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Abstract

In real-world applications, anomaly detection (AD) often operates without access to
anomalous data, necessitating semi-supervised methods that rely solely on normal
data. Among these methods, deep k-nearest neighbor (deep KNN) AD stands out
for its interpretability and flexibility, leveraging distance-based scoring in deep
latent spaces. Despite its strong performance, deep kNN lacks a mechanism to
quantify uncertaintyan essential feature for critical applications such as industrial
inspection. To address this limitation, we propose a statistical framework that
quantifies the significance of detected anomalies in the form of p-values, thereby
enabling control over false positive rates at a user-specified significance level
(e.g.,0.05). A central challenge lies in managing selection bias, which we tackle us-
ing Selective Inferencea principled method for conducting inference conditioned on
data-driven selections. We evaluate our method on diverse datasets and demonstrate
that it provides reliable AD well-suited for industrial use cases.

1 Introduction

In many practical anomaly detection (AD) problems, anomalous data is often unavailable in ad-
vance; therefore, AD algorithms must be developed using only normal dataa setting known as
semi-supervised AD [1H3]. Among various semi-supervised AD methods, we focus on the k-nearest
neighbor (kNN) approach [4]]. The kNN approach is simple yet effective, offering flexibility, minimal
assumptions about the data, and adaptability to different distance metrics. Especially, by applying
kNN in a latent feature space identified by deep learning models, anomalies can be detected more
flexibly using task-specific distance metricsan approach we refer to as deep kNN-based AD. Deep
kNN-based AD combines the power of deep learning models with interpretable kNN scoring in latent
space, making it a promising method for practical applications [35].

However, its dependence on complex deep learning-based detection procedures means that no
established method currently exists for rigorously quantifying uncertainty or ensuring reliability.
This limitation is particularly critical in high-stakes applications such as industrial inspection, where
reliable uncertainty estimation is essential. Despite the interpretability of deep kNN-based scoring, it
lacks a principled way to assess how confidently a test case deviates from normal cases. Therefore,
developing a statistical framework that complements the high detection accuracy of deep kNN with
uncertainty quantification is a crucial step toward practical and reliable deployment in real-world
practical applications.

To address this issue, we propose a method that can quantify the statistical significance of the results
obtained by deep KNN-based ADs. Specifically, we formulate the KNN-based AD as a statistical
hypothesis testing problem and develop a method to quantify the statistical significance of detected
anomalies in the form of p-values. The p-value of a detected anomaly represents the probability
that the anomaly is a false positive. By making decisions based on anomalies with p-values below
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a certain threshold (e.g., 0.05), we can ensure that the probability of erroneous decisions remains
below the significance level of 5%. In this study, we refer to the proposed testing method as the
deep-kNN test. From a practical perspective, the ability to explicitly control the false positive rate
is highly beneficial in real-world anomaly detection. In safety-critical applications such as medical
diagnosis or industrial inspection, false positives often lead to unnecessary interventions, costs, or
workflow disruptions. By providing a statistically significant upper bound on the false positive rate,
our framework enables practitioners to make anomaly detection decisions with a quantifiable level of
reliability.

Accurately quantifying the statistical significance of anomalies identified by deep ANN is a non-
trivial challenging task from the following two perspectives. The first challenge arises from the fact
that both AD and testing are performed on the same dataset, leading to selection bias called double-
dipping [6]. The second challenge is that when anomalies are detected based on the latent feature
space of a deep learning model, it becomes necessary to account for the complex process of the deep
learning model computation. The core idea of our deep kNN test is to address these two challenges
by introducing a statistical testing framework known as Selective Inference (SI) [7,[8]. SI has recently
gained attention as a method for statistically testing data-driven hypotheses, by conditioning statistical
inference on the event that the hypothesis has been selected. Figure[T]demonstrates how the proposed
deep ENN test can be applied to industrial visual inspection task.

Normal Image Anomaly Image
Patch Patch
naive p = 0.045 naive p = 0.000
selective p = 0.394 selective p=0.011

Figure 1: Examples of anomaly patches extracted from Capsule images using KNN-based AD are
shown (see § [5 for detailed settings). For both the normal image (left) and the anomaly image
(right), two types of p-values derived from different statistical tests are presented. The “naive p”
represents the p-value obtained using a conventional method, while the “selective p”” denotes the
p-value computed using the method proposed in this study. At a significance level of a = 0.05,
the conventional naive p-value for the normal image (left) falls below the threshold, resulting in a
false positive detection. In contrast, the proposed selective p-value correctly identifies it as a true
negative. For the anomaly image (right), both p-values fall below the threshold, correctly identifying
the patch as anomalous (true positive). In this study, we show that that conventional naive p-values
are invalid as measures of statistical significance, whereas the proposed selective p-values serve as
valid uncertainty measures for assessing the significance of anomalies detected by KNN-based ADs.

Related Works Semi-supervised AD algorithms can generally be divided into three main cate-
gories [4,[9,[10]]. The first group comprises AD methods based on parametric probabilistic models.
These methods assume that normal data follow a specific statistical distribution, such as a multi-
variate Gaussian. A common traditional technique involves computing the Mahalanobis distance
and assigning p-values using the x? distribution, allowing for statistical significance testing. These
methods are interpretable and computationally efficient but may perform poorly with complex or
non-Gaussian data distributions [11}[12]]. The second group includes AD methods based on classical
machine learning algorithms. Representative methods include One-Class SVM [13]], Isolation For-
est [[14], and k-Nearest Neighbors (KNN) . While these methods are more flexible than parametric
probabilistic model-based methods, they often lack a principled mechanism to quantify statistical
significance of the detected anomalies, making it difficult to assess confidence in AD. The third
group comprises deep learning-based AD methods, which use neural networks to capture complex
patterns in normal data. Representative approaches include autoencoders or variational autoencoders
(VAEs) [[16], GAN-based method [[17], and diffusion-based method [18]. Deep SVDD [I]] and deep



kNN-based AD [19]] are also widely used as AD methods based on deep learning models. While
these deep learning-based approaches often achieve high detection performance, most still lack a
well-established framework for quantifying statistical significance, such as assigning p-values.

