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ABSTRACT

Graph neural networks (GNNs) are widely used for learning on graphs but are fun-
damentally limited to modeling pairwise relationships. Topological models based
on simplicial or cell complexes can capture higher-order structure and match or
surpass the expressive power of the Weisfeiler–Leman (WL) test, but they are diffi-
cult to scale because they require constructing higher-order complexes. In this pa-
per, we ask how to retain the expressivity of cellular Weisfeiler networks (CWNs)
while improving their scalability, and how to exploit cliques efficiently on large
graphs. First, we introduce simplified and factored cellular Weisfeiler–Leman
(sCWL and fCWL) tests, and show that they are as expressive as the original
CWL test, while achieving better scalability properties. We then define the max-
imal clique complex, a cell complex whose higher-order cells are the maximal
cliques of the graph, and apply the corresponding simplified and factored CWNs
(sCWN and fCWN) on this structure, achieving improved time and memory com-
plexity. To avoid explicit enumeration of all maximal cliques, we propose Clique-
Walk, a biased random walk that samples (maximal) cliques and scales quasi-
linearly with the number of nodes. Combining maximal clique complexes with
CliqueWalk yields scalable clique-based architectures that preserve CWL-level
expressivity. Experiments on node and graph classification benchmarks, includ-
ing large-scale datasets, show that our models are competitive with or better than
GNN and higher-order baselines, while substantially reducing computational and
memory costs.

1 INTRODUCTION

Graphs provide a natural way to represent interactions between entities, and graph neural networks
(GNNs) have become the standard approach for learning on such data (Gilmer et al., 2017; Kipf
& Welling, 2017; Defferrard et al., 2016). GNNs have achieved strong performance in diverse
domains, including social network analysis (Fan et al., 2019), molecular property prediction (Du-
venaud et al., 2015), and computer vision (Krzywda et al., 2022). However, conventional GNNs
are limited to modeling pairwise interactions between nodes, which constrains their ability to cap-
ture complex multi-way relationships (Battiloro et al., 2024). To address this limitation, recent
work explores higher-order structures such as simplicial complexes (Ebli et al., 2020; Bodnar et al.,
2021b; Einizade et al., 2025), cell complexes (Hajij et al., 2020; Bodnar et al., 2021a), and hyper-
graphs (Feng et al., 2019).

Hypergraphs generalize graphs by allowing edges, called hyperedges, to connect more than two
nodes (Feng et al., 2019). A hyperedge thus represents a group interaction, for example, a set
of coauthors of the same paper in a co-authorship network (Wu et al., 2022). Beyond hyper-
graphs, cell complexes provide a general combinatorial framework that organizes higher-order struc-
tures (Hatcher, 2002). A cell complex contains cells of different dimensions: nodes (0-cells), edges
(1-cells), triangles (2-cells), and so on (Bodnar et al., 2021a). Simplicial complexes are a special
case of cell complexes in which all subsets of a cell are also included, ensuring closure under sub-
set operations (Einizade et al., 2025). In this setting, entities interact whenever they differ by the
addition or deletion of a single node.

Several approaches have been proposed to lift graphs into higher-order structures, allowing the use
of simplicial and cell complexes for learning tasks (Bodnar et al., 2021b; Papillon et al., 2023;
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Papamarkou et al., 2024). One of these strategies is the clique lifting, where simplicial or cell
complexes are built by including all cliques of the graph up to a fixed size (e.g., edges or triangles)
(Bodnar et al., 2021a). While effective for capturing higher-order information, these methods are
often computationally expensive and require significant memory resources. Furthermore, the clique
problem is well-known to require algorithms with exponential runtime in the worst case (Cormen
et al., 2022).

Graph Maximal Clique Complex

Figure 1: Maximal clique complex.

In this paper, we address two central questions:
(i) how to simplify cellular Weisfeiler networks
(CWNs) without losing expressivity, and (ii) how to
use maximal cliques as higher-order cells in a way
that scales to large graphs. To answer the first ques-
tion, we introduce the simplified and factored cellu-
lar Weisfeiler–Leman (sCWL and fCWL) tests, to-
gether with their corresponding neural architectures
(sCWNs and fCWNs). We show that these variants
preserve the full expressive power of the original
CWL test of Bodnar et al. (2021a) while achieving
better scalability properties. For the second ques-
tion, we propose the maximal clique complex, a sim-
plified cell complex that encodes only the maximal
cliques of the graph (Figure 1). Because enumerating all maximal cliques can take exponential time
and becomes infeasible for large graphs, we introduce CliqueWalk, a biased random-walk procedure
that efficiently samples cliques and achieves quasi-linear scaling with the number of nodes. The
sampled cliques define the higher-order cells used in our architectures, enabling models that achieve
competitive performance on node and graph classification benchmarks while remaining scalable to
large graphs.

The main contributions of this paper are:

1. We introduce the sCWL and fCWL tests and prove that they are as expressive as the regular
CWL test, while offering better scaling properties.

2. We present the maximal clique complex, a simplified higher-order structure that encodes max-
imal cliques of a graph, and show that the resulting simplified and factored CWNs (sCWN and
fCWN) are more memory- and computational-efficient than standard CWNs, without any loss
in expressivity.

3. Since enumerating all maximal cliques could take exponential runtime, we propose Clique-
Walk, a biased random walk algorithm that efficiently samples maximal cliques. CliqueWalk
scales quasi-linearly with the number of nodes, making clique-based methods applicable to
large graphs.

4. We demonstrate competitive performance on node and graph classification benchmarks. Our
model matches or outperforms the accuracy of existing GNNs and topological models, while
achieving substantial gains in scalability and efficiency.

2 RELATED WORK

The expressive power of GNNs has been extensively studied, with a particular focus on their ability
to distinguish non-isomorphic graphs (Xu et al., 2019; Morris et al., 2019). It is now established
that GNNs with injective aggregation functions are as powerful as the 1-WL test (Xu et al., 2019).
Early architectures, such as the graph isomorphism network (GIN) (Xu et al., 2019), are explicitly
designed to match the expressivity of the 1-WL test. However, GIN and related models remain
limited in their ability to capture higher-order interactions (Morris et al., 2019; Bouritsas et al.,
2022; Feng et al., 2022), as they rely on local message passing over pairwise connections.

To address these limitations, recent works have extended GNNs to higher-order structures. Message
passing simplicial networks (Bodnar et al., 2021b) operate on simplicial complexes, exceeding the
expressivity of the 1-WL test and approaching that of 3-WL. CWNs (Bodnar et al., 2021a) generalize
this idea to arbitrary cell complexes, with message passing defined through boundary, co-boundary,
and adjacency relations. These extensions are formalized by the CWL test, which is strictly more
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expressive than 1-WL in specific cases, and have demonstrated strong empirical results, particularly
in molecular graph learning (Bodnar et al., 2021a; Giusti et al., 2023).

Despite these theoretical advances, a key limitation of simplicial and cell complex models is their
lack of scalability. Constructing higher-order complexes often requires enumerating large numbers
of cliques, which leads to prohibitive memory and time costs. As a result, prior higher-order models,
while more expressive than standard GNNs, cannot be applied efficiently to large-scale graphs. In
contrast, our work introduces the maximal clique complex as a simplified higher-order structure
that preserves CWL-level expressivity while enabling efficient clique-based neural architectures.
Combined with our CliqueWalk sampling strategy, this provides a scalable approach to higher-order
graph learning that retains strong theoretical guarantees and offers competitive performance.

3 PRELIMINARIES

Notation. Calligraphic letters denote sets, and for a set X , |X | represents its cardinality. Lowercase
boldface letters, like x, represent vectors.

À

and COMBINE represent a mapping from a set of
vectors to a vector, e.g., an aggregation function.

Cell complexes. Cell complexes provide a natural setting for higher-order combinatorial structures.

Definition 1 (Regular cell complex (Hansen & Ghrist, 2019; Bodnar et al., 2021a)). A regular cell
complex is a topological space X that can be divided into a collection of subspaces tXσuσPPX

,
called cells, where PX is the set of cells induced by the topological space X . These cells satisfy the
following properties:

1. Every x P X has an open neighborhood that intersects only a finite number of cells.
2. For any two cells Xσ and Xτ , Xτ X Xσ ‰ H, if and only if Xτ is contained in Xσ , i.e., the

closure of Xσ .
3. Each cell is topologically equivalent (homeomorphic) to Rn for some dimension n.
4. For each σ P PX , there exists a homeomorphism φ from a closed ball in Rnσ onto Xσ , where

the restriction of φ to the interior of the ball gives a homeomorphism onto the interior of Xσ .

