

000 001 SCALING HIGHER-ORDER GRAPH LEARNING WITH 002 MAXIMAL CLIQUE COMPLEXES 003 004

005 **Anonymous authors**

006 Paper under double-blind review

007 008 ABSTRACT 009

011 Graph neural networks (GNNs) are widely used for learning on graphs but are funda-
012 mentally limited to modeling pairwise relationships. Topological models based
013 on simplicial or cell complexes can capture higher-order structure and match or
014 surpass the expressive power of the Weisfeiler–Leman (WL) test, but they are diffi-
015 cult to scale because they require constructing higher-order complexes. In this pa-
016 per, we ask how to retain the expressivity of cellular Weisfeiler networks (CWNs)
017 while improving their scalability, and how to exploit cliques efficiently on large
018 graphs. First, we introduce simplified and factored cellular Weisfeiler–Leman
019 (sCWL and fCWL) tests, and show that they are as expressive as the original
020 CWL test, **while achieving better scalability properties**. We then define the max-
021 imal clique complex, a cell complex whose higher-order cells are the maximal
022 cliques of the graph, and apply the corresponding simplified and factored CWNs
023 (sCWN and fCWN) on this structure, achieving improved time and memory com-
024 plexity. To avoid explicit enumeration of all maximal cliques, we propose Clique-
025 Walk, a biased random walk that samples (maximal) cliques and scales quasi-
026 linearly with the number of nodes. Combining maximal clique complexes with
027 CliqueWalk yields scalable clique-based architectures that preserve CWL-level
028 expressivity. Experiments on node and graph classification benchmarks, includ-
029 ing large-scale datasets, show that our models are competitive with or better than
030 GNN and higher-order baselines, while substantially reducing computational and
memory costs.

031 032 1 INTRODUCTION 033

034 Graphs provide a natural way to represent interactions between entities, and graph neural networks
035 (GNNs) have become the standard approach for learning on such data (Gilmer et al., 2017; Kipf
036 & Welling, 2017; Defferrard et al., 2016). GNNs have achieved strong performance in diverse
037 domains, including social network analysis (Fan et al., 2019), molecular property prediction (Du-
038 venaud et al., 2015), and computer vision (Krzewda et al., 2022). However, conventional GNNs
039 are limited to modeling pairwise interactions between nodes, which constrains their ability to cap-
040 ture complex multi-way relationships (Battiloro et al., 2024). To address this limitation, recent
041 work explores higher-order structures such as simplicial complexes (Ebli et al., 2020; Bodnar et al.,
042 2021b; Einizade et al., 2025), cell complexes (Hajij et al., 2020; Bodnar et al., 2021a), and hyper-
043 graphs (Feng et al., 2019).

044 Hypergraphs generalize graphs by allowing edges, called hyperedges, to connect more than two
045 nodes (Feng et al., 2019). A hyperedge thus represents a group interaction, for example, a set
046 of coauthors of the same paper in a co-authorship network (Wu et al., 2022). Beyond hyper-
047 graphs, cell complexes provide a general combinatorial framework that organizes higher-order struc-
048 tures (Hatcher, 2002). A cell complex contains cells of different dimensions: nodes (0-cells), edges
049 (1-cells), triangles (2-cells), and so on (Bodnar et al., 2021a). Simplicial complexes are a special
050 case of cell complexes in which all subsets of a cell are also included, ensuring closure under sub-
051 set operations (Einizade et al., 2025). In this setting, entities interact whenever they differ by the
052 addition or deletion of a single node.

053 Several approaches have been proposed to lift graphs into higher-order structures, allowing the use
of simplicial and cell complexes for learning tasks (Bodnar et al., 2021b; Papillon et al., 2023;

054 Papamarkou et al., 2024). One of these strategies is the clique lifting, where simplicial or cell
 055 complexes are built by including all cliques of the graph up to a fixed size (e.g., edges or triangles)
 056 (Bodnar et al., 2021a). While effective for capturing higher-order information, these methods are
 057 often computationally expensive and require significant memory resources. Furthermore, the clique
 058 problem is well-known to require algorithms with exponential runtime in the worst case (Cormen
 059 et al., 2022).

060 In this paper, we address two central questions:
 061 (i) how to simplify cellular Weisfeiler networks
 062 (CWNs) without losing expressivity, and (ii) how to
 063 use maximal cliques as higher-order cells in a way
 064 that scales to large graphs. To answer the first ques-
 065 tion, we introduce the simplified and factored cellular
 066 Weisfeiler–Leman (sCWL and fCWL) tests, to-
 067 gether with their corresponding neural architectures
 068 (sCWNs and fCWNs). We show that these variants
 069 preserve the full expressive power of the original
 070 CWL test of Bodnar et al. (2021a) while achieving
 071 better scalability properties. For the second ques-
 072 tion, we propose the *maximal clique complex*, a sim-
 073 plified cell complex that encodes only the maximal
 074 cliques of the graph (Figure 1). Because enumerating all maximal cliques can take exponential time
 075 and becomes infeasible for large graphs, we introduce CliqueWalk, a biased random-walk procedure
 076 that efficiently samples cliques and achieves quasi-linear scaling with the number of nodes. The
 077 sampled cliques define the higher-order cells used in our architectures, enabling models that achieve
 078 competitive performance on node and graph classification benchmarks while remaining scalable to
 079 large graphs.

080 The main contributions of this paper are:

- 081 1. We introduce the sCWL and fCWL tests and prove that they are as expressive as the regular
 082 CWL test, while offering better scaling properties.
- 083 2. We present the maximal clique complex, a simplified higher-order structure that encodes max-
 084 imal cliques of a graph, and show that the resulting simplified and factored CWNs (sCWN and
 085 fCWN) are more memory- and computational-efficient than standard CWNs, without any loss
 086 in expressivity.
- 087 3. Since enumerating all maximal cliques could take exponential runtime, we propose Clique-
 088 Walk, a biased random walk algorithm that efficiently samples maximal cliques. CliqueWalk
 089 scales quasi-linearly with the number of nodes, making clique-based methods applicable to
 090 large graphs.
- 091 4. We demonstrate competitive performance on node and graph classification benchmarks. Our
 092 model matches or outperforms the accuracy of existing GNNs and topological models, while
 093 achieving substantial gains in scalability and efficiency.

094 2 RELATED WORK

095 The expressive power of GNNs has been extensively studied, with a particular focus on their ability
 096 to distinguish non-isomorphic graphs (Xu et al., 2019; Morris et al., 2019). It is now established
 097 that GNNs with injective aggregation functions are as powerful as the 1-WL test (Xu et al., 2019).
 098 Early architectures, such as the graph isomorphism network (GIN) (Xu et al., 2019), are explicitly
 099 designed to match the expressivity of the 1-WL test. However, GIN and related models remain
 100 limited in their ability to capture higher-order interactions (Morris et al., 2019; Bouritsas et al.,
 101 2022; Feng et al., 2022), as they rely on local message passing over pairwise connections.

102 To address these limitations, recent works have extended GNNs to higher-order structures. Message
 103 passing simplicial networks (Bodnar et al., 2021b) operate on simplicial complexes, exceeding the
 104 expressivity of the 1-WL test and approaching that of 3-WL. CWNs (Bodnar et al., 2021a) generalize
 105 this idea to arbitrary cell complexes, with message passing defined through boundary, co-boundary,
 106 and adjacency relations. These extensions are formalized by the CWL test, which is strictly more

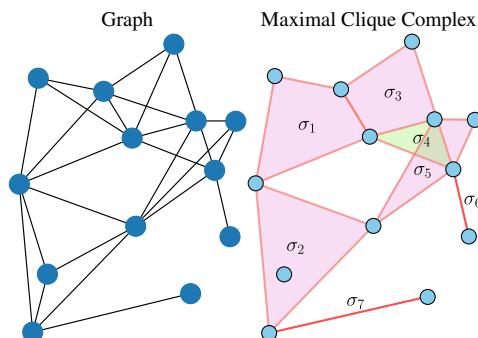


Figure 1: Maximal clique complex.

108 expressive than 1-WL in specific cases, and have demonstrated strong empirical results, particularly
 109 in molecular graph learning (Bodnar et al., 2021a; Giusti et al., 2023).
 110

111 Despite these theoretical advances, a key limitation of simplicial and cell complex models is their
 112 lack of scalability. Constructing higher-order complexes often requires enumerating large numbers
 113 of cliques, which leads to prohibitive memory and time costs. As a result, prior higher-order models,
 114 while more expressive than standard GNNs, cannot be applied efficiently to large-scale graphs. In
 115 contrast, our work introduces the maximal clique complex as a simplified higher-order structure
 116 that preserves CWL-level expressivity while enabling efficient clique-based neural architectures.
 117 Combined with our CliqueWalk sampling strategy, this provides a scalable approach to higher-order
 118 graph learning that retains strong theoretical guarantees and offers competitive performance.
 119

120 3 PRELIMINARIES

121 **Notation.** Calligraphic letters denote sets, and for a set \mathcal{X} , $|\mathcal{X}|$ represents its cardinality. Lowercase
 122 boldface letters, like \mathbf{x} , represent vectors. \oplus and COMBINE represent a mapping from a set of
 123 vectors to a vector, e.g., an aggregation function.
 124

125 **Cell complexes.** Cell complexes provide a natural setting for higher-order combinatorial structures.
 126

127 **Definition 1 (Regular cell complex (Hansen & Ghrist, 2019; Bodnar et al., 2021a)).** A *regular cell*
 128 *complex* is a topological space X that can be divided into a collection of subspaces $\{X_\sigma\}_{\sigma \in \mathcal{P}_X}$,
 129 called **cells**, where \mathcal{P}_X is the set of cells induced by the topological space X . These cells satisfy the
 130 following properties:
 131

- 132 1. Every $x \in X$ has an open neighborhood that intersects only a finite number of cells.
 133 2. For any two cells X_σ and X_τ , $X_\tau \cap \overline{X_\sigma} \neq \emptyset$, if and only if X_τ is contained in $\overline{X_\sigma}$, i.e., the
 134 closure of X_σ .
 135 3. Each cell is topologically equivalent (homeomorphic) to \mathbb{R}^n for some dimension n .
 136 4. For each $\sigma \in \mathcal{P}_X$, there exists a homeomorphism φ from a closed ball in \mathbb{R}^{n_σ} onto $\overline{X_\sigma}$, where
 137 the restriction of φ to the interior of the ball gives a homeomorphism onto the interior of X_σ .
 138

139 A graph $G = (\mathcal{V}, \mathcal{E})$ can be interpreted as a special case of cell complexes. A graph is a one-
 140 dimensional cell where the vertices \mathcal{V} and edges \mathcal{E} correspond to 0-cells and 1-cells, respectively.
 141

142 **Definition 2 (Cell complex adjacencies (Bodnar et al., 2021a)).** Let X be a cell complex and $\sigma \in \mathcal{P}_X$
 143 a cell. We define the following adjacency relations:
 144

- 145 1. *Boundary cells* $\mathcal{B}(\sigma)$: lower-dimensional cells that make up the boundary of σ (e.g., the vertices
 146 of an edge).
 147 2. *Co-boundary cells* $\mathcal{C}(\sigma)$: higher-dimensional cells for which σ is part of their boundary (e.g.,
 148 an edge incident to a vertex).
 149 3. *Lower adjacent cells* $\mathcal{N}_\downarrow(\sigma)$: cells of the same dimension as σ that share at least one boundary
 150 cell with it (e.g., edges that meet at a common vertex).
 151 4. *Upper adjacent cells* $\mathcal{N}_\uparrow(\sigma)$: cells of the same dimension as σ that both lie on the boundary of
 152 a higher-dimensional cell (e.g., two vertices that are connected by an edge).
 153

154 **WL test.** A key challenge in graph theory is the graph isomorphism problem, which concerns de-
 155 ciding whether two graphs have the same structure. Finding exact solutions is often computationally
 156 demanding, so faster approximate techniques, such as graph hashing, are commonly employed. A
 157 classical and widely used technique for graph isomorphism test is the WL test (Leman & Weisfeiler,
 158 1968). The WL test provides an efficient heuristic for the graph isomorphism problem. The formal
 159 definition of the WL test is provided in Appendix A. Beyond graphs, it can be naturally extended to
 160 regular cell complexes, capturing richer combinatorial structures.
 161

162 **CWL test.** The adjacency relations in Definition 2 allow us to define the CWL scheme, which
 163 generalizes the WL test from graphs to higher-dimensional cell complexes.
 164

165 **Definition 3 (CWL scheme (Bodnar et al., 2021a)).** Let X be a regular cell complex. The CWL
 166 scheme is defined as follows:
 167

162 1. *Initialization*: All cells $\sigma \in \mathcal{P}_X$ are assigned the same initial color.
 163 2. *Color refinement*: At iteration $t + 1$, the color of each cell σ is updated according to $c_\sigma^{t+1} =$
 164 $\text{HASH}(c_\sigma^t, c_{\mathcal{B}(\sigma)}^t, c_{\mathcal{C}(\sigma)}^t, c_{\mathcal{N}_\downarrow(\sigma)}^t, c_{\mathcal{N}_\uparrow(\sigma)}^t)$, where HASH is an injective function that combines
 165 the current color of σ with the colors of its boundary, co-boundary, and adjacent cells.
 166 3. *Termination*: The process is repeated until the coloring stabilizes. Two cell complexes are
 167 considered non-isomorphic if their color histograms differ.