Selective Inference (SI) -also known as post-selection inference- provides valid statistical inference
for data-driven hypotheses. By leveraging the conditional distribution of a test statistic given that
a particular hypothesis was selected based on the data, SI corrects the selection bias introduced
by cherry-picking findings. This ensures that the reported p-values -known as selective p-values-
maintain valid false positive rates, even when the same data is used for both hypothesis selection and
testing, which would otherwise inflate the error rates due to double dipping [7|]. Early work in SI
primarily focused on feature selection in linear regression. A seminal contribution by Lee et al [§]]
introduced an exact SI procedure for the Lasso, deriving valid selective p-values for selected regression
coefficients by conditioning on the selection event induced by the Lasso solution. Since then, extensive
research has extended SI to various other feature selection settings, including marginal screening [20],
stepwise feature selection [21]], generalized linear models [22]], and many others [23H33]]. Recent
developments have also focused on improving the power of SI methods through new theoretical
insights and algorithmic innovations [34-38]. In parallel, ST has been adapted to problems beyond
feature selection, finding applications in a range of domains, such as clustering [39H42] and many
others [43-47]. In the context of deep learning, SI has been applied to provide statistical inference
for segmentation tasks [48]], saliency maps such as CAM [49]], and attention weights in Vision
Transformers [S0]. In recent years, this line of research has begun to explore the reliability of
various deep learning model components from a statistical inference perspective [S1453]]. In contrast,
applications of SI in AD settings remain limited. One related work is the application of SI to change-
point detection in time series data [54H58]]. However, that line of research focuses on testing the
significance of global changes in the entire sequence, which differs from our setting where the goal
is to assess the abnormality of individual data points. Another related work is the application of
SI to robust regression [59]], where inference is performed on regression coefficients obtained after
excluding outliers. However, the statistical significance of the detected outliers themselves is not
addressed. In conclusion, no studies have yet explored the SI framework to quantify the statistical
significance of kKNN-based AD, and its deep NN variants remain entirely unexplored, leaving a
significant gap in the literature.

Our contributions In this paper, as a proof of concept, we address the problem of quantifying
the statistical significance of results produced by a simple deep KNN-based anomaly detection (AD)
approach, as studied in [19], where anomalies are identified by thresholding the ANN distance in
the latent feature space of a CNN classifier. Unlike prior studies on deep kKNN-based AD, our
contribution is not the development of a new AD algorithm aimed at improving detection accuracy,
but rather the introduction of a method to quantify the statistical uncertainty of detected anomalies.
Our first contribution is to formulate KNN-based semi-supervised AD as a statistical test within the SI
framework, enabling rigorous reliability assessment of detected anomalies. The second contribution is
to develop a computational method to incorporate the distance measure derived from a deep learning
model into the SI framework. Finally, we validate the effectiveness of the proposed deep-kNN
test through experiments on various datasets and industrial inspection scenarios, demonstrating
its practical utility and robustness. Furthermore, to facilitate reproducibility and further research,
we release an open-source implementation of our proposed method, including code and exper-
imental scripts, available at https://github.com/Takeuchi-Lab-SI-Group/Quantifying_
Statistical Significance of Deep Nearest Neighbor Anomaly Detection via SI.

2 Problem setup: deep ANN-based anomaly detection

In this section, we describe the problem setting of a simple deep KNN-based AD, nearly identical
to that in [|19]], as a proof of concept for our statistical testing framework. In semi-supervised AD
problems, the available training dataset consists only of the set of normal instances. Let 1, ..., x, €
R? represent the set of d-dimensional input feature vectors for n normal training instances, where n
is the number of instances. If an instance is an image, for example, d is the number of pixels in the
image and x;,¢ € [n] is the d-dimensional vector of pixel values. We assume that a preterined CNN
is available, and let us denote its feature representation as ¢(x;),7 € [n] using a feature extractor
¢ : R? — RP, where D is the dimension size of the latent feature vectors. We measure the distance
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between two input instances x, =’ € R? in the latent feature space of a pre-trained CNN classifier as

distg(z, z) := [[¢(x) — P(2') |2, (1

where we adopt the Lo distance within the latent feature space in this study for concreteness, although
the choice of distance metric is flexible and discussed further in the §6]

Given a test instance st € R?, the kNN-based AD is formulated as follows. Consider an order of
indices by ascending distance with respect to a distance function dist4(-, -) such that

distqg(ﬁcteSt, .’130(1)) < diSt¢(:]ZteSt, .’130(2)) <. <Z diSt¢(.’13teSt, mo(n))~ 2)

Then, @) is called the kM nearest neighbor instance of 2**s*. Since the choice of k affects the
distance magnitude, we adopt the following well-known anomaly score [4,/60]:

log k
~ T (3)

where the first term represents the log-scale distance, whereas the second term adjusts for the influence
of k’s selectiorﬂ In kNN-based AD, if Eq. (3] exceeds a certain threshold 6, the test instance xtest s
selected as an anomaly. The threshold 6 is typically determined based on the empirical distribution of
anomaly scores among normal instances. The choice of k greatly affects the results in KNN-based
AD. Users can set k based on domain knowledge or experience. However, when domain knowledge
is limited or data is complex, a systematic approach is desirable. In semi-supervised AD, unlike
supervised learning such as kNN classification or regression, it is not possible to determine k through
data splitting such as cross-validation. One commonly used heuristic to select k is to calculate the
anomaly scores for various k values per test instance £**t, choosing the k that maximizes this score.
Our proposed KNN-test is valid regardless of the method used to determine k.