A graph G “ pV, Eq can be interpreted as a special case of cell complexes. A graph is a one-
dimensional cell where the vertices V and edges E correspond to 0-cells and 1-cells, respectively.

Definition 2 (Cell complex adjacencies (Bodnar et al., 2021a)). Let X be a cell complex and σ P PX

a cell. We define the following adjacency relations:

1. Boundary cells Bpσq: lower-dimensional cells that make up the boundary of σ (e.g., the vertices
of an edge).

2. Co-boundary cells Cpσq: higher-dimensional cells for which σ is part of their boundary (e.g.,
an edge incident to a vertex).

3. Lower adjacent cells NÓpσq: cells of the same dimension as σ that share at least one boundary
cell with it (e.g., edges that meet at a common vertex).

4. Upper adjacent cells NÒpσq: cells of the same dimension as σ that both lie on the boundary of
a higher-dimensional cell (e.g., two vertices that are connected by an edge).

WL test. A key challenge in graph theory is the graph isomorphism problem, which concerns de-
ciding whether two graphs have the same structure. Finding exact solutions is often computationally
demanding, so faster approximate techniques, such as graph hashing, are commonly employed. A
classical and widely used technique for graph isomorphism test is the WL test (Leman & Weisfeiler,
1968). The WL test provides an efficient heuristic for the graph isomorphism problem. The formal
definition of the WL test is provided in Appendix A. Beyond graphs, it can be naturally extended to
regular cell complexes, capturing richer combinatorial structures.

CWL test. The adjacency relations in Definition 2 allow us to define the CWL scheme, which
generalizes the WL test from graphs to higher-dimensional cell complexes.

Definition 3 (CWL scheme (Bodnar et al., 2021a)). Let X be a regular cell complex. The CWL
scheme is defined as follows:
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1. Initialization: All cells σ P PX are assigned the same initial color.
2. Color refinement: At iteration t ` 1, the color of each cell σ is updated according to ct`1

σ “

HASHpctσ, c
t
Bpσq

, ctCpσq
, ctNÓpσq

, ctNÒpσq
q, where HASH is an injective function that combines

the current color of σ with the colors of its boundary, co-boundary, and adjacent cells.
3. Termination: The process is repeated until the coloring stabilizes. Two cell complexes are

considered non-isomorphic if their color histograms differ.

The CWL test is invariant under cell-complex isomorphisms. Given a map from a graph to a cell
complex that preserves isomorphisms, we can use the CWL test to check graph isomorphism. This
is exactly what Bodnar et al. (2021a) called a cellular lifting map (their Definition 8). Similarly, we
can relate CWL to WL test in the case of skeleton preserving lifting map:
Definition 4 (Skeleton preserving lifting (Bodnar et al., 2021a)). A lifting map fp¨q is skeleton-
preserving if for any graph G “ pV, Eq: (i) fpGq contains V and E as cells, and (ii) the cell
complex fpGq restricted to node and edge set is isomorphic to G, i.e., the incidence matrix of G and
fpGq are equal with the correct permutation.

The CWL scheme has been proven to be more expressive than the standard WL test (Bodnar et al.,
2021a) for skeleton preserving lifting maps. In the following, we introduce a new cell test that does
not require the skeleton preserving lifting map to be more expressive than the WL test. We also,
introduce the specific structures that will be the focus of our study. All proofs of theorems and
propositions are provided in Appendix B.

4 SCALING CELL COMPLEX MODELS AND MAXIMAL CLIQUES

4.1 CELL COMPLEX EXPRESSIVITY THEORY

Bodnar et al. (2021a) shows we can simplify the CWL test while retaining the same expressivity.
Theorem 5 (Bodnar et al. (2021a)). The CWL update rule restricted to boundary and upper adja-
cency messages is equivalent in expressive power to the full CWL update rule.

We also demonstrate that a different simplified version retains the same expressivity.
Theorem 6. The CWL update rule restricted to boundary and co-boundary messages, called the
simplified CWL (sCWL) test, is equivalent in expressive power to the full CWL update rule.

This restricted scheme is useful in practice, as it leads to more computationally efficient models.

We also introduce a new test on cell complexes that, while keeping the node structure, enables at
least the same expressivity as the CWL, sCWL, and WL tests.
Definition 7 (Factored CWL (fCWL) test). Let pG,X q be a graph and a cell complex constructed
from a cellular lifting map that preserves the node set. The fCWL scheme is defined as follows:

1. Initialization: All cells are assigned the same initial color.
2. Color refinement: At iteration t` 1, the color of each non node cells σ is updated according to

ct`1
σ “ HASHpctσ, c

t
Bpσq

, ctCpσq
q. The color of each node i is updated according to

ct`1
i “ HASHpcti, c

t
Cpiq, c

t
N piqq,

3. Termination: The process is repeated until the coloring stabilizes. Two cell complexes are
considered non-isomorphic if their color histograms differ.

Theorem 8. fCWL is at least as expressive as WL and CWL.

We use the ideas from sCWL and fCWL tests to introduce cellular neural networks with the same
guarantees and better scaling properties than CWN (Bodnar et al., 2021a).

4.2 NEURAL NETWORK MODELS

We now describe several neural network architectures based on the CWL framework. These models
perform message passing along the hierarchical structure of cells, propagating information through
boundary, co-boundary, and adjacency relations.

4
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Definition 9 (CWNs). Following (Bodnar et al., 2021a, Section 4), CWNs aggregate messages along
both upper adjacency and boundary relations (Theorem 5). For a cell σ, the updates are defined as:

mÒpσq “
à

τPNÒpσq,δPCpσq
Ş

Cpτq

MÒ

`

xσ,xτ ,xδ

˘

, mBpσq “
à

τPBpσq

MBpxσ,xτ q, (1)

xσ Ð COMBINEpxσ,mBpσq,mÒpσqq, (2)

where xσ the features of cell σ. We write mÒpiq for the aggregated message to cell σ from all tuples
formed by σ, one of its upper neighbors, and a parent they share. Similarly, mBpσq denotes the
aggregated message to cell σ from all of its children.

Figure 2: Illustration of sCWN.

We now introduce a model that scales more efficiently.
Definition 10 (Simplified CWNs (sCWN)). Based on
the restricted CWL update using only boundary and
co-boundary messages (Theorem 6), we define a sim-
plified message passing scheme:

mCpσq “
à

τPCpσq

MCpxσq, mBpσq “
à

τPBpσq

MBpxτ q,

(3)
xσ “ COMBINEpxσ,mCpσq,mBpσqq, (4)

Figure 2 shows an example of the aggregation func-
tions in Definition 10. This simplified variant reduces
computational and memory requirements while retain-
ing the expressive power of the full CWL update. Mes-
sages are propagated only along boundary and co-
boundary relations, making sCWN efficient for large
complexes (see Proposition 14).

We also introduce a cell model which has a complexity between sCWN and CWN, but has better
expressivity guarantees (Theorem 8, Proposition 14). We use both the clique structure and the
neighborhood structure from the graph.
Definition 11 (Factored CWNs (fCWN)). fCWN aggregate messages using both cell complex struc-
ture and graph structure:

mCpσq “
à

τPCpσq

MCpxσ,xτ q, mBpσq “
à

τPBpσq

MBpxσ,xτ q, mN piq “
à

jPN piq

MN pxi,xjq

(5)
xi Ð COMBINEpxi,mCpiq,mN piqq, xσ Ð COMBINEpxσ,mBpσq,mCpσqq. (6)

This model has better memory and time complexity than CWN in practical cases and has better
expressivity guarantees (Theorem 8).

Under certain constraints, we can provide expressivity guarantees for these models.
Proposition 12. sCWN and CWN are at most as expressive as CWL. If they use injective aggrega-
tion, they are equally expressive as CWL. fCWN with injective aggregation is at least as expressive
as CWL and WL.

We can further scale the sCWN and fCWN models to large graphs while still exploiting higher-
order topology. We propose to use clique-based cell complexes, where maximal cliques serve as
higher-dimensional cells that compactly summarize multiple nodes and edges.

