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Abstract

Customer service chatbots serve as conversa-
tional systems aimed at addressing customer
queries. By directing customers to automated
workflows, these chatbots enable faster query
resolution. A crucial aspect of this process is
classifying the customer’s intent. Most exist-
ing intent classification models in the customer
care domain rely solely on customer queries
for prediction, which can be ambiguous and
result in reduced model accuracy. For example,
a query like "I did not receive my package"
could indicate a delayed order, or a delivered
order that the user failed to receive, each requir-
ing a different resolution approach. Utilizing
additional information, such as the customer’s
order delivery status, can enhance intent pre-
diction accuracy. In this study, we introduce
a context-aware NLU architecture that incor-
porates both the customer query and the cus-
tomer’s past order history as context. A novel
selective attention module extracts relevant con-
text features, leading to improved model accu-
racy. We also propose a multi-task learning
paradigm for the effective utilization of differ-
ent label types, one based only on user query
and the other based on full conversation with
human agent. Our suggested method, Multi-
Task Learning-Contextual NLU with Selec-
tive Attention Weighted Context (MTL-CNLU-
SAWC), demonstrated a 4.8% increase in top
2 intent accuracy score compared to the base-
line model that only uses user queries, and a
3.5% improvement over existing state-of-the-
art models combining query and context.

1 Introduction

Conversational agents have become an essential
part of modern life, playing crucial roles in vari-
ous activities such as playing music, ordering food,
booking flight tickets (Handoyo et al. 2018), and
handling banking tasks (Kiran et al. 2023). These
agents have significantly impacted nearly every as-
pect of our lives. In the realm of customer care,

they have efficiently resolved user queries, lead-
ing to increased customer satisfaction and saving
companies millions of dollars. One of the core com-
ponents of these conversational agents is Natural
Language Understanding (NLU). The primary task
of NLU is to comprehend the semantic meaning
of a user’s utterance, which is commonly referred
to as intent classification. Only after this task is
achieved can the conversational agent assist the
user with subsequent steps. Our work concentrates
on intent classification within the customer care
domain.

In recent years, Transformers (Vaswani et al.
2017; Wolf et al. 2020) have gained popularity
in model pre-training (Howard and Ruder 2018)
and have achieved state-of-the-art results in numer-
ous NLU tasks. They have been widely adopted
for the intent classification task across various do-
mains and have generally exhibited strong perfor-
mance. State-of-the-art solutions, such as those
by Rafiepour and Sartakhti 2023, Chen et al. 2019,
and Lorenzo et al. 2021, employ transformer-based
architectures for intent classification. Specifically,
in the customer care domain, Wang et al. 2021
and Senese et al. 2020 implement intent classifica-
tion using transformer models. A common theme
among these works is that they only consider the
user’s utterance for intent classification. This ap-
proach is effective when the user provides a de-
tailed description of the issue. However, in the
customer care domain, user utterances often lack
sufficient information and can be vague. Table 1
lists some examples of vague user utterances where
context can be helpful. In such cases, it is crucial
for the model to leverage additional contextual cues
for successful intent prediction.

One study that utilizes context to classify user
intents is (Gupta et al. 2019). In this work, the
model is trained using multiple signals, such as
previous intents, slots and utterances over a vari-
able context window, in addition to the current user
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utterance. Here, context refers to the additional
explicit input provided by the user. Another study,
(Lu et al. 2019), leverages user profile information,
like membership status, as context to generate chat-
bot responses. However, neither of these works
incorporates information from the user’s transac-
tion data as context. In our work, we use the user’s
previous transactions to calculate features, such as
order delivery status and order cancellation status,
and combine them with the user query to predict
intents.

Our context features can be either categorical or
numerical, while the user query is textual. There-
fore, it is essential to develop a mechanism to com-
bine data from these different modalities. One no-
table work on this topic, (Kaas et al. 2020), pro-
poses a method of combining neural BERT repre-
sentations with hand-crafted features via stacked
generalization. Ostendorff et al. 2019 also com-
bines data from different modalities by concatenat-
ing BERT embeddings of a book description, meta-
data about the book (categorical and numerical),
and knowledge graph embeddings of the author to
classify books into genres. In another significant
work, Gu and Budhkar 2021 conducts a comprehen-
sive study of various techniques used to combine
features from different modalities. Their perfor-
mances are compared across different downstream
tasks using various datasets. Promising architec-
tures, which have performed the best in at least one
of the tasks, include Unimodal (tokenizes numeri-
cal and categorical features and feeds them to the
transformer model along with text), Concat (con-
catenates text embedding with raw tabular data),
MLP+Concat (passes tabular features through an
MLP block before concatenating with text embed-
ding), Gating (Rahman et al. 2020), and weighted
sum of feature vectors from different modalities. In
our work, we have employed an attention mecha-
nism to dynamically attend to each context feature
based on the user query and context. The attention-
weighted context vector is then combined with the
query embedding to make intent predictions.