a(wtest) = log dist (xtest7wo(k))

3 Statistical testing framework for ANN-base AD

In this section, we formulate the KNN-based AD problem as a statistical hypothesis testing problem
in order to quantify the statistical significance of the detected anomalies. First, we consider each
input feature vector x;, % € [n] as a realization of a random vector X, ¢ € [n]. The statistical model
for the random vector X; is written as

X, =s;+e€;, i€ln], 4

where s; € R? represents the signal component, and €; € R? represents the noise component. In
this study, we adopt a semi-parametric assumption for the statistical model described in Eq.().
Specifically, we place no restrictions on the distribution of the signal components s; for i € [n],
treating them in a completely non-parametric fashion. In contrast, we assume that the noise com-
ponent follows a Gaussian distribution NV(0, 02I), where o is either known or can be estimated
from an independent dataset. This setup differs from traditional AD approaches based on parametric
probabilistic models, which assume that the signal components follow a specific parametric dis-
tribution. In our semi-parametric framework, the distribution of the signal components is entirely
unknown and unrestricted, allowing the model to remain valid even when the signals exhibit complex
or multimodal characteristics. For example, if the input feature vectors x; represent images—each
element corresponding to a pixel value—then our model in Eq.({@) allows a set of arbitrary original
images each of which is contaminated by Gaussian noise. Our goal is to determine, within statistical
hypothesis testing framework, whether an observed anomaly originates from the underlying signal or
is merely a consequence of the noise.

Let the feature vector of a test instance be denoted as x*** and its corresponding random version

as X', We assume X' = s'°s* 4 g'*st in the same way as Eq.(4). In kNN-based AD, the
k-nearest instance x,(y) is selected from the n available training instances. Our interest lies in
determining whether the signal of the test instance is statistically significantly different from the
signal of its k-nearest instance. This problem can be formulated as a hypothesis testing problem with
the following null hypothesis Hy and alternative hypothesis Hj:

Hp : s*t = So(k)y Vs. Hi: stest £ So(k) 5)

'The choice of Eq. (@) is based on certain assumptions and heuristics in the literature, but its details are
beyond the scope of this paper. For further information, refer to [4].



The null hypothesis H states that the true signal of the k" nearest normal training instance equals
the true signal of the test instance, while the alternative hypothesis H; asserts they are different.
By performing a statistical test for these hypotheses, the false detection rate of an anomaly can be
quantified using p-values.

As a reasonable test statistic, we consider
€S’ 1 es
T (X' {Xi}ic)) = 3 [ X = X)), - (6)

The p-value is defined as the probability of observing a test statistic greater than or equal to the one
actually observed under the null hypothesis Hy, i.e.,

p= ]P)Ho (T (XtESta {XZ}TE[YL]) Z T ($t6Sta {‘Ei}ie[n])) . (7)

Unfortunately, the probability in Eq. (7)) is computationally intractable, as it depends on the complex
computation process of deep kKNN. To address this issue, we introduce the SI framework and define a
significance quantification measure called the selective p-values. In the following section, we present
the concept of selective p-values and demonstrate that this measure can appropriately quantify the
statistical significance of anomalies detected by kNN-based AD.

4 Selective Inference (SI) for kXNN-base AD

In this section, we propose selective p-values, based on the framework of SI, as a measure of the
statistical significance of anomalies detected by kNN-based AD. These selective p-values can be
interpreted in the same way as conventional p-values. For example, if the significance level is set
to @ = 0.05 and we consider anomalies with selective p-values less than 0.05, it is theoretically
guaranteed that the proportion of falsely detected anomalies will remain below 0.05.

4.1 Alternative formulations of the test statistic in Eq.(6)

First, let us denote the (1 + n)d-dimensional vector obtained by concatenating the test instance a*¢5*

and n training instance 1, . . ., &,, all of which are d-dimensional vectors, as
y =vec (2" @y, ®,) € RITW, ®)

where vec is the operation that concatenates multiple vectors into a single column vector. Similarly,
the (1 + n)d-dimensional vector obtained by concatenating 1 + n random vectors is denoted as

Y = vec (X', Xy,..., X,,) € R4, 9)
With these notations, we can rewrite the test statistic in Eq.@ as
T(Y) = |0y Y2, (10)

where 7, is a (1 + n)d-dimensional vector defined as

1
my=-—1,...,1,0,...0, ..., —1,...-1, ,... 0...,0 |. q«an
V2 [ ~— — —
1,....,d d+1,...,2d o(k)d+1,...,(14+0o(k))d nd+1,...,(1+n)d

Note that the vector 7,, depends on the data y through the selected neighborhood o(k).

4.2 Naive p-values

Here, we discuss a measure referred to as the naive p-value. Although this measure is invalid as an
indicator of statistical significance, it serves as a contrasting concept that helps introduce the notion
of selective p-values. The naive p-value is defined as

Praive = Pr, (|1 Yll2 = Imy yll2) | (12)



where we emphasize the distinction between the random vector Y and the observed vector y.
Under the statistical model in Eq.()), the random vector Y follows a multivariate normal distribution.
Therefore, the statistic T'(Y") follows a x distribution with (1+n)d degrees of freedom. Consequently,
Eq.(I2) can be easily computed as the tail probability of x((1 + n)d) distribution. Unfortunately,
this easily computable naive p-value is invalid in the sense that it does not account for the fact that
the k-nearest neighbor instance (1) is selected based on the same observed data. If naive p-values
are used for decision-making in the same way as ordinary p-values, the false detection rate cannot be
properly controlled as intended.

