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ABSTRACT

Graph neural networks (GNNs) are widely used for learning on graphs but are fun-
damentally limited to modeling pairwise relationships. Topological models, such
as simplicial or cell complex networks, extend GNNs to higher-order structures
and achieve stronger expressivity, but they suffer from severe scalability issues
since they require learning over all possible cliques of a given size—a problem
that becomes computationally infeasible on large graphs. In this paper, we study
whether maximal cliques can be exploited efficiently for higher-order graph learn-
ing. We introduce the maximal clique complex, a simplified higher-order structure
that directly encodes maximal cliques of a graph, and show that a simplified cel-
lular Weisfeiler network (SCWN) operating on this complex is as expressive as
the full cellular Weisfeiler-Leman (CWL) test. To address scalability, we propose
CliqueWalk, a biased random walk algorithm that samples cliques efficiently and
scales quasi-linearly with the number of nodes. Building on these ideas, we design
simplified clique-based neural architectures that preserve CWL-level expressivity
while reducing computational and memory costs. Our models achieve compet-
itive performance on both node and graph classification benchmarks, offering a
scalable and theoretically grounded framework for higher-order graph learning.

1 INTRODUCTION

Graphs provide a natural way to represent interactions between entities, and graph neural networks
(GNNs) have become the standard approach for learning on such data (Gilmer et al., 2017 |Kipf]
& Welling| [2017; |Defferrard et al., 2016). GNNs have achieved strong performance in diverse
domains, including social network analysis (Fan et al., 2019), molecular property prediction (Du-
venaud et al.l 2015), and computer vision (Krzywda et al., [2022). However, conventional GNNs
are limited to modeling pairwise interactions between nodes, which constrains their ability to cap-
ture complex multi-way relationships (Battiloro et al., [2024). To address this limitation, recent
work explores higher-order structures such as simplicial complexes (Ebli et al., 2020; Bodnar et al.,
2021b; |[Einizade et al., 2025)), cell complexes (Hajij et al.l |2020; Bodnar et al., 2021a), and hyper-
graphs (Feng et al.; 2019).

Hypergraphs generalize graphs by allowing edges, Graph Maximal Clique Complex
called hyperedges, to connect more than two nodes @)
(Feng et al., [2019). A hyperedge thus represents a o o

03

group interaction, for example, a set of coauthors

of the same paper in a co-authorship network (Wu

et al., [2022). Beyond hypergraphs, cell complexes

provide a general combinatorial framework that or- o
ganizes higher-order structures (Hatcher] 2002)). A o)

cell complex contains cells of different dimensions: o2

nodes (0-cells), edges (1-cells), triangles (2-cells), @)

and so on (Bodnar et al.| 2021a). Simplicial com- O/UO
plexes are a special case of cell complexes in which

all subsets of a cell are also included, ensuring clo-
sure under subset operations (Einizade et al., [2025).
In this setting, entities interact whenever they differ by the addition or deletion of a single node.

Figure 1: Maximal clique complex.
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Several approaches have been proposed to lift graphs into higher-order structures, allowing the use
of simplicial and cell complexes for learning tasks (Bodnar et al., |2021bj [Papillon et al., 2023;
Papamarkou et al., 2024). One of these strategies is the clique lifting, where simplicial or cell
complexes are built by including all cliques of the graph up to a fixed size (e.g., edges or triangles)
(Bodnar et al., [2021a). While effective for capturing higher-order information, these methods are
often computationally expensive and require significant memory resources. Furthermore, the clique
problem is well-known to require algorithms with exponential runtime in the worst case (Cormen
et al., [2022).

In this paper, we address two main questions: (i) Can maximal cliques capture useful higher-order
information? (ii) If so, how can clique-based models be scaled to large graphs? To answer the
first question, we introduce the maximal clique complex (Figure [I), a simplified cell complex that
directly encodes maximal cliques of a graph. This provides a natural link to the cellular Weisfeiler-
Leman (CWL) test (Bodnar et al.,2021a)), and we show that a simplified cellular Weisfeiler network
(sCWN) on this complex is as expressive as the full CWL test. The second question is more chal-
lenging, as enumerating all maximal cliques can take exponential time and becomes infeasible for
large graphs. To overcome this, we propose CliqgueWalk, a biased random walk algorithm that sam-
ples cliques efficiently and scales quasi-linearly with the number of nodes. These sampled cliques
form the basis of our neural architectures, which achieve competitive performance on node and
graph classification benchmarks while remaining scalable to large graphs.

The main contributions of this paper are:

1. We introduce the maximal clique complex, a simplified structure that encodes maximal cliques
of a graph, and show that a simplified CWN on this complex matches the expressivity of the
full CWL test, providing a theoretical foundation for clique-based models.

2. Building on the maximal clique complex, we design a simplified clique-based neural architec-
ture that reduces computational and memory costs while maintaining CWL-level expressivity.

3. Since enumerating all maximal cliques could take exponential runtime, we propose Clique-
Walk, a biased random walk algorithm that efficiently samples maximal cliques. CliqueWalk
scales quasi-linearly with the number of nodes, making clique-based methods applicable to
large graphs.

4. We demonstrate competitive performance on node and graph classification benchmarks. Our
model matches or outperforms the accuracy of existing GNNs and topological models, while
achieving substantial gains in scalability and efficiency.

2 RELATED WORK

The expressive power of GNNs has been extensively studied, with a particular focus on their ability
to distinguish non-isomorphic graphs (Xu et al., |2019; Morris et al.l 2019). It is now established
that GNNs with injective aggregation functions are as powerful as the 1-WL test (Xu et al.,[2019).
Early architectures, such as the graph isomorphism network (GIN) (Xu et al., [2019), are explicitly
designed to match the expressivity of the 1-WL test. However, GIN and related models remain
limited in their ability to capture higher-order interactions (Morris et al., 2019; |[Bouritsas et al.,
2022; |[Feng et al.| [2022), as they rely on local message passing over pairwise connections.

To address these limitations, recent works have extended GNNs to higher-order structures. Message
passing simplicial networks (Bodnar et al, |2021b)) operate on simplicial complexes, exceeding the
expressivity of the 1-WL test and approaching that of 3-WL. CWNs (Bodnar et al.,2021a)) generalize
this idea to arbitrary cell complexes, with message passing defined through boundary, co-boundary,
and adjacency relations. These extensions are formalized by the CWL test, which is strictly more
expressive than 1-WL in specific cases, and have demonstrated strong empirical results, particularly
in molecular graph learning (Bodnar et al., 2021a; |Giusti et al.| |[2023)).