For deep learning models to perform optimally,
high-quality labeled data is essential. However, in
the customer care domain, as previously noted, we
often encounter ambiguous user requests. Conse-
quently, in many instances, labels derived solely
from user utterances may not align with the actual
labels. Some prior studies addressing the issue of
learning from noisy labels in real-world scenarios
include (Wei et al. 2021), (Frénay and Verleysen

Utterance Possibilities

order cancelled unclear whether user wants an or-
der cancelled or is complaining
about an order cancelled by store

my order will require different resolution
depending on whether the user is
talking about a delayed order or
missing order

not received not clear whether the user is talk-
ing about order or refund

Table 1: Vague utterances where context can help

2013), and (Huang et al. 2023). To tackle this
challenge, we introduced conversation labels in ad-
dition to utterance labels. We developed an archi-
tecture utilizing the multi-task learning framework
to effectively leverage both. The key contributions
of this work are as follows:

• Crafting features from the user’s raw context
to streamline the model’s learning process

• Implementing an attention mechanism that
enables the model to dynamically focus on
context features based on the user query and
context

• A labeling approach that considers users’ la-
tent and explicit intent

• An architecture employing the multi-task
learning paradigm that effectively leverages
the aforementioned labeling strategy, leading
to overall performance enhancement.

2 Methodology

2.1 Combining order level, item level, and
handcrafted contextual features

The context data obtained from a customer’s trans-
action details includes information in the form of
order-level features, such as order placement time,
the number of items in the order, store number, and
delivery fulfillment type, among others. Addition-
ally, it comprises item-level features like delivery
status for each item, item cancellations, and re-
fund requests for individual items, and so on. We
combined item-level features corresponding to an
order to create new features, including "number
of items delivered", "time difference between the
last delivered item and user chat", "time difference
between the last shipped item and user chat" and
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more. These handcrafted features were further em-
ployed to generate additional features, such as "are
any items left to be delivered", "are any items left
to be shipped" and so on. For instance, the feature
"are any items left to be delivered" is produced by
verifying if the number of ordered items equals
the number of delivered items. These handcrafted
features were developed to facilitate the model’s
learning of complex feature interactions and have
proven to enhance performance, as evidenced in Ta-
ble 4. More examples of such handcrafted features
can be found in Table 6 in Appendix F.

For all the architectures discussed in the
subsequent sections, we have utilized Bidirec-
tional Encoder Representations from Transformers
(BERT)(Devlin et al. 2018) as the encoder to obtain
embeddings from textual data.

2.2 Baseline Model
In the baseline model, the user utterance is input
into a pre-trained BERT model, and the resulting
embedding is passed through an MLP (Multi-Layer
Perceptron) block, consisting of two hidden lay-
ers. The first linear layer is followed by a ReLU
(Fukushima 1975) activation function layer, while
the second linear layer is followed by a softmax
(Bridle 1989) layer that outputs intent probabilities.
The architecture’s details can be found in Figure 1.
Given dataset D = (xi , yi) with N different classes
and M examples, we fine-tune BERT and train the
MLP block layers. The output probability from the
model can be represented as follows:

p(y|hi) = softmax(hi) ∈ RN (1)

where hi ∈ RN is the output from the last layer of
the MLP block before the application of softmax,
for the i-th example xi. The model parameters θ
are trained on D with cross-entropy loss.

θ∗ = argmin
θ
Lce(D; θ) (2)

Cross entropy loss is defined as:

Lce = −
M∑
i=1

N∑
c=1

yi,c log(pi,c) (3)

where pi,c is the predicted probability of the i-th
example belonging to class c, and yi,c ∈ {1, 0},
depending on whether c is the true class for the i-th
example or not. ŷ in Figure 1 denotes the intent
class with the maximum probability.