4.3 Selective p-values

The basic idea of SI, pioneered by the seminal work by Lee et al. [8], is to address the problem of the
naive p-values by employing the framework of conditional testing, based on the key insight that the
sampling distribution of a test statistic can be tractable if the statistic is conditioned on.

In order to define selective p-value, let us represent an event that the k-nearest neighbor index o(k) is
selected based on the random vector Y as “€y = o(k)”. Then, selective p-value is defined as

DPselective = ]P)Ho (||77;Y||2 2 Hn;y”Z gY = gyy QY - Qy) 5 (13)

where the first condition “€y = &,” indicates the event that the k-nearest neighbor index o(k)
obtained from the random data vector Y is the same as that obtained from the observed data vector y.
The second condition “Qy = Q,,” indicates that the sufficient statistic of the nuisance parameter
defined as

PY
QY = (IPY|’ (I(n-‘rl)dfp) Y> ) (14)
where P = nyn;— e RUAMdx(1+n)d ¢ the same for both the random data vector Y and the
observed data vector y. Here, the key idea is, by the first conditioning on the k-nearest neighbor
index o(k), ny is fixed as 7, making the computation of the probability in Eq.(I3)) tractable with
the use of x? distribution as with the case of the naive p-value. Due to space limitations, we omit
the mathematical details and statitical rationale of SI, including the role of the event related to the
nuisance parameterﬂ For further details, we refer the reader to the literature such as [7,/8,34].

The computation of selective p-value in Eq.(I3) is reduced to a tail probability computation of
truncated x? distribution as formally stated in the following theorem.

Theorem 4.1. The following conditional test statistic
lny Y2 | {€y = &y, Qv = Qy} (15)

follows a truncated x distribution with (14+-n)d degrees of freedom, where the truncation is determined
by the constraint “Ey = £y and the domain of the distribution is on the one-dimensional subspace

defined by {Y | Qy = Qy}.

The proof of Theorem [4.1]is deferred to Appendix [A.2] Furthermore, the selective p-value in Eq.(T3)
is valid p-value in the sense that, for any significance level a € (0, 1), the false detection rate of the
anomalies with pgelective < < 1S exactly «v as formally stated in the following theorem.

Theorem 4.2. The selective p-values defined in Eq.(13) satisfies
PH, (Pselective < @) = o, Va € (0,1). (16)
The proof of Theorem4.7]is deferred to Appendix [A.2] The statement of Theorem 4.2]indicates that

the selective p-value in Eq.(T3)) can be used as a measure to quantify the statistical significance of the
detected anomalies.

*In this context, the nuisance parameter refers to a parameter that is included in the null distribution but is
not of direct inferential interest. To characterize the null distribution, it is necessary to eliminate the influence of
the nuisance parameter. In our approach, this is achieved by conditioning on its sufficient statistic. This is a
standard technique in the field of selective inference [7}8}34].



4.4 Selection event characterization

The main technical challenge in computing selective p-values lies in characterizing the selection event
“Ey = &,”. Conditioning on this selection event means identifying the set of vectors Y € R(1+n)d
such that the same normal instance @), which was selected as the k-nearest neighbor based on
the observed data vector y, is also selected as the k-nearest neighbor. To realize this, one must
appropriately characterize and account for several factors, including the computation of latent feature
vectors in the trained CNN model and the comparison of distances between the test instance and
normal instances in the latent feature space. Due to space limitations, the detailed characterization of
the selection event is provided in Appendix [B] where we adopt the parametric programmingbased
approach proposed in [38]] as the core computational framework.

S Numerical Experiments

In this section, we demonstrate that the proposed method exhibits high power (true positive rate) while
controlling the Type I error rate (false positive rate) below the significance level compared to other
methods. First, experiments are conducted on synthetic datasets, followed by similar experiments on
two types of real datasets. All experiments are conducted with a significance level « = 0.05. We
examined the case where ¢, a mapping to a latent feature space, is the identity function in simple
settings for the synthetic and tabular data experiments, while for the image data experiments, we
considered the case where ¢ is defined by a DNN model. We executed all experiments on AMD
EPYC 9474F processor, 48-core 3.6GHz CPU and 768GB memory.

5.1 Baseline Methods

In the experiments on synthetic datasets and tabular datasets, we compared the proposed method
(proposed) with four other baseline methods: Hotelling_t2, w/o-pp, naive, and Bonferroni.
Subsequently, in the experiments on image datasets, we additionally compare two further ablation
studies: OpA1l and OpA2.

* Hotelling_t2: This method is not based on ANN but instead performs classical anomaly
detection by computing a p-value using Hotellings T2 test. Unlike proposed, which
assumes semi-parametric conditions on the training data as shown in Eq.(4), this method
makes a stricter parametric assumption that all training samples are i.i.d. from a single
Gaussian distribution. It uses the squared Mahalanobis distance T2(X %) as the test
statistic and computes the p-value as photelling = P, (772 (X 5%) > T2 (x'*")), where the
null distribution is assumed to follow the x? distribution.

* Bonferroni: We chose the Bonferroni correction as the most basic multiple comparison

methocﬂ This is a method to control the Type I error rate by using the Bonferroni correction.

There are (Z) ways to choose the neighbors A, then we compute the Bonferroni corrected

p'Value a8 Pbonferroni = min(L (Z) : pnaive)-
* naive: This is a statistical test that uses the naive p-value defined in Eq.(12).

* w/o-pp: An ablation study that excludes the parametric programming technique described
in Appendix B}

¢ OpA1l: Another ablation study that excludes the selection events for kNN (i.e., Ny, Ky,
and Sy in Appendix [B).

* OpA2: Another ablation study that excludes the selection events for DNN (i.e., Dy in
Appendix [B).