Despite these theoretical advances, a key limitation of simplicial and cell complex models is their
lack of scalability. Constructing higher-order complexes often requires enumerating large numbers
of cliques, which leads to prohibitive memory and time costs. As a result, prior higher-order models,
while more expressive than standard GNNs, cannot be applied efficiently to large-scale graphs. In
contrast, our work introduces the maximal clique complex as a simplified higher-order structure
that preserves CWL-level expressivity while enabling efficient clique-based neural architectures.
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Combined with our CliqueWalk sampling strategy, this provides a scalable approach to higher-order
graph learning that retains strong theoretical guarantees and offers competitive performance.

3 PRELIMINARIES

Notation. Calligraphic letters denote sets, and for a set X’ ,IJX | represents its cardinality. Lowercase
boldface letters, like x, represent vectors. For example, x*' and x% denote node and clique feature
vectors. (P represents a mapping from a set of vectors to a vector, e.g., an aggregation function.

Cell complexes. Cell complexes provide a natural setting for higher-order combinatorial structures.
Definition 1. A regular cell complex (Hansen & Ghrist, 2019} |Bodnar et al.}|20214)) is a topological

space X that can be divided into a collection of subspaces { X }sepy, called cells, where Px is the
set of cells induced by the topological space X. These cells satisfy the following properties:

1. Every x € X has an open neighborhood that intersects only a finite number of cells.

2. For any two cells X, and X, X; N X, # &, if and only if X, is contained in X, i.e., the
closure of X .

3. Each cell is topologically equivalent (homeomorphic) to R™ for some dimension n.

4. For each o € Px, there exists a homeomorphism @ from a closed ball in R™ onto X, where
the restriction of ¢ to the interior of the ball gives a homeomorphism onto the interior of X,.

A graph G = (V, &) can be interpreted as a special case of cell complexes. A graph is a one-
dimensional cell where the vertices V and edges £ correspond to 0-cells and 1-cells, respectively.

Definition 2 (Cell complex adjacencies (Bodnar et al.,[2021a)). Let X be a cell complex and o € Px
a cell. We define the following adjacency relations:

1. Boundary cells B(c): lower-dimensional cells that make up the boundary of o (e.g., the vertices
of an edge).

2. Co-boundary cells C(o): higher-dimensional cells for which o is part of their boundary (e.g.,
an edge incident to a vertex).

3. Lower adjacent cells N (0): cells of the same dimension as o that share at least one boundary
cell with it (e.g., edges that meet at a common vertex).

4. Upper adjacent cells Ny (c): cells of the same dimension as o that both lie on the boundary of
a higher-dimensional cell (e.g., two vertices that are connected by an edge).

WL test. A key challenge in graph theory is the graph isomorphism problem, which concerns de-
ciding whether two graphs have the same structure. Finding exact solutions is often computationally
demanding, so faster approximate techniques, such as graph hashing, are commonly employed. A
classical and widely used technique for graph isomorphism test is the WL test (Leman & Weisfeiler,
1968). The WL test provides an efficient heuristic for the graph isomorphism problem. The formal
definition of the WL test is provided in Appendix [Al Beyond graphs, it can be naturally extended to
regular cell complexes, capturing richer combinatorial structures.

CWL test. The adjacency relations in Definition [2| allow us to define the CWL scheme, which
generalizes the WL test from graphs to higher-dimensional cell complexes.

Definition 3 (CWL scheme (Bodnar et al., [2021a)). Let X be a regular cell complex. The CWL
scheme is defined as follows:

1. Initialization: All cells o € Px are assigned the same initial color.

2. Color refinement: At iteration t + 1, the color of each cell o is updated according to ¢ =
HASH(c, C%(J), cé(g), cjvl(a), cjvT(U)), where HASH is an injective function that combines
the current color of o with the colors of its boundary, co-boundary, and adjacent cells.

3. Termination: The process is repeated until the coloring stabilizes. Two cell complexes are
considered non-isomorphic if their color histograms differ.

The CWL scheme has been proven to be more expressive than the standard WL test (Bodnar et al.,
2021a)) in specific cases. In the following, we introduce the specific structures that will be the focus
of our study. All proofs of theorems and propositions are provided in Appendix
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4 MAXIMAL CLIQUE COMPLEX NEURAL NETWORKS

4.1 MAXIMAL CLIQUE COMPLEXES

We introduce the following structure that we will use for comparing cell models.

Definition 4. Given a graph G = (V, £), the maximal clique complex is defined as:

1. The O-cells correspond to the vertices V of G.
2. The higher-dimensional cells correspond to the maximal cliques of G.

The set of non 0-cells (maximal cliques) is denoted as X.

An example of a maximal clique complex constructed from a graph is shown in Figure[I] If we
impose closure under subset operations, the maximal clique complex becomes the cliqgue com-
plex (Kahlel 2009), that is, the simplicial complex induced by including all subsets of each clique.

An important observation is that the CWL test (Bodnar et al., [2021a) in Definition E] depends only
on the adjacency relations between cells, not on their specific topological nature. Consequently,
CWL applies directly to any structure where the adjacency relations of Definition 2]can be defined,
and the theorems proven for cell complexes extend naturally to maximal clique complexes and other
hierarchical structures.

Theorem 5 (Bodnar et al.| (2021a)). The CWL update rule restricted to boundary and upper adja-
cency messages is equivalent in expressive power to the full CWL update rule.

We also demonstrate that a different restricted version retains the same expressivity.

Theorem 6. The CWL update rule restricted to boundary and co-boundary messages is equivalent
in expressive power to the full CWL update rule.

This restricted scheme is useful in practice, as it leads to more computationally efficient models.

4.2 NEURAL NETWORK MODELS

We now describe several neural network architectures based on the CWL framework. These models
perform message passing along the hierarchical structure of cells, propagating information through
boundary, co-boundary, and adjacency relations.

Definition 7 (CWNs). Following (Bodnar et al., |2021a, Section 4), CWNs aggregate messages
along both upper adjacency and boundary relations (Theorem [3). For a node i and a cell c, the
updates are defined as:

m, (i) = P M xNxE), mp(o) =P M), (1)
jGNT(i),{i,j}CG' JEOT
x — AGG(x),my (i), x5« AGG(xS, mz(0)), )

where x¥ denotes the features of node i, and xC the features of clique o. We write my (i) for the
aggregated message to node 1 from all tuples formed by 1, one of its neighbors, and a clique they
share. Similarly, mp (o) denotes the aggregated message to clique o from all of its nodes.

The architecture in Definition [7] captures interactions among nodes and cells, leveraging both local
and higher-order structural information.

In practice, it is simple and at least as expressive to consider models where we use both the clique
structure and the neighborhood structure from the graph.

