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Abstract

Diffusion models have emerged as powerful generative frameworks and are in-
creasingly used as foundational models for music generation tasks. Recent works
have proposed various inference-time optimization methods to adapt pretrained
models to downstream tasks. However, these approaches often push noisy samples
away from the expected distribution in the diffusion reverse process when applying
task-specific loss gradients. To address this issue, we propose Diffusion Geodesic
Guidance (DGG), a geometry-aware method that operates on a pretrained diffusion
prior preserving the distribution-induced geometry of noisy samples via a closed-
form spherical linear interpolation. It updates noisy samples along geodesics of
the underlying geometry. We then apply the zero-shot plug-and-play DGG to four
multi-task music restoration tasks, achieving consistent improvements over existing
training-free baselines and demonstrating a surprisingly wide range of applications
for multi-task music restoration.

1 Introduction

Diffusion models [1, 2, 3, 4, 5] have achieved state-of-the-art performance across diverse domains,
notably in image [6] and music generation [7, 8, 9, 10, 11, 12]. Their ability to explicitly model
complex data distributions makes them promising candidates for downstream music tasks. However,
most prior works [13, 14, 15] rely on task-specific supervised training or fine-tuning for each new
task, motivating the need for a zero-shot framework that leverages the strong generative priors and
generalization capabilities of pretrained diffusion models.

Recent works, spanning music and broader modalities, have explored inference-time optimization,
which can be broadly divided into two branches. The first branch, exemplified by DITTO [16],
focuses on initial noise optimization, directly updating the initial noise via backpropagation to
align with task-specific objectives. While this can improve objective alignment, it often suffers from
vanishing or exploding gradients across the entire sampling trajectory, incurs a high computational
cost, and causes the noisy sample to drift away from the standard Gaussian prior, ultimately degrading
generation quality. The second branch applies one-step gradient guidance at each denoising step.
DPS [17] performs gradient descent on noisy samples, which introduces a Jensen gap that can drive
samples off the data manifold. In contrast, MPGD [18] assumes that data lie on a linear subspace,
allowing updates to preserve the original distribution; however, this assumption is unrealistic in
real-world scenarios.
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Figure 1: An overview of the Diffusion Geodesic Guidance (DGG), illustrated using music
inpainting. At each timestep, the intermediate sample zt is denoised by the latent diffusion model
ϵθ to estimate ẑ0|t, which is then decoded into a mel-spectrogram by the decoder Dθ and further
transformed into reconstructed audio x̂0|t via the vocoder vϕ. The guidance is computed by evaluating
the task-specific loss between x̂0|t and the degraded music y, and the intermediate sample zt−1 is
updated using DGG, which integrates the gradient and sampled noise through spherical interpolation,
thereby preventing samples from drifting away from the prior distribution.

To address these issues, we propose Diffusion Geodesic Guidance (DGG), a novel zero-shot guidance
method that leverages pretrained diffusion priors at inference time. In DGG, noisy samples are
updated along geodesics of the hyperspherical geometry induced by the Gaussian prior. By moving
along geodesics via spherical linear interpolation, the updates remain consistent with the underlying
geometry, resulting in smoother loss variation during optimization and reducing instability and of
pushing samples off the data manifold. DGG integrates seamlessly with any pretrained diffusion
model and supports zero-shot music restoration through task-specific losses. Across four music
restoration tasks, DGG consistently outperforms recent gradient-based guidance methods, including
DPS, MPGD, and DITTO, achieving superior restoration quality with comparable inference speed.

2 Diffusion Geodesic Guidance (DGG)

Overview. We introduce a novel zero-shot diffusion guidance, establishing a unified framework for
multi-task music restoration. Each task aims to recover the target waveform from a degraded input
y. To guide restoration, we define a task-specific loss L enforcing consistency with the degraded
input via an appropriate transformation, introduced in Section 3. We iteratively minimize this loss
with pretrained diffusion models at each timestep to reconstruct the restored waveform x0. In the
following paragraph, we revisit DDIM and construct a spherical geometry from the reverse diffusion
distribution, inspired by the concept of Spherical Gaussians [19], enabling guided updates on the
sphere to prevent samples from drifting away from the prior distribution.