Figure 1: Baseline Model - User query passed through
pre-trained BERT model and subsequent MLP block

2.3 Architecture to combine user utterance
and context

The contextual features for the model are initially
generated from the user’s past transaction data. The
procedure for creating these features is detailed
in Section 2.1. These contextual features then
undergo an additional preprocessing step, which
includes min-max normalization and imputation
of missing values. As with our baseline model,
the user’s query is input into a pre-trained BERT
model. The BERT model’s embedding is combined
with the pre-processed contextual features, and the
resulting combined embedding is fed through an
MLP block. Among the numerous techniques for
combining query and context, the most straight-
forward approach is to concatenate the query and
context embeddings. However, it is challenging
for MLP layers to attend to relevant information
in the context vector for a given query embedding.
Consequently, the Concat (Gu and Budhkar 2021)
model’s performance is unsatisfactory.

2.3.1 Concat with Attention weighted Context
(CAWC)

We utilize an attention-based feature weight gen-
eration mechanism in which attention weights are
computed for each of the context features, consid-
ering both the context and query embeddings. This
approach enables the model to concentrate on rel-
evant features, significantly mitigating the issues
associated with the concatenation model. Let qi
and ci denote the query embedding vector and con-
text vector, respectively, for the i-th example. The
attention module receives qi and ci and produces an
attention vector ai with the same length as ci. The
weighted context vector c̃i is then determined by
performing element-wise multiplication of ai and
ci. Finally, the weighted context vector is concate-
nated with the query embedding, and the combined
embedding is input to an MLP block as before. The
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Figure 2: Concat with Attention weighted Context(CAWC) - Attention scores for each of the context features is
calculated based on context and query vectors, using the attention module. Attention weighted context vector is
then concatenated with query embedding

complete architecture can be seen in Figure 2.

ai = AttentionModule(qi, ci) (4)

ĉi = ai ⊙ ci (5)

where ⊙ represents element-wise multiplication

Attention Module: As previously mentioned, the
attention module accepts the context vector and
query embedding vector as inputs and generates
attention scores for each context feature. Within
the attention module, both the query and context
vectors are passed through linear layers represented
by Wq and Wc, respectively, and subsequently
concatenated to form a combined vector denoted
as ei. The vector ei is then fed through two
linear layers, symbolized by Wl1 and Wl2, with
the number of neurons roughly halved in each
hidden layer. The tanh activation function is
applied after each linear layer. Following this, the
resulting vector is passed through another linear
layer, denoted by Wl3, which has an output vector
length equal to that of the context vector. The
sigmoid activation function, σ, is then applied to
restrict each value between 0 and 1. The resulting
attention vector is represented by ai.

ei = concat(Wqqi,Wcci) (6)

ai = σ(Wl3 tanh(Wl2 tanh(Wl1ei))) (7)

where σ represents the sigmoid function

2.4 Labelling Strategy
We have discussed how incorporating contextual
information can assist the model in predicting more
accurate intents, especially when the user utterance

is ambiguous. Similarly, having context informa-
tion aids in the proper annotation of data, which
subsequently enhances the model’s performance.
In our scenario, labeling examples solely on user
utterances might result in incorrect labels when
the user query is vague. Nevertheless, the accu-
rate approach involves examining the user’s query
along with all its contextual features for labeling
the examples. However, this method is extremely
time-consuming and not scalable for large datasets,
such as customer care. To overcome this, we use
the entire user-agent (human) conversation as a sub-
stitute for the user’s context information since this
data is relatively easier to label. This conversation
data is an appropriate proxy because most of the
context information that can be derived from the
user’s transaction history is often mentioned during
the user-agent conversation. Therefore, we have
two types of labels for each example:

• Utterance Label: tagged based solely on the
user’s utterance and is intended to capture the
user’s explicit intent

• Conversation Label: tagged based on the
entire user-agent conversation and captures
the user’s latent intent.

The subsequent step is to efficiently utilize the
two types of labels for training our model. As pre-
viously mentioned, training models with utterance
labels might be sub-optimal since these labels were
tagged based solely on the user utterance. Like-
wise, training models with only conversation labels
might not always be effective, as doing so could de-
viate from what the user has explicitly stated. For
instance, when the user types "contact customer
care," the utterance label would be "agent contact."
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Figure 3: MTL-CNLU: Model with two heads trained
jointly in a multi-task learning setting using both, utter-
ance label and conversation label

However, the conversation label would generally
indicate the user’s latent intent, which could be
about a "refund" and is only discerned by the hu-
man agent after further interactions with the user.
In such cases, predicting "agent contact" leads to a
better user experience. To address this dilemma, we
decided to employ the multi-task learning approach
to train our model.