Definition 8 (Factored CWNs (fCWN)). A factored version of CWN omits the node’s own features
from the upper adjacency messages and modifies the upper-adjacency update:

me(i) = B Me(x}',x5), ms(c) =P Ms(x]"), my(i) = AGG(me (i), B me(7),
o jee JENT (),
3)

xN — AGG(xN,my (i), x¢ «— AGG(xY, mp(0)). 4)
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By excluding a node’s own features from upper adjacency messages, fCWN removes redundancy,
improves efficiency, and simplifies implementation. Unlike CWN, each node receives messages not
only from the cliques it belongs to but also from cliques containing any of its neighbors. This model
is inspired by the CWN implementation in TopoModelX (Hajij et al.,[2022).

We now introduce a model that scales more efficiently.

Definition 9 (Simplified CWNs (sCWN)). Based on 1 Q2
the restricted CWL update using only boundary and O o
co-boundary messages (Theorem|[6)), we define a sim- 3 O4
plified message passing scheme: 04 O3
. 02
me(i) = @ Mc(x7), mp(o) = P Ms(x}), 5Q
o3t jeo ! 01 O() O7
5
xV = AGG(x)N ,me (i), x5 = AGG(xS, mp(0)).
(6) XUC C XJC x B xN
P m(;(?))', 3 o mg(03) ,0
Figure [2] shows an example of the aggregation func- 4K 4 K
tions in Definition E] This simplified variant, which ," A A
is directly related to the maximal clique complex in - c NO' ) N
Definition ] reduces computational and memory re- %o, Xoy X6 X7

quirements while retaining the expressive power of the o .

full CWL update. Messages are propagated only along ~ Figure 2: Aggregation in sSCWN, restricted
boundary and co-boundary relations, making sSCWN  to boundary and co-boundary relations.
efficient for large complexes.

Proposition 10. The time and memory complexities of the different CWN variants are as follows:

* CWN has time and memory complexity O(n + Yy |c|?).
* fCWN has time complexity O(|E| + . . » |c|) and memory complexity O(n + 3, 1 |c|).
* SCWN has time complexity O(Y . y |c|) and memory complexity O(n + | X|).

Here, n is the number of nodes, X is the set of maximal cliques, and £ is the set of edges. A table of
all complexities can be found in the Appendix|B.3]

Under certain constraints, we can provide expressivity guarantees for these models.

Proposition 11. sCWN and CWN are at most as expressive as CWL. If they use injective aggrega-
tion, they are equally expressive as CWL. fCWN with injective aggregation is at least as expressive
as CWL and WL.

Remark. We conjecture that CWL on maximal cliques is more expressive than WL. A discussion of
its expressive power is provided in Appendix [C|

4.3 CLIQUEWALK

As shown in Theorem [6] using Algorithm 1 CliqueWalk
cliques as higher-order structures
provides the same expressive power
as CWL. However, identifying all

1: procedure CLIQUEWALK(node 7, neighbor map N,
max walk size Wi,qz)

maximal cliques in a graph is com- 2 We}lk < [7]
putationally infeasible, as the clique 3 nelghbor. < Ni
. ’ 4 while neighbor # ¢ and |Walk| < w4, do
enumeration problem can have expo- 5 Choose j € neighbor
nential runtime. 6: Append j to Walk
Proposition 12 (Moon & Moser 7. neighbor « neighbor N AG
(1965)). A graph with n nodes can 8 end while
contain up to 33 maximal cliques. 9 return Walk
10: end procedure

To circumvent this challenge, we pro-
pose a biased random walk method for efficient clique sampling, which we refer to as CliqueWalk.
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Our approach is inspired by existing clique sampling strategies (Bron & Kerboschl (1973} [Tomita
et al., 2006; |Cazals & Karande, 2008). The key idea is to grow cliques incrementally while main-
taining an efficient lookup of candidate nodes that can extend the current clique, continuing until no
further extension is possible. The algorithm is summarized in Algorithm[I] CliqueWalk enables us
to sample a representative subset of cliques without exhaustively enumerating all of them.

Proposition 13. If w,,. > w(G), each random walk generated by CliqueWalk produces a maximal
clique of the graph.

We denote our random walk method as CliqueWalk (nyaik, Wimax )» Where nya specifies the number
of walks sampled per node and wy,x corresponds to maximum size of walks.

Proposition 14. The time complexity of CliqueWalk(naik, Wmax) on a graph G is O(n - Ny -
ey (G) - max(w(G), Wiax)), where n is the number of nodes, dy,(G) is the maximum node degree,
and w(G) is the size of the largest clique in G.

The motivation for using CliqueWalk in learning is that enumerating all cliques is computationally
prohibitive for large graphs. By sampling a sufficiently large number of cliques, we can approximate
the local clique structure effectively. This approach allows models to capture higher-order structural
information efficiently, while achieving performance comparable to, or even better than, full clique
enumeration. Empirical results supporting these claims are presented in the next section.

5 EXPERIMENTS AND RESULTS

In this section, we describe the datasets and experimental setups used for node and graph classifica-
tion tasks. We compare our sSCWN model with: GCN (Kipf & Welling| [2017), GIN (Xu et al.,|2019),
SAGEConv (Hamilton et al.L[2017), SGC (Wu et al.,|2019), HGNN (Feng et al.,2019), SCCN (Yang
et al.| [2022), CWN (Bodnar et al.l [2021a). We additionally present a sensitivity analysis to assess
the robustness of our methodology, along with an ablation study.

5.1 DATASETS

Node classification datasets. We evaluate our models on two topological datasets (contact-primary-
school and contact-high-school) (Chodrow et al.l [2021; Mastrandrea et al., [2015), three citation
networks (Citeseer, Cora, and PubMed) (Sen et al., 2008; Namata et al., [2012), and the Amazon
Photo network (McAuley et al.l 2015} Shchur et al.;|2018)). In addition, we propose a new synthetic
dataset, the stochastic clique model (SCM), derived from the stochastic block model (SBM).

Stochastic clique model. It is a special case of Stochastic Block Model (Holland et al.,|1983) where
inward probability is set to 1. Graphs are generated by assembling cliques, with nodes inside each
clique fully connected. Each clique is assigned a label, which is inherited by all its nodes, and node
features are generated from a Gaussian distribution with a mean determined by the node label and a
fixed diagonal variance. To introduce topological noise, each node is connected to nodes outside its
clique with a fixed probability, perturbing the clique structure. The task can thus be interpreted as a
form of label denoising.

Graph classification datasets. We perform experiments on two social network datasets (IMDB-
BINARY, IMDB-MULTI) (Yanardag & Vishwanathan,2015) and four molecular datasets (MUTAG,
PROTEINS, NCI1, NCI109) (Borgwardt et al., 2005; |[Schomburg et al., |2004; Dobson & Doig,
2003a; /Wale et al., [2008}; |Shervashidze et al.,[2010) from the TUDataset (Morris et al., [2020).

