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Abstract

Machine learning interatomic potentials (MLIPs) enable molecular simulations
at longer time scales without compromising accuracy and at lower computational
costs compared to electronic structure methods such as density functional theory
(DFT). Application of MLIPs to complex functional-materials development can
help to create new scientific insights, however, MLIPs need ad-hoc training for
each new system. Reaching sufficient accuracy through large-scale training is data-
intensive, and requires a high level of technical proficiency from the user. Reliable
MLIP construction requires an appropriate selection of representative structures
and calibrated model uncertainty while avoiding undersampling of the state space.
Currently, there is a lack of end-to-end automated software to take this complexity
away from the end user. In this tutorial, we show how to use CURATOR, an open-
source software-based autonomous batch active learning workflow. CURATOR
trains message-passing graph neural networks and enables management of model
training, production testing, data selection based on uncertainty estimation, optimal
batch choice, labeling via DFT-based simulations, and retraining in a user-friendly
way.

1 Introduction

One of the most challenging problems of molecular simulations of materials is the computational cost
of the simulation itself. Comparisons with experiments are challenging as well since the size of the
simulated system and the length of the simulation is very small in comparison to real-life experiments.
This discrepancy translates into a general slowdown of the discovery process of the properties of the
materials in catalytic reactions.
Machine learning interatomic potentials (MLIP) emerged as a promising alternative to ab-initio
molecular dynamics (AIMD) simulations because they allow to consider bigger-sized systems and
to increment the simulation length (Unke et al. [2021]). As a result, MLIPs enable to explore a
larger state space and thus to understand better the material’s characteristics (Friederich et al. [2021]).
However, ML models initially needed extensive testing and physical/chemical insight of the user
for the hyperparameter selection to create the features. To overcome these challenges, end-to-end
MLIPs capable of directly learning the mapping from nuclear charges and Cartesian coordinates of
atomic structures to atomic features have been recently developed. One example of this is PaiNN
(Schütt et al. [2021]), a message-passing neural network for graph representation recently developed
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Figure 1: Workflow structure. CURATOR comprehends 5 essential steps, dataset generation, training,
production, selection, and Density Functional Theory (DFT) labeling. In the boxes, we indicate the
packages and tools whose usage is integrated into the CURATOR workflow.

for treating molecules. Yet, MLIPs trained with an AIMD dataset with undersampled configurational
space have limited utility to contribute to material discovery, because the ML production (here, an
MD simulation) will represent only a small portion of the state space. A way to treat this problem is
to select the most representative structures from the dataset and retrain the model with those. This
process of selection and retraining is called active learning. The trained MLIP needs to be aware of
the model uncertainty to select these structures. There are several methods for doing it; these methods
label the uncertainty of the structures of MLIP simulations based on a certain uncertainty metric, and
select the batch of structures with the highest uncertainty for the retraining of the network.

This procedure of training, MD production, labeling, selection, and retraining signifies a lot of data
and submitted jobs to manage for the user. For instance, one can train the MLIP on 4 systems for 15
iterations and select 100 structures for DFT labeling for each iteration round. Conviniently, these
tasks can be organized with workflows for process management. In this tutorial, we explain the use
and the characteristics of CURATOR, an autonomous batch active-learning workflow devised for the
construction of high-fidelity graph neural network potentials. This workflow uses equivariant MPNNs,
such as PaiNN, to accurately predict properties within chemical systems. To ensure the robustness of
simulations driven by the trained MLIPs, our approach supports a variety of methods for uncertainty
quantification techniques, as we describe later in this work. These methods allow us to perform batch
active learning to efficiently identify the most informative structures from production simulations and
expand their applicability across a broader chemical space. The workflow management is autonomous
and user-friendly thanks to the integration of MyQueue (Mortensen et al. [2020]). In this way, the
user can always maintain an overview of the status of the jobs, the workflow can be initiated and tasks
can be resubmitted, stopped, and iterated. Usually, we use MyQueue for handling tasks with Slurm
on the HPC; however, the notebook for this tutorial runs on Colab and we utilize MyQueue in the
"local" configuration, thus only with the Colab resources. In this tutorial, we explain the functionality
of the workflow, provide a step-by-step tutorial in the form of a Jupyter notebook based on GPAW
(Enkovaara et al. [2010]) calculators applied on a water box, and explain the workflow output.