2.5 Multi Task learning paradigm for
Contextual NLU (MTL-CNLU)

Multi-Task Learning (MTL) is a training frame-
work employed to exploit valuable information
within multiple related tasks, thereby enhancing the
generalization performance across all tasks (Zhang
and Yang 2021; Zhang et al. 2022). In our context,
we define one task as the classification of utterance
intent and another task as the classification of con-
versation intent. The utterance label and conversa-
tion label serve as the ground truths for the first and
second tasks, respectively. In the majority of multi-
task learning models, the initial layers are shared
among all tasks (Ruder 2017). In our scenario, the
backbone BERT module is shared between the ut-
terance head (accountable for predicting utterance
intent) and the conversation head (accountable for
predicting conversation intent). The parameters of
the backbone BERT module, utterance head, and
conversation head are denoted by ϕ1, ϕ2U , and
ϕ2C , respectively. The combined loss from the two
heads is utilized to jointly update all three parame-
ter sets and is represented by:

Lcombined = L(D;ϕ1, ϕ2U , ϕ2C) (8)

The combined loss is a weighted sum of the cross-
entropy losses from the two heads.

Lcombined = Lce(Yu, Ŷu) + λLce(Yc, Ŷc) (9)

Figure 4: MTL-CNLU-AWC: Only attention weighted
context vector used to predict conversation intent

where λ is a hyperparameter employed to balance
the two losses. Yu, Yc, Ŷu, and Ŷc represent the
utterance labels, conversation labels, predicted ut-
terance intents, and predicted conversation intents,
respectively.

2.5.1 Top 2 intent selection
As discussed in Section 2.4, the correct intent to
display to the user in response to a query such as
"contact customer care" is "agent contact," as it pre-
cisely captures the user’s explicit intent. Nonethe-
less, it is also crucial to reveal the user’s implicit
intent, which in this instance was about "refund,"
as evidenced by their context information. This
helps to direct more customers to automated work-
flows. All architectures before MTL-CNLU had
only one head, so to obtain the top 2 intents, we
would choose the top 2 intents based on confidence
scores directly from this head. In MTL-CNLU, the
top 2 intents consist of the top intent from the utter-
ance head and the top intent from the conversation
head. Additionally, a metric is needed to assess
model performance based on both predictions. For
this purpose, models are evaluated on the top 2
score 3.2.2, as illustrated in Table 2.

2.6 Architectures for MTL-CNLU
2.6.1 MTL-CNLU
The pre-trained BERT module is the only compo-
nent shared by both the utterance and conversa-
tion heads. Each head possesses its own query-
context combining module, which maintains the
same architecture as CAWC. The comprehensive
architecture can be seen in Figure 3. The predicted
intents from the utterance and conversation heads
are represented by ŷu and ŷc, respectively. All
other notations remain unchanged from previous
descriptions.
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Figure 5: MTL-CNLU-SAWC: Attention weighted context vector used to predict conversation intents when user
query corresponds to flow intent, otherwise context features used directly

2.6.2 MTL-CNLU with Attention Weighted
Context (MTL-CNLU-AWC)

The concatenation of the query and weighted con-
text vector for predicting intents works effectively
for the utterance head. However, due to the context
vector’s sparse nature (attributed to the presence of
categorical features) and its comparatively shorter
length (the context vector has a length of 50, while
the query vector has a length of 768), concatenat-
ing the query and context vectors causes the model
to focus more on the query than the context. This
results in suboptimal outcomes for the conversa-
tion head. For instance, our training data included
an utterance "hello there" labeled with "greet" for
utterance and "why order was cancelled" for conver-
sation. Based on the context data also, "why order
was cancelled" was deemed the appropriate intent
since the order had been cancelled by the store due
to items being out of stock. However, when trained
on this data, our model formed a strong associa-
tion between the utterance and conversation labels.
Consequently, during inference, when a user with
a latent intent of tracking their order status entered
the query "hello there," the model predicted "greet"
and "why order was cancelled" as the intents from
the utterance and conversation heads, respectively,
instead of "greet" and "where is my order".

