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ABSTRACT

Bayesian neural networks (BNNs) treat neural network weights as random vari-
ables, which aim to provide posterior uncertainty estimates and avoid overfitting
by performing inference on the posterior weights. However, the selection of the
appropriate prior distributions remains a challenging task, and BNNs may suffer
from catastrophic inflated variance or poor predictive performance when poor
choices are made. Previous BNN designs apply different priors to weights, but the
behaviours of these priors make it difficult to sufficiently shrink noisy signals or
easily overshrink important signals in the weights. To alleviate this problem, we
propose a novel R2D2-Net, which imposes the R2-induced Dirichlet Decomposi-
tion (R2D2) prior to the BNN weights. R2D2-Net can effectively shrink irrelevant
coefficients towards zero, while preventing key features from over-shrinkage. To
more accurately approximate the posterior distribution of weights, we further pro-
pose a variational Gibbs inference algorithm that combines the Gibbs updating
procedure and gradient-based optimization. We also analyze the ELBO and develop
analytical forms of the KL divergences of the shrinkage parameters. Empirical
studies on image classification and uncertainty estimation tasks demonstrate that
our proposed method outperforms the existing BNN designs with different priors,
which indicates that the R2D2-Net can select more relevant variables for predictive
tasks. On the other hand, we empirically show that the R2D2-Net yields relatively
better predictive performance and smaller variance with the increase in neural
network depth, which indicates that the R2D2-Net alleviates the catastrophic in-
flation of variance when BNNs are scaled. Codes are anonymously available at
https://anonymous.4open.science/r/r2d2bnn-EF7D.

1 INTRODUCTION

In the past decades, deep neural networks (DNNs) have shown great success in solving tasks with
high-dimensional features. Most of the state-of-the-art (SOTA) deep neural network architectures
adopt frequentist approaches which train a single set of weights. These models cannot address the
epistemic (i.e., model-wise) uncertainties, which may cause overfitting with small datasets. Failure to
address the model-wise uncertainties would lead to poor inference performance for out-of-distribution
data. Such frequentist methods also lack uncertainty estimates as they typically only provide point
estimates (Kendall and Gal, 2017). The recent emergence of Bayesian deep learning frameworks
provides a practical solution to quantify uncertainties in deep learning models.

Bayesian neural networks (BNNs) refine SOTA deep learning architectures with Bayesian approaches,
which enable neural networks to capture uncertainties stemming from models (Jospin, 2020; Shridhar
et al., 2019). BNNs also act as a natural regularization technique that mitigates the bias of the model
by performing inference based on a pool of posterior model weights. Existing BNN architectures
widely adopt zero-mean multivariate Gaussian distributions as the prior distributions for the weights
(Shridhar et al., 2019). However, simply assuming a multivariate Gaussian distribution often leads
to many unnecessary nodes with large variances. This further results in large variances in posterior
predictions. The consequence would be catastrophic because most of the deep BNNs without a proper
prior underfit and thus predict randomly. As a consequence, variable shrinkage priors are needed to
reduce the noise in coefficients and alleviate the variance inflation issue.

Recently, several works (Ghosh et al., 2019; Popkes et al., 2019; Matsubara et al., 2020; Tran et al.,
2022) attempt to adopt global–local shrinkage priors to mitigate the problem of large variance.

1

https://anonymous.4open.science/r/r2d2bnn-EF7D


These priors are able to shrink the coefficients and alleviate the under-fitting problem in BNNs.
Although existing shrinkage priors demonstrate superior performance in variable selection, the
properties of these priors are subject to several limitations. For instance, these priors have either a
low concentration rate around zero or a light tail. A low concentration rate around zero leads to weak
shrinkage effects, while the variance of prediction remains large. A light tail under-weighs the effects
of large coefficients, which over-shrinks the important signals (Zhang et al., 2020). In particular, the
Gaussian distribution has the lightest tail and assigns almost zero weight to large signals. This leads
to over-regularization as well as poor feature representation learning performance, especially when
the architecture is deep.

The R2-induced Dirichlet Decomposition (R2D2) prior possesses the largest concentration rate at
zero and the heaviest tail (Zhang et al., 2020). This property is crucial to predictive models with
a large number of parameters — especially to neural networks. We hence propose a novel BNN
design with the R2D2 prior on the neural network weights — the R2D2-Net. The R2D2-Net is more
effective in model selection than designs based on other existing shrinkage priors because it can
choose more powerful weights in predictive tasks.

Contribution summary: (1) We propose a novel BNN design — the R2D2-Net, which improves the
shrinkage effect and the predictive performance over existing priors by specifying an R2D2 prior
on the model weights. (2) We propose a variational Gibbs sampling algorithm that integrates the
Gibbs sampling procedure and gradient-based optimization. It provides a more accurate and robust
approximation than conventional variational inference methods. (3) We analyze the ELBO in the
variational inference of BNN and develop analytical forms of the KL divergences of the shrinkage
parameters. (4) Extensive synthetic and real data experiments validate the performance of R2D2-Net
on both predictive tasks and uncertainty estimation tasks compared with a variety of existing BNN
designs.

2 RELATED WORKS

Global–Local Shrinkage Priors. High-dimensional regression often suffers from the curse of
dimensionality. This motivates novel approaches to the shrinkage of coefficients and variable
selection. Global–local shrinkage priors are a class of shrinkage priors that can be essentially
expressed as a global–local scale Gaussian family. Existing shrinkage priors exhibit desirable
theoretical and empirical properties that can effectively perform coefficient shrinkage. Carvalho
et al. proposed the Horseshoe prior, which exhibits Cauchy-like flat and heavy tails and maintains
a high concentration rate at zero. Although the Horseshoe prior and its variants Bhadra et al.
(2017); Piironen and Vehtari (2017) present satisfactory properties in shrinking the coefficients,
their tail thickness and concentration rates at zero are less desirable compared to some recently
proposed global–local shrinkage priors. A higher concentration rate at zero allows the model to
shrink unnecessary coefficients toward zero more aggressively, and a heavier tail can avoid shrinking
key coefficients that have large values (i.e., strong signals). Zhang et al. proposed the R2-induced
Dirichlet Decomposition (R2D2) prior, which specifies a prior based on the R2 of the model fit. This
prior demonstrates optimal behaviors both in the tails and at zero, which potentially provides the best
shrinkage performance while preserving the important signals in the weights.

Bayesian Neural Networks. BNNs specify a prior distribution on the weights and bias parameters
of the neural network. A vanilla BNN assumes a zero-mean multivariate Gaussian distribution on the
weights. The MC Dropout approach (Gal and Ghahramani, 2016) randomly drops out weights to
produce posterior samples from a trained frequentist neural network. Moreover, the variance inflates
as the number of layers increases, making deep BNNs extremely difficult to build and optimize
(Dusenberry et al., 2020). Most of the existing works focus on smaller architectures (e.g., LeNet)
and datasets (e.g., CIFAR 100) while a few works (Lakshminarayanan et al., 2017; Dusenberry et al.,
2020) scale up their methods to more modern architectures (e.g., ResNet101).

To address this problem, the aforementioned sparsification methods are adopted to shrink unnecessary
neurons to prevent variance inflation. Using sparsity–induced priors (Louizos et al., 2017) has become
a more popular approach than variational dropout methods (Molchanov et al., 2017; Smith and Gal,
2018). Ghosh et al. proposed to place the Horseshoe prior on the variance of weights to resolve the
large prediction variance problem. However, due to the relatively low concentration rate around zero,
the shrinkage effect is limited at scale. At the same time, the relative light tail of Horseshoe than
R2D2 limits its capability to preserve important signals, which likely leads to over-shrinkage.
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Figure 1: Overview of the proposed R2D2-Net with the yellow part representing the graphical model
of each neuron and the blue part summarizing the variational Gibbs inference for computing the
posterior distribution of weights.