5.2 Synthetic Datasets

To evaluate the Type I error rate, we varied the training dataset size n € {100,200, 500, 1000}
and set the data dimension d = 5. The number of neighbors k£ was adaptively selected in a data-
driven manner from {1, 2,5,10}. See Appendixfor results when d and k are varied. For each

3Other multiple testing procedures, such as Holm’s method, require computing nominal p-values for all
possible hypotheses, which is an intractable task due to the combinatorial explosion.



configuration, we conducted 1,000 independent experiments. In each iteration, we generated a test
instance ' and training instances x; for ¢ € [n], sampled from the same distribution under one
of the following two settings. In the parametric setting, all instances were drawn from a standard
Gaussian distribution (0, I;). In the semi-parametric setting, each instance was drawn from
N (s;,I4), where s; is a randomly generated mean vector. For more details about data generation,
see Appendix [C.I] To evaluate the power, we generated data in the same way, except that a signal
d € {2,4,6,8} was added to a randomly selected coordinate of the test instance x'*". We set d = 5,
n = 100 and k was adaptively selected in the same way. See Appendix [C.3|for results when d, k,
and n are varied. The results of Type I error rate are shown in Figure 2 The proposed, w/o-pp,
and Bonferroni successfully controlled the Type I error rate under the significance level, whereas
the naive could not. Since naive failed to control the Type I error rate, we excluded it from the
power experiment. Hotelling_t2 also fails in the semi-parametric setting (where s; follows a
non-Gaussian distribution), because it assumes that all samples are i.i.d. from a single Gaussian
distribution. So, it is likewise excluded from the power experiment in the semi-parametric setting.
The results of power are shown in Figure[3] Among the methods that controlled the Type I error rate,
the proposed has the highest power.
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Figure 2: Results of Type I error rate when changing the dataset size n. proposed, w/o-pp, and
Bonferroni successfully control the Type I error rate across all settings. Their lines are almost
overlapping. naive fails and the results of Bonferroni are almost zero, because it is too conservative.
Hotelling_t2 also fails in the semi-parametric setting.
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Figure 3: Power when varying signal strength §. proposed and Hotelling_t2 outperformed other
methods. However, Hotelling_t2 failed to control the Type I error rate in the semi-parametric
setting so it is not shown in the power results.

5.3 Real Datasets I: Tabular Data

We conducted evaluations using 10 tabular real-world datasets. These datasets reflect various
real-world problems from different domains. The datasets used in our experiments are listed in
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Figure 4: Results on real datasets. The proposed method (proposed) outperformed the other methods
in terms of power, while controlling the Type I error rate below the significance level across all
datasets. The Type I error rate, power, and error bars of the Bonferroni are almost zero, because it
is too conservative.

Appendix [C.4] Only numerical features from each dataset were used in the experiments. The datasets
vary in dimensionality, ranging from 4 to 10 dimensions. The number of neighbors k£ was adaptively
selected in a data-driven manner from {1, 2,5, 10}. Before conducting the experiments, All datasets
are standarized with each feature having mean 0 and variance 1. The results of the Type I error rate
and power are shown in Figure[d The proposed method outperformed the other methods in terms
of power, while controlling the Type I error rate.

5.4 Real Datasets I1: Image Data

In this experiment, we used the MVTec AD dataset [[61,/62]]. The dataset consists of 15 classes, and
we chose 10 classes for the experiments which seem to follow a normal distribution. The datasets
used in our experiments are listed in Appendix [C.5] Before conducting the experiments, All datasets
are standarized with each feature having mean O and variance 1. Following the conventional Deep
ENN approach [19]], we employed a ResNet model pre-trained on the ImageNet dataset as a feature
extractor in this experiment. As a preprocessing step, the original image, which has a size of 900 x
900 or 1024 x 1024, was divided into 30 x 30 patches, and the patch was used as the test instance.
For the training instances, we used 100 patches from the same position as the test instance. We set
the number of neighbors k& = 3. The results of the Type I error rate and power are shown in Figure {4
The proposed method outperformed the other methods in terms of power, while controlling the Type
I error rate below the significance level. Some examples of the experimental results are shown in
Figure[5]and Figure[T3]

6 Scope, limitations and conclusions

In this study, we proposed a method for quantifying uncertainty in kNN-based AD by assessing
statistical significance. Uncertainty quantification in the outputs of deep learning models remains
a major challenge in machine learning community, and our work contributes toward addressing
this gap. This is particularly important for AD because it is often used in high-stakes applications
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Figure 5: Experimental results of 4 datasets from MVTec AD dataset. For each dataset, one normal
example (left) and two anomaly examples (center, right) are showed. For each example, the top row
displays the original image used for testing along with the patch location (marked in red), while
the bottom row presents the extracted patch image. For all normal examples, the naive p-value
is below the significance level o = 0.05 (false positive), whereas the proposed selective p-value
correctly results in a true negative. For all anomaly examples, the selective p-value successfully
detects anomalies.

such as medical diagnosis and industrial inspection, where evaluating statistical significance is
crucial for practical reliability. Therefore, our proposed method, which enables the quantification of
statistical significance of the detected anomalies, has substantial practical importance. Our SI-based
fundamental idea is not limited to the specific kNN-based AD algorithm presented as a proof of
concept in this studys; it is also applicable to various other variants. For SI of deep kNN-based AD, it
is essential to characterize both the computations by the deep learning model and the selection event
of the kNN instances. The former is applicable to many CNN-type networks, while the latter applies
to distance metrics such as L1, Lo, and L. It is, in principle, extendable to other deep AD methods,
as long as the selection event (i.e., &y = &y in Eq.@)) can be characterized in a tractable form.