Synthetic cliques. To compare the inference time and memory footprint of clique-based methods,
we also construct a synthetic dataset of isolated cliques. This dataset allows us to systematically
evaluate the computational scaling of CWN models with respect to clique size.

5.2 EXPERIMENTAL SETUP

Experiments. For node classification, we hold out 20% of the nodes as a final test set, which is
used only once for reporting the final performance. The remaining 80% of the nodes are further
split into 60% for training, 20% for validation, and 20% for an internal test set used during hyper-
parameter optimization. During training, we select the model checkpoint that achieves the highest
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Table 1: Node classification accuracy (%) with standard deviation. Best results are in bold, second
best are underlined. HighSchool = contact-high-school, PrimarySchool = contact-primary-school.
GNN:gs, & simplicial neural networks, ¢ hypergraph neural networks, "« CWNs, and + sCWN (ours).

Model Citeseer Cora Photo PubMed HighSchool PrimarySchool SCM
¢ GCN 73.7T+076 88.7T+061 93.9+027 88.3+0.33 82.5412 281488 OOM
4 GAT 722,015  8T5i12 9374006  8T.24083  7.35:43 8471 0OM
¢ GIN 69.3+1.1 86.2+0.62 88.0+2.2 86.7+0.42 85.4411 38.8411 OOM
‘ SAGEConv 72-4i1-2 88.7i0_99 95'0i0-29 89-5i0.6 7-5i4-8 6.12i4_5 OOM
¢ SGC 73.T+074 88.4+0.36 89.840.39 89.240.21 6.3+4.1 3.57+3.0 65.6+0.01
SCCN 46.441 .4 64.441.9 64.842.6 73.440.7 93.0+25 739445 OOM
HGNN 72 9+1 1 88 5+0 9 94 2i0.5 88 5+0 39 93 5+3 3 74 3+7 3 68 1+D 3
" CWN 720116  Slliio 9471057 8931035  94.6400 90,10 OOM
4 fCWN 72.541.4 88.140.79 95.140.35 89.41¢.31 97 7+2 1 88.849.8 OOM
sCWN 729413 8731087 95.31030 89.71035 96.042.4 86.444.4 T7.7+0.05

validation accuracy and report its accuracy on the final test set. In graph classification, we follow the
experimental protocol of Xu et al.| (2019)). Specifically, we perform 10-fold cross-validation on all
datasets, report the mean accuracy across folds at each epoch, and select the epoch with the highest
mean accuracy for final evaluation.

Implementation details. In all experiments, we use the same architecture and swap only the con-
volution module for the method under evaluation. Each model is trained both with and without
batch normalization, and we report results using the configuration that performs best. For all cell
and hypergraph models on node or graph classification, we use the CliqueWalk lifting procedure
with 8 walks per node, and initialize clique features using clique length. Cliques are sampled once
and then kept fixed throughout training (no resampling). We select 8 walks as this provides a good
tradeoff between accuracy and runtime across datasets. No further hyperparameter tuning regarding
CliqueWalk is performed to ensure fair comparison.

For node classification, we perform a grid search over learning rate {10~2, 10~3}, number of layers
{2, 4}, hidden dimension {32, 64}, and dropout {0, 0.2, 0.5}. Models are trained for 200 epochs on
standard datasets and 500 epochs on topological ones with each grid search repeated five times
using different random seeds. Final evaluation is based on 20 independent runs with new seeds.
For graph classification, all models use five layers (including the input convolution) and a hidden
dimension of 64, while grid search is limited to dropout {0, 0.5} and batch size {32, 128}.

5.3 RESULTS AND DISCUSSION

Node classification. Table [I|reports the results for the node classification task. The SCM dataset
contains approximately 3M nodes and 138M edges, making it significantly larger and more chal-
lenging than standard benchmarks. In this specific case, we only use 2 random walks in CliqueWalk.
Additional statistics for all datasets are provided in Table[6]in Appendix

On topological datasets such as contact-high-school and contact-primary-school, models leveraging
topological features consistently outperform classical GNNs (Madhu & Chepuri, 2023). On citation
benchmarks like Citeseer and Cora, differences are smaller, and topological methods do not show
a clear advantage. A notable result is observed on SCM: edge-based models fail, except SGC,
with out-of-memory (OOM) errors due to the large number of edges, whereas clique-based models
succeed because the number of sampled cliques is far smaller. This highlights the scalability of
CliqueWalk and shows that clique-based models can handle datasets infeasible for standard GNNs.

Graph classification. Table [2| summarizes the results of the graph classification task. On social
network datasets such as IMDB-B and IMDB-M, topological models achieve good performance,
consistent with prior work (Bodnar et al.l [2021a)). In contrast, on molecular datasets, their per-
formance is generally lower, suggesting that clique-based features are less informative for chemi-
cal graph structures. This discrepancy highlights that the benefits of higher-order information are

!GNNs converge more slowly on topological datasets, hence the larger number of epochs.
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Table 2: Graph classification accuracy (%) with standard deviation. Best results are in bold, second
best are underlined. ¢ GNNs, @ hypergraph neural networks, * CWNs, and + sCWN (ours).

Model IMDB-B IMDB-M MUTAG NCI1 NCI109 PROTEINS

¢ GCN 74.3146 524141 84.118s 804118 76.9117 77.045.1

¢ GAT 74.843.0 51.643.7 84.613.6 79.643.1 73.841.3 76.543.2

¢ GIN 721438 497434 894478 80.8491 74.812.4 75.843.4

’ SAGEConv 74'3i4-1 52'9i4-0 84.6i9_5 81‘5i1.8 78'0i1-5 76'3i4-5

HGNN 75.54143 5234458 86.215.2 79.2431 76.241.9 76.543.9
"« CWN 66 0i7 8 50 5i3 4 85~1i7 3 63 7ir1 9 63 lig 0 77 Oig 4
" fCWN 71'9i4-1 52~8i2.6 85~1i8.1 79'212-4 62~3i4.5 75'9i3-3
sCWN 75'0i4-5 52'3i4.2 85-7i8,2 663i89 64.1i2'g 77.5453‘5
Inference Time vs. Clique Size Memory Usage vs. Clique Size
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(a) Inference time with growing cliques. (b) Memory footprint with growing cliques.

Figure 3: Comparison of CWN, sCWN, and fCWN models with increasing clique size: (a) inference
time, (b) memory footprint in number of elements in memory.

domain-dependent: social networks naturally contain larger and more meaningful cliques, whereas
molecular graphs are often dominated by small motifs such as functional groups, where clique in-
formation seems to provide less meaningful information.