Owing to findings like these and since the con-
versation head’s primary objective is to predict
the user’s latent intent, the previous architecture
was modified to remove the query-context com-
bining module from the conversation head. Only
the weighted context vector was fed into the MLP
block to predict latent intents. The detailed archi-

tecture can be viewed in Figure 4.
Every user intent predicted by the model can be

classified into one of two categories:

• Flow intent: Intents associated with a defined
flow. When a user selects a flow intent, they
can follow a series of predefined steps to re-
solve their query. Examples of flow intents
include "where is my order", "why order was
cancelled" and "where is my refund".

• Non-flow intent: Intents that do not have an
associated flow. These include intents like
"agent contact", "greet", "affirmative" and so
on.

Utterance labels can be either flow or non-flow
intents, while conversation labels are always flow
intents.

2.6.3 MTL-CNLU with Selective Attention
Weighted Context (MTL-CNLU-SAWC)

The attention weights, which are derived using both
context and query embeddings as detailed in Sec-
tion 2.3.1, assist the model in focusing on rele-
vant context features. For instance, consider a user
inputting the query "late." The context vector in-
cludes information that the user ordered two items:
one was canceled by the store, and the other was
delayed. The model must determine which of these
two context features is more crucial: "are any items
delayed" or "are any items canceled". This cannot
be determined by the model based solely on con-
text features. The query vector aids the model in
focusing on the appropriate context feature. How-
ever, for utterances such as "contact customer care"
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Architecture Utterance Intent Conversation Intent Top 2 Score(%)
Micro F1(%) Macro F1(%) Micro F1(%) Macro F1(%)

Text only (baseline) 78.65 75.80 - - 86.12
Concat (Gu and Budhkar 2021) 80.14 77.28 - - 87.34

MLP + Concat (Gu and Budhkar 2021) 80.28 77.66 - - 87.23
Unimodal (Gu and Budhkar 2021) 79.66 76.01 - - 86.14

Gating (Gu and Budhkar 2021; Rahman et al. 2020) 80.45 77.42 - - 87.41
Weighted Sum (Gu and Budhkar 2021) 80.12 77.37 - - 86.98

CAWC 81.5 78.71 - - 88.38
MTL-CNLU 81.65 78.80 38.65 37.80 89.90

MTL-CNLU-AWC 81.54 78.81 41.78 38.95 90.44
MTL-CNLU-SAWC 81.96 79.05 42.03 39.56 90.92

Table 2: Results comparing performance of different models. The first half of the table contains results from the
baseline model(text only) as well as the different SOTA models mentioned in (Gu and Budhkar 2021). The second
half contains our models. The first 7 models have single headed architectures, therefore no comparison could be
made with conversation label. Top 2 score is calculated based on Algorithm 2

and "talk to representative," the query embedding
should ideally not influence the latent intent predic-
tion, as there is no relevant information in the query
regarding the user’s latent intent. In fact, for all ut-
terances where the explicit intent corresponds to a
non-flow intent, the latent intent prediction should
depend solely on the context vector. To accomplish
this, we modify the architecture so that the con-
text vector ci is element-wise multiplied with the
attention vector ai only when the utterance head
predicts a flow intent. In other cases, only ci is
fed as input to the conversation head. The logic
for selectively applying attention is described in
Algorithm 1 in Appendix A. Architecture details
can be found in Figure 5. MTL-CNLU-SAWC is
our final architecture and outperforms all others
described thus far.

3 Experimental Setup

3.1 Dataset
The experimental data is sourced from the e-
commerce customer care domain. Each exam-
ple consists of a user utterance, context features,
and two labels: utterance and conversation labels.
Since the data used for experimentation is internal
user data from an organization, it is not shared in
this work. Context data is available for 70% of
the examples in the form of the user’s past trans-
actions. For such examples, context features fed
to the model are generated as described in Section
2.1. For examples without context features, a zero
vector with a length equal to that of the context fea-
tures is created and utilized as the context vector.
Detailed statistics of our dataset can be found in
Table 7 in Appendix G.

3.2 Evaluation metrics
3.2.1 Micro-F1 and Macro-F1 scores
The top 1 intent from the utterance head is com-
pared to the utterance label, while the top 1 intent
from the conversation head is compared to the con-
versation label. Micro-F1 and Macro-F1 scores are
used as performance metrics for both. Micro-F1 is
the same as accuracy, whereas Macro-F1 is equal
to the average F1-score of the labels.