Variational Inference of BNN. Variational inference is a common technique to train the BNNs.
Classical BNN training paradigms widely adopt a ‘mean-field’ approach to approximate the posteriors
(which assumes independent marginal distributions) (Ghosh et al., 2019; Shridhar et al., 2019;
Molchanov et al., 2017; Rudner et al., 2022; Farquhar et al., 2020). In variational inference, a
posterior distribution p(θ|y) is approximated by a variational posterior distribution q selected from a
candidate set Q by maximizing an evidence lower bound (ELBO):

max
q∈Q

Eθ∼q[ln p(y|θ)]− KL(q∥π), (1)

where KL(q∥π) = Eq∈Q[ln p(θ|·)] + H[π(θ)], is the Kullback–Leibler divergence between q and
the prior distribution π, H(π(θ)) is the entropy of the distribution, and p(y|θ) is the likelihood. Most
works (Ghosh et al., 2019; Shridhar et al., 2019; Gal and Ghahramani, 2016; Farquhar et al., 2020)
assume Gaussian distributions on weights and hence the Kullback-Leibler (KL) is approximated by
KL(q∥π) =

∑
j,l KL(q(wjl|·)∥π(wjl|·)), where q(wjl|·) is the variational posterior and π(wjl|·) =

N (wjl|0, 1) is the standard normal prior on weights. However, the Gaussian assumption is strong
and the estimation of KL suffers from large approximation error. By comparing the KL divergence
of the analytical distributions of the hierarchical prior (e.g., Horseshoe, R2D2), a more accurate
approximation of the ELBO would be obtained.

Sparsifying Neural Networks. Another related field of our work is neural sparsification which
focuses on “compressing" neural networks to prune unnecessary neurons and improve the space
efficiency (Louizos et al., 2017; Molchanov et al., 2017; Han et al., 2016; Srinivas and Babu, 2016).
Sparsity-induced prior is also a popular choice in this field (Ghosh et al., 2019; Louizos et al., 2017).
Despite the similarity in approaches, our work focuses on a design on BNN with shrinkage priors
which can improve its capability (i.e., predictive and uncertainty estimation performance) instead of
compressing the existing architecture.

3 PRELIMINARIES

Deep Neural Network (DNN). A DNN with L layers can be defined as

fl(x) =
1√
Dl−1

(Wlϕ(fl−1(x))) + bl, l ∈ {1, . . . , L},

where ϕ is a nonlinearity activation function, e.g., the rectified-linear function, ϕ(a) = max(0, a),
Dl−1 is the dimension of input, bl ∈ RDl is a vector containing the bias parameters for layer l,
and Wl is the weight tensor. For linear layers, Wl ∈ RDl×Dl−1 , and for convolutional layers,
Wl ∈ RDl×Dl−1×dk×dk , where dk is the kernel size. Let wl = {Wl, bl} denote the union of weight
and bias parameters of layer l, and let wjl denote the j-th element of the parameter vector at layer l,
and let pl = |wl|. The trainable network parameters are denoted as θ = {wl}Ll=1.

Bayesian neural network (BNN). The BNN specifies a prior π(θ) on the trainable weights θ. Given
the dataset D = {xi, yi}Ni=1 of N pairs of observations and responses, we aim to estimate the
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posterior distribution of the weights, p(θ|D) =
π(θ)

∏N
i=1 p(yi|f(θ,xi))
p(D)

, where p(yi|f(θ,xi)) is

the likelihood function and p(D) is the normalization term.

4 METHODOLOGY

To obtain the best variable shrinkage performance, we impose the R2D2 prior on neural network
weights, leading to the R2D2-Net. By placing the R2D2 prior on the weights, the irrelevant weights
can be shrunk heavily and the significant weights can be preserved. We also propose variational
Gibbs inference and develop analytical forms of KL divergences of the shrinkage parameters to obtain
a better estimate of the posterior distribution of weights.

4.1 THE R2D2-NET

R2-induced Dirichlet Decomposition Shrinkage Prior. Consider a linear model, Yi = x⊤
i β +

ϵi, i = 1, . . . , N, where Yi is the response, xi is the p-dimensional vector of covariates for the
i-th observation, β = (β1, . . . , βp)

⊤ is a vector of coefficients, and ϵi is the error term. The
R2D2 prior specifies a prior on the R2 from the model fit. The R2 of linear prediction is given by

R2(β) =
var(X⊤β)

var(X⊤β) + σ2
, where β can be viewed as the weight tensor of the convolutional or the

linear layer and X ∈ Rn×p is the data matrix. By specifying a beta prior on R2(β), the marginal
R2D2 prior has the form,
βj ∼ N (0, ψjϕjωσ

2/2), ψj ∼ Exp(1/2), ϕ ∼ Dir(aπ, . . . , aπ), ω|ξ ∼ Ga(a, ξ), ξ ∼ Ga(b, 1),
(2)

where Exp denotes the exponential distribution, Ga denotes the Gamma distribution, and Dir denotes
the Dirichlet distribution. The R2D2 prior has the highest concentration rate at zero and heavier
tails than other global–local priors (Zhang et al., 2020). Therefore, it can substantially shrink the
covariates that do not have effects on the response to zeros. For coefficients that have large signals
(i.e., large norms), the heavy-tail nature of the R2D2 prior is able to avoid over-shrinking these
coefficients, thus preserving the ability to extract key features from the input data. To compose the
R2D2-Net, we place the R2D2 prior on each wjl in each of the linear layers and convolutional layers.

4.2 VARIATIONAL GIBBS INFERENCE FOR OPTIMIZATION

Since we have the marginal R2D2 distribution in Eq. (2), we adopt a mean-field approach to the
ELBO (i.e., factorize q(θ) into the product of the marginal distribution of each neuron). First, we
update w and ρ by back-propagating the ELBO in Eq. (1). We initialize the weight parameters
wl with a reparameterized Gaussian distribution, wjl ∼ N (µjl, σ

2
jlψjlϕjlωl), where each standard

deviation σjl is reparameterized by introducing a parameter ρjl such that σjl = log (1 + eρjl). We
assign an individual variance term σjl to each weight, which is different from Zhang et al. who
assume the same σl = σl1 for all weight parameters in layer l. Since the distribution of σl in Zhang
et al. is updated by the regression MSE, which is analogous to learning the variance of neurons by
backpropagation of task-specific loss. Therefore, we distinctively set a for each neuron and learn
them from backpropagating the task-specific loss to update the variance term σl in a deep learning
setting. We set the prior values of ψ = {ψjl}plj=1

L
l=1,ϕ = {ϕjl}plj=1

L
l=1,ω = {ωl}Ll=1, ξ = {ξl}Ll=1

with the prior distribution defined in Eq. (2) and µjl = 0, ρjl = ρ0 for the first step.

With the weight parameter samples, we are able to compute the ELBO using Eq. (1). The trainable
parameters w and ρ can be updated by back-propagating the ELBO. We then update shrinkage
parameters using the updatedw and σ. Following the Gibbs sampling procedures proposed by Zhang
et al., we propose our variational Gibbs inference algorithm to update the shrinkage parameters
alternatively using their individual posterior distributions. We first sample ψjl, ωl and ξl,

ψ−1
jl | wjl, ϕjl, σ2

jl ∼ InvGaussian(µ =
√
σ2
jlϕjlωl/2/|wjl|, λ = 1),

ωl | wl,ϕl, ξl,σ2
l ∼ giG(χ =

pl∑
j=1

2w2
jl/(σ

2
jlϕjlψjl), ρ = 2ξl, λ0 = al −

pl
2
),

ξl | ωl ∼ Ga(al + bl, 1 + ωl).
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To sample ϕl | wl,ψl, ξl,σ2
l , we first draw T1l, . . . , Tpll independently with Tjl ∼ giG(χ =

2w2
jl/(σ

2
jlψjl), ρ = 2ξl, λ0 = al − pl

2 ), and then set ϕjl =
Tjl

Tl
with Tl =

∑
j Tjl. We repeat the

above steps to train the R2D2-Net iteratively till convergence or early stopping criteria are met (e.g.,
loss is not improving). The algorithm in the appendix presents the detailed workflow of the variational
Gibbs inference, which leverages the advantages of both posterior computation and gradient-based
estimation to obtain better approximations of the shrinkage parameters.