Remark. Across both node and graph classification, topological models perform better on datasets
with larger cliques. Table[6]in Appendix [D]reports the average clique size of each dataset, showing
a clear correlation between larger cliques and stronger performance of topological models.

5.4 SENSITIVITY ANALYSIS AND ABLATION STUDY

Scalability of CWN models. Figureillustrates how CWN, fCWN, and sCWN scale with increas-
ing clique size. Consistent with Proposition both f{CWN and sCWN require substantially less
memory and runtime than CWN. Among them, sSCWN achieves the best efficiency, confirming that
restricting message passing to boundary and co-boundary relations provides a favorable tradeoff
between expressivity and computational cost.

Sampling effect for CliqueWalk. We compare exact enumeration of maximal cliques with Clique-
Walk sampling at rates ranging from 1 to 256 walks per node (Figure[a). Two clear patterns emerge:
(i) for the cell model, performance is highest with fewer sampled structures, suggesting that exces-
sive redundancy may dilute useful information; and (if) for the simplicial model, there exists a sweet
spot, where too few samples limit coverage, but sampling beyond a certain point offers no benefit.

CliqueWalk compute time. We compare CliqueWalk with 8 and 64 walks against exact clique enu-
meration and triangle-based simplicial complex lifting (Figure [b). Across all datasets, CliqueWalk
consistently achieves substantially lower runtimes. Even with 64 walks per node, it remains close to
an order of magnitude faster than both exact clique computation and simplicial lifting, while main-
taining competitive accuracy. These results highlight the efficiency and scalability of the method,
showing that CliqueWalk can provide a practical alternative to more costly exact approaches.
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(a) Accuracy of CWN and SCCN at different Clique- (b) Computation time of different lifting strategies
Walk sampling rates on contact-primary-school. measured on an NVIDIA RTX 3090 GPU.

Figure 4: Sensitivity analysis of CliqueWalk. (a) Accuracy as a function of the number of sampled
walks. (b) Runtime comparison between CliqueWalk and exact lifting methods. Cor = Cora, Cit =
Citeseer, Pub = PubMed, HiS = contact-high-school, PrS = contact-primary-school, Pho = Photo.

Ablation study, resampling in CliqueWalk. Ta-  Table 3: Ablation sampling CliqueWalk.
ble 3] compares the performance when using 8

walk CliqueWalk with or without re-sampling at  g¢rategy PrimarySchool  Photo
each training epoch on the contact-primary-school
and Photo datasets. We observe that the results
are slightly better across both datasets when re-
sampling, while it introduces a slight increase in run-
time (see PrS and Pho in Figure[db). This suggests that using re-sampling can be a nice way to trade
better generalization against computational cost.

Re-sampling 87.1433 95.440.44
No re-sampling 86.4+4.4 95.340.39

5.5 LIMITATIONS

While our work establishes a scalable framework for clique-based higher-order learning, it has some
limitations. First, we restrict our evaluation to node and graph classification tasks; extending the
approach to other settings, such as hyperedge prediction, link prediction, or generative modeling,
remains an open direction. Second, our method does not explicitly expand the receptive field of
nodes, and thus may not fully capture long-range dependencies compared to approaches that in-
corporate multi-hop information. Finally, we focus exclusively on clique-based sampling strategies,
whereas exploring alternative lifting procedures or hybrid strategies could further improve efficiency
and generalization. Addressing these limitations offers promising avenues for future research.

6 CONCLUSION

We introduced the maximal clique complex as a simplified higher-order structure that connects
clique-based representations to the CWL test, and showed that a SCWN operating on this complex
achieves CWL-level expressivity while remaining computationally efficient. To address scalability,
we proposed CliqueWalk, a biased random walk algorithm that samples cliques efficiently and scales
quasi-linearly with the number of nodes. Together, these contributions enable the design of clique-
based neural architectures that are both expressive and scalable. Extensive experiments on node
and graph classification benchmarks demonstrate that our models achieve competitive or superior
performance compared to GNNs and other higher-order approaches, while maintaining substantially
lower memory and runtime requirements. This work establishes random walk clique-based lifting
as a practical path toward scalable higher-order graph learning. It opens the door for future research
on efficient sampling strategies and domain-specific applications.
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REPRODUCIBILITY STATEMENT

For the developed theoretical results, we have clearly mentioned the assumptions, and complete
proofs are given in Appendix [B] For the experiments, we use open-source or synthetic data, and we
provide a detailed description in Appendix D] For the model implementation, we provide implemen-
tation details in Appendix [E] and the code will be open-sourced upon acceptance.
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A WEISFEILER-LEMAN GRAPH [SOMORPHISM TEST

Definition 15. Ler A(-) and B(+) be graph hashing functions. We say that A is more expressive than
B if, for any pair of graphs G and G', if the following condition holds:

B(G) # B(@') = A(G) # AG). )

Intuitively, a more expressive hashing can distinguish a wider range of non-isomorphic graphs.

A classical and widely used technique for graph isomorphism test is the Weisfeiler—Leman (WL) test
(Leman & Weisfeiler, [1968)), which is based on iterative color refinement:

Definition 16. The WL test constructs, in an iterative manner, a mapping c from the nodes of a
graph to a finite set of colors as follows:

1. Initialization: All nodes are assigned the same initial color.

2. Color refinement: At iteration t + 1, the color of each node 1 is updated according to Cf+1 =

HASH(c!, ficid~ i}}), where j ~ i denotes that node j is adjacent to node i, and HASH is
an injective function.

3. Termination: The process continues until the coloring no longer changes. Two graphs are
considered non-isomorphic if their color histograms differ; otherwise, the test does not provide
a conclusive answer.

The WL test provides an efficient heuristic for the graph isomorphism problem (Huang & Villar,
2021).

B PROOFS

B.1 PROOF OF THEOREM[@]

First, we introduce the same notations, definitions, and propositions as in (Bodnar et al., 2021a) to
manipulate cellular coloring.

Definition 17. A cellular coloring is a function c that maps a cell complex X and one of its cells o
t0 a finite set (color set). We denote this color as cX.

Definition 18. Ler X, Y be two cell complexes and c a coloring. We say that X andY are c-similar,
denote as X = Y if{{cX, oce X)) ={cY, 7eY}. Otherwise, we have c* # cY.
Definition 19. A coloring c is said to refine another coloring d, denoted ¢ < d, if for all cell
complexes X, Y and all 0 € X, 7 € Y, we have:

X _ Y X _ Y
g =c = d) =d;.

If both c < d and d  c, then the two colorings are said to be equivalent, denoted c = d.
Proposition 20. Let X, Y be cell complexes with A € X and B € Y. Consider two colorings ¢, d

such that ¢ < d.

flez, oeA} = {{cf, 7eBf} = {d. oeA}} = {4, reB}

Proof. Let’s suppose that {{cX, o€ A}} =
f : A — B such that forall o € A, cf = c}f(a).