169 The CWL test is invariant under cell-complex isomorphisms. Given a map from a graph to a cell
 170 complex that preserves isomorphisms, we can use the CWL test to check graph isomorphism. This
 171 is exactly what Bodnar et al. (2021a) called a cellular lifting map (their Definition 8). Similarly, we
 172 can relate CWL to WL test in the case of skeleton preserving lifting map:

173 **Definition 4** (Skeleton preserving lifting (Bodnar et al., 2021a)). *A lifting map $f(\cdot)$ is skeleton-
 174 preserving if for any graph $G = (\mathcal{V}, \mathcal{E})$: (i) $f(G)$ contains \mathcal{V} and \mathcal{E} as cells, and (ii) the cell
 175 complex $f(G)$ restricted to node and edge set is isomorphic to G , i.e., the incidence matrix of G and
 176 $f(G)$ are equal with the correct permutation.*

177 The CWL scheme has been proven to be more expressive than the standard WL test (Bodnar et al.,
 178 2021a) for skeleton preserving lifting maps. In the following, we introduce a new cell test that does
 179 not require the skeleton preserving lifting map to be more expressive than the WL test. We also,
 180 introduce the specific structures that will be the focus of our study. All proofs of theorems and
 181 propositions are provided in Appendix B.

183 4 SCALING CELL COMPLEX MODELS AND MAXIMAL CLIQUES

185 4.1 CELL COMPLEX EXPRESSIVITY THEORY

187 Bodnar et al. (2021a) shows we can simplify the CWL test while retaining the same expressivity.

188 **Theorem 5** (Bodnar et al. (2021a)). *The CWL update rule restricted to boundary and upper adja-
 189 cency messages is equivalent in expressive power to the full CWL update rule.*

191 We also demonstrate that a different simplified version retains the same expressivity.

192 **Theorem 6.** *The CWL update rule restricted to boundary and co-boundary messages, called the
 193 simplified CWL (sCWL) test, is equivalent in expressive power to the full CWL update rule.*

195 This restricted scheme is useful in practice, as it leads to more computationally efficient models.

196 We also introduce a new test on cell complexes that, while keeping the node structure, enables at
 197 least the same expressivity as the CWL, sCWL, and WL tests.

198 **Definition 7** (Factored CWL (fCWL) test). *Let $(\mathcal{G}, \mathcal{X})$ be a graph and a cell complex constructed
 199 from a cellular lifting map that preserves the node set. The fCWL scheme is defined as follows:*

201 1. *Initialization*: All cells are assigned the same initial color.
 202 2. *Color refinement*: At iteration $t + 1$, the color of each non node cells σ is updated according to
 203 $c_\sigma^{t+1} = \text{HASH}(c_\sigma^t, c_{\mathcal{B}(\sigma)}^t, c_{\mathcal{C}(\sigma)}^t)$. The color of each node i is updated according to
 204 $c_i^{t+1} = \text{HASH}(c_i^t, c_{\mathcal{C}(i)}^t, c_{\mathcal{N}(i)}^t)$,
 205 3. *Termination*: The process is repeated until the coloring stabilizes. Two cell complexes are
 206 considered non-isomorphic if their color histograms differ.

208 **Theorem 8.** *fCWL is at least as expressive as WL and CWL.*

209 We use the ideas from sCWL and fCWL tests to introduce cellular neural networks with the same
 210 guarantees and better scaling properties than CWN (Bodnar et al., 2021a).

212 4.2 NEURAL NETWORK MODELS

214 We now describe several neural network architectures based on the CWL framework. These models
 215 perform message passing along the hierarchical structure of cells, propagating information through
 boundary, co-boundary, and adjacency relations.

216 **Definition 9** (CWNs). *Following (Bodnar et al., 2021a, Section 4), CWNs aggregate messages along*
 217 *both upper adjacency and boundary relations (Theorem 5). For a cell σ , the updates are defined as:*
 218

$$219 \quad \mathbf{m}_\uparrow(\sigma) = \bigoplus_{\tau \in \mathcal{N}_\uparrow(\sigma), \delta \in \mathcal{C}(\sigma) \cap \mathcal{C}(\tau)} M_\uparrow(\mathbf{x}_\sigma, \mathbf{x}_\tau, \mathbf{x}_\delta), \quad \mathbf{m}_\mathcal{B}(\sigma) = \bigoplus_{\tau \in \mathcal{B}(\sigma)} M_\mathcal{B}(\mathbf{x}_\sigma, \mathbf{x}_\tau), \quad (1)$$

$$221 \quad \mathbf{x}_\sigma \leftarrow \text{COMBINE}(\mathbf{x}_\sigma, \mathbf{m}_\mathcal{B}(\sigma), \mathbf{m}_\uparrow(\sigma)), \quad (2)$$

222 where \mathbf{x}_σ the features of cell σ . We write $\mathbf{m}_\uparrow(i)$ for the aggregated message to cell σ from all tuples
 223 formed by σ , one of its upper neighbors, and a parent they share. Similarly, $\mathbf{m}_\mathcal{B}(\sigma)$ denotes the
 224 aggregated message to cell σ from all of its children.

226 We now introduce a model that scales more efficiently.

227 **Definition 10** (Simplified CWNs (sCWN)). *Based on*
 228 *the restricted CWL update using only boundary and*
 229 *co-boundary messages (Theorem 6), we define a sim-*
 230 *plified message passing scheme:*

$$231 \quad \mathbf{m}_\mathcal{C}(\sigma) = \bigoplus_{\tau \in \mathcal{C}(\sigma)} M_\mathcal{C}(\mathbf{x}_\sigma), \quad \mathbf{m}_\mathcal{B}(\sigma) = \bigoplus_{\tau \in \mathcal{B}(\sigma)} M_\mathcal{B}(\mathbf{x}_\tau), \quad (3)$$

$$235 \quad \mathbf{x}_\sigma = \text{COMBINE}(\mathbf{x}_\sigma, \mathbf{m}_\mathcal{C}(\sigma), \mathbf{m}_\mathcal{B}(\sigma)), \quad (4)$$

237 Figure 2 shows an example of the aggregation functions
 238 in Definition 10. This simplified variant reduces
 239 computational and memory requirements while retain-
 240 ing the expressive power of the full CWL update. Mes-
 241 sages are propagated only along boundary and co-
 242 boundary relations, making sCWN efficient for large
 243 complexes (see Proposition 14).

244 We also introduce a cell model which has a complexity between sCWN and CWN, but has better
 245 expressivity guarantees (Theorem 8, Proposition 14). We use both the clique structure and the
 246 neighborhood structure from the graph.

247 **Definition 11** (Factored CWNs (fCWN)). *fCWN aggregate messages using both cell complex struc-*
 248 *ture and graph structure:*

$$249 \quad \mathbf{m}_\mathcal{C}(\sigma) = \bigoplus_{\tau \in \mathcal{C}(\sigma)} M_\mathcal{C}(\mathbf{x}_\sigma, \mathbf{x}_\tau), \quad \mathbf{m}_\mathcal{B}(\sigma) = \bigoplus_{\tau \in \mathcal{B}(\sigma)} M_\mathcal{B}(\mathbf{x}_\sigma, \mathbf{x}_\tau), \quad \mathbf{m}_\mathcal{N}(i) = \bigoplus_{j \in \mathcal{N}(i)} M_\mathcal{N}(\mathbf{x}_i, \mathbf{x}_j) \quad (5)$$

$$252 \quad \mathbf{x}_i \leftarrow \text{COMBINE}(\mathbf{x}_i, \mathbf{m}_\mathcal{C}(i), \mathbf{m}_\mathcal{N}(i)), \quad \mathbf{x}_\sigma \leftarrow \text{COMBINE}(\mathbf{x}_\sigma, \mathbf{m}_\mathcal{B}(\sigma), \mathbf{m}_\mathcal{C}(\sigma)). \quad (6)$$

254 This model has better memory and time complexity than CWN in practical cases and has better
 255 expressivity guarantees (Theorem 8).

256 Under certain constraints, we can provide expressivity guarantees for these models.

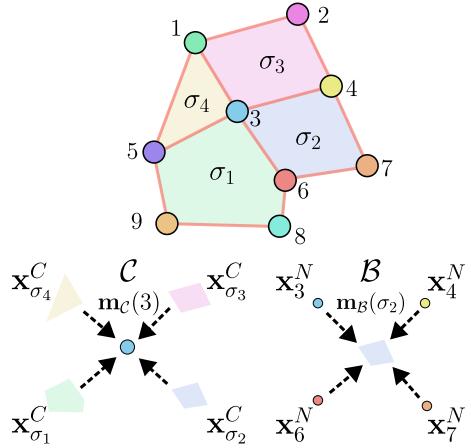
258 **Proposition 12.** *sCWN and CWN are at most as expressive as CWL. If they use injective aggre-*
 259 *gation, they are equally expressive as CWL. fCWN with injective aggregation is at least as expressive*
 260 *as CWL and WL.*

261 We can further scale the sCWN and fCWN models to large graphs while still exploiting higher-
 262 order topology. We propose to use clique-based cell complexes, where maximal cliques serve as
 263 higher-dimensional cells that compactly summarize multiple nodes and edges.

265 4.3 CLIQUEWALK

267 **Definition 13** (Maximal clique complex). *Given a graph $G = (\mathcal{V}, \mathcal{E})$, the **maximal clique complex***
 268 *is defined as:*

269 1. The 0-cells correspond to the vertices \mathcal{V} of G .



266 Figure 2: Illustration of sCWN.

270 2. The higher-dimensional cells correspond to the maximal cliques of G .
 271

272 The set of non 0-cells (maximal cliques) is denoted as \mathcal{X} .
 273

274 An example of a maximal clique complex constructed from a graph is shown in Figure 1. If we
 275 impose closure under subset operations, the maximal clique complex becomes the *clique com-*
 276 *plex* (Kahle, 2009), that is, the simplicial complex induced by including all subsets of each clique.

277 **Proposition 14.** *The time and memory complexities of the different CWN variants on maximal clique*
 278 *complexes* *are as follows:*
 279

- 280 • CWN has time and memory complexity $\mathcal{O}(n + \sum_{\sigma \in \mathcal{X}} |\sigma|^2)$.
- 281 • fCWN has time complexity $\mathcal{O}(|\mathcal{E}| + \sum_{\sigma \in \mathcal{X}} |\sigma|)$ and memory complexity $\mathcal{O}(n + \sum_{\sigma \in \mathcal{X}} |\sigma|)$.
- 282 • sCWN has time complexity $\mathcal{O}(\sum_{\sigma \in \mathcal{X}} |\sigma|)$ and memory complexity $\mathcal{O}(n + |\mathcal{X}|)$.
 283

284 Here, n is the number of nodes, \mathcal{X} is the set of maximal cliques, and \mathcal{E} is the set of edges. A table of
 285 all complexities can be found in the Appendix B.3.

286 **Remark 15.** *These models can be simplified to reduce time and memory, for example, by using*
 287 *only incoming information during aggregation. These simplified versions keep the same theoretical*
 288 *expressivity but may capture less complex interactions between cells.*

289 **Remark 16.** *We conjecture that CWL on maximal cliques is more expressive than WL. A discussion*
 290 *of its expressive power is provided in Appendix C.*
 291

292 Identifying all maximal cliques in a
 293 graph is computationally infeasible,
 294 as the clique enumeration problem
 295 might have exponential runtime.

296 **Proposition 17** (Moon & Moser
 297 (1965)). *A graph with n nodes can*
 298 *contain up to $3^{n/3}$ maximal cliques.*
 299

300 To circumvent this challenge, we pro-
 301 pose a biased random walk method
 302 for efficient clique sampling, which
 303 we refer to as CliqueWalk. Our ap-
 304 proach is inspired by existing clique
 305 sampling strategies (Bron & Ker-
 306 bosch, 1973; Tomita et al., 2006; Cazals & Karande, 2008). The key idea is to grow cliques in-
 307 crementally while maintaining an efficient lookup of candidate nodes that can extend the current
 308 clique, continuing until no further extension is possible. The method is summarized in Algorithm 1,
 309 and is illustrated in Figure 3. CliqueWalk enables us to sample a representative subset of cliques
 310 without exhaustively enumerating all of them. A comparison with other clique sampling schemes
 311 can be found in Appendix D.

312 **Proposition 18.** *If $\omega_{\max} > \omega(G)$, each random walk generated by CliqueWalk produces a maximal*
 313 *clique of the graph. Where $\omega(G)$ is the maximum clique size and ω_{\max} the maximum walk length.*

314 We denote our random walk method as CliqueWalk($n_{\text{walk}}, \omega_{\max}$), where n_{walk} specifies the number
 315 of walks sampled per node and ω_{\max} corresponds to maximum size of walks.

316 **Proposition 19.** *The time complexity of CliqueWalk($n_{\text{walk}}, \omega_{\max}$) on a graph G is $\mathcal{O}(n \cdot n_{\text{walk}} \cdot$*
 317 $d_{\max}(G) \cdot \max(\omega(G), \omega_{\max}))$, where n is the number of nodes, $d_{\max}(G)$ is the maximum node degree,
 318 and $\omega(G)$ is the size of the largest clique in G .

320 The motivation for using CliqueWalk in learning is that enumerating all cliques is computationally
 321 prohibitive for large graphs. By sampling a sufficiently large number of cliques, we can approximate
 322 the local clique structure effectively. This approach allows models to capture higher-order structural
 323 information efficiently, while achieving performance comparable to, or even better than, full clique
 324 enumeration. Empirical results supporting these claims are presented in the next section.