2 Workflow structure

The structure of our workflow is displayed in Figure 1; a standard run comprehends 5 steps: Dataset
generation, training, production, selection, and labeling. Typically, we run the workflow iteratively to
enhance the quality of the MLIP, e.g., for refining node features. In the following, we briefly present
the basic functions of each step.
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Dataset As the workflow’s first step,a training dataset of an ab-initio molecular dynamics simulation
is needed. To do this, here we use GPAW since we intend to use only open-source codes for this
tutorial; however, it is also possible to use VASP (Kresse and Furthmüller [1996]). The dataset is
stored as ASE trajectory files (Larsen et al. [2017]).

Training The second step of the workflow is the training of the machine learning algorithm. Hereby,
we use PaiNN as model and train it on energy and forces. We introduce an efficient method for the
gradient computation, which calculates forces and stress based on the energy derivative with respect
to relative position vectors (Yang et al. [2023]), see explanation in 5.1. This procedure improves
both simulation speed and memory usage, enabling the use of a larger training batch size and further
enhancing model performance. It is possible to specify several models to train at the same time,
each of which with different number of nodes and layers. When having multiple iterations, weights
and biases are initialized by loading the models’ checkpoints from the previous iteration cycle. In
principle, other message-passing neural networks can be implemented at this place.

Data production- MD run After the training of the MLIP, the workflow passes the trained model
to data production. In this case, this is a ASE molecular dynamics simulation. The user can indicate
the desired simulation conditions for the MD production run. Based on the training and on the system,
one can adjust the parameters for the molecular dynamics production, such as the time step or the
simulation length.

Batch-mode selection Next, we perform batch activate learning, which is possible using several
strategies for the selection. To do this, we estimate the uncertainty of each frame of the data produced
by the trained model. This procedure maps the structures into a feature kernel matrix that we can
analyze in different ways to select the most informative ones. Active learning can be performed
in mainly two ways, by naive active learning, which prioritizes the uncertainty for the selection,
or by using optimal batch active learning methods that consider both uncertainty and diversity for
the selection of the batch. The disadvantage of naive active learning is that it selects only multiple
informative but similar samples for the next iteration, thus resulting in a limited improvement of the
model between one training iteration and the next one. The second class of methods, instead, try
to select structures that are informative, while minimizing the redundancy (e.g., similar subsequent
structures) among the samples in the batch. In the configuration file, the user specifies which method
will be used for selection and how many structures will be selected for labeling. The methods
for the batch-mode selection are random, naive active learning (MAXDIAG), greedy determinant
maximization (MAXDET), Largest cluster maximum distance (LCMD), see (Zaverkin et al. [2022],
Yang et al. [2023]) for further description of features kernel matrices and selection methods.

The performance of the available selection methods and feature kernels is displayed in Figure 2, in
which we report the results for the MD17 dataset Chmiela et al. [2017].

Labeling As a final step of a workflow cycle, perform a DFT single-point calculation of the selected
structures. The DFT calculation has the same level of theory as the initial dataset to enable the later
training. The structures are then stored in an ASE trajectory file.

3 Run the workflow

For this tutorial, we use a system of 4 water molecules moving in a 5 Å cubic box and perform
Langevin molecular dynamics simulations. See the appendix 5.2 for the simulation details. Link
to the GitHub repository https://github.com/rena-96/curator-ai4mat and to the tutorial in
the form of a YouTube video https://youtu.be/9QerCuRIuSM.

The installation of this workflow requires previous installation of PyTorch Scatter, TOML, MyQueue
packages, and the possibility of using GPUs. CURATOR has only been tested for Python>=3.8.0 and
PyTorch>=1.10. Once installed the workflow package, the user creates a new directory my_project
and copies the workflow scripts from the folder script. So that the context of the my_project
directory looks like:

$ config.toml flow.py train.py labeling.py select.py
$ md_run.py my_training_set.traj
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Figure 2: Model performance for forces by using different choices and combinations of feature kernel
and selection methods for the MD17 dataset. Left: mean absolute error (MAE) [kcal/mol/Å]; Right:
root mean square error (RMSE)[kcal/mol/Å] .