4.3 ESTIMATION OF KL DIVERGENCES WITH VARIATIONAL POSTERIOR DISTRIBUTIONS

In light of the importance of obtaining an accurate estimate of the KL loss in variational inference,
we utilize the full posterior distribution obtained in variational Gibbs inference and the R2D2 prior to
obtain a more accurate estimate of the KL loss. The KL divergence of the variational posterior q and
the prior π can be divided into several components:

KL(q(θ|·)∥π(θ)) =KL(q(ξ|·)∥π(ξ)) + KL(q(ω|·)∥π(ω)) + KL(q(ψ|·)∥π(ψ))
+ KL(q(ϕ|·)∥π(ϕ)) + KL(q(w|·)∥π(w)).

We can obtain the closed-form solutions of the KL divergences for ω, ξ, and ψ. We approximate the
KL divergence of ϕ using samples from the variational posterior distribution q(ϕ|·). Table 1 presents
the closed forms of the KL divergences on the shrinkage parameters ξl, ωl, and ψjl. The closed forms
in Table 1 can be obtained by using E(X),E(X−1) and E(lnX) for X ∼ giG, which are given in
the supplementary materials together with the detailed derivations of the KL losses.

Table 1: Analytical forms of KL-divergences of the shrinkage parameters (ξl, ωl, ψjl)

Prior π Variational Posterior q Closed Form of KL-divergence

ξl Gamma Gamma Eq
[
ln

(
(1 + ωl)

al+bl

Γ(al + bl)
ξal+bl−1
l e−(1+ωl)ξl

)]
− Eq

[
ln

(
1

Γ(bl)
ξbl−1
l e−ξl

)]
ωl Gamma Generalized InvGaussian Eq

[
ln

(
(ρ/χ)λ0/2

2Kλ0
(
√
ρχ)

ωλ0−1
l e(−ρωl+χ/ωl)/2

)]
− Eq

[
ln

(
ξall
Γ(al)

ωal−1
l e−ωlξl

)]
ψjl Exp Reciprocal InvGaussian Eq

[
ln

(
1

ψjl
√
2π

exp

(
(1− ψjlµ)

2

2ψjlµ

))]
− Eq

[
ln

(
1

2
e−

1
2ψjl

)]

5 SIMULATION STUDY

We first validate our method on simulated scenarios to validate the predictive and shrinkage perfor-
mance of the R2D2-Net. We control the depth to observe how the performance varies as the depth of
the network increases.

5.1 EXPERIMENTAL SETUP

Scenarios. We generate the data D = {xi, yi}Ni=1 with N = 10000 and each data point xij ∈
xi is sampled from a uniform distribution U(−5, 5), and the noise ϵi ∼ N (0, 32). We design
three simulation scenarios: (1) Polynomial case: yi = x3i + ϵi; (2) Low-dimensional non-linear
regression: yi = xi1xi2+xi3xi4+ϵi; (3) High-dimensional non-linear regression: yi = f(xi)+ϵi,
where f is a two-layer multiple layer perceptron (MLP) with randomly initialized weights and Relu
nonlinearity. Additional scenarios and results are presented in the appendix. In contrast to the
other scenarios, the data in Scenario 3 are generated from a randomly initialized neural network.
The features are hence mostly noise (or trivial) features and shrinkage methods are expected to
underperform as they shrink noise features to zeros.

For each scenario, we randomly generate five sets of data. We split 80% of the data as the training set
and 20% as the testing set. All methods are trained with a gradient-based optimization method (i.e.,
Adam) with 100 epochs and a batch size of 1024, with possible early stopping.

5.2 EXPERIMENTAL RESULTS

Predictive Performance: R2D2-Net Achieves Competitive Performance with Deeper Layers. We
compare the prediction MSE and variance of each BNN design. When L = 0, the model is equivalent
to a linear regression. Table 2 presents the simulation results, and Figure 2 shows the prediction
means and variances of R2D2-Net and the baseline BNN designs. We observe that the R2D2-Net
yields the smallest prediction error among all competitive designs, and the prediction variance is the
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(a) MC Dropout (b) Gaussian BNN (c) Horseshoe BNN (d) R2D2-Net

Figure 2: Test-time prediction mean and confidence interval of R2D2-Net on yi = x3i + ϵi, ϵi ∼
N (0, 9). The number layer is 3 and the number of samples is 100 during the validation phase. The
blue dots are the ground truth data points, the yellow line is the mean of prediction and the blue
shadow is the prediction interval. We observe that the R2D2-Net has a smaller prediction variance
than MC Dropout, Gaussian BNN, and Horseshoe BNN.
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Figure 3: Ablation studies of our method to different hyperparameters. We run the six simulation
scenarios (S1–S6) with an R2D2 MLP with L = 3, and report the testing MSEs with respect to
different values of hyperparameters aπ (left), b (middle), ρ0 (right).
smallest for the largest L. The R2D2-Net also shows greater improvement in prediction performance
(i.e., smaller prediction MSE) as the number of layers increases. This demonstrates that the R2D2-Net
is more capable of supporting deeper BNN architectures than other BNN designs. On the other hand,
we observe that the Gaussian BNN has an increasing trend in both prediction MSE and variance as
the number of layers L increases. This highlights the variance inflation issues of vanilla BNNs.

Shrinkage Performance: R2D2 Prior Best Shrinks Unnecessary Neurons to Zero. We study
the sparsification performance of R2D2-Net in comparison with the Horseshoe BNN (Ghosh et al.,
2019). We investigate the distribution of the smallest node weight vectors to compare the shrinkage
performance among different priors. We plot the distributions of coefficients wjl with the smallest
magnitude ∥E[wjl]∥ (Figure 4). We observe that the weights samples of the R2D2-Net have the
highest concentration rate at zero compared with Horseshoe BNN and Gaussian BNN. This validates
that the highest concentration rate property of the R2D2 prior also holds when generalized to neural
networks. We also validate that the R2D2-Net has the best shrinkage performance than existing
BNNs with other priors.

Impact of Hyperparameters. We investigate how sensitive the R2D2-Net is to the changes in the
hyperparameters, such as aπ, b and ρ0. We perform the evaluation using the simulation scenarios in
Section 5. Figure 3 presents the results using an R2D2 MLP with L = 3. We observe that our method
is robust to changes in these hyper-parameters. The performance of R2D2-Net is more sensitive to
the prior variance parameter ρ0 than the hyperparameters aπ, b of the R2D2 prior (Eq.(2)).

6 EXPERIMENTS ON REAL DATA

We extend the experiments to real data to further validate the capability of R2D2-Net when generalized
to more realistic datasets (i.e., TinyImageNet) and larger architectures (i.e., residual nets).

6.1 EXPERIMENTAL SETUP

Datasets. We evaluate the R2D2-Net on standard computer vision datasets in comparison with
existing methods. For image classification, we use CIFAR 10, CIFAR 100, and TinyImageNet as the
benchmark datasets. We perform 5-fold cross-validation to evaluate each method. We use accuracy,
macro F1 score, and area under the receiver operating curve (AUROC) as the evaluation metric, and

6



Table 2: Simulation results on MSE and prediction variance under the R2D2-Net compared with
different BNN designs on MLP with different numbers of layers L = 0, 1, 2, 3. Standard deviations
over five replicates are shown in brackets.