Algorithm 1 CliqueWalk

```

1: procedure CLIQUEWALK(node  $i$ , neighbor map  $\mathcal{N}$ ,  

2:   max walk size  $\omega_{\max}$ )  

3:   Walk  $\leftarrow [i]$   

4:   neighbor  $\leftarrow \mathcal{N}_i$   

5:   while neighbor  $\neq \emptyset$  and  $|\text{Walk}| < \omega_{\max}$  do  

6:     Choose  $j \in \text{neighbor}$   

7:     Append  $j$  to Walk  

8:     neighbor  $\leftarrow \text{neighbor} \cap \mathcal{N}_j$   

9:   end while  

10:  return Walk  

11: end procedure
```

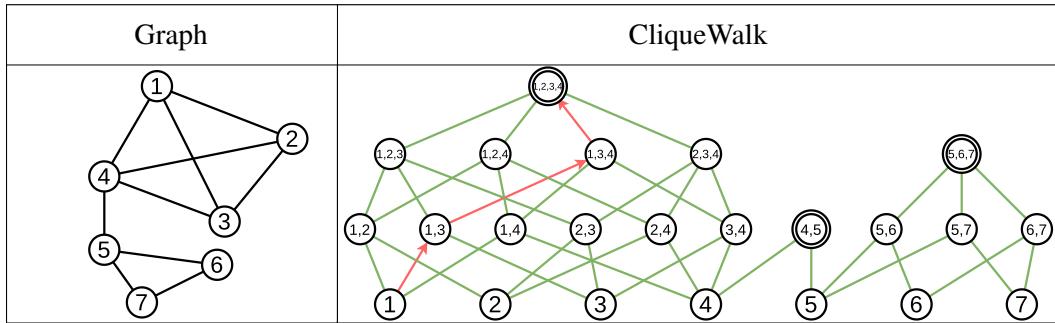


Figure 3: Illustration of a CliqueWalk starting at node 1. CliqueWalk starts from node 1 and grows a clique by repeatedly sampling a node that is adjacent to all nodes in the current clique; in the example, it successively adds nodes 3, 4, and 2 to reach the maximal clique $\{1, 2, 3, 4\}$.

5 EXPERIMENTS AND RESULTS

In this section, we describe the datasets and experimental setups used for node and graph classification tasks. We compare our sCWN model with: GCN (Kipf & Welling, 2017), GIN (Xu et al., 2019), SAGEConv (Hamilton et al., 2017), SGC (Wu et al., 2019), HGNN (Feng et al., 2019), SCCN (Yang et al., 2022), CWN (Bodnar et al., 2021a). We additionally present a sensitivity analysis to assess the robustness of our methodology, along with an ablation study.

5.1 DATASETS

Node classification datasets. We evaluate our models on two topological datasets (contact-primary-school and contact-high-school) (Chodrow et al., 2021; Mastrandrea et al., 2015), three citation networks (Citeseer, Cora, and PubMed) (Sen et al., 2008; Namata et al., 2012), and purchase networks like Amazon Photo network (McAuley et al., 2015; Shchur et al., 2018) and **OGBN-Products (OGBN-P)** (Bhatia et al., 2016). In addition, we propose a new synthetic dataset, the *stochastic clique model* (SCM), derived from the stochastic block model (SBM).

Stochastic clique model. It is a special case of SBM (Holland et al., 1983) where inward probability is set to 1. Graphs are generated by assembling cliques, with nodes inside each clique fully connected. Each clique is assigned a label, which is inherited by all its nodes, and node features are generated from a Gaussian distribution with a mean determined by the node label and a fixed diagonal variance. To introduce topological noise, each node is connected to nodes outside its clique with a fixed probability, perturbing the clique structure. The task can thus be interpreted as a form of label denoising.

Graph classification datasets. We perform experiments on two social network datasets (IMDB-BINARY, IMDB-MULTI) (Yanardag & Vishwanathan, 2015) and four molecular datasets (MUTAG, PROTEINS, NCI1, NCI109) (Borgwardt et al., 2005; Schomburg et al., 2004; Dobson & Doig, 2003a; Wale et al., 2008; Shervashidze et al., 2010) from the TUDataset (Morris et al., 2020).

Synthetic cliques. To compare the inference time and memory footprint of clique-based methods, we also construct a synthetic dataset of isolated cliques. This dataset allows us to systematically evaluate the computational scaling of CWN models with respect to clique size.

5.2 EXPERIMENTAL SETUP

Experiments. For node classification, we hold out 20% of the nodes as a final test set, which is used only once for reporting the final performance. The remaining 80% of the nodes are further split into 60% for training, 20% for validation, and 20% for an internal test set used during hyperparameter optimization. During training, we select the model checkpoint that achieves the highest validation accuracy and report its accuracy on the final test set. **In OGBN-Products, we use the public splits and do not perform hyperparameter optimization.** In graph classification, we follow the experimental protocol of Xu et al. (2019). Specifically, we perform 10-fold cross-validation on all datasets, report

378 Table 1: Node classification accuracy (%) with standard deviation. Best results are in **bold**, second
 379 best are underlined. HighSchool = contact-high-school, PrimarySchool = contact-primary-school. ♦
 380 GNNs, ♣ simplicial neural networks, ♠ hypergraph neural networks, ✕ CWN, and ★ CWNs (ours).
 381 Statistical significance: * $p < 0.05$, *** $p < 0.001$ (Welch’s t-test against the best model).

Model	Citeseer	Cora	Photo	PubMed	HighSchool	PrimarySchool	SCM	OGBN-P
♦ GCN	73.7 _{±0.76}	<u>88.7</u> _{±0.61}	93.9 _{±0.27}	88.3 _{±0.33}	<u>98.2</u> _{±2.6}	88.9 _{±3.1}	OOM	70.4 _{±0.2}
♦ GAT	72.2***	87.5***	93.7***	87.2***	<u>19.1</u> _{±7.3}	13.9 _{±7.8}	OOM	OOM
♦ GIN	69.3 _{±1.1}	86.2 _{±0.62}	88.0 _{±2.2}	86.7 _{±0.42}	<u>94.5</u> _{±3.5}	85.9 _{±4.6}	OOM	76.4 _{±0.4}
♦ SAGEConv	72.4 _{±1.2}	88.7 _{±0.99}	95.0 _{±0.29}	89.5 _{±0.6}	<u>14.6</u> _{±4.2}	6.53 _{±4.5}	OOM	78.5 _{±0.3}
♦ SGC	73.7 _{±0.74}	88.4 _{±0.86}	89.8 _{±0.39}	89.2 _{±0.21}	6.3 _{±4.1}	3.57 _{±3.0}	65.6 _{±0.01}	<u>76.1</u> _{±0.07}
♣ SCCN	46.4***	64.4***	64.8***	73.4***	93.0***	<u>74.1</u> _{±3.7}	OOM	OOM
♠ HGNN	72.9 _{±1.1}	88.5 _{±0.9}	94.2 _{±0.5}	88.5***	<u>95.4</u> _{±3.8}	80.4 _{±5.3}	68.1 _{±0.3}	63.5 _{±1.0}
✕ CWN	72.0 _{±1.6}	81.1 _{±1.0}	94.7 _{±0.37}	89.3 _{±0.35}	94.0 _{±2.2}	<u>90.7</u> _{±1.9}	OOM	OOM
★ fcWN	72.5 _{±1.4}	88.1 _{±0.79}	95.1 _{±0.35}	89.4 _{±0.31}	99.5 _{±0.9}	89.5 _{±2.3}	OOM	78.8 _{±0.2}
★ scWN	72.9 _{±1.3}	87.3 _{±0.87}	95.3 _{±0.39}	89.7 _{±0.35}	96.0 _{±2.4}	86.4 _{±4.4}	77.7 _{±0.05}	71.6 _{±0.5}

393
 394 the mean accuracy across folds at each epoch, and select the epoch with the highest mean accuracy
 395 for final evaluation.
 396

397 **Implementation details.** In all experiments, we use the same architecture and swap only the
 398 convolution module for the method under evaluation. Each model is trained both with and without
 399 batch normalization, and we report results using the configuration that performs best. For all cell
 400 and hypergraph models on node or graph classification, we use the CliqueWalk lifting procedure
 401 with 8 walks per node, and initialize clique features using clique length. Cliques are sampled once
 402 and then kept fixed throughout training (no resampling). We select 8 walks as this provides a good
 403 tradeoff between accuracy and runtime across datasets. No further hyperparameter tuning regarding
 404 CliqueWalk is performed to ensure fair comparison.
 405

406 For node classification, except OGBN-Products, we perform a grid search over learning rate
 407 $\{10^{-2}, 10^{-3}\}$, number of layers $\{2, 4\}$, hidden dimension $\{32, 64\}$, dropout $\{0, 0.2, 0.5\}$ and with or
 408 without BatchNorm for all models. For *contact-school* datasets, we also include GraphNorm¹ (Cai
 409 et al., 2020). Models are trained for 200 epochs on standard datasets and 500 epochs on topological
 410 ones,² with each grid search repeated five times using different random seeds. Final evaluation is
 411 based on 20 independent runs with new seeds. For OGBN-Products, we use fixed hyperparameters
 412 (see Appendix F) and train for 1000 epochs. For graph classification, all models use five layers (in-
 413 cluding the input convolution) and a hidden dimension of 64, while grid search is limited to dropout
 414 $\{0, 0.5\}$, batch size $\{32, 128\}$, and with or without BatchNorm.
 415

5.3 RESULTS AND DISCUSSION

416 **Node classification.** Table 1 reports the results for the node classification task. The SCM dataset
 417 contains approximately 6M nodes and 276M edges, making it significantly larger and more chal-
 418 lenging than standard benchmarks. In this specific case, we only use 1 random walks in CliqueWalk.
 419 Additional statistics for all datasets are provided in Table 7 in Appendix F. **On topological datasets**
 420 **like contact-high-school and contact-primary-school, topological models have competitive per-**
 421 **formance, while classical GNNs with GraphNorm can match or exceed their performance, with fcWN**
 422 **still slightly better. On citation benchmarks like Citeseer and Cora, differences are small, show-**
 423 **ing no clear advantage for topological methods. On OGBN-Products, fcWN slightly outperforms**
 424 **SAGEConv. Unlike other higher-order methods that run out of memory (OOM), our fcWN and**
 425 **scWN models scale efficiently.**

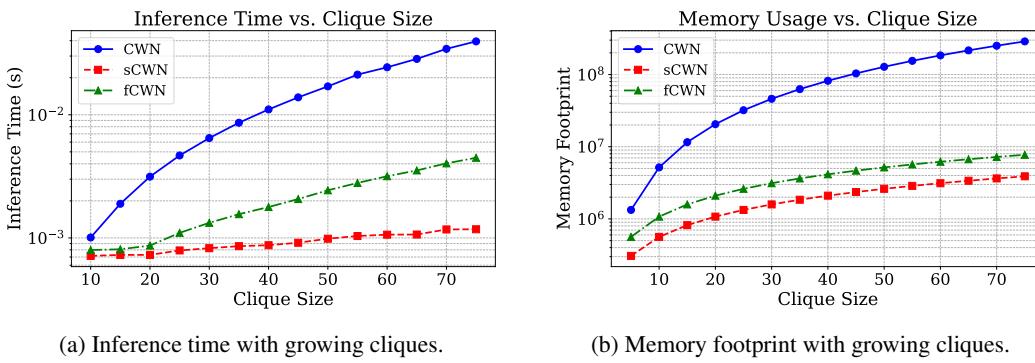
426 **Graph classification.** Table 2 summarizes the results of the graph classification task. On social
 427 network datasets such as IMDB-B and IMDB-M, topological models achieve good performance,
 428 consistent with prior work (Bodnar et al., 2021a). In contrast, on molecular datasets, their per-
 429 formance is generally lower, suggesting that clique-based features are less informative for chemi-
 430 cal graph structures. This discrepancy highlights that the benefits of higher-order information are

431 ¹The estimation of the statistics with BatchNorm on small datasets degrades model performance.

432 ²GNNs converge more slowly on topological datasets, hence the larger number of epochs.

432 Table 2: Graph classification accuracy (%) with standard deviation. Best results are in **bold**, second
 433 best are underlined. ♦ GNNs, ♠ hypergraph neural networks, ✎ CWN, and ★ CWNs (ours).

Model	IMDB-B	IMDB-M	MUTAG	NCI1	NCI109	PROTEINS
♦ GCN	74.3 \pm 4.6	52.4 \pm 4.1	84.1 \pm 8.8	80.4 \pm 1.8	76.9 * \pm 1.7	77.0 \pm 5.1
♦ GAT	74.8 \pm 3.0	51.6 \pm 3.7	84.6 \pm 8.6	79.6 * \pm 3.1	73.8 *** \pm 1.3	76.5 \pm 3.2
♦ GIN	72.1 * \pm 3.8	49.7 * \pm 3.4	89.4 \pm 7.8	80.8 \pm 2.1	74.8 *** \pm 2.4	75.8 \pm 3.4
♦ SAGEConv	74.3 \pm 4.1	52.9 \pm 4.0	84.6 \pm 9.5	81.5 \pm 1.8	78.0 \pm 1.5	76.3 \pm 4.5
♠ HGNN	75.5 \pm 4.3	52.3 \pm 4.8	86.2 \pm 8.2	79.2 * \pm 3.1	76.2 * \pm 1.9	76.5 \pm 3.9
✎ CWN	66.0 \pm 7.8	50.5 \pm 3.4	85.1 \pm 7.3	63.7 *** \pm 1.9	63.1 *** \pm 2.0	77.0 \pm 3.4
★ fCWN	71.9 * \pm 4.1	52.8 \pm 2.6	85.1 \pm 8.1	79.2 * \pm 2.4	62.3 *** \pm 4.5	75.9 \pm 3.3
★ sCWN	75.0 \pm 4.5	52.3 \pm 4.2	85.7 \pm 8.2	66.3 *** \pm 8.9	64.1 *** \pm 2.8	77.5 \pm 3.5



(a) Inference time with growing cliques.

(b) Memory footprint with growing cliques.

457 Figure 4: Comparison of CWN, sCWN, and fCWN models with increasing clique size: (a) inference
 458 time, (b) memory footprint in number of elements in memory.

461 domain-dependent: social networks naturally contain larger and more meaningful cliques, whereas
 462 molecular graphs are often dominated by small motifs such as functional groups, where clique in-
 463 formation seems to provide less meaningful information.