One limitation of the proposed £NN test lies in the form of the semi-parametric model discussed in
Section[3] In this model, the signal components are entirely non-parametric, offering significantly
greater flexibility than conventional statistical AD. However, the need to assume a distribution for the
noise component remains a limitation. Additional experimental results on robustness when the noise
distribution deviates from the normal distribution are presented in Appendix C, in which we observe
that when the deviation is small, the false detection rate can be maintained at approximately the
desired level. Another limitation arises when the selection event becomes more complex, rendering
the current framework inapplicable in its existing form. This issue, for instance, occurs when a
Transformer is used as the deep learning model for identifying the latent feature space. This remains
an important challenge for our future work.
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NeurlIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

¢ You should answer [Yes] , ,or [NA].

* [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

* Please provide a short (12 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to " ", itis perfectly acceptable to answer " " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
" "or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

* Delete this instruction block, but keep the section heading ‘“NeurIPS Paper Checklist",
* Keep the checklist subsection headings, questions/answers and guidelines below.
* Do not modify the questions and only use the provided macros for your answers.

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]
Justification: The abstract and introduction clearly state the claims made in the paper.
Guidelines:

e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: Our paper includes the discussion of limitations in §6|
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Guidelines:
* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.
* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
Justification: We provided complete proofs of all the theoretical claims in the appendix.
Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]
Justification: All the experiment settings are fully described.
Guidelines:

* The answer NA means that the paper does not include experiments.
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* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We submitted the code as supplementary materials. In the experiments, we
only used datasets that are publicly available or can be synthetically generated.

Guidelines:

» The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not
be possible, so No is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy)) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).
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* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: The paper provides all necessary training and test details.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: This study is a paper on a new statistical testing method and properly discusses
statistical significance of the results.

Guidelines:

» The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

e It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: We described the information on computer resources.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.
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9.

10.

11.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]
Justification: All the studies are conducted under NeurIPS Code of Ethics.
Guidelines:

* The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: This work, which focuses on statistical tests for KNN-based anomaly detection,
aims to enhance the reliability of Al and has the potential to broadly influence the machine
learning community. On the other hand, it does not present significant ethical concerns or
foreseeable societal consequences because this work is theoretical and, as of now, has no
direct applications that might impact society or raise ethical considerations.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
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Justification: This study is on the statistical reliability of Al and poses no risk of misuse.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: We appropriately credited all the code, data, and models used in this study.
Guidelines:

» The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
13. New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: This paper does not release new assets. (Details of the experiments performed
by the code for reproducibility provided in the supplementary material are given in the
paper.)
Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
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15.

16.

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: This study does not involve research with human subjects, including crowd-
sourcing.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: Our research does not involve studies on human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: We did not use LLMs in this research.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Proof of Theorems

A.1 Proof of Theorem[4.1]

According to the condition on &y = £y and Qy = Q,, e, U(Y) = U(y) and V(Y) = V(y),
where Py

¥) = 15T,

e RV YY) = ([(ny1)a — P)Y € RHD4,
we have
Uy)=uy)
< ([ny1ya — P)Y =U(y)
<Y =U(y)+V(Y)z
Y =Uly)+V(y)z (- V(Y)=V(y))
<Y =a+ bz,
where a = U(y),b=V(y),and z = T(Y) = ||, Y ||z = || PY ||
Then, we have
{Y e R ey =&, Q(Y) = Q(y)}
={Y e R gy =€, )Y =a+bz,z € R}
={Y =a+bz e RUTMI|E, 4, =&,z € R}
={Y =a+bz e R |z € 2},
where Z is the truncation region defined as
Z={z€R|E+b: =&y}
Therefore, by noting that ||, s||2 is zero, we obtain

T(Y) [ {& = &, Q(Y) = Q(y)} ~ TC(tr(P), Z),
where TC(tr(P), Z) is a truncated x-distribution with the degrees of freedom (1 + n)d, whose
domain is the truncation region Z.

A.2 Proof of Theorem [4.2]

The sampling distribution of the test statistic conditional on &y = &, and Q(Y') = Q(y) denoted by
T(Y) [{&y = &,Q(Y) = Q(y)}

is a truncated x-distribution with the degrees of freedom (14 n)d and the truncation region Z defined

in Theorem[4.1] Thus, by applying the probability integral transform, under the null hypothesis,

Dselective | {Ey = &y, Q(Y') = Q(y)} ~ Unif(0, 1),
which leads to
PH, (Pselective < | Ey = &y, Q(Y) = Q(y)) = a, Ya € (0,1).
Next, for any o € (0, 1), we have
P, (Pselective < | Ey = &y)

= /PHO (pselective <« | 8Y = 5y7 Q(Y) = Q(Y)) PHD (Q(Y) = Q(Y) |5Y = 8y) dQ(y)

—a [ Pu,(Q(¥) = Q) & = £,)d2)
=o.
Therefore, we obtain the result in Theorem [4.2] as follows:
IP)Ho (pselective < a) = Z ]P)H(] (pselective <« | SY = gy) ]PHO (gY = 5y)
Sy
=a) Py, (ly = &)
g’y

= .
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B Selection Event Characterization

In this section, we characterize the selection events &y = £y of deep kNN-based anomaly detection
(AD). The selection event of deep kNN-based AD consists of two components: the selection event
related to the kNN-based AD, and the selection event related to the deep learning models that perform
the transformation into latent features. The former is described in Appendix and the latter in
Appendix Finally, in Appendix [B.3] we describe how to identify the data space that satisfies the
selection event and how to compute the selective p-values.