4.3 CLIQUEWALK

Definition 13 (Maximal clique complex). Given a graph G “ pV, Eq, the maximal clique complex
is defined as:

1. The 0-cells correspond to the vertices V of G.

5
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2. The higher-dimensional cells correspond to the maximal cliques of G.

The set of non 0-cells (maximal cliques) is denoted as X .

An example of a maximal clique complex constructed from a graph is shown in Figure 1. If we
impose closure under subset operations, the maximal clique complex becomes the clique com-
plex (Kahle, 2009), that is, the simplicial complex induced by including all subsets of each clique.

Proposition 14. The time and memory complexities of the different CWN variants on maximal clique
complexes are as follows:

• CWN has time and memory complexity Opn `
ř

σPX |σ|2q.
• fCWN has time complexity Op|E | `

ř

σPX |σ|q and memory complexity Opn `
ř

σPX |σ|q.
• sCWN has time complexity Op

ř

σPX |σ|q and memory complexity Opn ` |X |q.

Here, n is the number of nodes, X is the set of maximal cliques, and E is the set of edges. A table of
all complexities can be found in the Appendix B.3.

Remark 15. These models can be simplified to reduce time and memory, for example, by using
only incoming information during aggregation. These simplified versions keep the same theoretical
expressivity but may capture less complex interactions between cells.

Remark 16. We conjecture that CWL on maximal cliques is more expressive than WL. A discussion
of its expressive power is provided in Appendix C.

Algorithm 1 CliqueWalk

1: procedure CLIQUEWALK(node i, neighbor map N ,
max walk size ωmax)

2: Walk Ð ris
3: neighbor Ð Ni

4: while neighbor ‰ H and |Walk| ă ωmax do
5: Choose j P neighbor
6: Append j to Walk
7: neighbor Ð neighbor X Nj

8: end while
9: return Walk

10: end procedure

Identifying all maximal cliques in a
graph is computationally infeasible,
as the clique enumeration problem
might have exponential runtime.

Proposition 17 (Moon & Moser
(1965)). A graph with n nodes can
contain up to 3n{3 maximal cliques.

To circumvent this challenge, we pro-
pose a biased random walk method
for efficient clique sampling, which
we refer to as CliqueWalk. Our ap-
proach is inspired by existing clique
sampling strategies (Bron & Ker-
bosch, 1973; Tomita et al., 2006; Cazals & Karande, 2008). The key idea is to grow cliques in-
crementally while maintaining an efficient lookup of candidate nodes that can extend the current
clique, continuing until no further extension is possible. The method is summarized in Algorithm 1,
and is illustrated in Figure 3. CliqueWalk enables us to sample a representative subset of cliques
without exhaustively enumerating all of them. A comparison with other clique sampling schemes
can be found in Appendix D.

Proposition 18. If ωmax ą ωpGq, each random walk generated by CliqueWalk produces a maximal
clique of the graph. Where ωpGq is the maximum clique size and ωmax the maximum walk length.

We denote our random walk method as CliqueWalkpnwalk, ωmaxq, where nwalk specifies the number
of walks sampled per node and ωmax corresponds to maximum size of walks.

Proposition 19. The time complexity of CliqueWalkpnwalk, ωmaxq on a graph G is Opn ¨ nwalk ¨

dmaxpGq ¨maxpωpGq, ωmaxqq, where n is the number of nodes, dmaxpGq is the maximum node degree,
and ωpGq is the size of the largest clique in G.

The motivation for using CliqueWalk in learning is that enumerating all cliques is computationally
prohibitive for large graphs. By sampling a sufficiently large number of cliques, we can approximate
the local clique structure effectively. This approach allows models to capture higher-order structural
information efficiently, while achieving performance comparable to, or even better than, full clique
enumeration. Empirical results supporting these claims are presented in the next section.
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Graph CliqueWalk

Figure 3: Illustration of a CliqueWalk starting at node 1. CliqueWalk starts from node 1 and grows
a clique by repeatedly sampling a node that is adjacent to all nodes in the current clique; in the
example, it successively adds nodes 3, 4, and 2 to reach the maximal clique t1, 2, 3, 4u.

5 EXPERIMENTS AND RESULTS

In this section, we describe the datasets and experimental setups used for node and graph classifica-
tion tasks. We compare our sCWN model with: GCN (Kipf & Welling, 2017), GIN (Xu et al., 2019),
SAGEConv (Hamilton et al., 2017), SGC (Wu et al., 2019), HGNN (Feng et al., 2019), SCCN (Yang
et al., 2022), CWN (Bodnar et al., 2021a). We additionally present a sensitivity analysis to assess
the robustness of our methodology, along with an ablation study.

5.1 DATASETS

Node classification datasets. We evaluate our models on two topological datasets (contact-primary-
school and contact-high-school) (Chodrow et al., 2021; Mastrandrea et al., 2015), three citation
networks (Citeseer, Cora, and PubMed) (Sen et al., 2008; Namata et al., 2012), and purchase net-
works like Amazon Photo network (McAuley et al., 2015; Shchur et al., 2018) and OGBN-Products
(OGBN-P) (Bhatia et al., 2016). In addition, we propose a new synthetic dataset, the stochastic
clique model (SCM), derived from the stochastic block model (SBM).

Stochastic clique model. It is a special case of SBM (Holland et al., 1983) where inward proba-
bility is set to 1. Graphs are generated by assembling cliques, with nodes inside each clique fully
connected. Each clique is assigned a label, which is inherited by all its nodes, and node features
are generated from a Gaussian distribution with a mean determined by the node label and a fixed
diagonal variance. To introduce topological noise, each node is connected to nodes outside its clique
with a fixed probability, perturbing the clique structure. The task can thus be interpreted as a form
of label denoising.

Graph classification datasets. We perform experiments on two social network datasets (IMDB-
BINARY, IMDB-MULTI) (Yanardag & Vishwanathan, 2015) and four molecular datasets (MUTAG,
PROTEINS, NCI1, NCI109) (Borgwardt et al., 2005; Schomburg et al., 2004; Dobson & Doig,
2003a; Wale et al., 2008; Shervashidze et al., 2010) from the TUDataset (Morris et al., 2020).

Synthetic cliques. To compare the inference time and memory footprint of clique-based methods,
we also construct a synthetic dataset of isolated cliques. This dataset allows us to systematically
evaluate the computational scaling of CWN models with respect to clique size.

5.2 EXPERIMENTAL SETUP

Experiments. For node classification, we hold out 20% of the nodes as a final test set, which is used
only once for reporting the final performance. The remaining 80% of the nodes are further split into
60% for training, 20% for validation, and 20% for an internal test set used during hyperparameter
optimization. During training, we select the model checkpoint that achieves the highest validation
accuracy and report its accuracy on the final test set. In OGBN-Products, we use the public splits
and do not perform hyperparameter optimization. In graph classification, we follow the experimental
protocol of Xu et al. (2019). Specifically, we perform 10-fold cross-validation on all datasets, report

7
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Table 1: Node classification accuracy (%) with standard deviation. Best results are in bold, second
best are underlined. HighSchool = contact-high-school, PrimarySchool = contact-primary-school. ♦
GNNs, ♣ simplicial neural networks, ♠ hypergraph neural networks, ✠ CWN, and ‹ CWNs (ours).
Statistical significance: * p ă 0.05, *** p ă 0.001 (Welch’s t-test against the best model).