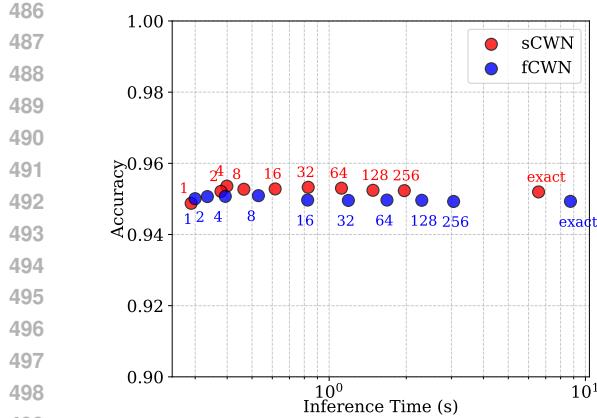
464 **Remark 20.** *Across both node and graph classification, topological models perform better on*
 465 *datasets with larger cliques. Table 7 in Appendix F reports the average clique size of each dataset,*
 466 *showing a clear correlation between larger cliques and stronger performance of topological models.*

468 5.4 SENSITIVITY ANALYSIS AND ABLATION STUDY

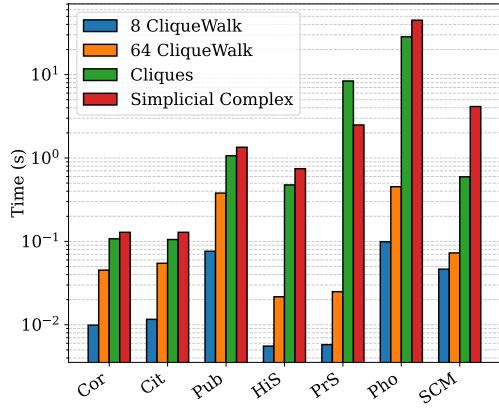
470 **Scalability of CWN models.** Figure 4 illustrates how CWN, fCWN, and sCWN scale with increasing
 471 clique size. Consistent with Proposition 14, both fCWN and sCWN require substantially less
 472 memory and runtime than CWN. Among them, sCWN achieves the best efficiency, confirming that
 473 restricting message passing to boundary and co-boundary relations provides a favorable tradeoff
 474 between expressivity and computational cost.

475 **Sampling effect for CliqueWalk.** We compare exact enumeration of maximal cliques with Clique-
 476 Walk sampling using between 1 and 256 walks per node (Figure 5a). A clear pattern emerges:
 477 sCWN and fCWN maintain consistent accuracy across different clique sampling rates. This demon-
 478 strates that subsampling maximal cliques via CliqueWalk reduces inference time while preserving
 479 performance. We observe a slightly different effect on smaller datasets like *contact-primary-school*
 480 as shown in Appendix E.

481 **CliqueWalk compute time.** We compare CliqueWalk with 8 and 64 walks against exact clique enu-
 482 meration and triangle-based simplicial complex lifting (Figure 5b). Across all datasets, CliqueWalk
 483 consistently achieves substantially lower runtimes. Even with 64 walks per node, it remains close to
 484 an order of magnitude faster than both exact clique computation and simplicial lifting, while main-
 485 taining competitive accuracy. These results highlight the efficiency and scalability of the method,
 showing that CliqueWalk can provide a practical alternative to more costly exact approaches.



500 (a) Accuracy of **sCWN** and **fCWN** at different
501 CliqueWalk sampling rates on **Photo**.



502 (b) Computation time of different lifting strategies
503 measured on an NVIDIA RTX 3090 GPU.
504

505 Figure 5: Sensitivity analysis of CliqueWalk. (a) Accuracy as a function of the number of sampled
506 walks. (b) Runtime comparison between CliqueWalk and exact lifting methods. Cor = Cora, Cit =
507 Citeseer, Pub = PubMed, HiS = contact-high-school, PrS = contact-primary-school, Pho = Photo.

508 **Ablation study, resampling in CliqueWalk.** Table
509 compares the performance when using 8
510 walk CliqueWalk with or without re-sampling at
511 each training epoch on the *contact-primary-school*
512 and *Photo* datasets. We observe that the results
513 are slightly better across both datasets when
514 re-sampling, while it introduces a slight increase in
515 runtime (see PrS and Pho in Figure 5b). This suggests that using re-sampling can be a nice way to trade
516 better generalization against computational cost.

517 5.5 LIMITATIONS

518 While our work establishes a scalable framework for clique-based higher-order learning, it has some
519 limitations. First, we restrict our evaluation to node and graph classification tasks; extending the
520 approach to other settings, such as hyperedge prediction, link prediction, or generative modeling,
521 remains an open direction. Second, our method does not explicitly expand the receptive field of
522 nodes, and thus may not fully capture long-range dependencies compared to approaches that in-
523 incorporate multi-hop information. Finally, we focus exclusively on clique-based sampling strategies,
524 whereas exploring alternative lifting procedures or hybrid strategies could further improve efficiency
525 and generalization. Addressing these limitations offers promising avenues for future research.

526 6 CONCLUSION

527 We introduced the maximal clique complex as a simplified higher-order structure that connects
528 clique-based representations to the CWL test, and showed that a sCWN operating on this complex
529 achieves CWL-level expressivity while remaining computationally efficient. To address scalability,
530 we proposed CliqueWalk, a biased random walk algorithm that samples cliques efficiently and scales
531 quasi-linearly with the number of nodes. Together, these contributions enable the design of clique-
532 based neural architectures that are both expressive and scalable. Extensive experiments on node
533 and graph classification benchmarks demonstrate that our models achieve competitive or superior
534 performance compared to GNNs and other higher-order approaches, while maintaining substantially
535 lower memory and runtime requirements. This work establishes random walk clique-based lifting
536 as a practical path toward scalable higher-order graph learning. It opens the door for future research
537 on efficient sampling strategies and domain-specific applications.

538 Table 3: Ablation sampling CliqueWalk.

Strategy	PrimarySchool	Photo
Re-sampling	87.1 ± 3.8	95.4 ± 0.44
No re-sampling	86.4 ± 4.4	95.3 ± 0.39

540 REPRODUCIBILITY STATEMENT
541

542 For the developed theoretical results, we have clearly mentioned the assumptions, and complete
543 proofs are given in Appendix B. For the experiments, we use open-source or synthetic data, and we
544 provide a detailed description in Appendix F. For the model implementation, we provide implemen-
545 tation details in Appendix G, and the code will be open-sourced upon acceptance.

546
547 REFERENCES
548

549 Claudio Battiloro, Lucia Testa, Lorenzo Giusti, Stefania Sardellitti, Paolo Di Lorenzo, and Sergio
550 Barbarossa. Generalized simplicial attention neural networks. *IEEE Transactions on Signal and*
551 *Information Processing over Networks*, 2024.

552 K. Bhatia, K. Dahiya, H. Jain, P. Kar, A. Mittal, Y. Prabhu, and M. Varma. The extreme classification
553 repository: Multi-label datasets and code, 2016.

554 Cristian Bodnar, Fabrizio Frasca, Nina Otter, Yuguang Wang, Pietro Lio, Guido F Montufar, and
555 Michael Bronstein. Weisfeiler and Lehman go cellular: CW networks. In *Advances in Neural*
556 *Information Processing Systems*, 2021a.

557 Cristian Bodnar, Fabrizio Frasca, Yuguang Wang, Nina Otter, Guido F Montufar, Pietro Lio, and
558 Michael Bronstein. Weisfeiler and Lehman go topological: Message passing simplicial networks.
559 In *International Conference on Machine Learning*, 2021b.

560 Karsten M Borgwardt, Cheng Soon Ong, Stefan Schönauer, SVN Vishwanathan, Alex J Smola, and
561 Hans-Peter Kriegel. Protein function prediction via graph kernels. *Bioinformatics*, 21:i47–i56,
562 2005.

563 Giorgos Bouritsas, Fabrizio Frasca, Stefanos Zafeiriou, and Michael M Bronstein. Improving graph
564 neural network expressivity via subgraph isomorphism counting. *IEEE Transactions on Pattern*
565 *Analysis and Machine Intelligence*, 45(1):657–668, 2022.

566 Coen Bron and Joep Kerbosch. Algorithm 457: finding all cliques of an undirected graph. *Commu-*
567 *nications of the ACM*, 16(9):575–577, 1973.

568 Tianle Cai, Shengjie Luo, Keyulu Xu, Di He, Tie-Yan Liu, and Liwei Wang. GraphNorm: A
569 principled approach to accelerating graph neural network training. In *International Conference*
570 *on Machine Learning*, 2020.

571 Frédéric Cazals and Chinmay Karande. A note on the problem of reporting maximal cliques. *Theo-*
572 *retical Computer Science*, 407(1-3):564–568, 2008.

573 Guangyong Chen, Pengfei Chen, Chang-Yu Hsieh, Chee-Kong Lee, Benben Liao, Renjie Liao,
574 Weiwen Liu, Jiezhong Qiu, Qiming Sun, Jie Tang, et al. Alchemy: A quantum chemistry dataset
575 for benchmarking ai models. *arXiv preprint arXiv:1906.09427*, 2019.

576 Philip S Chodrow, Nate Veldt, and Austin R Benson. Generative hypergraph clustering: From
577 blockmodels to modularity. *Science Advances*, 7(28):eab1303, 2021.

578 Thomas H Cormen, Charles E Leiserson, Ronald L Rivest, and Clifford Stein. *Introduction to*
579 *algorithms*. MIT press, 2022.

580 Asim Kumar Debnath, Rosa L. Lopez de Compadre, Gargi Debnath, Alan J. Shusterman, and Cor-
581 win Hansch. Structure-activity relationship of mutagenic aromatic and heteroaromatic nitro com-
582 pounds. correlation with molecular orbital energies and hydrophobicity. *Journal of Medicinal*
583 *Chemistry*, 34(2):786–797, 1991.

584 Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. Convolutional neural networks on
585 graphs with fast localized spectral filtering. *Advances in Neural Information Processing Systems*,
586 2016.

587 Paul D Dobson and Andrew J Doig. Distinguishing enzyme structures from non-enzymes without
588 alignments. *Journal of Molecular Biology*, 330(4):771–783, 2003a.

594 Paul D Dobson and Andrew J Doig. Distinguishing enzyme structures from non-enzymes without
 595 alignments. *Journal of Molecular Biology*, 330(4):771–783, 2003b. doi: 10.1016/s0022-2836(03)
 596 00628-4.

597 David K Duvenaud, Dougal Maclaurin, Jorge Iparraguirre, Rafael Bombarell, Timothy Hirzel, Alán
 598 Aspuru-Guzik, and Ryan P Adams. Convolutional networks on graphs for learning molecular
 599 fingerprints. In *Advances in Neural Information Processing Systems*, 2015.

600 Marco D’Elia, Irene Finocchi, and Maurizio Patrignani. Maximal cliques summarization: Princi-
 601 ples, problem classification, and algorithmic approaches. *Computer Science Review*, 58:100784,
 602 2025.

603 Stefania Ebli, Michaël Defferrard, and Gard Spreemann. Simplicial neural networks. In *NeurIPS
 604 Workshop Topological Data Analysis and Beyond*, 2020.

605 Aref Einizade, Dorina Thanou, Fragkiskos D Malliaros, and Jhony H Giraldo. Continuous simplicial
 606 neural networks. In *Advances in Neural Information Processing Systems*, 2025.

607 Wenqi Fan, Yao Ma, Qing Li, Yuan He, Eric Zhao, Jiliang Tang, and Dawei Yin. Graph neural
 608 networks for social recommendation. In *The World Wide Web Conference*, 2019.

609 Jiarui Feng, Yixin Chen, Fuhai Li, Anindya Sarkar, and Muhan Zhang. How powerful are k-hop
 610 message passing graph neural networks. In *Advances in Neural Information Processing Systems*,
 611 2022.

612 Yifan Feng, Haoxuan You, Zizhao Zhang, Rongrong Ji, and Yue Gao. Hypergraph neural networks.
 613 In *AAAI conference on artificial intelligence*, 2019.

614 Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E Dahl. Neural
 615 message passing for quantum chemistry. In *International Conference on Machine Learning*, 2017.

616 Lorenzo Giusti, Teodora Reu, Francesco Ceccarelli, Cristian Bodnar, and Pietro Liò. CIN++: En-
 617 hancing topological message passing. *arXiv preprint arXiv:2306.03561*, 2023.

618 Willem H Haemers and Edward Spence. The pseudo-geometric graphs for generalized quadrangles
 619 of order (3, t). *European Journal of Combinatorics*, 22(6):839–845, 2001.

620 Mustafa Hajij, Kyle Istvan, and Ghada Zamzmi. Cell complex neural networks. In *NeurIPS Work-
 621 shop Topological Data Analysis and Beyond*, 2020.

622 Mustafa Hajij, Mathilde Papillon, Florian Frantzen, Jens Agerberg, Ibrahem AlJabea, Rubén
 623 Ballester, Claudio Battiloro, Guillermo Bernárdez, Tolga Birdal, Aiden Brent, et al. TopoX:
 624 a suite of Python packages for machine learning on topological domains. *Journal of Machine
 625 Learning Research*, 25(374):1–8, 2024.

626 Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs.
 627 In *Advances in Neural Information Processing Systems*, 2017.

628 Jakob Hansen and Robert Ghrist. Toward a spectral theory of cellular sheaves. *Journal of Applied
 629 and Computational Topology*, 3(4):315–358, 2019.

630 Allen Hatcher. *Algebraic topology*. Cambridge University Press, Cambridge, 2002.

631 Paul W. Holland, Kathryn Blackmond Laskey, and Samuel Leinhardt. Stochastic blockmodels: First
 632 steps. *Social Networks*, 5(2):109–137, 1983. ISSN 0378-8733.