Asccd df =dY e {{dY, oeA} = {(d¥, TeB}. O

{c¥Y, 7€ B}}. It means that there exist a bijection

Corollary 21. If ¢ < d, then for all cell complexes X,Y,

K=Y — d¥=4d".

All non-distinguished cell complexes by c are not distinguished by d. In other words, c is a more
powerful isomorphic test than d.
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Proof of Theorem @ Let’s show that CWL with coloring HASH(CG, ¢, ck) is as powerful as
HASH(c!, ck, CT) Let’s denote as a® the colouring at step ¢ usmg CWL with HASH(c},, ¢, ¢} ) and

b* the one using HASH(c!, ¢&s, k). We know that the coloring a” is as powerful as the original CWL
(Theorem 7, in/Bodnar et al.|(2021a)). Since b’ uses a subset of the CWL coloring relationships, it
can be shown by induction that it is less powerful than the original CWL. Therefore, we have a < .

Let’s show that b < a.

We show by induction that b?* < af for all t € N.

Base case. b° < a as they follow the same color initialization scheme.

Inductive step. Assume b*'  a'. We prove that b**+2  g+1,

let (01,02) € X x Y such that 22 = p2-+2. By construction,

R o) = B o), B (o) = B (o),

as ba' ' (01) = b2 (02), there exist a bijective map f : C(o1) — C(02) that preserve the b*+1

coloring ie b?+1 = bff(j)l for 7 € C(ay).

2t+1 _ 32t+1
by =10,

As b2 = p2tL we have b (1) = b2 (f(7)), ie.,

HOK
{03, yeB(M) = b, veB(f(m)}.

We can add the color of 7 on both sides, the multisets would still stay equal:
{3 07),  ve Bl = {03,67), veB(f(n)}
As this is true for all 7 in (o), we can take the union:

U €6, veB@h= [J (036, veBFE),

TeC(o1) TeC(o1)
S HeEE), reClo)y e BIY = (02, E2), e Clo),y e BU()Y,
as b2t = b2t and f is bijective, the right term can be simplified:
{{(bita b7'), TeC(o1),y e BF(N)} = {3, b5(,), 7eClor),veB(f(n)}
= {(63,05"), d€Cloz),y e B},

ie.,

(2,020, 7 eClo) e B = {28, 6 Cloa), < BO.
Thus b3"(01) = bi*(02). Using the induction hypothesis b** < a* with proposition 20| we have

a,, = al, ai(o1) =ai(o2) ag(or) = ag(oz) ag(o1) = ag(o),

Le.,
t+1 _ t+1
Ugi ™ = Qg
From our induction ?* < a! for all ¢ € N, hence b < a. OJ

B.2 PROOF OF PROPOSITION [I]]

We introduce a new isomorphism test, f{CWL, associated with fCWN, and prove that fCWL is at
least as expressive as CWL and 1-WL on the maximal clique complex.

Once this is established, the remaining correspondences between models with injective aggregation
and their associated tests follow identically from the proof of equivalence between CWL and CWN
in (Bodnar et al., [2021a)).

Equivalence of fCWL and CWL. We define the colors coming from aggregated clique messages:
envy = H(eeey),  GeN@)}-
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Definition 22. Let (V, X) be a maximal clique complex. The fCWL scheme is defined as follows:

1. Initialization: All nodes and cliques are assigned the same initial color.
2. Color refinement: At iteration t + 1, the color of each clique o is updated according to

CZ.+1 = HASH(CZ., C%(O’) ) .
The color of each node i is updated according to
CEH = HASH(CL Cé’(i)v Cj\/(i));

where HASH is an injective function that combines the current color of o with the colors of
each multiset.

3. Termination: The process is repeated until the coloring stabilizes. Two cell complexes are
considered non-isomorphic if their color histograms differ.

Proposition 23. fCWL is more expressive than sCWL.

Proof. (V1,X1) and (V2, X2) correspond to two maximal clique complexes.
Let a® denote the coloring at step ¢ using sSCWL, and b’ the coloring at step t using fCWL.
We prove by induction that b* < a’.

0 since both follow the same initialization scheme.

Base case. b° C a
Induction step. Assume b* < a. We show that b'*t! < g +1,

On cliques. Let (01,02) € X1 x X; such that bf;lrl = bgl. By construction, we have:

bgl = bfm, b%(al) = st(UQ)
Using Proposition [20f with the induction hypothesis, it follows that:

afﬁ = CLZ—27 atB(al) = atB(U2)7

t+1 t+1

Le,as" =ag .

On nodes. Let (iy,iz) € V1 x Vy such that b = b} *!. Then:

t t ¢ ¢ ¢ t
bil = bi27 bC(ll) = bC(i2)’ bN(’Ll) = bN(lQ)
Again, by Proposition [20|and the induction hypothesis, we obtain:

t _ t t _ .t
a”il - a’iQ’ aC(il) - aC(i2)’

ie., aZrl = afjl.
By induction, b* < a! forall £ € N, hence b < a. O

Since sSCWL is as expressive as CWL (Theorem @), it follows as a corollary that fCWL is at least as
expressive than CWL.

Proposition 24. fCWL is more expressive than WL

Proof. (V1, &) and (V2, X2) correspond to two maximal clique complexes.

Let a® denote the coloring of nodes at step ¢ using WL, and b® the coloring of the maximal clique
complexes at step ¢ using f{CWL.

We prove by induction that b* < a' on the nodes.

0 since have constant colors.

Base case. 1°  a
Induction step. Assume b* < a’ on nodes. We show that b'*! < a’*! on nodes.

Let (i1,42) € V4 x Vs, such that b‘;l“ = bfjl,
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We have:
i 3 i t t t
bi, = by by = Ocgin)s  On(in) = On(in)-
Using the induction hypothesis: a} = af,.

the first component, we get:

{oh, e NG = {{b], jeN(ia)}},
i.e., by using proposition @] and the induction hypothesis:

{{af, GeN@} = {{a}, jeN)}}

as bj\/(m = bj\/(h), we can only consider the color of

From WL update, we get a/™' = a}t".
By induction. b¢ < ot forall ¢ € N, thus b € a. O

B.3 PROOF OF PROPOSITION (]

In this section, we analyse the theoretical time and memory complexity of CWN, f{CWN, and sCWN.
We first remind some notations:

* V represents the set of nodes

* n is the number of nodes of our graphs

* N represents the neighborhood of node i.
e X is the set of maximal cliques.

We now detail one by one each message passing scheme’s complexity.