Model Citeseer Cora Photo PubMed HighSchool PrimarySchool SCM OGBN-P
♦ GCN 73.7˘0.76 88.7˘0.61 93.9˚˚˚

˘0.27 88.3˚˚˚
˘0.33 98.2˚

˘2.6 88.9˚
˘3.1 OOM 70.4˚˚˚

˘0.2

♦ GAT 72.2˚˚˚
˘1.3 87.5˚˚˚

˘1.2 93.7˚˚˚
˘0.26 87.2˚˚˚

˘0.33 19.1˚˚˚
˘7.3 13.9˚˚˚

˘7.8 OOM OOM
♦ GIN 69.3˚˚˚

˘1.1 86.2˚˚˚
˘0.62 88.0˚˚˚

˘2.2 86.7˚˚˚
˘0.42 94.5˚˚˚

˘3.5 85.9˚˚˚
˘4.6 OOM 76.4˚˚˚

˘0.4
♦ SAGEConv 72.4˚˚˚

˘1.2 88.7˘0.99 95.0˚
˘0.29 89.5˘0.6 14.6˚˚˚

˘4.2 6.53˚˚˚
˘4.5 OOM 78.5˚˚˚

˘0.3

♦ SGC 73.7˘0.74 88.4˘0.86 89.8˚˚˚
˘0.39 89.2˚˚˚

˘0.21 6.3˚˚˚
˘4.1 3.57˚˚˚

˘3.0 65.6˚˚˚
˘0.01 76.1˚˚˚

˘0.07

♣ SCCN 46.4˚˚˚
˘1.4 64.4˚˚˚

˘1.9 64.8˚˚˚
˘2.6 73.4˚˚˚

˘0.7 93.0˚˚˚
˘2.5 74.1˚˚˚

˘3.7 OOM OOM

♠ HGNN 72.9˚
˘1.1 88.5˘0.9 94.2˚˚˚

˘0.5 88.5˚˚˚
˘0.39 95.4˚˚˚

˘3.8 80.4˚˚˚
˘5.3 68.1˚˚˚

˘0.3 63.5˚˚˚
˘1.0

✠ CWN 72.0˚˚˚
˘1.6 81.1˚˚˚

˘1.0 94.7˚˚˚
˘0.37 89.3˚˚˚

˘0.35 94.6˚˚˚
˘2.2 90.7˘1.9 OOM OOM

‹ fCWN 72.5˚
˘1.4 88.1˚

˘0.79 95.1˘0.35 89.4˚
˘0.31 99.5˘0.9 89.5˘2.3 OOM 78.8˘0.2

‹ sCWN 72.9˚
˘1.3 87.3˚˚˚

˘0.87 95.3˘0.39 89.7˘0.35 96.0˚˚˚
˘2.4 86.4˚˚˚

˘4.4 77.7˘0.05 71.6˚˚˚
˘0.5

the mean accuracy across folds at each epoch, and select the epoch with the highest mean accuracy
for final evaluation.

Implementation details. In all experiments, we use the same architecture and swap only the con-
volution module for the method under evaluation. Each model is trained both with and without
batch normalization, and we report results using the configuration that performs best. For all cell
and hypergraph models on node or graph classification, we use the CliqueWalk lifting procedure
with 8 walks per node, and initialize clique features using clique length. Cliques are sampled once
and then kept fixed throughout training (no resampling). We select 8 walks as this provides a good
tradeoff between accuracy and runtime across datasets. No further hyperparameter tuning regarding
CliqueWalk is performed to ensure fair comparison.

For node classification, except OGBN-Products, we perform a grid search over learning rate
t10´2, 10´3u, number of layers t2, 4u, hidden dimension t32, 64u, dropout t0, 0.2, 0.5u and with or
without BatchNorm for all models. For contact-school datasets, we also include GraphNorm1 (Cai
et al., 2020). Models are trained for 200 epochs on standard datasets and 500 epochs on topological
ones,2 with each grid search repeated five times using different random seeds. Final evaluation is
based on 20 independent runs with new seeds. For OGBN-Products, we use fixed hyperparameters
(see Appendix F) and train for 1000 epochs. For graph classification, all models use five layers (in-
cluding the input convolution) and a hidden dimension of 64, while grid search is limited to dropout
t0, 0.5u, batch size t32, 128u, and with or without BatchNorm.

5.3 RESULTS AND DISCUSSION

Node classification. Table 1 reports the results for the node classification task. The SCM dataset
contains approximately 6M nodes and 276M edges, making it significantly larger and more chal-
lenging than standard benchmarks. In this specific case, we only use 1 random walks in CliqueWalk.
Additional statistics for all datasets are provided in Table 7 in Appendix F. On topological datasets
like contact-high-school and contact-primary-school, topological models have competitive perfor-
mance, while classical GNNs with GraphNorm can match or exceed their performance, with fCWN
still slightly better. On citation benchmarks like Citeseer and Cora, differences are small, show-
ing no clear advantage for topological methods. On OGBN-Products, fCWN slightly outperforms
SAGEConv. Unlike other higher-order methods that run out of memory (OOM), our fCWN and
sCWN models scale efficiently.

Graph classification. Table 2 summarizes the results of the graph classification task. On social
network datasets such as IMDB-B and IMDB-M, topological models achieve good performance,
consistent with prior work (Bodnar et al., 2021a). In contrast, on molecular datasets, their per-
formance is generally lower, suggesting that clique-based features are less informative for chemi-
cal graph structures. This discrepancy highlights that the benefits of higher-order information are

1The estimation of the statistics with BatchNorm on small datasets degrades model performance.
2GNNs converge more slowly on topological datasets, hence the larger number of epochs.
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Table 2: Graph classification accuracy (%) with standard deviation. Best results are in bold, second
best are underlined. ♦ GNNs, ♠ hypergraph neural networks, ✠ CWN, and ‹ CWNs (ours).

Model IMDB-B IMDB-M MUTAG NCI1 NCI109 PROTEINS
♦ GCN 74.3˘4.6 52.4˘4.1 84.1˘8.8 80.4˘1.8 76.9˚

˘1.7 77.0˘5.1

♦ GAT 74.8˘3.0 51.6˘3.7 84.6˘8.6 79.6˚
˘3.1 73.8˚˚˚

˘1.3 76.5˘3.2

♦ GIN 72.1˚
˘3.8 49.7˚

˘3.4 89.4˘7.8 80.8˘2.1 74.8˚˚˚
˘2.4 75.8˘3.4

♦ SAGEConv 74.3˘4.1 52.9˘4.0 84.6˘9.5 81.5˘1.8 78.0˘1.5 76.3˘4.5

♠ HGNN 75.5˘4.3 52.3˘4.8 86.2˘8.2 79.2˚
˘3.1 76.2˚

˘1.9 76.5˘3.9

✠ CWN 66.0˚˚˚
˘7.8 50.5˚

˘3.4 85.1˘7.3 63.7˚˚˚
˘1.9 63.1˚˚˚

˘2.0 77.0˘3.4

‹ fCWN 71.9˚
˘4.1 52.8˘2.6 85.1˘8.1 79.2˚

˘2.4 62.3˚˚˚
˘4.5 75.9˘3.3

‹ sCWN 75.0˘4.5 52.3˘4.2 85.7˘8.2 66.3˚˚˚
˘8.9 64.1˚˚˚

˘2.8 77.5˘3.5
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Figure 4: Comparison of CWN, sCWN, and fCWN models with increasing clique size: (a) inference
time, (b) memory footprint in number of elements in memory.

domain-dependent: social networks naturally contain larger and more meaningful cliques, whereas
molecular graphs are often dominated by small motifs such as functional groups, where clique in-
formation seems to provide less meaningful information.

Remark 20. Across both node and graph classification, topological models perform better on
datasets with larger cliques. Table 7 in Appendix F reports the average clique size of each dataset,
showing a clear correlation between larger cliques and stronger performance of topological models.

5.4 SENSITIVITY ANALYSIS AND ABLATION STUDY

Scalability of CWN models. Figure 4 illustrates how CWN, fCWN, and sCWN scale with increas-
ing clique size. Consistent with Proposition 14, both fCWN and sCWN require substantially less
memory and runtime than CWN. Among them, sCWN achieves the best efficiency, confirming that
restricting message passing to boundary and co-boundary relations provides a favorable tradeoff
between expressivity and computational cost.

Sampling effect for CliqueWalk. We compare exact enumeration of maximal cliques with Clique-
Walk sampling using between 1 and 256 walks per node (Figure 5a). A clear pattern emerges:
sCWN and fCWN maintain consistent accuracy across different clique sampling rates. This demon-
strates that subsampling maximal cliques via CliqueWalk reduces inference time while preserving
performance. We observe a slightly different effect on smaller datasets like contact-primary-school
as shown in Appendix E.