Non-Trivial Features
Scenario 1: Polynomial Case

L = 0 L = 1 L = 2 L = 3
BNN MSE Variance MSE Variance MSE Variance MSE Variance
Gauss 2091.7 (91.1) 0.02 (0) 422.66 (7.8) 0.67 (0.0) 371.42 (11.8) 5.38 (0.6) 309.45 (44.5) 18.62 (1.75)
MCD 1419.1 (115.3) 35.73 (5.6) 185.38 (8.6) 37.55 (2.1) 103.28 (3.5) 79.08 (3.8) 80.40 (3.2) 62.99 (3.8)
MFVI 2116.4 (80.1) 0.02 (0.0) 427.3 (11.7) 0.67 (0.1) 365.8 (16.0) 5.57 (0.2) 271.7 (48.6) 17.76 (1.8)
DE 1729.6 (56.0) 2.27 (1.7) 288.7 (6.3) 0.63 (0.3) 12.38 (1.0) 0.87 (0.5) 9.11 (0.3) 0.13 (0.1)
Radial 2091.3 (91.4) 0.02 (0) 423.2 (8.9) 0.36 (0.1) 371.1 (111.4) 4.05 (1.1) 221.2 (111.4) 9.35 (4.5)
HS-BNN 363.21 (10.4) 0.06 (0.04) 22.64 (6.84) 0.45 (0.09) 19.2 (12.35) 1.79 (0.99) 20.37 (10.33) 2.69 (0.26)
R2D2-Net 891.5 (148.2) 0.0 (0.0) 22.04 (2.8) 0.02 (0) 9.18 (0.4) 0.32 (0.1) 10.1 (1.41) 0.85 (0.15)

Scenario 2: Low-dimensional Non-linear Regression
L = 0 L = 1 L = 2 L = 3

Model MSE Variance MSE Variance MSE Variance MSE Variance
Gauss 1134.2 (16.93) 0.07 (0.0) 473.43 (15.3) 1.08 (0.04) 69.15 (4.5) 8.42 (0.7) 56.37 (6.8) 21.76 (0.6)
MCD 824.7 (49.2) 25.57 (2.7) 453.99 (35.3) 29.72 (5.5) 111.26 (5.8) 69.95 (3.5) 89.88 (6.6) 59.18 (5.4)
MFVI 1150.2 (60.3) 0.08 (0.01) 477.2 (17.0) 1.09 (0.05) 70.13 (10.7) 8.7 (0.4) 53.40 (5.8) 18.64 (9)
DE 927.7 (45.4) 0.74 (0.3) 440.3 (26.3) 2.14 (0.6) 13.32 (0.7) 1.08 (0.1) 10.44 (0.2) 1.03 (0.2)
Radial 1126.8 (58.9) 0.07 (0.01) 472.6 (17.1) 0.49 (0.3) 55.1 (4.4) 2.36 (3.6) 41.7 (3.1) 2.57 (0.2)
HS-BNN 549.92 (20.99) 0.05 (0.04) 182.3 (179) 0.48 (0.3) 12.0 (1.0) 0.97 (0.2) 15.2 (2.9) 1.97 (0.4)
R2D2-Net 616.36 (15.63) 0.0 (0.0) 86.92 (63.5) 0.04 (0.01) 9.63 (0.14) 0.38 (0.04) 9.86 (0.2) 1.02 (0.09)

Trivial Features
Scenario 3: High-dimensional Non-linear Regression

L = 0 L = 1 L = 2 L = 3
Model MSE Variance MSE Variance MSE Variance MSE Variance
Gauss 4.79 (0.1) 11.5 (0.2) 4.9 (0.1) 2.24 (0.2) 4.77 (0.1) 0.76 (0.0) 5.2 (0.3) 0.77 (0.0)
MCD 4.6 (0.1) 0.15 (0.0) 5.67 (0.2) 0.51 (0.0) 5.85 (0.1) 0.5 (0.0) 5.62 (0.1) 0.47 (0.0)
MFVI 4.90 (0.1) 11.48 (0.1) 6.98 (0.3) 2.14 (0.2) 5.77 (0.0) 0.76 (0.0) 6.00 (0.0) 0.77 (0.0)
DE 4.56 (0.1) 0.0 (0.0) 4.8 (0.1) 1.08 (0.0) 4.89 (0.2) 1.33 (0.0) 4.85 (0.2) 1.27 (0.0)
Radial 4.77 (0.1) 11.43 (1.0) 6.22 (0.4) 1.47 (0.1) 6.35 (0.2) 0.33 (0.3) 6.36 (0.4) 0.17 (0.0)
HS-BNN 4.64 (0.2) 0.03 (0.0) 6.45 (0.3) 0.15 (0.2) 6.39 (1.1) 0.61 (1.3) 6.07 (0.4) 0.1 (0.1)
R2D2-Net 4.55 (0.1) 0.0 (0.0) 6.3 (0.3) 0.0 (0.0) 5.67 (0.1) 0.0 (0.0) 5.81 (0.3) 0.0 (0.0)

In Scenario 3, Gaussian BNN yields better performance as the weights are randomly initialized and contain many noises, while shrinkage BNNs
underperform because they shrink the noises to zero. On the other hand, Gaussian BNNs which do not possess shrinkage parameters keep the
noise features and obtain better performance.
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Figure 4: Density plots of the weight samples of Gaussian BNN, Horseshoe BNN, and R2D2-Net.
We choose the weights that have the least magnitude from the first layer of a three-layer MLP. We
observe that R2D2-Net has the highest concentration rate at zero.

report the mean and standard deviation of each metric. For uncertainty estimation, we assess the
performance of the neural networks using the OOD detection task, with AUROC and the area under
the precision-recall curve (AUPR) as the evaluation metrics. We treat the images in the CIFAR 10
Krizhevsky et al. (2009) dataset as the in-distribution data and the images from the fashion MNIST,
OMNIGLOT, and SVHN Xiao et al. (2017) as the OOD samples. Different from some existing
approaches (Malinin and Gales, 2018; Sensoy et al., 2018), we train the classifier with in-distribution
only (i.e., the classifier will not see the OOD data during training).

Competitive Methods. We compare our method with a variety of existing BNN designs. The
hyperparameter settings of each benchmark method and the summary of uncertainty measures used
are presented in the supplementary materials. (1) Frequentist CNN (Freq): the original frequentist
neural network architecture ; (2) Gaussian BNN (Gauss): a vanilla BNN assuming a zero-mean
multivariate Gaussian as the prior distribution on the weights; (3) Mean–field Variational Infernece
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Table 3: Image classification results of our proposed method on CIFAR 10 and CIFAR 100 with the
AlexNet (Krizhevsky et al., 2012). Standard deviations are shown in brackets. Bold represents the
best performance among BNN designs, while * represents the best performance among all models.

CIFAR 10 CIFAR 100 TinyImageNet
Model AUROC Accuracy AUROC Accuracy AUROC Accuracy
Freq 92.70 (1.5)* 65.03 (1.4) 90.95 (0.2) 31.05 (0.4) 88.37 (1.3) 18.30 (0.4)
Gauss 91.37 (1.2) 60.28 (1.5) 87.24 (1.2) 23.6 (0.6) 87.64 (0.2) 16.82 (0.9)
MCD 90.09 (0.2) 55.08 (0.6) 87.67 (1.3) 21.92 (1.1) 86.23 (1.7) 17.28 (1.5)
MFVI 91.11 (0.9) 59.27 (1.1) 87.69 (0.9) 23.06 (0.2) 86.01 (0.3) 12.78 (0.6)
Radial 91.22 (0.8) 63.24 (0.8) 89.20 (1.0) 25.70 (0.5) 84.35 (0.6) 12.12 (0.5)
DE 90.67 (0.6) 62.41 (0.5) 87.97 (0.9) 24.63 (0.4) 86.25 (0.4) 13.73 (0.5)
HS-BNN 91.99 (0.8) 65.01 (0.3) 91.37 (0.2) 33.27 (0.3) 88.71 (2.0) 20.33 (1.2)
R2D2-Net 92.49 (0.2) 65.10 (0.02)* 92.48 (0.03)* 36.12 (0.5)* 88.76 (0.5)* 20.55 (0.4)*

(Blundell et al., 2015) (MFVI): classical mean-field approximation to variational distribution which
assumes that it can be factorized by marginal distribution of local variables. We use the Gaussian
prior as adopted in the original proposition. (4) Horseshoe BNN (Ghosh et al., 2019) (HS-BNN):
a Bayesian variable selection method on the neural network which assumes a Horseshoe prior on
the weights; (5) MC Dropout (Gal and Ghahramani, 2016) (MCD): using repeated dropouts on
trained weights to draw Monte Carlo samples of the weights of the BNNs (reproduced from Gal
and Ghahramani (2016)); (6) RadialBNN (Farquhar et al., 2020) (Radial): sampling from the
hyperspherical coordinate system to resolve the problem in original MFVI where the probability
mass is far from the true mean. (7) Deep Ensembles (Lakshminarayanan et al., 2017) (DE): it uses a
finite ensemble of deep neural networks to approximate posterior weight distribution;

6.2 IMAGE CLASSIFICATION: R2D2 SHRINKAGE IMPROVES PREDICTIVE PERFORMANCE

Table 3 presents the image classification results of our R2D2-Net in comparison with existing methods.
We assess our method on standard image classification benchmarks — CIFAR 10, CIFAR 100, and
TinyImageNet. We fix the model architecture as AlexNet (Krizhevsky et al., 2012) for fair comparison.