3.2.2 Top 2 score
As mentioned in Section 2.5.1, the top 2 score is a
relevant metric for us. We consider the predicted
intents from the utterance and conversation heads
as the 1st and 2nd intents, respectively. In case
both happen to be the same, the 2nd intent from the
utterance head is considered as the 2nd intent. The
logic for calculating the top 2 score can be found
in Algorithm 2 in Appendix B.

4 Results

In Table 2, the evaluation metrics described in
Section 3.2 are used to compare all of the pro-
posed architectures in this paper, as well as those
studied in (Gu and Budhkar 2021), on our test
data. As demonstrated by the results, MTL-CNLU-
SAWC is the best-performing model across all
three metrics. Among the single-headed architec-
tures, CAWC performs the best due to its effec-
tive integration of query and context information
through its attention module. The MTL-CNLU-
based architectures provide a performance boost in
the top 2 accuracy scores, as the model becomes
more adept at predicting the user’s latent intent.
This is also accompanied by a slight increase in the
top 1 prediction, as the loss from the conversation
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Utterance Context Infor-
mation

utterance
label

conversation
label

Baseline concat MLP+concat/
Unimodal/
Gating/
Weighted Sum

CAWC MTL-
CNLU

MTL-
CNLU-
AWC

MTL-
CNLU-
SAWC

1 my order is
late

items are over-
due

order late order late �� �� �� �� �� �� ��

2 cancel my
order

items are yet to
be delivered

cancel or-
der

cancel order �� �� �� �� �� �� ��

3 order
cancelled

store cancelled
order

why order
was can-
celled

why or-
der was
cancelled

x �� �� �� �� �� ��

4 when will i
receive rest
of the items

some items were
delivered while
others were de-
layed

order late order late x x x �� �� �� ��

5 order help items were miss-
ing from order

where is
my order

missing
items

� � � � �� �� ��

6 need to
speak with
agent

all items overdue agent con-
tact

order late � � � � �� �� ��

7 hello all items overdue greet order late � � � � � � ��

Table 3: Qualitative analysis of different architectures. Double check mark (��) indicates that model outputs cover
both the labels, single check mark (�) indicates that model outputs cover only one of the two labels and cross ( x )
indicates none of the labels are covered.

head helps the model learn better query embed-
dings. With MTL-CNLU-SAWC, the model can
selectively use information from the user query to
create a context vector that further enhances latent
intent prediction.

Table 3 presents the results of a qualitative analy-
sis of the different architectures by comparing their
outputs for various examples. A double check mark
(��) indicates that the model’s outputs cover both
labels, a single check mark (�) indicates that the
model’s outputs cover only one of the two labels,
and a cross ( x ) indicates that none of the labels
are covered. In example 1 and 2, the utterance is
clear and the models are able to predict intents ac-
curately based on just the utterance. For example
3, the baseline model, which is trained on just ut-
terance, incorrectly predicts "cancel order" as the
intent. Other models, with context information are
able to correctly predict the intent. In example 4,
the context contains information that some items
are yet to be delivered and they are all overdue.
The concat architecture as well as the architectures
described in (Gu and Budhkar 2021) incorrectly
predicts "missing items" for this. However, the at-
tention based architecture is able to focus more on
the information that the items were overdue and
hence correctly predicts "order late" as the intent.
For examples 5 to 7, utterance and conversation la-
bels are different. For example 5, the single headed
models are able to predict only the utterance intent
while MTL-CNLU models are able to correctly

predict both intents. For examples 6 and 7, where
utterance intent corresponds to non flow intent, the
query should ideally not influence the context vec-
tor at all. The MTL-CNLU model shows variable
performance, getting conversation intent predic-
tion correct for example 7 but wrong for example 8.
This is because the attention module which depends
on both query and context sometimes incorrectly
focuses on the wrong context features. The MTL-
CNLU-SAWC model gets the conversation intent
correct for both of these cases.