CliqueWalk compute time. We compare CliqueWalk with 8 and 64 walks against exact clique enu-
meration and triangle-based simplicial complex lifting (Figure 5b). Across all datasets, CliqueWalk
consistently achieves substantially lower runtimes. Even with 64 walks per node, it remains close to
an order of magnitude faster than both exact clique computation and simplicial lifting, while main-
taining competitive accuracy. These results highlight the efficiency and scalability of the method,
showing that CliqueWalk can provide a practical alternative to more costly exact approaches.
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Figure 5: Sensitivity analysis of CliqueWalk. (a) Accuracy as a function of the number of sampled
walks. (b) Runtime comparison between CliqueWalk and exact lifting methods. Cor = Cora, Cit =
Citeseer, Pub = PubMed, HiS = contact-high-school, PrS = contact-primary-school, Pho = Photo.

Table 3: Ablation sampling CliqueWalk.

Strategy PrimarySchool Photo
Re-sampling 87.1˘3.8 95.4˘0.44

No re-sampling 86.4˘4.4 95.3˘0.39

Ablation study, resampling in CliqueWalk. Ta-
ble 3 compares the performance when using 8
walk CliqueWalk with or without re-sampling at
each training epoch on the contact-primary-school
and Photo datasets. We observe that the results
are slightly better across both datasets when re-
sampling, while it introduces a slight increase in run-
time (see PrS and Pho in Figure 5b). This suggests that using re-sampling can be a nice way to trade
better generalization against computational cost.

5.5 LIMITATIONS

While our work establishes a scalable framework for clique-based higher-order learning, it has some
limitations. First, we restrict our evaluation to node and graph classification tasks; extending the
approach to other settings, such as hyperedge prediction, link prediction, or generative modeling,
remains an open direction. Second, our method does not explicitly expand the receptive field of
nodes, and thus may not fully capture long-range dependencies compared to approaches that in-
corporate multi-hop information. Finally, we focus exclusively on clique-based sampling strategies,
whereas exploring alternative lifting procedures or hybrid strategies could further improve efficiency
and generalization. Addressing these limitations offers promising avenues for future research.

6 CONCLUSION

We introduced the maximal clique complex as a simplified higher-order structure that connects
clique-based representations to the CWL test, and showed that a sCWN operating on this complex
achieves CWL-level expressivity while remaining computationally efficient. To address scalability,
we proposed CliqueWalk, a biased random walk algorithm that samples cliques efficiently and scales
quasi-linearly with the number of nodes. Together, these contributions enable the design of clique-
based neural architectures that are both expressive and scalable. Extensive experiments on node
and graph classification benchmarks demonstrate that our models achieve competitive or superior
performance compared to GNNs and other higher-order approaches, while maintaining substantially
lower memory and runtime requirements. This work establishes random walk clique-based lifting
as a practical path toward scalable higher-order graph learning. It opens the door for future research
on efficient sampling strategies and domain-specific applications.
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REPRODUCIBILITY STATEMENT

For the developed theoretical results, we have clearly mentioned the assumptions, and complete
proofs are given in Appendix B. For the experiments, we use open-source or synthetic data, and we
provide a detailed description in Appendix F. For the model implementation, we provide implemen-
tation details in Appendix G, and the code will be open-sourced upon acceptance.
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A WEISFEILER-LEMAN GRAPH ISOMORPHISM TEST

Definition 21. Let Ap¨q and Bp¨q be graph hashing functions. We say that A is more expressive than
B if, for any pair of graphs G and G1, if the following condition holds:

BpGq ‰ BpG1q ùñ ApGq ‰ ApG1q. (7)

Intuitively, a more expressive hashing can distinguish a wider range of non-isomorphic graphs.

A classical and widely used technique for graph isomorphism test is the Weisfeiler–Leman (WL) test
(Leman & Weisfeiler, 1968), which is based on iterative color refinement:

Definition 22. The WL test constructs, in an iterative manner, a mapping c from the nodes of a
graph to a finite set of colors as follows:

1. Initialization: All nodes are assigned the same initial color.
2. Color refinement: At iteration t ` 1, the color of each node i is updated according to ct`1

i “

HASH
`

cti, ttctj : j „ iuu
˘

, where j „ i denotes that node j is adjacent to node i, and HASH is
an injective function.

3. Termination: The process continues until the coloring no longer changes. Two graphs are
considered non-isomorphic if their color histograms differ; otherwise, the test does not provide
a conclusive answer.

The WL test provides an efficient heuristic for the graph isomorphism problem (Huang & Villar,
2021).

B PROOFS

B.1 PROOF OF THEOREM 6

First, we introduce the same notations, definitions, and propositions as in (Bodnar et al., 2021a) to
manipulate cellular coloring.

Definition 23. A cellular coloring is a function c that maps a cell complex X and one of its cells σ
to a finite set (color set). We denote this color as cXσ .

Definition 24. Let X,Y be two cell complexes and c a coloring. We say that X and Y are c-similar,
denote as cX “ cY if ttcXσ , σ P Xuu “ ttcYτ , τ P Y uu. Otherwise, we have cX ‰ cY .

Definition 25. A coloring c is said to refine another coloring d, denoted c Ď d, if for all cell
complexes X,Y and all σ P X, τ P Y , we have:

cXσ “ cYτ ùñ dXσ “ dYτ .

If both c Ď d and d Ď c, then the two colorings are said to be equivalent, denoted c ” d.

Proposition 26. Let X,Y be cell complexes with A Ď X and B Ď Y . Consider two colorings c, d
such that c Ď d.

ttcXσ , σ P Auu “ ttcYτ , τ P Buu ùñ ttdXσ , σ P Auu “ ttdYτ , τ P Buu.

Proof. Let’s suppose that ttcXσ , σ P Auu “ ttcYτ , τ P Buu. It means that there exist a bijection
f : A Ñ B such that forall σ P A, cXσ “ cYfpσq

.
As c Ď d, dXσ “ dYfpσq

ie ttdXσ , σ P Auu “ ttdYτ , τ P Buu.

Corollary 27. If c Ď d, then for all cell complexes X,Y ,

cX “ cY ùñ dX “ dY .

All non-distinguished cell complexes by c are not distinguished by d. In other words, c is a more
powerful isomorphic test than d.
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Proof of Theorem 6. Let’s show that CWL with coloring HASHpctσ, c
t
B, c

t
Cq is as powerful as

HASHpctσ, c
t
B, c

t
Òq . Let’s denote as at the colouring at step t using CWL with HASHpctσ, c

t
B, c

t
Òq and

bt the one using HASHpctσ, c
t
B, c

t
Cq. We know that the coloring at is as powerful as the original CWL

(Theorem 7, in Bodnar et al. (2021a)). Since bt uses a subset of the CWL coloring relationships, it
can be shown by induction that it is less powerful than the original CWL. Therefore, we have a Ď b.

Let’s show that b Ď a.

We show by induction that b2t Ď at for all t P N.

Base case. b0 Ď a0 as they follow the same color initialization scheme.

Inductive step. Assume b2t Ď at. We prove that b2t`2 Ď at`1.

let pσ1, σ2q P X ˆ Y such that b2t`2
σ1

“ b2t`2
σ2

. By construction,

b2t`1
σ1

“ b2t`1
σ2

, b2t`1
B pσ1q “ b2t`1

B pσ2q, b2t`1
C pσ1q “ b2t`1

C pσ2q,

as b2t`1
C pσ1q “ b2t`1

C pσ2q, there exist a bijective map f : Cpσ1q Ñ Cpσ2q that preserve the b2t`1

coloring ie b2t`1
τ “ b2t`1

fpτq
for τ P Cpσ1q.

As b2t`1
τ “ b2t`1

fpτq
, we have b2tB pτq “ b2tB pfpτqq, i.e.,

ttb2tγ , γ P Bpτquu “ ttb2tγ , γ P Bpfpτqquu.

We can add the color of τ on both sides, the multisets would still stay equal:

ttpb2tγ , b2tτ q, γ P Bpτquu “ ttpb2tγ , b2tτ q, γ P Bpfpτqquu.

As this is true for all τ in Cpσ1q, we can take the union:
ď

τPCpσ1q

ttpb2tγ , b2tτ q, γ P Bpτquu “
ď

τPCpσ1q

ttpb2tγ , b2tτ q, γ P Bpfpτqquu,

i.e.,
ttpb2tγ , b2tτ q, τ P Cpσ1q, γ P Bpτquu “ ttpb2tγ , b2tτ q, τ P Cpσ1q, γ P Bpfpτqquu,

as b2tτ “ b2tfpτq
and f is bijective, the right term can be simplified:

ttpb2tγ , b2tτ q, τ P Cpσ1q, γ P Bpfpτqquu “ ttpb2tγ , b2tfpτqq, τ P Cpσ1q, γ P Bpfpτqquu

“ ttpb2tγ , b2tδ q, δ P Cpσ2q, γ P Bpδquu,

i.e.,
ttpb2tγ , b2tτ q, τ P Cpσ1q, γ P Bpτquu “ ttpb2tγ , b2tδ q, δ P Cpσ2q, γ P Bpδquu.