R2D2

Horseshoe

Figure 5: Five largest-norm convolutional filters
of the R2D2-Net and Horseshoe BNN. We use
a simple CNN with one convolutional layer and
one linear layer for illustrative purposes.

Not only does our proposed method outperform
the existing BNN designs, but it also occasionally
outperforms the frequentist design. It is notewor-
thy that since BNNs impose a natural regulariza-
tion on the weights, it is difficult for BNN designs
to outperform their frequentist counterpart. This
demonstrates that choosing the R2D2 prior can
potentially lead to the best variable selection out-
come. The R2D2 prior can select a suitable subset
of weights with its shrinkage properties, while the
frequentist design cannot. Hence, its prediction
performance can be more satisfactory than the original frequentist design. We visualize the five
largest-norm filters of the R2D2-Net and Horseshoe BNN to compare their capabilities to select
features (Figure 5). We observe that the largest filters of the R2D2-Net have more meaningful patterns,
while the largest filters of the Horseshoe BNN are close to uniform noise. Since the R2D2 prior has
heavier tails than the Horseshoe prior, it can preserve large signals in the filter weights and avoid
over-shrinkage, as demonstrated by the difference in filter patterns in Figure 5.

6.3 UNCERTAINTY ESTIMATION: R2D2 SHRINKAGE CAPTURES IMPORTANT VARIANCE.
We further compare the performance of uncertainty estimation over the existing BNN designs.
Additionally, we include two entropy-based uncertainty estimation methods: DPN (Malinin and
Gales, 2018) and EDL (Sensoy et al., 2018), which estimate uncertainties based on the assumption
of Dirichlet distribution on latent probabilities. We use the classification entropy as the uncertainty
measure for each uncertainty estimation method for fair comparison. More information on baseline
methods and uncertainty measures is introduced in the appendix. We adopt the OOD detection
task to evaluate the performance of the R2D2-Net to estimate the uncertainty in the data. The
OOD detection aims to identify whether the input data are in-distribution or from a different dataset.
Table 10 presents the AUROC and the AUPR of the R2D2-Net using the classification entropy
as the uncertainty measure. We treat CIFAR 10 as the in-distribution dataset and FasionMNIST,
OMNIGLOT, and SVHN as the OOD datasets (more experiments with MNIST as the in-distribution
dataset are presented in the appendix). We observe that our R2D2-Net demonstrates a satisfactory
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Table 4: The OOD detection performance of the R2D2-Net compared with various BNN designs
under the LeNet (LeCun et al., 1989), using CIFAR 10 as the in-distribution dataset. The best
performance among all methods is highlighted in boldface.

Fashion MNIST OMNIGLOT SVHN
Model AUROC AUPR AUROC AUPR AUROC AUPR
Gauss 74.49 86.78 78.58 81.82 70.57 79.30
HS-BNN 80.76 75.99 86.66 90.18 70.11 78.39
MCD 81.80 74.22 80.03 82.06 68.58 78.53
MFVI 85.45 79.55 89.17 91.64 76.02 85.08
Radial 83.86 81.26 75.39 74.91 67.74 81.91
DE 71.02 76.81 86.77 90.35 61.01 62.59
DPN 87.07 83.75 87.07 83.75 57.48 77.76
EDL 89.26 86.16 66.53 67.12 69.57 83.74
R2D2-Net 92.85 94.09 91.95 92.25 79.84 89.24

performance over the baseline methods. This shows that using an R2D2 prior on the weights can
effectively shrink the noises in parameters while maintaining a non-trivial variance structure. These
preserved variances can be used to represent the model-wise uncertainties. Hence, the R2D2-Net can
generate more accurate uncertainty estimates than existing Bayesian and non-Bayesian approaches.

6.4 ABLATION ANALYSIS: SATISFACTORY PERFORMANCE WITH VARIOUS ARCHITECTURES

We further apply R2D2 layers to different neural network architectures to evaluate the performance.
We choose LeNet (LeCun et al., 1989) and AlexNet (Krizhevsky et al., 2012) to benchmark the
performance of different BNN designs. Table 5 presents the results on CIFAR 10. We can observe
that for most architectures our proposed BNN design obtains SOTA performance compared with
existing BNN methods. This shows the R2D2-Net can perform satisfactorily on different architectures
including modern architectures at scale (e.g., ResNet101).

Table 5: Image classification results of our proposed BNN design on different model architectures
compared to different SOTA BNN designs with the CIFAR 10 dataset.

LeNet AlexNet ResNet50 ResNet101
Model AUROC ACC AUROC ACC AUROC ACC AUROC ACC
Freq 91.24 61.21 92.70* 65.03 96.23 79.25* 96.75 79.20
Gauss 91.31 60.03 91.21 62.64 95.59 73.62 95.53 73.34
MCD 91.50 58.76 91.21 62.76 96.44 77.24 96.83 79.54*
MFVI 92.41 63.39 91.11 59.27 96.48 78.19 95.65 73.37
Radial 91.74 61.29 91.22 63.24 95.39 74.03 96.34 72.99
DE 93.75 63.11 90.06 62.94 96.60 77.62 96.82 79.01
HS-BNN 92.42* 60.13 91.99 65.01 96.96 78.90 97.08 79.14
R2D2-Net 90.43 61.53* 92.49 65.10* 96.97* 79.10 97.12* 79.20

7 CONCLUSION

In this work, we propose a novel BNN design — the R2D2-Net. We develop a variational Gibbs in-
ference algorithm to better approximate the posterior distributions of weights. Extensive experiments
on synthetic and real datasets validate the performance of our proposed BNN design on both image
classification and image uncertainty estimation tasks.

Limitations and Future Work. Our proposed method tackles the scalability constraints of Bayesian
neural networks and is validated on some modern architectures (e.g., residual-based). Due to the lack
of mature research in Bayesian designs of more modern architectures (such as Bayesian attention
mechanisms and transformers), the extension of R2D2-Net to these architectures would be non-trivial
although it potentially opens the possibility of Bayesian foundation models. On the other hand, we
take Monte Carlo samples of weights from the posterior distribution, which could potentially be a
computational burden. Integration of recent efficient sampling techniques of BNN (Dusenberry et al.,
2020) would decrease the posterior inference complexity. Our proposed method can be potentially
applied to data domains, such as graphs. The R2D2-Net also has great real application potential
in reinforcement learning, recommendation systems, and biomedical imaging for its capability in
predictive inference and uncertainty estimation.
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Overview. In the appendix, we first highlight the differnece between our work and Zhang et al. in
Section A. We present a detailed summary of the datasets in Section B. We demonstrate additional
experiment results of the R2D2-Net, and more details on implementations and hyperparameters in
Section C. We also provide further details on composing NN architectures with R2D2 layers and
illustrative architectural samples of the R2D2-Net in Section C.3. Additionally, we provide the
properties of distributions used (Section D), and information on other global–local shrinkage priors
in Section F. We also provide detailed derivations of the KL divergences introduced in the main text
in Section E. Furthermore, we provide a detailed algorithm of R2D2-Net in Algorithm 1. Finally, we
provide detailed definitions of the evaluation metrics (Section H) and uncertainty measures (Section
G) used in experiments.

A DIFFERENCE BETWEEN OUR WORK AND ZHANG ET AL.

We additionally highlight the difference between our work and Zhang et al.. Essentially our work
borrowed the prior developed by Zhang et al. and adapted the Gibbs inference algorithm from
the paper to the deep learning context. We consider R2D2 as an important prior with several
decent properties (the highest concentration rate at zero and the heaviest tails) that are crucial to
the development of BNN models. A well-known work is the Horseshoe BNN (Ghosh et al., 2019)
extending the Horseshoe prior (Carvalho et al., 2009), which enables Horseshoe to be a major prior
in sparsifying neural networks. We aim to highlight the disadvantages (i.e., the heavier tail and lower
concentration rate at zero) of the Horseshoe prior and show that the R2D2 prior is a better choice for
variable shrinkage in neural networks.
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B ADDITIONAL INFORMATION ON DATASETS

We present more details of the datasets used for experiments. Table 6 provides a summary of the
datasets. We resize the images to 32× 32 for classification and out-of-distribution (OOD) detection
tasks.