633 Ningyuan Teresa Huang and Soledad Villar. A short tutorial on the weisfeiler-lehman test and
 634 its variants. In *IEEE International Conference on Acoustics, Speech and Signal Processing
 635 (ICASSP)*, 2021.

636 Matthew Kahle. Topology of random clique complexes. *Discrete Mathematics*, 309(6):1658–1671,
 637 2009.

638 Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional net-
 639 works. In *International Conference on Learning Representations*, 2017.

648 Maciej Krzywda, Szymon Łukasik, and Amir H Gandomi. Graph neural networks in computer
 649 vision-architectures, datasets and common approaches. In *International Joint Conference on Neu-*
 650 *ral Networks*, 2022.

651

652 Andrei Leman and Boris Weisfeiler. A reduction of a graph to a canonical form and an algebra
 653 arising during this reduction. *Nauchno-Technicheskaya Informatsiya*, 2(9):12–16, 1968.

654

655 Rossana Mastrandrea, Julie Fournet, and Alain Barrat. Contact patterns in a high school: A compar-
 656 ison between data collected using wearable sensors, contact diaries and friendship surveys. *PloS*
 657 *One*, 10(9):e0136497, 2015.

658

659 Julian McAuley, Christopher Targett, Qinfeng Shi, and Anton van den Hengel. Image-based recom-
 660 mendations on styles and substitutes, 2015.

660

661 John W Moon and Leo Moser. On cliques in graphs. *Israel Journal of Mathematics*, 3(1):23–28,
 662 1965.

663

664 Christopher Morris, Martin Ritzert, Matthias Fey, William L Hamilton, Jan Eric Lenssen, Gaurav
 665 Rattan, and Martin Grohe. Weisfeiler and Leman go neural: Higher-order graph neural networks.
 666 In *AAAI Conference on Artificial Intelligence*, 2019.

667

668 Christopher Morris, Nils M Kriege, Franka Bause, Kristian Kersting, Petra Mutzel, and Marion
 669 Neumann. TUDataset: A collection of benchmark datasets for learning with graphs. In *ICML*
 670 *Workshop Graph Representation Learning and Beyond*, 2020.

671

672 Galileo Namata, Ben London, Lise Getoor, Bert Huang, and U Edu. Query-driven active surveying
 673 for collective classification. In *International Workshop on Mining and Learning with Graphs*,
 674 2012.

675

676 Francesco Orsini, Paolo Frasconi, and Luc De Raedt. Graph invariant kernels. In *International Joint*
 677 *Conference on Artificial Intelligence*, 2015.

678

679 Theodore Papamarkou, Tolga Birdal, Michael Bronstein, Gunnar Carlsson, Justin Curry, Yue Gao,
 680 Mustafa Hajij, Roland Kwitt, Pietro Lio, Paolo Di Lorenzo, et al. Position: Topological deep
 681 learning is the new frontier for relational learning. *Proceedings of Machine Learning Research*,
 682 235:39529, 2024.

683

684 Mathilde Papillon, Sophia Sanborn, Mustafa Hajij, and Nina Miolane. Architectures of topolog-
 685 ical deep learning: A survey of message-passing topological neural networks. *arXiv preprint*
 686 *arXiv:2304.10031*, 2023.

687

688 Ida Schomburg, Antje Chang, Christian Ebeling, Marion Gremse, Christian Heldt, Gregor Huhn,
 689 and Dietmar Schomburg. BRENDA, the enzyme database: updates and major new developments.
 690 *Nucleic Acids Research*, 32:D431–D433, 2004.

691

692 Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise Getoor, Brian Galligher, and Tina Eliassi-Rad.
 693 Collective classification in network data. *AI Magazine*, 29(3):93–93, 2008.

694

695 Oleksandr Shchur, Maximilian Mumme, Aleksandar Bojchevski, and Stephan Günnemann. Pitfalls
 696 of graph neural network evaluation. In *NeurIPS Workshop Relational Representation Learning*,
 697 2018.

698

699 Nino Shervashidze, Pascal Schweitzer, Erik Jan, Van Leeuwen, Kurt Mehlhorn, and Karsten Borg-
 700 wardt. Weisfeiler-Lehman graph kernels. *Journal of Machine Learning Research*, 1:1–48, 01
 2010.

701

702 Etsuji Tomita, Akira Tanaka, and Haruhisa Takahashi. The worst-case time complexity for generat-
 703 ing all maximal cliques and computational experiments. *Theoretical Computer Science*, 363(1):
 704 28–42, 2006.

705

706 Nikil Wale, Ian A Watson, and George Karypis. Comparison of descriptor spaces for chemical com-
 707 pound retrieval and classification. *Knowledge and Information Systems*, 14(3):347–375, 2008.

702 Jia Wang, James Cheng, and Ada Wai-Chee Fu. Redundancy-aware maximal cliques. KDD '13, pp.
703 122–130. SIGKDD international conference on Knowledge discovery and data mining, 2013.
704

705 Felix Wu, Amauri Souza, Tianyi Zhang, Christopher Fifty, Tao Yu, and Kilian Weinberger. Simpli-
706 fying graph convolutional networks. In *International Conference on Machine Learning*, 2019.

707 Hanrui Wu, Yuguang Yan, and Michael Kwok-Po Ng. Hypergraph collaborative network on vertices
708 and hyperedges. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 45(3):3245–
709 3258, 2022.

710

711 Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
712 networks? In *International Conference on Learning Representations*, 2019.

713

714 Pinar Yanardag and SVN Vishwanathan. Deep graph kernels. In *ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining*, 2015.

715

716 Ruochen Yang, Frederic Sala, and Paul Bogdan. Efficient representation learning for higher-order
717 data with simplicial complexes. In *Learning on Graphs Conference*, 2022.

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756 A WEISFEILER-LEMAN GRAPH ISOMORPHISM TEST
757758 **Definition 21.** Let $A(\cdot)$ and $B(\cdot)$ be graph hashing functions. We say that A is more expressive than
759 B if, for any pair of graphs G and G' , if the following condition holds:
760

761
$$B(G) \neq B(G') \implies A(G) \neq A(G'). \quad (7)$$

762

763 Intuitively, a more expressive hashing can distinguish a wider range of non-isomorphic graphs.
764765 A classical and widely used technique for graph isomorphism test is the *Weisfeiler–Leman (WL) test*
766 (Leman & Weisfeiler, 1968), which is based on iterative color refinement:
767768 **Definition 22.** The WL test constructs, in an iterative manner, a mapping c from the nodes of a
769 graph to a finite set of colors as follows:
770771 1. *Initialization:* All nodes are assigned the same initial color.
772 2. *Color refinement:* At iteration $t + 1$, the color of each node i is updated according to $c_i^{t+1} =$
773 $\text{HASH}(c_i^t, \{c_j^t : j \sim i\})$, where $j \sim i$ denotes that node j is adjacent to node i , and HASH is
774 an injective function.
775 3. *Termination:* The process continues until the coloring no longer changes. Two graphs are
776 considered non-isomorphic if their color histograms differ; otherwise, the test does not provide
777 a conclusive answer.
778779 The WL test provides an efficient heuristic for the graph isomorphism problem (Huang & Villar,
780 2021).781 B PROOFS
782

783 B.1 PROOF OF THEOREM 6

784 First, we introduce the same notations, definitions, and propositions as in (Bodnar et al., 2021a) to
785 manipulate cellular coloring.
786787 **Definition 23.** A *cellular coloring* is a function c that maps a cell complex X and one of its cells σ
788 to a finite set (color set). We denote this color as c_σ^X .
789790 **Definition 24.** Let X, Y be two cell complexes and c a coloring. We say that X and Y are c -similar,
791 denote as $c^X = c^Y$ if $\{c_\sigma^X, \sigma \in X\} = \{c_\tau^Y, \tau \in Y\}$. Otherwise, we have $c^X \neq c^Y$.
792793 **Definition 25.** A coloring c is said to **refine** another coloring d , denoted $c \subseteq d$, if for all cell
794 complexes X, Y and all $\sigma \in X, \tau \in Y$, we have:
795

796
$$c_\sigma^X = c_\tau^Y \implies d_\sigma^X = d_\tau^Y.$$

797

798 If both $c \subseteq d$ and $d \subseteq c$, then the two colorings are said to be **equivalent**, denoted $c \equiv d$.
799800 **Proposition 26.** Let X, Y be cell complexes with $A \subseteq X$ and $B \subseteq Y$. Consider two colorings c, d
801 such that $c \subseteq d$.
802

803
$$\{c_\sigma^X, \sigma \in A\} = \{c_\tau^Y, \tau \in B\} \implies \{d_\sigma^X, \sigma \in A\} = \{d_\tau^Y, \tau \in B\}.$$

804

805 *Proof.* Let's suppose that $\{c_\sigma^X, \sigma \in A\} = \{c_\tau^Y, \tau \in B\}$. It means that there exist a bijection
806 $f : A \rightarrow B$ such that forall $\sigma \in A$, $c_\sigma^X = c_{f(\sigma)}^Y$.
807808 As $c \subseteq d$, $d_\sigma^X = d_{f(\sigma)}^Y$ ie $\{d_\sigma^X, \sigma \in A\} = \{d_{f(\sigma)}^Y, \tau \in B\}$. \square
809810 **Corollary 27.** If $c \subseteq d$, then for all cell complexes X, Y ,

811
$$c^X = c^Y \implies d^X = d^Y.$$

812

813 All non-distinguished cell complexes by c are not distinguished by d . In other words, c is a more
814 powerful isomorphic test than d .
815

Proof of Theorem 6. Let's show that CWL with coloring $\text{HASH}(c_\sigma^t, c_\mathcal{B}^t, c_\mathcal{C}^t)$ is as powerful as $\text{HASH}(c_\sigma^t, c_\mathcal{B}^t, c_\uparrow^t)$. Let's denote as a^t the colouring at step t using CWL with $\text{HASH}(c_\sigma^t, c_\mathcal{B}^t, c_\uparrow^t)$ and b^t the one using $\text{HASH}(c_\sigma^t, c_\mathcal{B}^t, c_\mathcal{C}^t)$. We know that the coloring a^t is as powerful as the original CWL (Theorem 7, in Bodnar et al. (2021a)). Since b^t uses a subset of the CWL coloring relationships, it can be shown by induction that it is less powerful than the original CWL. Therefore, we have $a \subseteq b$.

Let's show that $b \subseteq a$.

We show by induction that $b^{2t} \subseteq a^t$ for all $t \in \mathbb{N}$.

Base case. $b^0 \subseteq a^0$ as they follow the same color initialization scheme.

Inductive step. Assume $b^{2t} \subseteq a^t$. We prove that $b^{2t+2} \subseteq a^{t+1}$.

let $(\sigma_1, \sigma_2) \in X \times Y$ such that $b_{\sigma_1}^{2t+2} = b_{\sigma_2}^{2t+2}$. By construction,

$$b_{\sigma_1}^{2t+1} = b_{\sigma_2}^{2t+1}, \quad b_{\mathcal{B}}^{2t+1}(\sigma_1) = b_{\mathcal{B}}^{2t+1}(\sigma_2), \quad b_{\mathcal{C}}^{2t+1}(\sigma_1) = b_{\mathcal{C}}^{2t+1}(\sigma_2),$$

as $b_{\mathcal{C}}^{2t+1}(\sigma_1) = b_{\mathcal{C}}^{2t+1}(\sigma_2)$, there exist a bijective map $f : \mathcal{C}(\sigma_1) \rightarrow \mathcal{C}(\sigma_2)$ that preserve the b^{2t+1} coloring ie $b_\tau^{2t+1} = b_{f(\tau)}^{2t+1}$ for $\tau \in \mathcal{C}(\sigma_1)$.

As $b_\tau^{2t+1} = b_{f(\tau)}^{2t+1}$, we have $b_{\mathcal{B}}^{2t}(\tau) = b_{\mathcal{B}}^{2t}(f(\tau))$, i.e.,

$$\{(b_\gamma^{2t}, \tau) \mid \gamma \in \mathcal{B}(\tau)\} = \{(b_\gamma^{2t}, f(\tau)) \mid \gamma \in \mathcal{B}(f(\tau))\}.$$

We can add the color of τ on both sides, the multisets would still stay equal:

$$\{(b_\gamma^{2t}, b_\tau^{2t}) \mid \gamma \in \mathcal{B}(\tau)\} = \{(b_\gamma^{2t}, b_\tau^{2t}) \mid \gamma \in \mathcal{B}(f(\tau))\}.$$

As this is true for all τ in $\mathcal{C}(\sigma_1)$, we can take the union:

$$\bigcup_{\tau \in \mathcal{C}(\sigma_1)} \{(b_\gamma^{2t}, b_\tau^{2t}) \mid \gamma \in \mathcal{B}(\tau)\} = \bigcup_{\tau \in \mathcal{C}(\sigma_1)} \{(b_\gamma^{2t}, b_\tau^{2t}) \mid \gamma \in \mathcal{B}(f(\tau))\},$$

i.e.,

$$\{(b_\gamma^{2t}, b_\tau^{2t}) \mid \tau \in \mathcal{C}(\sigma_1), \gamma \in \mathcal{B}(\tau)\} = \{(b_\gamma^{2t}, b_\tau^{2t}) \mid \tau \in \mathcal{C}(\sigma_1), \gamma \in \mathcal{B}(f(\tau))\},$$

as $b_\tau^{2t} = b_{f(\tau)}^{2t}$ and f is bijective, the right term can be simplified:

$$\begin{aligned} \{(b_\gamma^{2t}, b_\tau^{2t}) \mid \tau \in \mathcal{C}(\sigma_1), \gamma \in \mathcal{B}(f(\tau))\} &= \{(b_\gamma^{2t}, b_{f(\tau)}^{2t}) \mid \tau \in \mathcal{C}(\sigma_1), \gamma \in \mathcal{B}(f(\tau))\} \\ &= \{(b_\gamma^{2t}, b_\delta^{2t}) \mid \delta \in \mathcal{C}(\sigma_2), \gamma \in \mathcal{B}(\delta)\}, \end{aligned}$$

i.e.,

$$\{(b_\gamma^{2t}, b_\tau^{2t}) \mid \tau \in \mathcal{C}(\sigma_1), \gamma \in \mathcal{B}(\tau)\} = \{(b_\gamma^{2t}, b_\delta^{2t}) \mid \delta \in \mathcal{C}(\sigma_2), \gamma \in \mathcal{B}(\delta)\}.$$

Thus $b_\uparrow^{2t}(\sigma_1) = b_\uparrow^{2t}(\sigma_2)$. Using the induction hypothesis $b^{2t} \subseteq a^t$ with proposition 26, we have

$$a_{\sigma_1}^t = a_{\sigma_2}^t \quad a_\uparrow^t(\sigma_1) = a_\uparrow^t(\sigma_2) \quad a_{\mathcal{B}}^t(\sigma_1) = a_{\mathcal{B}}^t(\sigma_2) \quad a_{\mathcal{C}}^t(\sigma_1) = a_{\mathcal{C}}^t(\sigma_2),$$

i.e.,

$$a_{\sigma_1}^{t+1} = a_{\sigma_2}^{t+1}.$$

From our induction $b^{2t} \subseteq a^t$ for all $t \in \mathbb{N}$, hence $b \subseteq a$. \square

B.2 PROOF OF THEOREM 8 AND PROPOSITION 12

We introduce a new isomorphism test, fCWL, associated with fCWN, and prove that fCWL is at least as expressive as CWL and 1-WL on cell complexes that kept node set.