B.1 Selection Event for XNN Anomaly Detection

In the selection events of KNN-AD, it is necessary to consider events such as selecting the k£ nearest
instances, the anomaly score exceeding a threshold, and determining &k based on the data. In the
following, we describe these events one by one. It is worth noting that all the events described below
can be collectively represented by a set of linear inequalities, which facilitates the computation of
truncation regions for the truncated normal distribution used in selective p-value calculations.

Selection event for k" nearest neighbor The test statistic in Eq. (6) depends on the selection of
KM nearest neighbor instance of the test instance X **st. Therefore, the condition on the k" nearest
neighbor instance is required. Specifically, by conditioning on

dist (X, X)) = dist(X %, X)) (17)
fork'=1,...,k—1, and

dist (X, X)) < dist(X %, X)) (18)
for ¥ = k+1,...,n, we can consider only cases where the k-the nearest neighbor is the same as

the observed case. Hereafter, the conditions in Eq.(T7) and Eq.(T8) are collectively represented as
Ny = Ny.

Selection event for anomaly score Since the statistical test is performed only on test instances
selected in the AD, it is essential to consider the selection events associated with it. A test instance is
selected and if its anomaly score, as defined in Eq. (3), exceeds a threshold 6. The condition for the
anomaly score is written as

log k
d

With the conditions in Eq.(T9), we can characterize the selection event that the test case X "' is
selected in AD. Hereafter, the condition in Eq.(I9) is represented as Ky = K.

log dist (Xte“7 Xo(k)) — > 0. (19)

Selection event for data-driven selection of £ In the case of the data-driven option for determining
the number of neighbors k, its effect must also be appropriately considered as a selection event.

For example, consider the scenario where k1, .. ., kx are candidate values for k, and the candidate
that maximizes the anomaly score in Eq. (3)) is selected. Let the selected k € {ki,...,kx} be
denoted as k*. Then, the selection event is simply given by log dist (", x,(x)) — logdk >

log dist (2", x,(y,)) — %, Vt € [K]. In the case of data-driven option to determine k, in addition
to the four selection events mentioned above, this event must also be incorporated as an additional
condition. Hereafter, we denote this selection event as Sy = Sy.

B.2 Selection Event for Deep Learning Models

When using k-nearest neighbors AD with feature representations from a pre-trained deep learning
model, the influence of the model should be considered as a selection event. SI for deep learning
has been discussed in prior studies, and tools like the software facilitate the analysis of selection
events in these models. In this study, we employ methods from earlier research to calculate selective
p-values, taking into account selection events related to deep learning models. The basic idea in these
methods involves decomposing the model into components and representing each as a piecewise
linear function. For example, operations in a CNN such as convolution, ReLU activation, max
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pooling, and up-sampling are represented as piecewise linear functions. In the experiment, we utilize
the feature representation of a CNN model pre-trained on the ImageNet database. This model is
represented precisely as a composition of piecewise linear functions. We explain the selection events
regarding the deep learning model that transforms an image instance x; € R? to a latent feature vector

z; € R?. We consider a deep learning model that consists of sequential piecewise-linear functions
(e.g., convolution, ReLU activation, max pooling, and up-sampling). Obviously, the composite
function of those piecewise-linear functions maintains its piecewise-linear nature. Thus, within
a specific real space in R?, the deep learning model simplifies to a linear function, which can be
expressed as:

¢DL(mi) =B+Wg,; ifx; € P, (20)

where B € R? and W € R%*¢ represent the bias and weight matrices, and P C R? is a polytope
where ¢py, acts as a linear function. The polytope can be characterized by a set of linear inequalities.
For details on computing these linear inequalities, see [53]]. Let us denote the set of polytopes for all
instances in Y as:

Dy = {P ‘ X, €Y, X, € P} 21

Hereafter, we denote the selection event as Dy = D,,.

B.3 Computing Selective p-values

Based on the discussions in Appendix [B.T]and [B.2] selective p-values in (I3)) can be rewritten as
follows:

Pselective = HJ)Ho (T(Y) Z T(y)|NY = NyaICY = ’CyaSY = Sy7DY = Dy7 QY = Qy) . (22)

Calculating this selective p-values is complex, but we effectively use methods from existing SI
research. We specifically use the parametric programming (pp)-based method from previous studies
[38]]. In SI, statistical inference is based on the probability measure within the subspace Z of the data
space RU+™)? where selection event conditions are met. By conditioning on the selection event for
the nuisance component, Oy = Q,,, Z reduces to a one-dimensional subspace (see Theorem and
its proof in Appendix [A.T)). The selection events are formulated as unions of intersections of linear or
quadratic inequalities, suitable when using L, or Ly distances for k-nearest neighbors. Z consists of
finite number of intervals along a line in the (1 + n)d-dimensional space, and the pp-based method
systematically enumerates all intervals that meet these conditions.

Since the noise is Gaussian, the test statistic 7(Y") under the null hypothesis H follows a one-
dimensional truncated Gaussian distribution within the subspace Z, comprising finite intervals along
a line. The selective p-value is calculated as the tail probability of this truncated distribution. Early SI
research often simplified calculations by assuming Z as a single interval under additional conditions,
which still controls the false detection probability but reduces detection power. In our problem, a
similar simplification can be considered by enforcing Z to be a single interval. In the experiments in
§5] we conduct an ablation study comparing this simple approach (denoted as w/o-pp) as one of the
baselines.

C Details of the Experiments

C.1 Details of Synthetic Data Generation

This subection provides additional details regarding the generation of synthetic datasets used in
Section[5.2] We describe both the parametric and semi-parametric settings. To illustrate the two
data-generation settings, we present in Figure [6]the distributions of the training samples in a two-
dimensional example (d = 2). In the parametric setting, all samples are centered around the origin.
In contrast, in the semi-parametric setting, the samples are distributed around different mean vectors
s;, producing a mixture of Gaussian clusters. This visualization clarifies the structural difference
between the two settings and the increased heterogeneity in the semi-parametric case.
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(a) Parametric setting (b) Semi-parametric setting

Figure 6: Visualization of the data-generation process in the parametric and semi-parametric settings
for d = 2. In the parametric case, all training samples are drawn from a single Gaussian distribution
centered at the origin. In the semi-parametric case, each training sample is drawn from a Gaussian
distribution with a randomly shifted mean vector s;, resulting in a heterogeneous distribution.