Table 6: Summary of Datasets

Dataset No. Classes No. Training No. Testing

MNIST 10 60,000 10,000
Fashion-MNIST 10 60,000 10,000
OMNIGLOT 50 13,180 19,280
SVHN 10 73,257 26,032
CIFAR-10 10 60,000 10,000
CIFAR-100 100 60,000 10,000
TinyImageNet 200 80,000 20,000

C ADDITIONAL INFORMATION ON EXPERIMENTS

We demonstrate additional information on baselines and experiment results in this section, including
additional settings of hyperparameters and implementations.

C.1 ADDITIONAL INFORMATION ON BASELINES

In addition to existing BNN designs, we add two entropy-based uncertainty estimation methods for
comparison. Since we are using entropy as the uncertainty metric (as this is a classic metric for
classification uncertainty) for a fare comparison, the OOD performance may be slightly worse than
their respective state-of-the-art performance.

(1) DPN (Malinin and Gales, 2018): it assumes a Dirichlet distribution on the classification output
and trains an OOD classifier by minimizing the KL divergences between the prior and posterior
distributions; (2) EDL (Sensoy et al., 2018): in addition to DPN (Malinin and Gales, 2018), EDL
trains the classifier with the cross-entropy loss and the KL divergence between the prior and posterior
distributions.

C.2 ADDITIONAL EXPERIMENT RESULTS

Additional Image Classification Results. We present additional results on image classification
and ablation studies with different architectures using more evaluation metrics. Table 7 presents the
image classification results on CIFAR 10 with the architecture fixed as LeNet. We observe that the
improvement of R2D2-Net is less significant compared to that when AlexNet is used.

Table 7: Image classification results of our proposed method on CIFAR 10 and CIFAR 100 with the
LeNet (LeCun et al., 1989). Standard deviations are shown in brackets. We report the Macro-F1 in
addition to the AUROC and Accuracy reported in the main text.

CIFAR 10 CIFAR 100
Model AUROC Accuracy Macro-F1 AUROC Accuracy Macro-F1
Frequentist 91.38 62.24 62.34 89.45 30.51 29.64
Gaussian BNN 91.31 60.03 59.55 89.17 25.79 25.08
MC Dropout 91.50 58.76 59.4 90.65 27.23 25.83
MFVI 92.22 61.94 61.71 88.90 29.63 29.06
Radial BNN 92.13 61.71 61.30 89.77 30.27 29.8
Deep Ensembles 92.74 64.26 64.14 89.37 30.04 29.44
Horseshoe BNN 92.42 60.13 59.80 85.88 17.94 16.01
R2D2-Net (ours) 92.39 62.14 62.02 88.59 30.51 29.82
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Table 8: Image classification results of our proposed method on CIFAR 10 and CIFAR 100 with
the AlexNet (Krizhevsky et al., 2012). Standard deviations are shown in brackets. We report the
Macro-F1 in addition to the AUROC and Accuracy reported in the main text. Bold represents the
best performance among BNN designs, while * represents the best performance among all models.

CIFAR 10 CIFAR 100
Model AUROC Accuracy Macro-F1 AUROC Accuracy Macro-F1
Frequentist NN 92.70 (1.5)* 65.03 (1.4) 64.9 (1.6)* 90.95 (0.2) 31.05 (0.4) 31.21 (0.6)
Gaussian BNN 91.37 (1.2) 60.28 (1.5) 60.78 (1.4) 87.24 (1.2) 23.60 (0.6) 22.02 (0.8)
MC Dropout 90.09 (0.2) 55.08 (0.6) 54.22 (0.3) 87.67 (1.3) 21.92 (1.1) 19.74 (1.1)
MFVI 91.11 (0.9) 59.27 (1.1) 61.82 (0.5) 87.69 (0.9) 23.06 (0.2) 22.34 (0.2)
Radial BNN 91.22 (0.8) 63.24 (0.8) 62.48 (0.9) 89.20 (1.0) 25.70 (0.5) 24.89 (0.7)
Deep Ensembles 90.67 (0.6) 62.41 (0.5) 62.43 (0.4) 87.97 (0.9) 24.63 (0.4) 23.94 (0.5)
Horseshoe BNN 91.99 (0.8) 65.01 (0.3) 64.7 (0.3) 91.37 (0.2) 33.27 (0.3) 34.02 (0.3)
R2D2-Net 92.49 (0.2) 65.10 (0.02) 65.14 (0.06) 91.41 (0.03)* 36.12 (0.5)* 34.83 (0.4)*

Additional Simulation Scenarios and Results. We more simulation scenarios and results in this
section. We first consider the sparsity in the coefficients: (4) Sparse coefficients: yi = x⊤

i β + ϵi,
where 90% of the coefficients in β are set to be 0; (5) Dense coefficients: yi = x⊤

i β+ ϵi, where 10%
of the coefficients in β are set to be 0. We then consider a multiple linear regression case where the
response is a linear combination of covariates: (6) Linear regression: yi = x⊤

i β+ ϵi where β,xi ∈
Rp. Table 9 presents the results.

Table 9: Simulation results on MSE and prediction variance under the R2D2-Net compared with
different BNN designs on MLP with different numbers of layers L = 0, 1, 2, 3. Standard deviations
over five replicates are shown in brackets.

Scenario 4: Multiple Linear Regression
L = 0 L = 1 L = 2 L = 3

Model MSE Variance MSE Variance MSE Variance MSE Variance
Gaussian 478.28 (8.41) 0.08 (0.01) 80.7 (5.98) 0.57 (0.03) 3.87 (0.68) 3.82 (0.18) 4.11 (1.84) 5.27 (0.41)
MC Dropout 397.81 (20.81) 6.85 (0.57) 15.29 (0.24) 9.12 (0.74) 16.9 (0.84) 14.25 (0.77) 13.47 (0.69) 11.68 (0.64)
Horseshoe 392.82 (10.64) 0 (0) 3.84 (1.02) 0.09 (0.03) 1.57 (0.92) 0.25 (0.08) 0.57 (0.42) 0.44 (0.05)
R2D2-Net 316.19 (8.43) 0 (0) 1.49 (0.26) 0.02 (0) 0.03 (0.02) 0.07 (0) 0.02 (0.01) 0.12 (0.01)

Scenario 5: Sparse Coefficients
L = 0 L = 1 L = 2 L = 3

Model MSE Variance MSE Variance MSE Variance MSE Variance
Gaussian 40.06 (3.24) 14.15 (0.09) 19.6 (0.82) 12.17 (0.42) 17.48 (1.09) 11.62 (0.22) 19.55 (2.5) 11.82 (0.93)
MC Dropout 66.91 (2.09) 50 (1.55) 13.7 (0.32) 6.26 (0.2) 14.36 (0.27) 5.74 (0.19) 14.16 (0.22) 4.97 (0.22)
Horseshoe 4.88 (0.16) 0.64 (0.69) 17.22 (10.26) 1.44 (2.53) 15.66 (1.18) 0.52 (0.26) 14.12 (1.32) 0.63 (0.45)
R2D2-Net 4.58 (0.2) 0.31 (0) 14.66 (0.5) 0.36 (0.01) 13.93 (0.41) 0.35 (0.01) 13.58 (0.48) 0.39 (0.01)

Scenario 6: Dense Coefficients
L = 0 L = 1 L = 2 L = 3

Model MSE Variance MSE Variance MSE Variance MSE Variance
Gaussian 396.94 (9.88) 17.65 (0.11) 25.83 (0.34) 31.18 (0.43) 42.57 (3.87) 48.18 (1.73) 47.24 (2.67) 62.94 (3.16)
MC Dropout 516.61 (12.78) 409.22 (10.52) 53.22 (1.27) 41.66 (1.36) 66.34 (1.87) 49.93 (2.44) 65.68 (6.28) 41.05 (4.21)
Horseshoe 6.2 (3.34) 3.4 (5.15) 20.44 (10.83) 1.39 (0.57) 34.97 (12.25) 3.36 (1.47) 38.92 (10.34) 4.05 (2.5)
R2D2-Net 4.7 (0.11) 0.36 (0) 14.73 (0.23) 0.88 (0.07) 17.64 (1.19) 1.46 (0.04) 19.4 (1.08) 2.05 (0.07)

Additional Results on OOD Detection. We include additional results on OOD detection with
MNIST as the in-distribution dataset and FashionMNIST, OMNIGLOT, and SVHN as the OOD
dataset (see Table 10). We observe that the R2D2-Net still obtains an ideal uncertainty estimation
performance under this setting.