Once this is established, the remaining correspondences between models with injective aggregation and their associated tests follow identically from the proof of equivalence between CWL and CWN in (Bodnar et al., 2021a).

Proposition 28. *fCWL is more expressive than sCWL.*

864 *Proof.* $(\mathcal{V}_1, \mathcal{X}_1)$ and $(\mathcal{V}_2, \mathcal{X}_2)$ correspond to two cell complexes that keep node sets.
 865

866 Let a^t denote the coloring at step t using sCWL, and b^t the coloring at step t using fCWL.
 867

868 We prove by induction that $b^t \subseteq a^t$.
 869

870 *Base case.* $b^0 \subseteq a^0$ since both follow the same initialization scheme.
 871

872 *Induction step.* Assume $b^t \subseteq a^t$. We show that $b^{t+1} \subseteq a^{t+1}$.
 873

874 Let $(\sigma_1, \sigma_2) \in \mathcal{X}_1 \times \mathcal{X}_2$ such that $b_{\sigma_1}^{t+1} = b_{\sigma_2}^{t+1}$. By construction, we have:
 875

$$b_{\sigma_1}^t = b_{\sigma_2}^t, \quad b_{\mathcal{B}}^t(\sigma_1) = b_{\mathcal{B}}^t(\sigma_2), \quad b_{\mathcal{C}}^t(\sigma_1) = b_{\mathcal{C}}^t(\sigma_2).$$

876 Using Proposition 26 with the induction hypothesis, it follows that:
 877

$$a_{\sigma_1}^t = a_{\sigma_2}^t, \quad a_{\mathcal{B}}^t(\sigma_1) = a_{\mathcal{B}}^t(\sigma_2), \quad a_{\mathcal{C}}^t(\sigma_1) = a_{\mathcal{C}}^t(\sigma_2)$$

878 *i.e.*, $a_{\sigma_1}^{t+1} = a_{\sigma_2}^{t+1}$.
 879

880 By induction, $b^t \subseteq a^t$ for all $t \in \mathbb{N}$, hence $b \subseteq a$. \square
 881

882 Since sCWL is as expressive as CWL (Theorem 6), it follows as a corollary that fCWL is at least as
 883 expressive than CWL.

884 **Proposition 29.** *fCWL is more expressive than WL*
 885

886 *Proof.* $(\mathcal{V}_1, \mathcal{X}_1)$ and $(\mathcal{V}_2, \mathcal{X}_2)$ correspond to two cell complexes that keep node sets.
 887

888 Let a^t denote the coloring of nodes at step t using WL, b^t the coloring of cells at step t using fCWL
 889 and $b_{\mathcal{V}}^t$ the coloring of nodes in the cell complex colored at step t by fCWL.
 890

891 We prove by induction that $b_{\mathcal{V}}^t \subseteq a^t$ on the nodes.
 892

893 *Base case.* $b^0 \subseteq a^0$ since have constant colors.
 894

895 *Induction step.* Assume $b_{\mathcal{V}}^t \subseteq a^t$ on nodes. We show that $b_{\mathcal{V}}^{t+1} \subseteq a^{t+1}$.
 896

897 Let $(i_1, i_2) \in \mathcal{V}_1 \times \mathcal{V}_2$ such that $b_{i_1}^{t+1} = b_{i_2}^{t+1}$.
 898

899 We have:
 900

$$b_{i_1}^t = b_{i_2}^t, \quad b_{\mathcal{C}(i_1)}^t = b_{\mathcal{C}(i_2)}^t, \quad b_{\mathcal{N}(i_1)}^t = b_{\mathcal{N}(i_2)}^t.$$

901 Using the induction hypothesis: $a_{i_1}^t = a_{i_2}^t$. as $b_{\mathcal{N}(i_1)}^t = b_{\mathcal{N}(i_2)}^t$, we can only consider the color of
 902 the first component, we get:
 903

$$\{\{b_j^t, \quad j \in \mathcal{N}(i_1)\}\} = \{\{b_j^t, \quad j \in \mathcal{N}(i_2)\}\},$$

904 *i.e.*, by using proposition 26 and the induction hypothesis:
 905

$$\{\{a_j^t, \quad j \in \mathcal{N}(i_1)\}\} = \{\{a_j^t, \quad j \in \mathcal{N}(i_2)\}\}.$$

906 From WL update, we get $a_{i_1}^{t+1} = a_{i_2}^{t+1}$.
 907

908 By induction. $b_{\mathcal{V}}^t \subseteq a^t$ for all $t \in \mathbb{N}$, thus $b_{\mathcal{V}} \subseteq a$. \square
 909

910 B.3 PROOF OF PROPOSITION 14

911 In this section, we analyse the theoretical time and memory complexity of CWN, fCWN, and sCWN.
 912 We first remind some notations:
 913

- 914 • \mathcal{V} represents the set of nodes
 915 • n is the number of nodes of our graphs
 916 • \mathcal{N}_i represents the neighborhood of node i .
 917 • \mathcal{X} is the set of maximal cliques.

918 We now detail one by one each message passing scheme's complexity.
 919

920 **Boundary messages.** Each node in the graph sends a message to the clique containing it. The total
 921 number of messages sent is:

$$922 \quad | \{ (i, \sigma) \in \mathcal{V} \times \mathcal{X}, \quad i \in \sigma \} | = \sum_{(i, \sigma) \in \mathcal{V} \times \mathcal{X}} \mathbb{1}_{i \in \sigma} = \sum_{\sigma \in \mathcal{X}} \sum_{i \in \mathcal{V}} \mathbb{1}_{i \in \sigma} = \sum_{\sigma \in \mathcal{X}} |\sigma|.$$

925 **Co-boundary messages.** Each clique sends a message to each node it contains. The total number
 926 of messages sent is:
 927

$$928 \quad | \{ (i, \sigma) \in \mathcal{V} \times \mathcal{X}, \quad i \in \sigma \} | = \sum_{\sigma \in \mathcal{X}} |\sigma|.$$

930 **Upper-adjacency CWN.** Each node i aggregate message for all tuple (j, σ) such that $\{i, j\} \subset \sigma$.
 931 The total number of messages sent is:
 932

$$933 \quad \sum_{i \in \mathcal{V}} | \{ (j, \sigma) \in \mathcal{V} \times \mathcal{X} : \{i, j\} \in \sigma \} | = \sum_{i \in \mathcal{V}} \sum_{j \in \mathcal{V}} \sum_{\sigma \in \mathcal{X}} \mathbb{1}_{\{i, j\} \subset \sigma}$$

$$934 \quad = \sum_{\sigma \in \mathcal{X}} \sum_{i \in \mathcal{V}} \sum_{j \in \mathcal{V}} \mathbb{1}_{\{i, j\} \subset \sigma}$$

$$935 \quad = \sum_{\sigma \in \mathcal{X}} | \{ (i, j) \in \mathcal{V}^2 : \{i, j\} \subset \sigma \} |$$

$$936 \quad = \sum_{\sigma \in \mathcal{X}} \binom{|\sigma|}{2}$$

$$937 \quad = \sum_{\sigma \in \mathcal{X}} \frac{|\sigma|^2 - |\sigma|}{2}.$$

947 **Upper-adjacency fCWN.** For each tuple $(i, \sigma) \in \mathcal{V} \times \mathcal{X}$ we create a message. Then we do an
 948 adjacency update. The total number of messages is the sum of each:
 949

$$950 \quad \sum_{(i, \sigma) \in \mathcal{V} \times \mathcal{X}} \mathbb{1}_{i \in \sigma} + \sum_{l \in \mathcal{N}_i} 1 = \sum_{\sigma \in \mathcal{X}} |\sigma| + |\mathcal{E}|.$$

953 We can now finish the proof of proposition 14.
 954

955 **CWN.** Every message passes through an MLP M_{\uparrow} . The memory complexity is the same as the
 956 number of messages plus the data on the node and cliques:
 957

- 958 • Time complexity : $\mathcal{O}(\sum_{\sigma \in \mathcal{X}} |\sigma|^2)$.
- 959 • Memory complexity : $\mathcal{O}(n + \sum_{\sigma \in \mathcal{X}} |\sigma|^2)$.

961 **fCWN.** Only the first messages go through an MLP M_{\uparrow} .

$$963 \quad \bullet \text{ Time complexity : } \mathcal{O}(\sum_{\sigma \in \mathcal{X}} |\sigma| + |\mathcal{E}|).$$

$$964 \quad \bullet \text{ Memory complexity : } \mathcal{O}(n + \sum_{\sigma \in \mathcal{X}} |\sigma|).$$

967 **sCWN.** Here, MLPs are only applied to node or clique data. The messages are based on boundary
 968 and co-Boundary.
 969

- 970 • Time complexity : $\mathcal{O}(\sum_{\sigma \in \mathcal{X}} |\sigma|)$.
- 971 • Memory complexity : $\mathcal{O}(n + |\mathcal{X}|)$.

972 **Summary.** For clarity, we summarize below:
 973

Model	Time Complexity	Memory Complexity
CWN	$\mathcal{O}(\sum_{\sigma \in \mathcal{X}} \sigma ^2)$	$\mathcal{O}(n + \sum_{\sigma \in \mathcal{X}} \sigma ^2)$
fCWN	$\mathcal{O}(\sum_{\sigma \in \mathcal{X}} \sigma + \mathcal{E})$	$\mathcal{O}(n + \sum_{\sigma \in \mathcal{X}} \sigma)$
sCWN	$\mathcal{O}(\sum_{\sigma \in \mathcal{X}} \sigma)$	$\mathcal{O}(n + \mathcal{X})$

982 **B.4 PROOF OF PROPOSITION 18**
 983

984 We show that at every step of Algorithm 1, the nodes in the walk always form a clique.
 985

986 **Notations.** Let Walk_t denote the nodes in the walk at step t , and neighbor_t the set of nodes that can
 987 be added next. We claim that:

$$988 \text{neighbor}_t = \{l \in \mathcal{V}, \quad l \sim j \ \forall j \in \text{Walk}_t\},$$

990 *i.e.*, neighbor_t contains exactly the nodes connected to all nodes in the current walk.
 991

992 **Induction.**

993 **Base case.** Initially, $\text{Walk}_0 = [i]$ and $\text{neighbor}_0 = \mathcal{N}_i$. By definition, \mathcal{N}_i contains all nodes
 994 connected to i , *i.e.*, all nodes that form a clique with Walk_0 . Thus, the property holds at the first
 995 step.

996 **Inductive step.** Assume the property holds at step t , and let $j_{\text{new}} \in \text{neighbor}_t$ be the next node added
 997 to the walk. The neighbor set is updated as

$$998 \text{neighbor}_{t+1} = \text{neighbor}_t \cap \mathcal{N}_{j_{\text{new}}}.$$

1000 By construction, neighbor_{t+1} contains only nodes connected to j_{new} and to all nodes in Walk_t , *i.e.*,
 1001 nodes connected to all nodes in

$$1002 \text{Walk}_{t+1} = \text{Walk}_t \cup \{j_{\text{new}}\}.$$

1004 The property holds at step $t + 1$.

1005 **Conclusion.** By induction, all nodes in the walk are connected to each other, *i.e.*, the walk always
 1006 forms a clique. Since the walk is a clique, its size cannot exceed $\omega(G)$, the size of the largest clique
 1007 in the graph. Therefore, the walk can only stop when neighbor_t becomes empty, *i.e.*, when there
 1008 is no node that can be added to extend the clique. As a result, the clique produced by the walk is
 1009 maximal with respect to set inclusion.

1011 **B.5 PROOF OF PROPOSITION 19**
 1012

1013 CliqueWalk builds a maximal clique by growing it step by step. At each step, the algorithm: (i)
 1014 samples a neighbor, (ii) intersects the neighborhoods of the current and newly visited node to restrict
 1015 the walk, and (iii) continues until either the walk length reaches ω_{\max} or it cannot be expanded.

