive, or Negative, or Neutral.

Here is the target text:
{text}
Do not include any extra information.

Sentiment with Au-
thor Context

Identify the sentiment of the given target text. Select one of the three: Positive, or Negative, or Neutral.

Here is a list of the previous messages written by the person in chronological order to learn more about the person:
{messages}

Here is the target text:

{text}

Do not include any extra information.

Job Classification

Given a list of messages written by a person, predict their most relevant job category as only one of the following:
Education, Student, Technology, Arts, Communications-Media.

Here is a list of the person’s written messages in chronological order:

{messages}

Now predict the person’s job category.

Do not include any extra information.

Age Estimation

Given a list of messages written by a person, estimate the person’s age.

Here is a list of the person’s written messages in chronological order:
{messages}

Now just give the person’s age as a real valued number without any explanation.
Give only the age value between O to 100 and no other text.

Table 9: Topic = [Hillary Clinton, atheism, feminism, legalization of abortion, climate change as a real concern],
{messages} are separated by a line.

13



	Introduction
	Related Work
	Models and Methods
	Datasets and Tasks
	Pre-training Data: Large Human Language Corpus (LHLC)
	Downstream Datasets and Tasks

	Training and Experiments
	HuLM Pre-training
	HuFT: Human-level Fine-tuning for Downstream Tasks
	Fine-tuning for Downstream Tasks
	Hardware

	Results and Discussion
	Effect of HuFT on Larger LLMs
	Role of Scale in HuLM Models
	Role of Author's Context
	Comparison with Prompting
	Randomness and Hardware Variability

	Conclusion
	Prompting