Implementation Details and Hyperparameters The proposed method is implemented in Python
with Pytorch library on a server equipped with four NVIDIA TESLA V100 GPUs. All methods are
trained for 1000 epochs for image classification and 100 epochs for OOD detection with possible
early stopping. We randomly initialize the weights of each architecture (i.e., train from scratch). We
select the checkpoint which has the largest validation AUROC as the testing checkpoint. We use
Adam as the optimizer with a learning rate of 0.0005 and weight decay of 0.0005. The batch size
is 1024. The dropout ratio is 0.2 for MC Dropout (Gal and Ghahramani, 2016). We set a universal
annealing rate of 0.001 for the KL loss since we did not encounter KL vanishing problem. Data
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Table 10: The OOD detection performance of the R2D2-Net compared with various BNN designs un-
der the LeNet (LeCun et al., 1989), using MNIST as the in-distribution dataset. The best performance
among all methods is highlighted in boldface.

Fashion MNIST OMNIGLOT SVHN
Model AUROC AUPR AUROC AUPR AUROC AUPR
Gauss 98.36 98.36 99.17 99.38 98.95 99.10
HS-BNN 80.76 75.99 99.06 99.65 99.35 98.74
MCD 81.80 74.22 80.03 82.06 99.96 99.96
MFVI 98.52 98.48 98.94 99.11 99.91 99.96
Radial 98.2 97.94 98.52 98.73 99.64 99.85
DE 90.70 91.08 99.70 91.08 99.21 99.68
DPN 98.70 98.80 99.96 99.96 99.96 99.96
EDL 73.43 80.22 72.61 81.42 63.43 85.09
R2D2-Net 98.75 98.84 99.64 99.65 99.31 99.69

augmentations such as colour jittering and random cropping and flipping are applied to regularize the
learning process.

Learning Curve Comparison

We compare the learning curves from different BNN designs in Figure 6. We observe that the R2D2
Net has consistent higher testing performance from epoch to epoch.

Figure 6: Training Curve Comparison.

C.3 ADDITIONAL DETAILS ON MODEL ARCHITECTURES

Compose Network Architecture with R2D2 Layers. With the marginal distributions of weights in
Eq. (2), we can formulate the layers of the R2D2-Net. Specifically, we consider two basic operations
in a neural network — the linear layer and the convolutional layer. Let wl be the vector of all weight
parameters of the l-th layer. The distribution of the j-th element wjl follows the R2D2 distribution
given in Eq. (2). We compose the neural network architecture by specifying a combination of
convolutional layers and linear layers. Figure 1 presents the conditional dependencies of the R2D2
design and the training paradigm. As an illustrative example, the visualization of R2D2 LeNet
is provided in the appendix. Each linear layer and convolutional layer are replaced by the R2D2
counterparts (i.e., the R2D2 Linear and R2D2 Conv), while the pooling layers and activation layers
remain the same as their frequentist designs.
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Summary of Model Architectures and Complexity. We summarize the model architectures used in
experiments and their complexity in Table 11. Figure 7 presents an example of the LeNet (LeCun
et al., 1989) architecture composed by R2D2 layers, where each convolutional layer and each linear
layer are replaced by its corresponding BNN design (e.g., R2D2 linear layer or R2D2 Conv Layer).

Table 11: Summary of models used in experiments and their depth. F stands for the frequentist
network, and B stands for the Bayesian counterpart.

Model # Params (F) # Params (B)
LeNet 62K 124K

AlexNet 2.8M 5.6M
ResNet50 25.6M 51.2M

ResNet101 44.5M 89M

Max-Pool Convolution Max-Pool Dense

8@128x128
8@64x64

24@48x48
24@16x16 1x256

1x128

Figure 7: Example of the R2D2 LeNet architecture. Each convolutional or linear layer is replaced by
its R2D2 design (i.e., R2D2 Linear or R2D2 Conv).

C.4 HYPERPARAMETER SETTINGS

The hyperparameter settings for different priors are as follows

• Number of posterior samples (during inference): 100

• Gaussian BNN:

– ρ0 ∼ N (−3, 0.12)

• Horseshoe

– Global shrinkage bg = 1.0
– Local Shrinkage b0 = 1.0
– ρ0 ∼ N (−3, 0.12)

• R2D2

– aπ = 0.6

– b = 0.5

– prior mean of wjl = 0

– ρ0 ∼ N (−3, 0.12)

D DISTRIBUTIONS

The Multivariate Gaussian and Generalized Inverse Gaussian distributions are crucial for posterior
computations, we provided the formal definitions and their important properties in this section.

Multivariate Gaussian. The density of a multivariate Gaussian distribution is defined as
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Algorithm 1 The Variational Gibbs Inference Algorithm.
Input:
Number of layers L; Prior distributions of weight parameters π(θ);
Number of steps ns; Total numbers of parameters of each layer {pl}Ll=1;
Local shrinkage parameters ϕ = {ϕjl}plj=1

L
l=1,ψ = {ψjl}plj=1

L
l=1;

Global shrinkage parameters ω = {ωl}Ll=1, ξ = {ξl}Ll=1;
Input data D = {xi, yi}Ni=1;
Hyperparameters aπ, ρ0, b.
Output:
The posterior distribution of the weights p(θ|D).

1: Initialize π(wjl) ∼ N (0, (log (1 + eρ0))2), al = plaπ , bl = b, µwjl
= 0

2: Sample ψjl ∼ Exp(1/2), ϕjl ∼ Dir(aπ, . . . , aπ), ξl ∼ Ga(bl, 1), ωl|ξl ∼ Ga(al, ξl)
3: for s in 1 : ns do
4: for l in 1 : L do
5: for wjl in wl do
6: Sample wjl ∼ N (µwjl

, ψjlϕjlωlσ
2
jl/2) ▷ Sample weights

7: Sample ρjl ∼ N (µρjl , σ
2
ρjl

)

8: Set σjl = log (1 + eρjl) ▷ Reparameterized Gaussian
9: Sample ω ∼ giG(χ =

∑pl
j=1 2w

2
jl/(σ

2ϕjlψjl), ρ = 2ξl, λ0 = al − pl
2 )

10: Sample ξl ∼ Ga(al + bl, 1 + ωl)

11: Sample ψ−1
jl ∼ InvGaussian(µ =

√
σ2
jlϕjlωl/2/|wjl|, λ = 1)

12: Sample Tjl ∼ giG(χ = 2w2
jl/(σ

2
jlψjl), ρ = 2ξl, λ0 = al − pl

2 )

13: Set ϕjl = Tjl/
∑
j Tjl

14: end for
15: if l == 1 then
16: Compute hl+1 = wlxn + biasl ▷ Hidden features
17: else
18: Compute hl+1 = wlhl + biasl
19: end if
20: end for
21: Obtain prediction ŷn from hL−1

22: Compute the supervision loss, KL(q∥π) (Table 1 in the main text), and the ELBO.
23: Backpropagate the ELBO to update the mean and variance of θ.
24: end for
25: return The posterior distribution p(θ|D).

p(x;µ,Σ) =
1

(2π)
p
2 |Σ| 12

exp
{
− 1

2
(x− µ)⊤Σ−1(x− µ)

}
,

where µ ∈ Rp is the mean vector and Σ ∈ Rp×p is the covariance matrix.