1016 We can now break down the cost of one walk:
 1017

- 1018 (i) *Neighbor sampling.* Selecting a random neighbor is constant-time: $\mathcal{O}(1)$.
- 1019 (ii) *Neighborhood intersection.* Intersecting two neighborhoods A and B takes $\mathcal{O}(|A| + |B|)$.
 1020 Since each neighborhood is bounded by the maximum degree $d_{\max}(G)$, this step costs at most
 1021 $\mathcal{O}(d_{\max}(G))$.
- 1022 (iii) *Walk length.* The maximum length of a walk is bounded by

$$1023 L \leq \max(\omega(G), \omega_{\max}),$$

1024 where $\omega(G)$ is the maximum clique size of the graph and ω_{\max} is the cutoff imposed by the
 1025 algorithm.

1026 Table 4: Number of distinct hashes found by each method on graph classification datasets. Abbreviated
 1027 dataset names: ENZ = ENZYMES, FRANK = FRANKENSTEIN, IMDB-B = IMDB-BINARY,
 1028 IMDB-M = IMDB-MULTI, PROT = PROTEINS, ALC = alchemy_full.

1029

Method	DD	ENZ	FRANK	IMDB-B	IMDB-M	NCI1	PROT	ALC
1WL	1178	595	2766	537	387	3837	996	12343
CWL	1178	595	2767	537	387	3837	996	12396
CountClique	1178	547	216	432	309	254	799	23
TopoCount	1178	595	1272	537	387	2188	992	727

1034

1035

1036 The complexity of one CLiqueWalk is thus :

1037

$$1038 \mathcal{O}\left(\sum_{j=0}^L d_{\max}(G)\right) = \mathcal{O}(d_{\max}(G) \cdot \max(\omega(G), \omega_{\max})).$$

1039

1040

1041 As we launch from each node n_{walks} walks, the total complexity is

1042

$$1043 \mathcal{O}(n \cdot n_{\text{walks}} \cdot d_{\max}(G) \cdot \max(\omega(G), \omega_{\max})). \quad \square$$

1044

1045 C MAXIMAL CLIQUE CWL

1046

1047 We propose some experiments and illustrations to better understand the maximal clique CWL and its
 1048 differences with WL. See Figure 6. It is known that CWL is more expressive than WL when using
 1049 cell lifting methods that preserve the full node and edge sets of the graph (Bodnar et al., 2021a).
 1050 However, since we only consider maximal cliques and remove edges from the representation, we no
 1051 longer have this guarantee over WL.

1052

1053 We introduce two simple coloring scheme to make sense of CWL expressive power.

1054

1055 **Definition 30.** The **CountClique** test hashes the set of all clique lengths.

1056

1057 **Definition 31.** The **TopoCount** test assigns a unique color to each node by hashing the set of lengths
 1058 of the cliques containing it.

1059

1060 It is clear that CWL is at least as expressive as TopoCount and CountClique.

1061

1062 We empirically compare the expressivity of CWL, WL, and other tests on various datasets. Table 4
 1063 shows the number of distinct hashes produced by each method. CWL matches or slightly exceeds
 1064 WL in most cases. For several datasets (Dobson & Doig, 2003b; Chen et al., 2019; Orsini et al.,
 1065 2015), access to clique neighborhood information allows CWL to distinguish more graphs. For
 1066 chemical datasets such as *alchemy_full*, WL schemes produce significantly more hashes than one-
 1067 shot methods like TopoCount, highlighting the benefit of multi-layer models on those datasets.

1068

1069 We also evaluate these tests on strongly regular graphs (see Figure 7a and Table 5). We use strongly
 1070 regular datasets from <https://www.maths.gla.ac.uk/~es/srgraphs.php> (Haemers
 1071 & Spence, 2001), which include non-isomorphic strongly regular graphs with up to 64 nodes. For
 1072 many strongly regular graph families, clique topology alone is sufficient to distinguish most graphs.
 1073 In contrast, 1WL and 3WL fail to discriminate any graphs in these families, which aligns with known
 1074 results (Bouritsas et al., 2022; Bodnar et al., 2021a).

1075

1076

1077 **Clique against cycle lifting.** Figure 7b compares CWL with node and maximal clique lifting against
 1078 CWL with node, edge, and cycle lifting. Both approaches achieve similar graph discriminative
 1079 power, though they are not directly comparable: in some cases, cliques distinguish more graphs,
 while in others, cycles do.

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

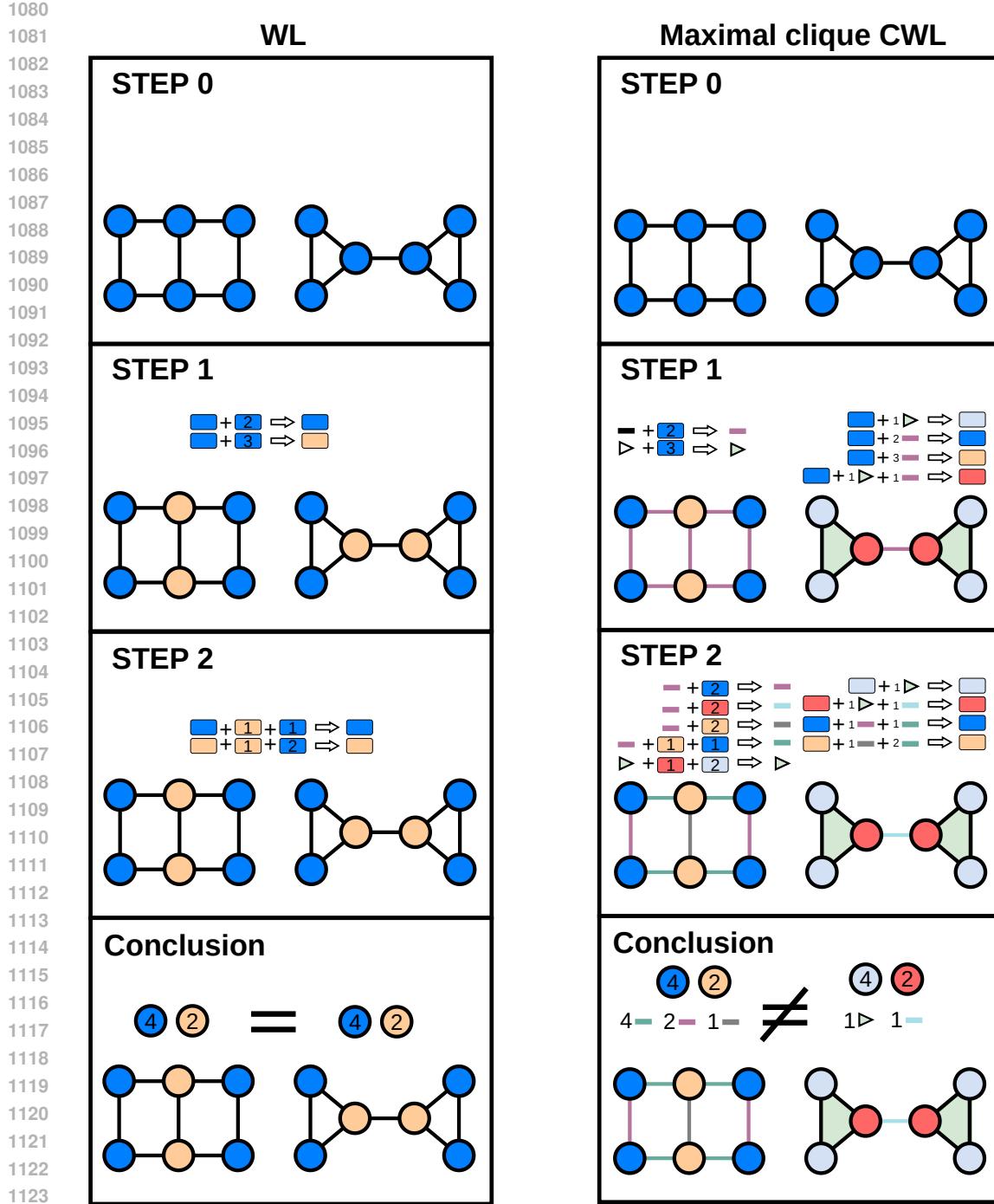


Figure 6: Illustration of the WL and maximal clique CWL test. At each iteration, every node updates its color based on its own color and the colors of its neighboring structures (see Steps 1 and 2). After Step 2, the colors become stable (*i.e.*, invariant under further updates), and the algorithm stops. A histogram of colors is then computed. Since the two graphs produce identical histograms for WL, the test cannot distinguish between them, and the WL test is therefore inconclusive. In contrast, the maximal-clique CWL algorithm yields different histograms for the two graphs, allowing us to conclude that they are not isomorphic.

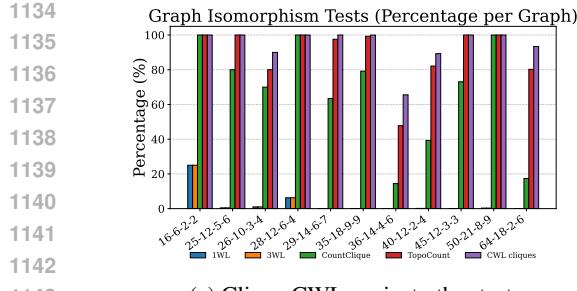
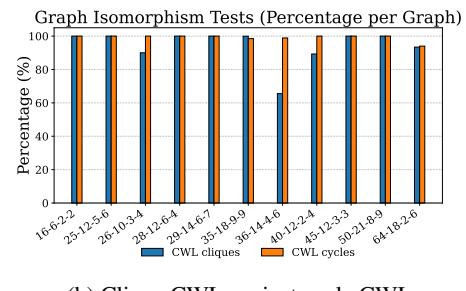


Figure 7: Comparison of Percentage of Unique Graph Hashes on strongly regular datasets: (a) compare CWL on maximal cliques against other isomorphic tests, (b) compare CWL on maximal cliques against CWL on node, edge, cycle lifting.

Table 5: Number of graphs in each strongly regular family.

Family	Number of graphs
16-6-2-2	2
25-12-5-6	15
26-10-3-4	10
28-12-6-4	4
29-14-6-7	41
35-18-9-9	3854

Family	Number of graphs
36-14-4-6	180
40-12-2-4	28
45-12-3-3	78
50-21-8-9	18
64-18-2-6	167

D CLIQUE SAMPLING

A classical approach for enumerating all maximal cliques is the *Bron-Kerbosch* method (Bron & Kerbosch, 1973), explained in Algorithm 2. R is the current clique being grown, P contains nodes adjacent to all vertices in R , and X contains nodes already processed that are also adjacent to every vertex in R . Clique summarization has been widely studied (D’Elia et al., 2025). Most of those approaches modify the Bron-Kerbosch algorithm to enumerate or sample a subset of the maximal clique set that verifies specific properties. For instance, Wang et al. (2013) prunes branches based on a heuristic to construct a subset of maximal cliques that partially covers all maximal cliques.

Our method, *CliqueWalk*, is also inspired by Bron-Kerbosch but differs in two important ways: (i) *We sample rather than full enumeration*. CliqueWalk does not attempt to enumerate all maximal cliques but samples a subset of them. Therefore, (ii) *we do not need the X set*. We simply grow a clique by iteratively sampling a vertex from the candidate set P . Conceptually, CliqueWalk performs an upward random walk in the clique complex (see Figure 3). While exact clique sampling might require exploring a geometric number of recursive branches (see Proposition 17), CliqueWalk runs in linear time with respect to the number of nodes (see Proposition 19) and efficiently produces summaries of the clique topology with the following sampling guarantees: (i) The sampling process tends to sample larger cliques. For instance, given a node v and a maximal clique σ containing v , the probability of sampling σ is at most $(|\sigma| - 1)/\deg(v)$. (ii) Performing CliqueWalk with multiple walks per node ensures that each node is included in several sampled cliques, which is relevant for node-level learning tasks.

Algorithm 2 Bron–Kerbosch

```

1: procedure BRONKERBOSCH( $R, P, X$ )
2:   if  $P = \emptyset$  and  $X = \emptyset$  then
3:     report  $R$  as a maximal clique
4:   else
5:     for each  $u$  in a copy of  $P$  do
6:        $P \leftarrow P \setminus \{u\}$ 
7:        $R_{\text{new}} \leftarrow R \cup \{u\}$ 
8:        $P_{\text{new}} \leftarrow P \cap N(u)$ 
9:        $X_{\text{new}} \leftarrow X \cap N(u)$ 
10:      BRONKERBOSCH( $R_{\text{new}}, P_{\text{new}}, X_{\text{new}}$ )
11:       $X \leftarrow X \cup \{u\}$ 
12:    end for
13:  end if
14: end procedure

```

22

1188 **E ABLATIONS**
 1189

1190 **Cell input feature choice.** Table 6 compares
 1191 the performance of sCWN on *Photo* and *contact-*
 1192 *primary-school* depending on the type of input used.
 1193 We observe that size embedding and sum embedding
 1194 obtain very similar accuracy, whereas mean embedding
 1195 provides much worse results on contact-high-
 1196 school.

1197 **Number of layers effects.** Figure 8 shows the evolu-
 1198 tion of the accuracy for deeper models. As depth
 1199 increases, test accuracy degrades at some point, in-
 1200 dicating that deep models struggle to learn effec-
 1201 tively. Training and testing accuracy remain simi-
 1202 lar at large depths (not shown in the figure), this de-
 1203 cline is unlikely due to over-fitting and is consistent
 1204 with the over-smoothing effect known in graph learn-
 1205 ing Einizade et al. (2025).

1206 **Sampling effects.** As in Section 5.4, we compare ex-
 1207 act enumeration of maximal cliques with CliqueWalk
 1208 sampling using between 1 and 256 walks per node on
 1209 *contact-primary-school* (Figure 9). For sCWN, per-
 1210 formance is better with fewer sampled structures, sug-
 1211 gesting that excessive redundancy may dilute useful
 1212 information, especially for a large number of walks,
 1213 where the number of sampled maximal cliques can exceed
 1214 the number of nodes by a large margin. In contrast,
 1215 fCWN remains relatively stable across different sam-
 1216 pling rates, indicating that its message-passing scheme
 1217 is more robust across different sampling rates.