Thus b2tÒ pσ1q “ b2tÒ pσ2q. Using the induction hypothesis b2t Ď at with proposition 26, we have

atσ1
“ atσ2

atÒpσ1q “ atÒpσ2q atBpσ1q “ atBpσ2q atCpσ1q “ atCpσ2q,

i.e.,
at`1
σ1

“ at`1
σ2

.

From our induction b2t Ď at for all t P N, hence b Ď a.

B.2 PROOF OF THEOREM 8 AND PROPOSITION 12

We introduce a new isomorphism test, fCWL, associated with fCWN, and prove that fCWL is at
least as expressive as CWL and 1-WL on cell complexes that kept node set.

Once this is established, the remaining correspondences between models with injective aggregation
and their associated tests follow identically from the proof of equivalence between CWL and CWN
in (Bodnar et al., 2021a).
Proposition 28. fCWL is more expressive than sCWL.
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Proof. pV1,X1q and pV2,X2q correspond to two cell complexes that keep node sets.

Let at denote the coloring at step t using sCWL, and bt the coloring at step t using fCWL.

We prove by induction that bt Ď at.

Base case. b0 Ď a0 since both follow the same initialization scheme.

Induction step. Assume bt Ď at. We show that bt`1 Ď at`1.

Let pσ1, σ2q P X1 ˆ X2 such that bt`1
σ1

“ bt`1
σ2

. By construction, we have:

btσ1
“ btσ2

, btBpσ1q “ btBpσ2q, btCpσ1q “ btCpσ2q.

Using Proposition 26 with the induction hypothesis, it follows that:

atσ1
“ atσ2

, atBpσ1q “ atBpσ2q, atCpσ1q “ atCpσ2q

i.e., at`1
σ1

“ at`1
σ2

.

By induction, bt Ď at for all t P N, hence b Ď a.

Since sCWL is as expressive as CWL (Theorem 6), it follows as a corollary that fCWL is at least as
expressive than CWL.

Proposition 29. fCWL is more expressive than WL

Proof. pV1,X1q and pV2,X2q correspond to two cell complexes that keep node sets.

Let at denote the coloring of nodes at step t using WL, bt the coloring of cells at step t using fCWL
and btV the coloring of nodes in the cell complex colored at step t by fCWL.

We prove by induction that btV Ď at on the nodes.

Base case. b0 Ď a0 since have constant colors.

Induction step. Assume btV Ď at on nodes. We show that bt`1
V Ď at`1.

Let pi1, i2q P V1 ˆ V2 such that bt`1
i1

“ bt`1
i2

.

We have:
bti1 “ bti2 , btCpi1q “ btCpi2q, btN pi1q “ btN pi2q.

Using the induction hypothesis: att1 “ ati2 . as btN pi1q
“ btN pi2q

, we can only consider the color of
the first component, we get:

ttbtj , j P N pi1quu “ ttbtj , j P N pi2quu,

i.e., by using proposition 26 and the induction hypothesis:

ttatj , j P N pi1quu “ ttatj , j P N pi2quu.

From WL update, we get at`1
i1

“ at`1
i2

.

By induction. btV Ď at for all t P N, thus bV Ď a.

B.3 PROOF OF PROPOSITION 14

In this section, we analyse the theoretical time and memory complexity of CWN, fCWN, and sCWN.
We first remind some notations:

• V represents the set of nodes
• n is the number of nodes of our graphs
• Ni represents the neighborhood of node i.
• X is the set of maximal cliques.

17
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We now detail one by one each message passing scheme’s complexity.

Boundary messages. Each node in the graph sends a message to the clique containing it. The total
number of messages sent is:

|tpi, σq P V ˆ X , i P σu| “
ÿ

pi,σqPVˆX

1iPσ “
ÿ

σPX

ÿ

iPV
1iPσ “

ÿ

σPX
|σ|.

Co-boundary messages. Each clique sends a message to each node it contains. The total number
of messages sent is:

|tpi, σq P V ˆ X , i P σu| “
ÿ

σPX
|σ|.

Upper-adjacency CWN. Each node i aggregate message for all tuple pj, σq such that ti, ju Ă σ.
The total number of messages sent is:

ÿ

iPV

ˇ

ˇtpj, σq P V ˆ X : ti, ju P σu
ˇ

ˇ “
ÿ

iPV

ÿ

jPV

ÿ

σPX
1ti,juĂσ

“
ÿ

σPX

ÿ

iPV

ÿ

jPV
1ti,juĂσ

“
ÿ

σPX

ˇ

ˇtpi, jq P V2 : ti, ju Ă σu
ˇ

ˇ

“
ÿ

σPX

ˆ

|σ|

2

˙

“
ÿ

σPX

|σ|2 ´ |σ|

2
.

Upper-adjacency fCWN. For each tuple pi, σq P V ˆ X we create a message. Then we do an
adjacency update. The total number of messages is the sum of each:

ÿ

pi,σqPVˆX

1iPσ `
ÿ

lPNi

1 “
ÿ

σPX
|σ| ` |E |.

We can now finish the proof of proposition 14.

CWN. Every message passes through an MLP MÒ. The memory complexity is the same as the
number of messages plus the data on the node and cliques:

• Time complexity : Op
ř

σPX
|σ|2q.

• Memory complexity : Opn `
ř

σPX
|σ|2q.

fCWN. Only the first messages go through an MLP MÒ.

• Time complexity : Op
ř

σPX
|σ| ` |E |q.

• Memory complexity : Opn `
ř

σPX
|σ|q.

sCWN. Here, MLPs are only applied to node or clique data. The messages are based on boundary
and co-Boundary.

• Time complexity : Op
ř

σPX
|σ|q.

• Memory complexity : Opn ` |X |q.

18
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Summary. For clarity, we summarize below:

Model Time Complexity Memory Complexity

CWN Op
ÿ

σPX
|σ|2q Opn `

ÿ

σPX
|σ|2q

fCWN Op
ÿ

σPX
|σ| ` |E |q Opn `

ÿ

σPX
|σ|q

sCWN Op
ÿ

σPX
|σ|q Opn ` |X |q

B.4 PROOF OF PROPOSITION 18

We show that at every step of Algorithm 1, the nodes in the walk always form a clique.

Notations. Let Walkt denote the nodes in the walk at step t, and neighbort the set of nodes that can
be added next. We claim that:

neighbort “ tl P V, l „ j @j P Walktu,

i.e., neighbort contains exactly the nodes connected to all nodes in the current walk.

Induction.

Base case. Initially, Walk0 “ ris and neighbor0 “ Ni. By definition, Ni contains all nodes
connected to i, i.e., all nodes that form a clique with Walk0. Thus, the property holds at the first
step.

Inductive step. Assume the property holds at step t, and let jnew P neighbort be the next node added
to the walk. The neighbor set is updated as

neighbort`1 “ neighbort X Njnew .

By construction, neighbort`1 contains only nodes connected to jnew and to all nodes in Walkt, i.e.,
nodes connected to all nodes in

Walkt`1 “ Walkt Y tjnewu.

The property holds at step t ` 1.

Conclusion. By induction, all nodes in the walk are connected to each other, i.e., the walk always
forms a clique. Since the walk is a clique, its size cannot exceed ωpGq, the size of the largest clique
in the graph. Therefore, the walk can only stop when neighbort becomes empty, i.e., when there
is no node that can be added to extend the clique. As a result, the clique produced by the walk is
maximal with respect to set inclusion.

B.5 PROOF OF PROPOSITION 19

CliqueWalk builds a maximal clique by growing it step by step. At each step, the algorithm: (i)
samples a neighbor, (ii) intersects the neighborhoods of the current and newly visited node to restrict
the walk, and (iii) continues until either the walk length reaches ωmax or it cannot be expanded.