5 Conclusion

In this paper, we have presented an effective ap-
proach for combining user queries and context in-
formation for the intent classification task in the
customer care domain of e-commerce. Our pro-
posed model outperforms both the baseline model,
which only uses the user query, as well as other ex-
isting state-of-the-art models that aim to combine
query and context. We experiment with different
types of context features and create several features
manually to simplify the learning process of the
model. To address the problem of noisy labels, we
also incorporate conversation labels in addition to
utterance labels, and develop a method to effec-
tively use both labels within the multi-task learning
framework. Additionally, we show that selectively
applying attention weights based on specific condi-
tions can further improve model performance.
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6 Limitations

In our current work, which focuses on the e-
commerce customer care domain, we employ con-
text information from the customer’s transaction
history in conjunction with the user query to pre-
dict customer intent. However, there is an untapped
potential source of context information: the cus-
tomer’s website/app interaction data. This could be
particularly valuable if the customer has recently
visited help pages before engaging in a chatbot
conversation.

Another limitation of our work is that it assumes
the user utterance is the sole explicit input from the
user to the chatbot. However, this assumption may
not hold in the following scenario: the user enters
a query, the chatbot generates intents as a response,
the user finds the displayed intents unsatisfactory
and chooses not to select any of them, and then the
user types a new query that expands on the original
one. Our current model disregards the previous
query-response pair and considers the new query as
the only explicit input to the model. As a result, the
model may end up repeating its previous response,
leading to a sub-optimal user experience. We plan
to address both of these issues in our future work.

In our research, we have categorized each query
(+context) into predefined intent classes. However,
for the customer care domain, the class labels can
be quite informative. Some examples of class la-
bels are "where is my order", "where is my refund",
"missing items" etc. Currently, we have not uti-
lized the inherent information present in these label
texts. As part of our future work, we also intend to
explore different techniques to effectively leverage
the information contained within the labels for our
task.
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A Algorithm to selectively apply attention
to context vector for
MTL-CNLU-SAWC

Algorithm 1 Selectively apply attention to context
vector

if ŷu ∈ Flow Intents List then
c̃← ai ∗ ci

else
c̃← ci

end if

B Algorithm to calculate top 2 score

Let yu, yc, ŷ1 and ŷ2 denote the utterance label,
conversation label, 1st predicted intent and 2nd pre-
dicted intent respectively. For models with single

Algorithm 2 Top 2 score calculation

if yu = yc then
if ŷ1 = yu or ŷ2 = yu then

score← 1
else

score← 0
end if

else
if ŷ1 ∈ {yu, yc} and ŷ2 ∈ {yu, yc} then

score← 1
else if ŷ1 ∈ {yu, yc} or ŷ2 ∈ {yu, yc} then

score← 0.5
else

score← 0
end if

end if

head the 1st and 2nd predicted intents are the top 2
intent classes with maximum confidence. For mod-
els with two heads, the intent from the utterance
head is considered as the 1st predicted intent and
intent from the conversation head is considered to
be the 2nd predicted intent.

C Ablation Study

A crucial element of our work involved pinpointing
pertinent information from user transaction data to
serve as context. To evaluate the significance of var-
ious context features, such as order level features
and item level features, we compared the model’s
performance with and without these features. The
findings from this analysis are presented in Table
4. Handcrafted features, such as "are any items left

Model trained on top 1 accuracy (%)

text only (baseline) 78.65
text + order level features 79.34
text + item level features 78.91
text + order level + item level features 79.42
text + order level + item level features
+ handcrafted features

81.04

Table 4: Assessment of the contribution of different con-
text features towards model performance improvement

to be delivered" and "were any items cancelled"
have the strongest influence on model accuracy.
We utilized the CAWC architecture to make these
comparisons.

Figure 6: MTL-CNLU-shared: MTL-CNLU with query-
context combining module shared between the heads

Figure 7: MTL-CNLU-AWC-shared: MTL-CNLU-
AWC with query-context combining module shared be-
tween the heads

Figure 8: MTL-CNLU-SAWC-shared: MTL-CNLU-
SAWC with query-context combining module shared
between the heads

D Alternate architecture considerations
for MTL-CNLU

As outlined in section 2.5, the core BERT mod-
ule in all our MTL-CNLU-based architectures is
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Architecture Utterance Intent Conversation Intent Top 2 Score (%)
Micro F1(%) Macro F1(%) Micro F1(%) Macro F1(%)

MTL-CNLU 81.65 78.80 38.65 37.80 89.90
MTL-CNLU-AWC 81.54 78.81 41.78 38.95 90.44

MTL-CNLU-SAWC 81.88 79.05 42.03 39.56 90.87
MTL-CNLU-shared 81.48 78.62 34.65 32.80 85.90