Then MyQueue is initiated in the same directory to create a folder ./myqueue where the config-
uration files for the jobs submission will be stored. The configuration files can be for example
the characteristics of the machines in the cluster, the status of the jobs, etc. After setting up the
config.toml file (see SI), the user runs mq workflow flow.py to submit all the workflow tasks.
The workflow parameters are organized and forwarded to MyQueue using TOML. In config.toml
all necessary parameters are set for the workflow and they can be edited for each iteration. Thanks to
MyQueue the user can visualize the status of each single job in the queue. MyQueue will submit the
jobs after the others until reaches the number of iterations specified in the config.toml file. We
describe the output structure in detail in the supplementary information.
In Figure 3, we analyze the MLIP from the fourth iteration (i.e., iteration 3) of a 4 water molecules
system. The training shows the fourth iteration results of an NN with 124 nodes and 3 layers, the
production run the temperature and the energy of the ML molecular simulation as a function of
production time, and the mean squared displacement (MSD) of the water molecules in the ML
molecular simulation. As one can see, the hydrogen atoms move more than the oxygens. This
indicates that the model needs more iterations in order to equilibrate the MLIP and also we are at
the first steps of the simulations. With more MD steps and more workflow iterations, the model can
equilibrate. The novelty of the workflow is that one can easily check on each step and visualize the
product simulation and analyze the data, as done hereby.

4 Conclusion and outlook

In this tutorial, we presented the CURATOR workflow, and its main features, and showed how to
use it with the example of a simulation of a water box. This workflow runs using only open-source
software and has a variety of selection methods for batch-active learning. The training itself is
made easier by the efficient computation of the forces. In the future, we aim to integrate other
message-passing neural network codes, improve the uncertainty estimation for the production, and
introduce the nudged elastic band method besides MD. Most importantly, our immediate goal is to
improve the installation and workflow configuration process.
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Training Molecular Dynamics  System  

Figure 3: Fourth iteration of the workflow for the 4 water molecules example. On the left, we display
the system we are training on; on the center, an example of the training in the PaiNN model; on the
right, we analyze some quantities from the molecular simulation produced with the training of the
model.

5 Supplementary Material

5.1 Forces calculation

The GNN model computes total potential energy E and forces as the sum of individual atomic
components (Chmiela et al. [2017]), i.e.

E =
∑
i∈N

Ei (1)

and F⃗i = −∇iE (2)

Instead, they rely solely on the relative position vector r⃗ij = r⃗j − r⃗i and its length ∥ r⃗ij ∥ in the
message layers, which are typically obtained via neighbor-list algorithms from various codes like
ASE, ASAP3, MatScipy, or NNPOps. Therefore, the atomic energy is exclusively a function of r⃗ij :

Ei = Ei({r⃗ij}i̸=j) (3)

Our implementation calculates forces F⃗i of atom i as negative gradients of the total potential energy
with respect to the model descriptors (Yang et al. [2023]), i.e. relative position vectors r⃗ij :

F⃗i ≡ −∂E

∂r⃗i
≡ −

∑
i

∂Ei

∂r⃗i

= −
∑
j ̸=i

(
∂Ej

∂r⃗i

)
− ∂Ei

∂r⃗i

= −
∑
j ̸=i

∑
k ̸=j

∂Ej

∂r⃗jk

∂r⃗jk
∂r⃗i

+
∂Ei

∂r⃗ij

∂r⃗ij
∂r⃗i


= −

∑
j ̸=i

(
∂Ei

∂r⃗ij
− ∂Ej

∂r⃗ji

)
. (4)

In this way, the forces can be computed with only −∂E/∂r⃗ij that can be directly obtained with
automatic differentiation (see e.g., PyTorch (Paszke et al. [2017])). With F⃗i =

∑
j ̸=i F⃗ij , where
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F⃗ij is the force exerted by atom j on atom i, our implementation in equation 4 enables a pairwise
computation of the forces:

F⃗ij = −F⃗ji = −
(
∂Ei

∂r⃗ij
− ∂Ej

∂r⃗ji

)
. (5)

Furthermore, this antisymmetric property is advantageous for reducing the effort required to compute
the stress of the chemical system by using explicit analytical expressions for virial tensors (Knuth
et al. [2015]). The virial tensors can then be calculated by:

W =
∑
i

Wi = −1

2

∑
i

∑
j ̸=i

rij ⊗ F⃗ij . (6)

5.2 AIMD simulation details

We use ASE to create a cubic box of 4 water molecules. The box has an edge of 5 Å. We set
up a GPAW calculator with mode="fd" and PBE functional. We perform Langevin dynamics at
temperature T = 300K and friction 0.01. After equilibrating the trajectory, we perform another
simulation of 5 ps and timestep 0.5fs. We use this trajectory as a training dataset for the example of
the run of the workflow.

5.3 Configuration file

In the following, we report the TOML file, i.e., the configuration file the workflow uses to parse the
arguments of each step. The conf.toml is the file in which we build the workflow; it has several blocks,
each of them starting with the square brackets [keyword]. The [keyword.feature] means that
this block is setting up a specific feature of the keyword. The keywords are the different steps of the
workflow: train, MD, select, and label. The features can be, depending on the keyword, .ensemble,
.runs, .resource, etc.