Boundary messages. Each node in the graph sends a message to the clique containing it. The total
number of messages sent is:

(i) eVx X, icoll= Y Llio= D> Dlica= ). lol.

(i,0)eVx X cEXIEV geX

Co-boundary messages. Each clique sends a message to each node it contains. The total number
of messages sent is:

o) evxx, ical= Yol

oeX

Upper-adjacency CWN. Each node ¢ aggregate message for all tuple (j, o) such that {7, j} < o.
The total number of messages sent is:

ZH(]’O) eV xX: {17.7} € U}| = Z Z Z l{i,j}ca

eV i€V jeV oeX
=2 2. 2 Liideo
oeX eV jev
= D G ) eV i j} < o)
geX

U;( (|g|)

o loP = o]
=2 =5

oeX

Upper-adjacency fCWN. For each tuple (i,0) € V x X we create a message. Then we do an
adjacency update. The total number of messages is the sum of each:

Y Lieot D 1= lol+ €l

(i,0)EV XX leN; oEX
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We can now finish the proof of proposition[I0]

CWN. Every message passes through an MLP Mj. The memory complexity is the same as the
number of messages plus the data on the node and cliques:

* Time complexity : O( > |o|?).
oeX
» Memory complexity : O(n + Y. |o|?).
ceX

fCWN. Only the first messages go through an MLP M;.

* Time complexity : O( Y] || + |€]).
oeX
¢ Memory complexity : O(n + Y. |o|).
oEX

sCWN. Here, MLPs are only applied to node or clique data. The messages are based on boundary
and co-Boundary.

* Time complexity : O( 3 |o]).

geX
¢ Memory complexity : O(n + | X]).

Summary. For clarity, we summarize below:

Model Time Complexity Memory Complexity

CWN oY |ol?) On+ . o)
geX geX
fCWN o> o[ +1E) O+ Y. lol)
geX ocEX
SCWN O > o]) O(n +|X1)
oceX

B.4 PROOF OF PROPOSITION

We show that at every step of Algorithm I} the nodes in the walk always form a clique.
Notations. Let Walk; denote the nodes in the walk at step ¢, and neighbor, the set of nodes that can
be added next. We claim that:
neighbor, = {l eV, [~ jVje Walk;},
i.e., neighbor, contains exactly the nodes connected to all nodes in the current walk.

Induction.

Base case. Initially, Walky = [i] and neighbor, = N;. By definition, V; contains all nodes
connected to i, i.e., all nodes that form a clique with Walky. Thus, the property holds at the first
step.

Inductive step. Assume the property holds at step ¢, and let j,.,, € neighbor, be the next node added
to the walk. The neighbor set is updated as
neighbor, , ; = neighbor, N\, .

By construction, neighbor, , ; contains only nodes connected to jyew and to all nodes in Walky, i.e.,
nodes connected to all nodes in

Walk; 1 = Walks U {Jnew }-
The property holds at step ¢ + 1.

Conclusion. By induction, all nodes in the walk are connected to each other, i.e., the walk always
forms a clique. Since the walk is a clique, its size cannot exceed w(G), the size of the largest clique
in the graph. Therefore, the walk can only stop when neighbor, becomes empty, i.e., when there
is no node that can be added to extend the clique. As a result, the clique produced by the walk is
maximal with respect to set inclusion.
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Table 4: Number of distinct hashes found by each method on graph classification datasets. Abbrevi-
ated dataset names: ENZ = ENZYMES, FRANK = FRANKENSTEIN, IMDB-B = IMDB-BINARY,
IMDB-M = IMDB-MULTI, PROT = PROTEINS, ALC = alchemy_full.

Method DD ENZ FRANK IMDB-B IMDB-M NCI1 PROT ALC
IWL 1178 595 2766 537 387 3837 996 12343
CWL 1178 595 2767 537 387 3837 996 12396
CountClique 1178 547 216 432 309 254 799 23
TopoCount 1178 595 1272 537 387 2188 992 727

B.5 PROOF OF PROPOSITION 4]

CliqueWalk builds a maximal clique by growing it step by step. At each step, the algorithm: (i)
samples a neighbor, (ii) intersects the neighborhoods of the current and newly visited node to restrict
the walk, and (iii) continues until either the walk length reaches wp,x or it cannot be expanded.

‘We can now break down the cost of one walk:

(i) Neighbor sampling. Selecting a random neighbor is constant-time: O(1).
(il) Neighborhood intersection. Intersecting two neighborhoods A and B takes O(|A| + |B|).
Since each neighborhood is bounded by the maximum degree dy,.x(G), this step costs at most

O(dmax(G)).
(iii) Walk length. The maximum length of a walk is bounded by

L < max(w(G), wmax)7
where w(G) is the maximum clique size of the graph and wy,ax is the cutoff imposed by the

algorithm.

The complexity of one CLiqueWalk is thus :
L
O max(c)) = O (dmax(G) - max(w(G), Winay ) -
j=0

As we launch from each node nyaxs Walks, the total complexity is

O(TL * Nwalks * dmax(G) : max(w(G), wmax)) . D

C MaAXiMAL CLIQUE CWL

It is known that CWL is more expressive than WL when using cell lifting methods that preserve
the full node and edge sets of the graph (Bodnar et al., 2021a). However, since we only consider
maximal cliques and remove edges from the representation, we no longer have this guarantee over
WL.

We introduce two simple coloring scheme to make sense of CWL expressive power.
Definition 25. The CountClique test hashes the set of all clique lengths.

Definition 26. The TopoCount test assigns a unique color to each node by hashing the set of lengths
of the cliques containing it.

It is clear that CWL is at least as expressive as TopoCount and CountClique.

We empirically compare the expressivity of CWL, WL, and other tests on various datasets. Table ]
shows the number of distinct hashes produced by each method. CWL matches or slightly exceeds
WL in most cases. For several datasets (Dobson & Doigl 2003bj (Chen et al., 2019; Orsini et al.}
2015)), access to clique neighborhood information allows CWL to distinguish more graphs. For
chemical datasets such as alchemy_full, WL schemes produce significantly more hashes than one-
shot methods like TopoCount, highlighting the benefit of multi-layer models on those datasets.
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Percentage of Unique Graph Hashes
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Figure 5: Comparison of Percentage of Unique Graph Hashes on strongly regular datasets

Table 5: Number of graphs in each strongly regular family.