MTL-CNLU-AWC-shared 81.66 78.68 34.11 33.11 87.21
MTL-CNLU-SAWC-shared 81.62 78.81 34.77 32.56 87.18

Table 5: Results comparing performance of the two sets MTL-CNLU based architectures, ones
where query-context combining module was also shared between the heads in addition to the
BERT module and the ones where only the BERT module was shared

shared by both the utterance and conversation
heads. However, each head possesses its own
query-context combining module. We also exper-
imented with using a single query-context com-
bining module for both heads. This was carried
out for each MTL-CNLU architecture, specifi-
cally MTL-CNLU, MTL-CNLU-AWC and MTL-
CNLU-SAWC. The resulting new architectures are
named MTL-CNLU-shared, MTL-CNLU-AWC-
shared, and MTL-CNLU-SAWC-shared respec-
tively. Detailed architectures are available in fig-
ures 6, 7, and 8. Each of these models demonstrated
lower performance than their counterparts with sep-
arate query-context combining modules, as shown
in Table 5.

E Training details

All the model architectures described above were
trained using the same dataset, with the only dif-
ference being the training methodology for MTL-
CNLU models due to the incorporation of conver-
sation labels. The BERT model employed as an
encoder in all our architectures is a pre-trained dis-
tilled variant, Small BERT (Turc et al. 2019), with
a hidden state dimension of 768. All models in this
paper were trained using the AdamW (Loshchilov
and Hutter 2017) optimizer with a learning rate of
0.0001. A dropout of 0.5 was applied to the layers
in the MLP block. The first hidden layer in the
MLP block utilized the ReLU activation function,
while the tanh activation function was employed af-
ter layers within the attention module. The choice
of activation function was based on empirical re-
sults. As previously mentioned, for MTL-CNLU,
conversation labels serve as a proxy for labels that
should have ideally been assigned according to the
user’s contextual information. Thus, they do not
impact training when context is absent. Conse-
quently, the hyperparameter λ is set to zero for
training examples without context data. For the

remaining examples, we experimented with values
{0.6, 0.8, 1, 1.2, 1.4} for λ and ultimately set it
to 1 based on the results. A batch size of 32 was
employed during training. The Tensorflow library
was used for implementation, and all models were
trained on an Nvidia V100 GPU. Our final model,
MTL-CNLU-SAWC, contains approximately 39
million trainable parameters and takes an average
of 3 hours to train on an Nvidia V100 GPU.

F Handcrafted context features used by
the model

Table 6 shows some of the handcrafted features
that were created to help our model learn complex
feature interactions.

Feature Feature type

time since last delivered item numerical
time since last shipped item numerical
time since last cancelled item numerical
are any items left to be delivered categorical
are all items left to be delivered categorical
are any items left to be shipped categorical
are any items past expected delivery time categorical
are all items past expected delivery time categorical
were any items cancelled by store categorical
were any items cancelled by customer categorical

Table 6: Some handcrafted features used by our model

G Dataset statistics

Dataset detail Statistics

#utterances in training 100K
#utterances in validation 2.5K
#utterances in test 2.5K
% of examples with context 70%
% of examples where utterance label ̸= conver-
sation label

45%

#intents covered by utterance labels 59
#intents covered by conversation labels 35

Table 7: Dataset statistics

12


	Introduction
	Methodology
	Combining order level, item level, and handcrafted contextual features
	Baseline Model
	Architecture to combine user utterance and context
	Concat with Attention weighted Context (CAWC)

	Labelling Strategy
	Multi Task learning paradigm for Contextual NLU (MTL-CNLU)
	Top 2 intent selection

	Architectures for MTL-CNLU
	MTL-CNLU
	MTL-CNLU with Attention Weighted Context (MTL-CNLU-AWC)
	MTL-CNLU with Selective Attention Weighted Context (MTL-CNLU-SAWC)


	Experimental Setup
	Dataset
	Evaluation metrics
	Micro-F1 and Macro-F1 scores
	Top 2 score


	Results
	Conclusion
	Limitations
	Algorithm to selectively apply attention to context vector for MTL-CNLU-SAWC
	Algorithm to calculate top 2 score
	Ablation Study
	Alternate architecture considerations for MTL-CNLU
	Training details
	Handcrafted context features used by the model
	Dataset statistics