We can now break down the cost of one walk:

(i) Neighbor sampling. Selecting a random neighbor is constant-time: Op1q.
(ii) Neighborhood intersection. Intersecting two neighborhoods A and B takes Op|A| ` |B|q.

Since each neighborhood is bounded by the maximum degree dmaxpGq, this step costs at most
OpdmaxpGqq.

(iii) Walk length. The maximum length of a walk is bounded by

L ď max
`

ωpGq, ωmax

˘

,

where ωpGq is the maximum clique size of the graph and ωmax is the cutoff imposed by the
algorithm.

19
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Table 4: Number of distinct hashes found by each method on graph classification datasets. Abbrevi-
ated dataset names: ENZ = ENZYMES, FRANK = FRANKENSTEIN, IMDB-B = IMDB-BINARY,
IMDB-M = IMDB-MULTI, PROT = PROTEINS, ALC = alchemy full.

Method DD ENZ FRANK IMDB-B IMDB-M NCI1 PROT ALC
1WL 1178 595 2766 537 387 3837 996 12343
CWL 1178 595 2767 537 387 3837 996 12396
CountClique 1178 547 216 432 309 254 799 23
TopoCount 1178 595 1272 537 387 2188 992 727

The complexity of one CLiqueWalk is thus :

Op

L
ÿ

j“0

dmaxpGqq “ O pdmaxpGq ¨ maxpωpGq, ωmaxqq .

As we launch from each node nwalks walks, the total complexity is

Opn ¨ nwalks ¨ dmaxpGq ¨ maxpωpGq, ωmaxqq .

C MAXIMAL CLIQUE CWL

We propose some experiments and illustrations to better understand the maximal clique CWL and its
differences with WL. See Figure 6. It is known that CWL is more expressive than WL when using
cell lifting methods that preserve the full node and edge sets of the graph (Bodnar et al., 2021a).
However, since we only consider maximal cliques and remove edges from the representation, we no
longer have this guarantee over WL.

We introduce two simple coloring scheme to make sense of CWL expressive power.
Definition 30. The CountClique test hashes the set of all clique lengths.

Definition 31. The TopoCount test assigns a unique color to each node by hashing the set of lengths
of the cliques containing it.

It is clear that CWL is at least as expressive as TopoCount and CountClique.

We empirically compare the expressivity of CWL, WL, and other tests on various datasets. Table 4
shows the number of distinct hashes produced by each method. CWL matches or slightly exceeds
WL in most cases. For several datasets (Dobson & Doig, 2003b; Chen et al., 2019; Orsini et al.,
2015), access to clique neighborhood information allows CWL to distinguish more graphs. For
chemical datasets such as alchemy full, WL schemes produce significantly more hashes than one-
shot methods like TopoCount, highlighting the benefit of multi-layer models on those datasets.

We also evaluate these tests on strongly regular graphs (see Figure 7a and Table 5). We use strongly
regular datasets from https://www.maths.gla.ac.uk/˜es/srgraphs.php (Haemers
& Spence, 2001), which include non-isomorphic strongly regular graphs with up to 64 nodes. For
many strongly regular graph families, clique topology alone is sufficient to distinguish most graphs.
In contrast, 1WL and 3WL fail to discriminate any graphs in these families, which aligns with known
results (Bouritsas et al., 2022; Bodnar et al., 2021a).

Clique against cycle lifting. Figure 7b compares CWL with node and maximal clique lifting against
CWL with node, edge, and cycle lifting. Both approaches achieve similar graph discriminative
power, though they are not directly comparable: in some cases, cliques distinguish more graphs,
while in others, cycles do.
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Figure 6: Illustration of the WL and maximal clique CWL test. At each iteration, every node updates
its color based on its own color and the colors of its neighboring structures (see Steps 1 and 2). After
Step 2, the colors become stable (i.e., invariant under further updates), and the algorithm stops. A
histogram of colors is then computed. Since the two graphs produce identical histograms for WL,
the test cannot distinguish between them, and the WL test is therefore inconclusive. In contrast,
the maximal-clique CWL algorithm yields different histograms for the two graphs, allowing us to
conclude that they are not isomorphic.
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Figure 7: Comparison of Percentage of Unique Graph Hashes on strongly regular datasets: (a)
compare CWL on maximal cliques against other isomorphic tests, (b) compare CWL on maximal
cliques against CWL on node, edge, cycle lifting.

Table 5: Number of graphs in each strongly regular family.

Family Number of graphs
16-6-2-2 2
25-12-5-6 15
26-10-3-4 10
28-12-6-4 4
29-14-6-7 41
35-18-9-9 3854

Family Number of graphs
36-14-4-6 180
40-12-2-4 28
45-12-3-3 78
50-21-8-9 18
64-18-2-6 167

D CLIQUE SAMPLING

Algorithm 2 Bron–Kerbosch

1: procedure BRONKERBOSCH(R,P,X)
2: if P “ H and X “ H then
3: report R as a maximal clique
4: else
5: for each u in a copy of P do
6: P Ð P ztuu

7: Rnew Ð R Y tuu

8: Pnew Ð P X Npuq

9: Xnew Ð X X Npuq

10: BRONKERBOSCH(Rnew, Pnew, Xnew)
11: X Ð X Y tuu

12: end for
13: end if
14: end procedure

A classical approach for enumerating all
maximal cliques is the Bron-Kerbosch
method (Bron & Kerbosch, 1973), explained
in Algorithm 2. R is the current clique be-
ing grown, P contains nodes adjacent to all
vertices in R, and X contains nodes already
processed that are also adjacent to every ver-
tex in R. Clique summarization has been
widely studied (D’Elia et al., 2025). Most of
those approaches modify the Brun-Kerbosch
algorithm to enumerate or sample a subset of
the maximal clique set that verifies specific
properties. For instance, Wang et al. (2013)
prunes branches based on a heuristic to con-
struct a subset of maximal cliques that par-
tially covers all maximal cliques.

Our method, CliqueWalk, is also inspired by
Bron-Kerbosch but differs in two important ways: (i) We sample rather than full enumeration.
CliqueWalk does not attempt to enumerate all maximal cliques but samples a subset of them. There-
fore, (ii) we do not need the X set. We simply grow a clique by iteratively sampling a vertex from
the candidate set P . Conceptually, CliqueWalk performs an upward random walk in the clique com-
plex (see Figure 3). While exact clique sampling might require exploring a geometric number of
recursive branches (see Proposition 17), CliqueWalk runs in linear time with respect to the number
of nodes (see Proposition 19) and efficiently produces summaries of the clique topology with the
following sampling guarantees: (i) The sampling process tends to sample larger cliques. For in-
stance, given a node v and a maximal clique σ containing v, the probability of sampling σ is at most
p|σ| ´ 1q{degpvq. (ii) Performing CliqueWalk with multiple walks per node ensures that each node
is included in several sampled cliques, which is relevant for node-level learning tasks.
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E ABLATIONS

Table 6: Ablation cell input features. Table
report test accuracy after training.

input type size emb sum mean
dataset

Photo 94.7% 94.5% 94.9%
contact-high-school 95.4% 97.6% 7.0%

Cell input feature choice. Table 6 compares
the performance of sCWN on Photo and contact-
primary-school depending on the type of input used.
We observe that size embedding and sum embedding
obtain very similar accuracy, whereas mean embed-
ding provides much worse results on contact-high-
school.
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Figure 8: Accuracy of trained sCWN
model without batchnorm on Photo de-
pending on the number of layers.

Number of layers effects. Figure 8 shows the evo-
lution of the accuracy for deeper models. As depth
increases, test accuracy degrades at some point, in-
dicating that deep models struggle to learn effec-
tively. Training and testing accuracy remain simi-
lar at large depths (not shown in the figure), this de-
cline is unlikely due to over-fitting and is consistent
with the over-smoothing effect known in graph learn-
ing Einizade et al. (2025).

Sampling effects. As in Section 5.4, we compare ex-
act enumeration of maximal cliques with CliqueWalk
sampling using between 1 and 256 walks per node on
contact-primary-school (Figure 9). For sCWN, per-
formance is better with fewer sampled structures, sug-
gesting that excessive redundancy may dilute useful
information, especially for a large number of walks,
where the number of sampled maximal cliques can exceed the number of nodes by a large mar-
gin. In contrast, fCWN remains relatively stable across different sampling rates, indicating that its
message-passing scheme is more robust across different sampling rates.
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Figure 9: Accuracy of CWN and SCCN
at different CliqueWalk sampling rates on
contact-primary-school.