1218 **F DATASETS**
 1219

1220 **Topological networks** (Chodrow et al., 2021; Mas-
 1221 trandrea et al., 2015). The *contact-high-school* and
 1222 *contact-primary-school* datasets record proximity be-
 1223 tween students. Hyperedges are created at fixed time
 1224 intervals from these interactions. We then project
 1225 all interactions into a static graph. In this graph, an
 1226 edge links two students if they have interacted at least
 1227 once. The resulting graphs are topological complex
 1228 networks (See Figures 10a and 10b)

1229 **Citation networks.** In these datasets, node fea-
 1230 tures are given by a Bag-of-Words representation of the
 1231 documents. Cora and Citeseer are citation networks ex-
 1232 tracted from machine learning publications (Sen et al.,
 1233 2008). The labels correspond to the research topic of
 1234 each paper. The PubMed citation network consists of
 1235 articles related to diabetes. (Namata et al., 2012) The
 1236 labels indicate the type of diabetes discussed in the
 1237 article.

1238 **Purchase network.** The Amazon Photo dataset is a subset of the Amazon co-purchase net-
 1239 work (McAuley et al., 2015). In this graph, nodes represent products, and edges connect items
 1240 that are frequently purchased together. node features are given by a Bag-of-Words representation
 1241 of product reviews, and the labels are the product category. The OGBN-Products dataset follows
 1242 the same methodology, but the Bag-of-Words features have been reduced to 100 dimensions using
 1243 PCA, providing a more compact representation of the node features.

Table 6: Ablation cell input features. Table report test accuracy after training.

input type dataset	size emb	sum	mean
Photo	94.7%	94.5%	94.9%
contact-high-school	95.4%	97.6%	7.0%

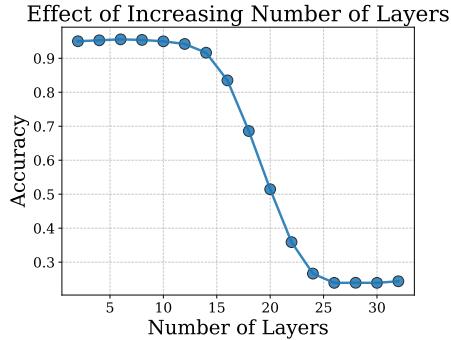
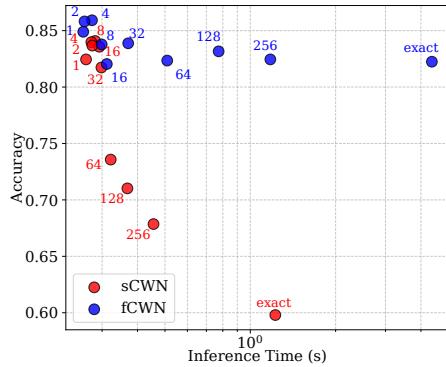


Figure 8: Accuracy of trained sCWN model without batchnorm on Photo depending on the number of layers.



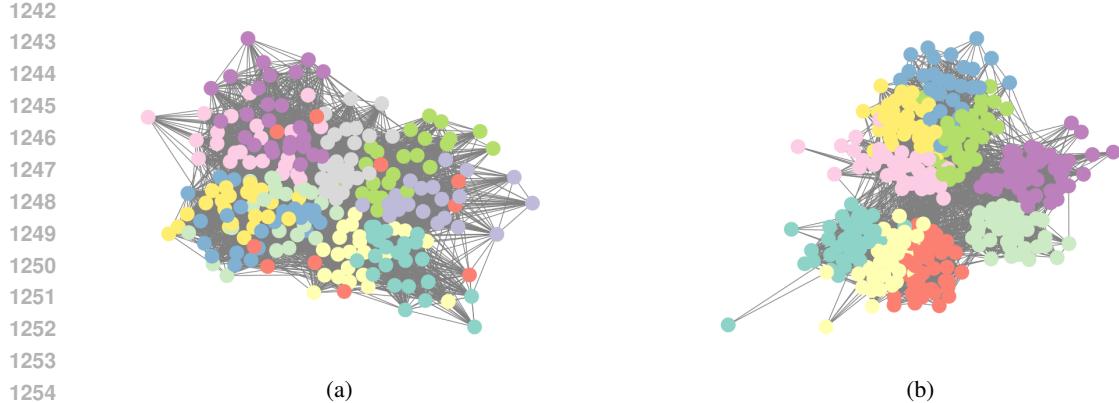


Figure 10: Projected datasets: (a) contact-primary-school and (b) contact-high-school.

Stochastic clique model. It is a special case of Stochastic Block Model (Holland et al., 1983) where inward probability is set to 1. Graphs are generated by assembling cliques, with nodes inside each clique fully connected. Each clique is assigned a label, which is inherited by all its nodes, and node features are generated from a Gaussian distribution with a mean determined by the node label and a fixed diagonal variance. To introduce topological noise, each node is connected to nodes outside its clique with a fixed probability, perturbing the clique structure. The task can thus be interpreted as a form of label denoising. For our experiments reported in table For experiments reported in Table 1, cliques had random sizes between 10 and 20. Node features had a standard deviation of 2, and topological noise was such that approximately two out of three neighbors came from outside the clique. Each clique was assigned one of five possible labels.

Social networks. A network of actors and actresses is constructed from IMDB, where edges indicate collaboration in the same film. The *IMDB-BINARY* and *IMDB-MULTI* datasets (Yanardag & Vishwanathan, 2015) consist of the 1-hop neighborhoods around each actor. Graph labels correspond to the movie genre associated with the actor.

Bioinformatics. The bioinformatics datasets include four widely used molecular and protein graph collections. *MUTAG* (Debnath et al., 1991) contains nitroaromatic compounds with 7 different labels indicating mutagenic activity. *PROTEINS* (Borgwardt et al., 2005) represents protein structures; the task is to predict if a protein is an enzyme or not. *NCII* and *NCII09* (Wale et al., 2008; Sherashidze et al., 2010) are collections of chemical compounds tested for activity against lung cancer and ovarian cancer cells, respectively. Each dataset is available through the TUDataset (Morris et al., 2020) repository and is commonly used to benchmark graph-based learning methods.

Remark. Dataset statistics can be found in Table 7. [Clique size where approximated using Clique-Walk for OGBN-Products.](#)

OBGN-Products. We used fixed hyperparameters for all models: a learning rate of 10^{-3} , no dropout, a hidden dimension of 64, and 3 layers with batch normalisation. The experimental setup was kept intentionally simple, without node batching. For higher accuracy, we recommend using larger hidden dimensions, deeper architectures, and node batching, as models with more parameters and efficient training generally perform better on large datasets.

G MODEL AND LAYER DETAILS

In this section, we describe the layers and model implementations used for our benchmarks.

Throughout, we use the following notation:

- MLP: a 2-layer multilayer perceptron with ReLU activation.
- \mathbf{W} : a learnable linear layer.
- $\mathbf{H} \in \{0, 1\}^{n \times m}$: the hypergraph incidence matrix.

1296 Table 7: Dataset statistics for node and graph classification. Reported are the number of nodes,
 1297 number of edges, mean degree, and clique statistics (μ : mean size, σ : standard deviation).

1298

1299 Dataset	1300 Nodes	1300 Edges	1300 Mean degree	1300 Clique μ	1300 Clique σ
<i>Node classification datasets</i>					
1302 SCM	6 002 010	276 089 116	46.0	6.51	6.55
1303 Cora	2 708	10 556	7.80	2.37	0.59
1304 PubMed	19 717	88 648	8.99	2.28	0.59
1305 Citeseer	3 327	9 104	5.47	2.26	0.58
1306 Photo	7 650	238 162	62.26	10.75	4.89
1307 Contact-Primary-School	242	16 634	137.47	11.36	2.88
1308 Contact-High-School	327	11 636	71.17	9.28	3.73
1308 OGBN-Products	2 449 029	123 718 024	50.5	8.3	6.6
<i>Graph classification datasets</i>					
1311 IMDB-BINARY	19 773	96 531	9.76	7.02	3.80
1312 IMDB-MULTI	19 502	98 903	10.14	7.61	4.30
1313 MUTAG	3 371	3 721	2.21	2.00	0.00
1314 NCI1	122 747	132 753	2.16	2.00	0.04
1314 NCI109	122 494	132 604	2.17	2.00	0.04
1315 Proteins	43 471	81 044	3.73	2.53	0.63

1309

1310

1311

1312

1313

1314

1315

- $\mathbf{D}_v \in \mathbb{R}^{n \times n}$, $\mathbf{D}_e \in \mathbb{R}^{m \times m}$: diagonal degree matrices of nodes and hyperedges (cliques):

$$\mathbf{D}_v(i, i) = \sum_{e=1}^m \mathbf{H}_{i,e}, \quad \mathbf{D}_e(e, e) = \sum_{i=1}^n \mathbf{H}_{i,e}.$$

1316

1317

- \mathcal{X} : the set of cliques.

- \mathbf{x}_i^N : features of node $i \in \mathcal{V}$.

- \mathbf{x}_σ^C : features of clique $\sigma \in \mathcal{X}$.

1318

1319

HGNN. We follow (Feng et al., 2019). The layer propagation is:

$$\mathbf{x}_i^N \leftarrow \mathbf{W} \mathbf{x}_i^N + \mathbf{W} \mathbf{D}_v^{-\frac{1}{2}} \mathbf{H} \mathbf{D}_e^{-1} \mathbf{H}^\top \mathbf{D}_v^{-\frac{1}{2}} \mathbf{W} (\mathbf{x}_i^N),$$

1320

1321

where \mathbf{W} is a learnable weight matrix, and $\sigma(\cdot)$ is a non-linear activation function (e.g., ReLU). The addition of $\mathbf{X}^{(l)}$ implements a residual (skip) connection.

1322

1323

CWN. We implemented the layer from Bodnar et al. (2021a):

1324

1325

1326

1327

$$\begin{aligned} \mathbf{x}_\sigma^C &\leftarrow \text{MLP}\left(\mathbf{x}_\sigma^C + \frac{1}{|\sigma|} \sum_{i \in \sigma} \mathbf{x}_i^N\right), \\ \mathbf{x}_i^N &\leftarrow \mathbf{W} \mathbf{x}_i^N + \frac{1}{|\{(j, \sigma) : i, j \in \sigma\}|} \sum_{\substack{(j, \sigma) \\ i, j \in \sigma}} \text{MLP}\left(\mathbf{x}_i^N + \mathbf{x}_j^N + \mathbf{x}_\sigma^C\right). \end{aligned}$$

1328

1329

fCWN. We implemented the layer:

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

$$\begin{aligned} \mathbf{x}_\sigma^C &\leftarrow \frac{1}{|\sigma|} \sum_{i \in \sigma} \mathbf{x}_i^N, \\ \mathbf{m}_i &\leftarrow \frac{1}{|\{\sigma : \sigma \ni j\}|} \sum_{\sigma \ni j} \text{MLP}(\mathbf{x}_j^N + \mathbf{x}_\sigma^C) \\ \mathbf{x}_i^N &\leftarrow \mathbf{W} \mathbf{x}_i^N + \mathbf{W} \mathbf{m}_i + \frac{1}{|\mathcal{N}_i|} \sum_{j \in \mathcal{N}_i} \mathbf{m}_j. \end{aligned}$$

1350
 1351 **sCWN.** This model is a simple boundary, co-boundary aggregation. Most of the weights are used
 1352 to update clique representation, while node representations are updated from the average of clique
 1353 features.

$$1354 \quad \mathbf{x}_\sigma^C \leftarrow \text{MLP}\left(\mathbf{W}\mathbf{x}_\sigma^C + \frac{1}{|\sigma|} \sum_{i \in \sigma} \text{MLP}(\mathbf{x}_i^N)\right),$$

$$1355$$

$$1356 \quad \mathbf{x}_i^N \leftarrow \mathbf{W}\mathbf{x}_i^N + \frac{1}{|\{\sigma \in \mathcal{X} : i \in \sigma\}|} \sum_{\sigma \ni i} \mathbf{x}_\sigma^C.$$

$$1357$$

$$1358$$

1359 **SCCN.** We used the TopoModelX (Hajij et al., 2024) implementation of the SCCN layer from (Yang
 1360 et al., 2022).

1361 **Global architecture.** Each model begins with a layer normalization of the input. Each subsequent
 1362 layer is composed as follows:

1363 $\text{Conv} \rightarrow \text{ReLU} \rightarrow \text{BatchNorm}$ (with or without) $\rightarrow \text{Dropout}.$

1364 Where Conv can be replaced with any convolutional layer under evaluation (e.g. sCWN, SCCN,
 1365 GAT, etc.).

1366 **Graph models.** We experiment with several standard graph neural networks: Simple Graph Convo-
 1367 lution (SGC), Graph Convolutional Network (GCN), GraphSAGE, Graph Attention Network (GAT),
 1368 and Graph Isomorphism Network (GIN). For SGC, we use a modified version with shift operator
 1369 $\mathbf{S} := \mathbf{D}^{-1}\mathbf{A}$, concatenating $\mathbf{x}, \mathbf{Sx}, \dots, \mathbf{S}^K\mathbf{x}$ and feeding the result into an MLP. For the other
 1370 models, we use the PyTorch Geometric implementations with standard hyperparameters.

1371 **Node classification.** The final layer applies a convolution followed by Softmax.

1372 **Graph classification.** The final layer applies a convolution followed by a global add pooling oper-
 1373 ation to aggregate node features into a graph-level embedding. Then, it is followed by Softmax.

1374 H THE USE OF LARGE LANGUAGE MODELS

1375 During the preparation of this work, the authors used ChatGPT to assist with grammar checking and
 1376 text polishing. After using this tool, the authors carefully reviewed and edited the content as needed
 1377 and take full responsibility for the content of this publication.