The structure of each line is key = value. If value is a string, then it is written between single or
double quotation marks, if value is a boolean or a number, then quotation marks are not needed.

[global]
root = ’.’ # Root directory
random_seed = 3407

[train]
cutoff = 1.5 # Cutoff radius of machine learning potential
val_ratio = 0.1 # The ratio of validation points in the provided dataset
num_interactions = 3 # Number of message-passing layers
node_size = 128 # Node feature size
output_dir = ’model_output’ # Model output path
dataset = ’path/to/file/moldyn3.traj’ # Dataset for training
max_steps = 500000 # Maximum steps for training
device = ’cuda’ # Use GPU
batch_size = 16 # Batch size for training
initial_lr = 0.0001 # Initial learning rate
forces_weight = 0.95 # Ratio of force loss to total loss
log_interval = 2000 # Evaluate model every 2000 steps
normalization = false # Normalize energy in the dataset
atomwise_normalization = false # Normalize atomic energy, scale

# the output atomic energy to the same level.
stop_patience = 1000 # When test loss is larger than training loss

# for p times, training stops.
plateau_scheduler = true # Use ReduceLROnPlateau scheduler

# to decrease lr when learning curve plateaus
random_seed = 3407 # Random seed ensures the reproducibility of experiments
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[train.ensemble]
# For training multiple models in parallel

108_node_3_layer = {node_size = 108, num_interactions = 3}

112_node_3_layer = { node_size = 112, num_interactions = 3}

116_node_3_layer = { node_size = 116, num_interactions = 3}

124_node_3_layer = { node_size = 124, num_interactions = 3}

[train.resource]
nodename = ’my-gpu-node’ # Specify the node for training
tmax = ’3d’ # Time limit for each job
cores = 8 # Cores on the node

[MD.runs.water]
# Parameters for MD
init_traj = ’path/to/file/moldyn3.traj’ #Initial configuration for running MD
time_step = 0.1 # Time step for MD
temperature = 300 # Temperature for MD
device = ’cuda’ # Use GPU
start_indice = 1 # Select initial configuration
max_steps = 20000 # Maximum MD steps
min_steps = 251 # Minimum MD steps
dump_step = 5 # Dump a structure for every 100 steps
print_step = 2 # Print MD info for every 2 steps
num_uncertain = 10 # If 10 uncertain structures are collected,

#the simulation stops
random_seed = 3407 # Reproducibility

[MD.resource]
nodename = ’my-gpu-node’
tmax = ’7d’
cores = 8

[select.runs]
water = {

’method’ = ’MD’,
’train_set’ = ’path/to/file/moldyn3.traj’,
’kernel’ = ’full-g’, # Features kernel matrix
’selection’ = ’lcmd_greedy’, # Selection method
’n_random_features’ = 500, # Number of random projections
’batch_size’ = 10, # No. selected structures for active learning
’device’ = ’cuda’,
’random_seed’ = 3407

}

[select.resource]
nodename = ’my-gpu-node’
tmax = ’7d’
cores = 8

[labeling.runs]
method = ’GPAW’ # Use a GPAW calculator for the DFT labeling

[labeling.runs.water]
nupdown = 48
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Figure 4: Structure of the workflow output. Each rectangle represents a directory with the output
of one step of the workflow. The use of the dots indicates that the output has the same structure
as the previous iteration. Abbreviations: molecular dynamics (MD), neural network (NN), density
functional theory (DFT), single-point calculation (SP).

Figure 5: Output of the command mq ls, with which it is possible to visualize the job status of the
workflow.

[labeling.resource]
nodename = ’my-node-24’
tmax = ’2d’
cores = 24

5.4 Output structure

After running flow.py, the output of different jobs will be organized into various directories and
subdirectories. The schema in Figure 4 illustrates the output structure of the workflow. In Python
logic, the workflow names the iterations starting from zero.

While the workflow is running, it is possible to visualize the job information and status with the
command mq ls. This feature is particularly convenient for errors related to the workflow, such as
big uncertainty, wrong batch size, etc. Figure 5 shows a case in which all the jobs of the first iteration
are completed and the jobs of the second iteration are queued. The columns indicate, from the left
to the right, the job id, the path to the output, the file that has been executed, the toml file that the
Python file is parsing, the specifics of the job, the age of the job from the submission point, the state
and the time it needed to complete it.
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