Topological networks (Chodrow et al., 2021; Mas-
trandrea et al., 2015). The contact-high-school and
contact-primary-school datasets record proximity be-
tween students. Hyperedges are created at fixed time
intervals from these interactions. We then project
all interactions into a static graph. In this graph, an
edge links two students if they have interacted at least
once. The resulting graphs are topological complex
networks (See Figures 10a and 10b)

Citation networks. In these datasets, node features
are given by a Bag-of-Words representation of the doc-
uments. Cora and Citeseer are citation networks ex-
tracted from machine learning publications (Sen et al.,
2008). The labels correspond to the research topic of
each paper. The PubMed citation network consists of
articles related to diabetes. (Namata et al., 2012) The
labels indicate the type of diabetes discussed in the ar-
ticle.

Purchase network. The Amazon Photo dataset is a subset of the Amazon co-purchase net-
work (McAuley et al., 2015). In this graph, nodes represent products, and edges connect items
that are frequently purchased together. node features are given by a Bag-of-Words representation
of product reviews, and the labels are the product category. The OGBN-Products dataset follows
the same methodology, but the Bag-of-Words features have been reduced to 100 dimensions using
PCA, providing a more compact representation of the node features.
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(a) (b)

Figure 10: Projected datasets: (a) contact-primary-school and (b) contact-high-school.

Stochastic clique model. It is a special case of Stochastic Block Model (Holland et al., 1983) where
inward probability is set to 1. Graphs are generated by assembling cliques, with nodes inside each
clique fully connected. Each clique is assigned a label, which is inherited by all its nodes, and node
features are generated from a Gaussian distribution with a mean determined by the node label and
a fixed diagonal variance. To introduce topological noise, each node is connected to nodes outside
its clique with a fixed probability, perturbing the clique structure. The task can thus be interpreted
as a form of label denoising. For our experiments reported in table For experiments reported in
Table 1, cliques had random sizes between 10 and 20. Node features had a standard deviation of 2,
and topological noise was such that approximately two out of three neighbors came from outside the
clique. Each clique was assigned one of five possible labels.

Social networks. A network of actors and actresses is constructed from IMDB, where edges indicate
collaboration in the same film. The IMDB-BINARY and IMDB-MULTI datasets (Yanardag & Vish-
wanathan, 2015) consist of the 1-hop neighborhoods around each actor. Graph labels correspond to
the movie genre associated with the actor.

Bioinformatics. The bioinformatics datasets include four widely used molecular and protein graph
collections. MUTAG (Debnath et al., 1991) contains nitroaromatic compounds with 7 different la-
bels indicating mutagenic activity. PROTEINS (Borgwardt et al., 2005) represents protein structures;
the task is to predict if a protein is an enzyme or not. NCI1 and NCI109 (Wale et al., 2008; Sher-
vashidze et al., 2010) are collections of chemical compounds tested for activity against lung cancer
and ovarian cancer cells, respectively. Each dataset is available through the TUDataset (Morris et al.,
2020) repository and is commonly used to benchmark graph-based learning methods.

Remark. Dataset statistics can be found in Table 7. Clique size where approximated using Clique-
Walk for OGBN-Products.

OBGN-Products. We used fixed hyperparameters for all models: a learning rate of 10´3, no
dropout, a hidden dimension of 64, and 3 layers with batch normalisation. The experimental setup
was kept intentionally simple, without node batching. For higher accuracy, we recommend using
larger hidden dimensions, deeper architectures, and node batching, as models with more parameters
and efficient training generally perform better on large datasets.

G MODEL AND LAYER DETAILS

In this section, we describe the layers and model implementations used for our benchmarks.

Throughout, we use the following notation:

• MLP: a 2-layer multilayer perceptron with ReLU activation.
• W: a learnable linear layer.
• H P t0, 1unˆm: the hypergraph incidence matrix.
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Table 7: Dataset statistics for node and graph classification. Reported are the number of nodes,
number of edges, mean degree, and clique statistics (µ: mean size, σ: standard deviation).

Dataset Nodes Edges Mean degree Clique µ Clique σ

Node classification datasets

SCM 6 002 010 276 089 116 46.0 6.51 6.55
Cora 2 708 10 556 7.80 2.37 0.59
PubMed 19 717 88 648 8.99 2.28 0.59
Citeseer 3 327 9 104 5.47 2.26 0.58
Photo 7 650 238 162 62.26 10.75 4.89
Contact-Primary-School 242 16 634 137.47 11.36 2.88
Contact-High-School 327 11 636 71.17 9.28 3.73
OGBN-Products 2 449 029 123 718 024 50.5 8.3 6.6

Graph classification datasets

IMDB-BINARY 19 773 96 531 9.76 7.02 3.80
IMDB-MULTI 19 502 98 903 10.14 7.61 4.30
MUTAG 3 371 3 721 2.21 2.00 0.00
NCI1 122 747 132 753 2.16 2.00 0.04
NCI109 122 494 132 604 2.17 2.00 0.04
Proteins 43 471 81 044 3.73 2.53 0.63

• Dv P Rnˆn, De P Rmˆm: diagonal degree matrices of nodes and hyperedges (cliques):

Dvpi, iq “

m
ÿ

e“1

Hi,e, Depe, eq “

n
ÿ

i“1

Hi,e.

• X : the set of cliques.
• xN

i : features of node i P V .
• xC

σ : features of clique σ P X .

HGNN. We follow (Feng et al., 2019). The layer propagation is:

xN
i Ð WxN

i ` WD
´ 1

2
v HD´1

e HJD
´ 1

2
v WpxN

i q,

where W is a learnable weight matrix, and σp¨q is a non-linear activation function (e.g., ReLU). The
addition of Xplq implements a residual (skip) connection.

CWN. We implemented the layer from Bodnar et al. (2021a):

xC
σ Ð MLP

´

xC
σ `

1

|σ|

ÿ

iPσ

xN
i

¯

,

xN
i Ð WxN

i `
1

|tpj, σq : i, j P σu|

ÿ

pj,σq
i,jPσ

MLP
`

xN
i ` xN

j ` xC
σ

˘

.

fCWN. We implemented the layer:

xC
σ Ð

1

|σ|

ÿ

iPσ

xN
i ,

mi Ð
1

|tσ : σ Q ju|

ÿ

σQj

MLP
`

xN
j ` xC

σ

˘

xN
i Ð WxN

i ` Wmi `
1

|Ni|

ÿ

jPNi

mj .
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sCWN. This model is a simple boundary, co-boundary aggregation. Most of the weights are used
to update clique representation, while node representations are updated from the average of clique
features.

xC
σ Ð MLP

´

WxC
σ `

1

|σ|

ÿ

iPσ

MLPpxN
i q

¯

,

xN
i Ð WxN

i `
1

|tσ P X : i P σu|

ÿ

σQi

xC
σ .

SCCN. We used the TopoModelX (Hajij et al., 2024) implementation of the SCCN layer from (Yang
et al., 2022).

Global architecture. ach model begins with a layer normalization of the input. Each subsequent
layer is composed as follows:

Conv Ñ ReLU Ñ BatchNorm pwith or withoutq Ñ Dropout.

Where Conv can be replaced with any convolutional layer under evaluation (e.g. sCWN, SCCN,
GAT, etc.).

Graph models. We experiment with several standard graph neural networks: Simple Graph Convo-
lution (SGC), Graph Convolutional Network (GCN), GraphSAGE, Graph Attention Network (GAT),
and Graph Isomorphism Network (GIN). For SGC, we use a modified version with shift operator
S :“ D´1A, concatenating x,Sx, . . . ,SKx and feeding the result into an MLP. For the other
models, we use the PyTorch Geometric implementations with standard hyperparameters.

Node classification. The final layer applies a convolution followed by Softmax.

Graph classification. The final layer applies a convolution followed by a global add pooling oper-
ation to aggregate node features into a graph-level embedding. Then, it is followed by Softmax.

H THE USE OF LARGE LANGUAGE MODELS

During the preparation of this work, the authors used ChatGPT to assist with grammar checking and
text polishing. After using this tool, the authors carefully reviewed and edited the content as needed
and take full responsibility for the content of this publication.
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