C.2 Additional Type I Error Rate Results

We also conducted experiments to investigate the Type I error rate when the data dimension n, d and
the number of neighbors k were varied in the parametric and semi-parametric setting. Specifically,
we varied d € {5,10,15,20}, k € {1,2,5,10} and n € {100, 200, 500,1000}, while setting the
default parameters as d = 5, k = 3 and n = 100. In all cases, we generated the datasets in the same
way as in the experiments on synthetic datasets (§5.2). The results are shown in Figures [7] [8]and [0}

To further assess the robustness of our method, we conducted experiments on datasets that deviate
from the normal distribution. Specifically, data are sampled from the exponentially modified Gaussian
(EMQG), generalized normal distribution (GND), skew normal distribution (SND), and Student’s #-
distribution. The degree of deviation from the normal distribution is quantified using the Wasserstein
distance [, and we evaluate the Type I error rate for each case by varying I € {0.01, 0.02,0.03,0.04}.
The results are shown in Figure[T0]

C.3 Additional Power Results

We also conducted experiments to investigate the power when the number of training data n, the data
dimension d and the number of neighbors k are varied in the parametric and semi-parametric setting.
We varied n € {100, 200, 500, 1000}, d € {5,10,15,20} and k& € {1,2,5,10} while setting the
default parameters as n = 100, d = 5, k = 3 and signal strength § = 5. Furthermore, we conducted
additional experiments where n and d was varied, considering the case where k was adaptively
selected from € {1, 2,5, 10} in a data-driven manner. In all cases, we generated the datasets in the
same way as in the experiments on synthetic datasets (§5.2). The results are shown in Figures [T} [T2]

[[3] and[14]
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Figure 7: Results of Type I error rate when varying the date dimension d. proposed, w/o-pp, and
Bonferroni successfully control the Type I error rate across all settings. naive fails and the results
of Bonferroni are almost zero, because it is too conservative. Since Hotelling_t2 does not
involve a parameter k, its value remains unchanged. Hotelling_t2 also fails in the semi-parametric
setting.
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Figure 8: Results of Type I error rate when varying the number of neighbors k. proposed, w/o-pp,
and Bonferroni successfully control the Type I error rate across all settings. naive fails and the
results of Bonferroni are almost zero, because it is too conservative. Since Hotelling_t2 does
not involve a parameter k, its value remains unchanged in the both settings. In the semi-parametric
setting, Hotelling_t2 fails to control the Type I error rate.
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Figure 9: Results of Type I error rate when varying the number of datasize n. proposed, w/o-pp,
and Bonferroni successfully control the Type I error rate across all settings. naive fails and the
results of Bonferroni are almost zero, because it is too conservative. Hotelling_t2 also fails in
the semi-parametric setting.
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Figure 11: These are in the parametric setting. Power for a fixed number of neighbors k . The results
show the effect of varying the training dataset size n, the data dimension d, and k. Our proposed
method (proposed) and Hotelling_t2 outperformed other methods across all settings.
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Figure 12: These are in the semi-parametric setting. Power for a fixed number of neighbors k. The
results show the effect of varying the training dataset size n, the data dimension d, and k. Our
proposed method (proposed) outperformed other methods across all settings.
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Figure 13: These are in the parametric setting. Power for an adaptively selected number of neighbors
k. The results show the effect of varying the training dataset size n and the data dimension d. Our
proposed method (proposed) and Hotelling_t2 outperformed other methods across all settings.
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Figure 14: These are in the semi-parametric setting. Power for an adaptively selected number of
neighbors k. The results show the effect of varying the training dataset size n and the data dimension
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d. Our proposed method (proposed) outperformed other methods across all settings.

C.4 Details of Tabular Datasets

We used the following 10 real datasets from the Kaggle Repository. All datasets are licensed under

the CC BY 4.0 license.

* Heart: Dataset for predicting heart attacks

* Money: Dataset on financial transactions in a virtual environment

* Fire: Dataset on fires in the MUGLA region in June

* Cancer: Dataset related to breast cancer diagnosis

¢ Credit: Dataset on credit card transactions

* Student: Dataset related to student performance

* Bankruptcy: Dataset on company bankruptcies

* Drink: Dataset on the quality of drinking water

* Nuclear: Dataset on pressurized nuclear reactors

* Network: Dataset on anomaly detection in virtual network environments




C.5 Experimental Results on Image Data Examples

We evaluated proposed and naive on the 10 datasets from MVTec AD dataset. The datasets used in
this study are Carpet, Grid, Leather, Tile, Wood, Bottle, Capsule, Metal Nut, Transistor, and Zipper.
Examples except for those shown in the Figure [5]from each dataset are shown in Figure[T3] In each
example, we present patches corresponding to true negative and true positive cases, along with both

the naive p-value and the selective p-value.
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Figure 15: Experimental results of 6 datasets from MVTec AD dataset. For each dataset, one normal
example (left) and two anomaly examples (center, right) are showed. For each example, the top row
displays the original image used for testing along with the patch location (marked in red), while
the bottom row presents the extracted patch image. For all normal examples, the naive p-value
is below the significance level o = 0.05 (false positive), whereas the proposed selective p-value
correctly results in a true negative. For all anomaly examples, the selective p-value successfully
detects anomalies.
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