Generalized Inverse Gaussian. Denote Z ∼ giG(χ, ρ, λ0), the generalized inverse Gaussian

distribution, which has the density function f(z) = (ρ/χ)
λ0
2

2Kλ0
(
√
ρχ)z

λ0−1 exp{−(ρz + χ/z)/2}, where
Kλ0

is a modified Bessel function of the second kind. Specifically, an inverse Gaussian distribution

of the form f(x;µ, λ) =
(

λ
2πx3

)1/2
exp

(
−λ(x−µ)2

2µ2x

)
is a giG with ρ = λ/µ2, χ = λ, and λ0 = − 1

2 .

Expectations of Generalized Inverse Gaussian. We provide the well-known results of the expecta-
tions of functions of X ∼ giG(χ, ρ, λ0) here for completeness:
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E(X) =

√
χKλ0+1(

√
ρχ)

√
λ0Kλ0+1(

√
ρχ)

E
(

1

X

)
=

√
ρKλ0+1(

√
ρχ)

√
χKλ0+1(

√
ρχ)

− 2λ0
χ

E(lnX) = ln

√
χ

√
ρ
+

∂

∂λ0
lnKλ0

(
√
ρχ).

The derivative term in the above equation does not have an analytical form and therefore needs to be
computed numerically.

E KULLBACK–LEIBLER (KL) DIVERGENCE

We provide detailed derivations of the KL divergences introduced in the main text.

KL Divergence of Gamma Distributions. Define the integral

I(a, b, c, d) =

∫ ∞

0

log

(
ex/axb−1

abΓ(b)

)
ex/cxd−1

cdΓ(d)
dx,

and then we have

I(a, b, c, d) = −cd
a

− log(abΓ(b)) + (b− 1)ψ(d) + (b− 1) log(c), (3)

where ψ is the digamma function. The KL divergence between two Gamma distributions can be
obtained in a closed form as

KL(Ga(a, b)∥Ga(c, d)) = I(a, b, c, d)− I(c, d, c, d)

KL Divergence of Multivariate Normal Distributions. The KL divergence of two multivariate
normal distributions N (µ1,Σ1) and N (µ2,Σ2) is

KL(N (µ1,Σ1)∥N (µ2,Σ2) =
1

2

[
log

|Σ2|
|Σ1|

− p+ tr{Σ−1
2 Σ1}+ (µ2 − µ1)

⊤Σ−1
2 (µ2 − µ1)

]

KL Divergence of Shrinkage Parameters. The closed form of KL(q(ξ|·)∥π(ξ)) is given by

KL(q(ξ|·)∥π(ξ)) = Eq(ξ|·)[ln q(ξ|·)− lnπ(ξ)]

= Eq
[
ln

(
(1 + ωl)

al+bl

Γ(al + bl)
ξal+bl−1
l e−(1+ωl)ξl

)]
− Eq

[
ln

(
1

Γ(bl)
ξbl−1
l e−ξl

)]
= I(al + bl, 1 + ωl, 1, bl)− I(1, bl, 1, bl),

where the integral I is defined by Eq. (3).

The closed form of KL(q(ωl|·)∥π(ωl)) is given by:

KL(q(ωl|·)∥π(ωl)) =Eq(ωl|·)[ln q(ωl|·)− lnπ(ω|ξl)]

=Eq
[
ln

(
(ρ/χ)λ0/2

2Kλ0
(
√
ρχ)

ωλ0−1
l e(−ρωl+χ/ωl)/2

)]
− Eq

[
ln

(
ξall
Γ(al)

ωal−1
l e−ωlξl

)]
=
λ0
2

ln
ρ

χ
− ln 2− lnKλ0

(
√
ρχ) + (λ0 − 1)E[lnωl]−

1

2
E(ρωl +

χ

ωl
)

− ρ ln ξ + lnΓ(al)− (al − 1)E[lnωl] + ξωl
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The closed form of the KL divergence of ψjl is given by
KL(q(ψjl|·)∥π(ψjl)) = Eq(ψjl|·)[ln q(ψjl|·)− lnπ(ψjl)]

= Eq(ψjl|·)

[
ln

(
1

ψjl
√
2π

exp

(
(1− µψjl)

2

2ψjlµ

))]
− Eq(ψjl|·)

[
ln

(
1

2
e−

1
2ψjl

)]
= Eq(Y |·)

[
lnY + ln(

1

2π
) +

Y (1− µ
Y )2

2µ
− ln

1

2
+

1

2Y

]
where the third equation holds by introducing Y =

1

ψjl
∼ InvGaussian. The above expression can

be solved by using the expectations of inverse Gaussian.

F GLOBAL–LOCAL SHRINKAGE PRIORS

Figure 8 presents the comparison of marginal densities of typical global–local shrinkage priors. Table
12 presents the comparisons of the concentration rate at 0 and tail thickness of typical global–local
shrinkage priors. Table 12 and Figure 8 demonstrate that the R2D2 prior has the highest concentration
rate at zero and the heaviest tail. The rates in Table 12 can be derived from the density functions of
the global–local shrinkage priors, we are provided in the following subsections.

The Horseshoe Prior.
βj |τj ∼ N (0, τ2j ) where τ ∼ C+(0, b0)

where C+ is the Half-Cauchy distribution.

The Horseshoe+ Prior.
βj |τj ∼ N (0, τ2j ) where τj |λ, ηj ∼ C+(0, ληj), ηj ∼ C+(0, 1).

The Dirichlet Laplace Prior. The Dirichlet–Laplace prior (Bhattacharya et al., 2015) is given by
βj |ϕj ∼ DE(ϕj), ϕj ∼ Ga(a∗, 1/2).

The Generalized Double Pareto Prior. The density of the generalized double Pareto prior is
πGDP(βj |η, α) = (1 + |βj |/η)−α+1/(2η/α), (α, η > 0).

Alternative Form of the R2D2 Prior. The alternative form of the R2D2 prior allows for an alternative
formulation of the variational Gibbs inference paradigm, which is provided below

βj | σ2, ϕj , ω ∼ DE(σ(ϕjω/2)
1
2 ), ϕ ∼ Dir(aπ, . . . , aπ), ω ∼ BP(a, b),

where BP denotes the beta-prime distribution, DE denotes the double-exponential distribution, and
Dir denotes the Dirichlet distribution.

G UNCERTAINTY MEASURES

We describe the uncertainty measures used in the OOD misclassification task in this section. The
definitions are well-known and summarized by Malinin and Gales (Malinin and Gales, 2018),

• Entropy:

H[p(µ|D)] = −
∫
SK−1

p(µ|D) ln p(µ|D)dµ,

where vj is the normalized prediction score for class j.
• Maximum probability: we take the maximum predicted probability P from all classes as the

confidence score,
P = max

c
P (wc|D).

where P (wc|D) is the predicted probability for class c.
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Figure 8: Marginal densities of typical global–local shrinkage priors (Zhang et al., 2020)

Table 12: Tail decay and concentration at zero of Global–local shrinkage priors (Zhang et al., 2020)

Priors Tail Decay Concentration at 0

Horseshoe O
(

1

β2

)
O
(
log

(
1

|β|

))
Horseshoe + O

(
log |β|
β2

)
O
(
log2

(
1

|β|

))
Dirichlet–Laplace O

(
|β|a∗/2−3/4

exp{
√

2|β|}

)
O
(

1

|β|1−a∗
)

Generalized Double Pareto O
(

1

|β|1+α

)
O(1)

R2D2 O
(

1

|β|1+2b

)
O
(

1

|β|1−2aπ

)

H EVALUATION METRICS

We summarize the evaluation metrics used in the experiments as follows.

• Accuracy: the fraction of correct predictions to the total number of ground truth labels.
• F-1 score: The F-1 score for each class is defined as

F-1 score = 2 · precision · recall
precision + recall

where ‘recall’ is the fraction of correct predictions to the total number of ground truths
in each class and precision is the fraction of correct predictions to the total number of
predictions in each class.

• AUROC: the area under the receiver operating curve (ROC) which is the plot of the true
positive rate (TPR/Recall) against the false positive rate (FPR).

• AUPR: the area under the precision-recall curve.
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