Family Number of graphs Family Number of graphs

16-6-2-2 2

36-14-4-6 180
25-12:5-6 15

40-12-2-4 28
26-10-3-4 10

451233 78
28-12-6-4 4

50-21-8-9 18
221461 4l 64-18-2-6 167
35-18-9-9 3854

We also evaluate these tests on strongly regular graphs (see Figure[5]and Table[3). We use strongly
regular datasets from https://www.maths.gla.ac.uk/~es/srgraphs.php
2001), which include non-isomorphic strongly regular graphs with up to 64 nodes. For
many strongly regular graph families, clique topology alone is sufficient to distinguish most graphs.
In contrast, IWL and 3WL fail to discriminate any graphs in these families, which aligns with known
results (Bouritsas et al., 2022} [Bodnar et al., 2021al).

D DATASETS

Topological networks (Chodrow et al., 2021} Mastrandrea et al., [2015). The contact-high-school
and contact-primary-school datasets record proximity between students. Hyperedges are created at
fixed time intervals from these interactions. We then project all interactions into a static graph. In
this graph, an edge links two students if they have interacted at least once. The resulting graphs are
topological complex networks (See Figures [6a] and [6b)

Citation networks. In these datasets, node features are given by a Bag-of-Words representation of
the documents. Cora and Citeseer are citation networks extracted from machine learning publica-
tions 2008). The labels correspond to the research topic of each paper. The PubMed
citation network consists of articles related to diabetes. (Namata et al, 2012) The labels indicate the
type of diabetes discussed in the article.

Purchase network. The Amazon Photo dataset is a subset of the Amazon co-purchase net-
work (McAuley et al 2015). In this graph, nodes represent products, and edges connect items
that are frequently purchased together. node features are given by a Bag-of-Words representation of
product reviews, and the labels are the product category.

Stochastic clique model. It is a special case of Stochastic Block Model (Holland et al.,[1983) where
inward probability is set to 1. Graphs are generated by assembling cliques, with nodes inside each
clique fully connected. Each clique is assigned a label, which is inherited by all its nodes, and node
features are generated from a Gaussian distribution with a mean determined by the node label and
a fixed diagonal variance. To introduce topological noise, each node is connected to nodes outside
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(@ (b)

Figure 6: Projected datasets: (a) contact-primary-school and (b) contact-high-school.

Table 6: Dataset statistics for node and graph classification. Reported are the number of nodes,
number of edges, mean degree, and clique statistics (¢: mean size, o standard deviation).

Dataset Nodes Edges Mean degree Clique ;1 Clique o

Node classification datasets

SCM 3001005 138044558 46.0 6.51 6.55
Cora 2708 10556 7.80 2.37 0.59
PubMed 19717 88648 8.99 2.28 0.59
Citeseer 3327 9104 5.47 2.26 0.58
Photo 7650 238162 62.26 10.75 4.89
Contact-Primary-School 242 16 634 137.47 11.36 2.88
Contact-High-School 327 11636 71.17 9.28 3.73

Graph classification datasets

IMDB-BINARY 19773 96531 9.76 7.02 3.80
IMDB-MULTI 19502 98903 10.14 7.61 4.30
MUTAG 3371 3721 221 2.00 0.00
NCI1 122747 132753 2.16 2.00 0.04
NCI109 122494 132 604 2.17 2.00 0.04
Proteins 43471 81044 3.73 2.53 0.63

its clique with a fixed probability, perturbing the clique structure. The task can thus be interpreted
as a form of label denoising. For our experiments reported in table For experiments reported in
Table|[T] cliques had random sizes between 10 and 20. Node features had a standard deviation of 2,
and topological noise was such that approximately two out of three neighbors came from outside the
clique. Each clique was assigned one of five possible labels.

Social networks. A network of actors and actresses is constructed from IMDB, where edges indicate
collaboration in the same film. The IMDB-BINARY and IMDB-MULTI datasets (Yanardag & Vish-|
consist of the 1-hop neighborhoods around each actor. Graph labels correspond to
the movie genre associated with the actor.

Bioinformatics. The bioinformatics datasets include four widely used molecular and protein graph
collections. MUTAG (Debnath et al, [1991)) contains nitroaromatic compounds with 7 different la-
bels indicating mutagenic activity. PROTEINS (Borgwardt et al.} 2005)) represents protein structures;
the task is to predict if a protein is an enzyme or not. NCII and NCI109 (Wale et al, 2008}, [Sher-
vashidze et al.,[2010) are collections of chemical compounds tested for activity against lung cancer
and ovarian cancer cells, respectively. Each dataset is available through the TUDataset
[2020) repository and is commonly used to benchmark graph-based learning methods.

Remark. Dataset statistics can be found in Table[d
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E MODEL AND LAYER DETAILS

In this section, we describe the layers and model implementations used for our benchmarks.
Throughout, we use the following notation:

e MLP: a 2-layer multilayer perceptron with ReL.U activation.

* W: alearnable linear layer.

e H e {0,1}"*™: the hypergraph incidence matrix.
e D, e R"*" D, € R™*™: diagonal degree matrices of nodes and hyperedges (cliques):

D, (i,i) = i H;., D.(ee)= i H,..
e=1 1=1

e X' the set of cliques.
 xX: features of node i € V.
 x$': features of clique o € X

HGNN. We follow (Feng et al., 2019). The layer propagation is:

x) «— Wx}' + WD, *HD_'H'D, *W(x}),
where W is a learnable weight matrix, and o (+) is a non-linear activation function (e.g., ReLU). The
addition of XV implements a residual (skip) connection.

CWN. We implemented the layer from Bodnar et al.| (2021a):

1
xg <—MLP<X§ + ﬂfoV),
ol “
1€0
1
{G,0) 4,5 € o}

Xév <—fo\[ + Z MLP(XﬁV +X§V +xg).

(4,9)
1,JEC

fCWN. This variant is inspired by implementations in TopoModelX (Hajij et al.,[2024):

1

€0
1

ERTET D IMLP(x) +x5)

o3j

m; <

1
xV — Wx¥ + Wm; + —— Z m;.
SCWN. This model is a simple boundary, co-boundary aggregation. Most of the weights are used

to update clique representation, while node representations are updated from the average of clique
features.

1
xC < MLP (Wxg o 3 MLP(x )),
gl “
1€E0
1

N N C
TN T oexticq) 27

SCCN. We used the TopoModelX (Hajij et al., 2024) implementation of the SCCN layer from (Yang
et al.l [2022).

Global architecture. Each layer of all models is composed as follows:
Conv — ReLU — BatchNorm (with or without) — Dropout.

Node classification. The final layer applies a convolution followed by Softmax.

Graph classification. The final layer applies a convolution followed by a global add pooling oper-
ation to aggregate node features into a graph-level embedding. Then, it is followed by Softmax.
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F THE USE OF LARGE LANGUAGE MODELS

During the preparation of this work, the authors used ChatGPT to assist with grammar checking and
text polishing. After using this tool, the authors carefully reviewed and edited the content as needed
and take full responsibility for the content of this publication.
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