DDIM Sampling. Building on Latent Diffusion Models (LDMs) [6, 12, 10], which enable efficient
and high-quality generation, we adopt the DDIM formulation [4] with noise schedule {ᾱt}Tt=1.
Sampling begins from zT ∼ N (0, I) and proceeds iteratively. At each step, the model ϵθ estimates
the clean sample via Tweedie’s formula [20] as ẑ0|t := 1√

ᾱt

(
zt −

√
1− ᾱt ϵθ(zt, t)

)
. The estimate

ẑ0|t is then used to predict zt−1, which can be expressed as zt−1 = µθ,t + σtϵt, where σt denotes
the noise scale, ϵt ∼ N (0, I), and the predicted mean µθ,t is given by

µθ,t :=
√
ᾱt−1ẑ0|t +

√
1− ᾱt−1 − σ2

t ϵθ(zt, t).

Geometry Induced by the Reverse Diffusion Distribution. To integrate task-specific guidance
while preserving consistency with the diffusion process, we induce a spherical geometry from
the reverse distribution to regulate the trajectory of latent updates. Given a sampled noise ϵt ∼
N (0, In), the reverse diffusion distribution N (µθ,t, σ

2
t In) induces a sphere centered at µθ,t with
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radius proportional to σt∥ϵt∥2, which can be represented as
St := {z ∈ Rn | ∥z − µθ,t∥2 = σt∥ϵt∥2}. (1)

Diffusion Geodesic Guidance (DGG). Building on the spherical geometry in Equation 1, we
design an update rule that ensures each sampling step stays consistent with the reverse diffusion
distribution. At each step, ẑ0|t is first decoded into a mel-spectrogram by the LDM decoder Dθ,
and then converted into waveform x̂0|t using the vocoder vϕ. The task-specific loss L(x̂0|t,y) is
subsequently computed, and its gradient ∇ztL(x̂0|t,y) serves as the guidance direction. To ensure
that the updated sample remains on the sphere St, DGG updates zt−1 via spherical interpolation
between the original noise ϵt and the negative gradient direction −∇zt

L(x̂0|t,y) as

zt−1 = µθ,t + σt

(
sin[(1− λ)β]

sinβ
ϵt −

sin(λβ)

sinβ
· ∥ϵt∥F
∥∇zt

L(x̂0|t,y)∥F
∇ztL(x̂0|t,y)

)
,

where β = ∠(ϵt,−∇zt
L) denotes the angle between the noise and gradient directions, and λ ∈ [0, 1]

controls the guidance strength. This update steers the latent along the geodesic toward the loss-
minimizing direction while remaining constrained to the underlying sphere, thereby preventing
deviation from the diffusion reverse distribution. A detailed geometric derivation based on the
exponential map is provided in Appendix A. After T steps, we obtain z0, which is decoded into
the final waveform x0 through Dθ and vϕ. The overall framework is illustrated in Figure 1, and the
complete sampling procedure is detailed in Algorithm 4.

3 Applying to Music Restoration Tasks

We evaluate our method on four music restoration tasks, each formulated with a corresponding
degradation process and task specific loss L with the log-mel spectrogram transform ψ.

Inpainting. A binary mask M marks the missing region of the clean waveform xgt over [tstart, tend],
producing the degraded signal y = M ⊙ xgt. The goal is to reconstruct xgt by minimizing:

LInpaint(x,y) = ∥ψ(M ⊙ x)− ψ(y)∥F .
Super-Resolution. A low-resolution music y is generated from xgt via a downsampling operator
Dr with rate r, i.e., y = Dr(xgt). The goal is to recover the high-resolution xgt by minimizing:

LSR(x,y) = ∥ψ(Dr(x))− ψ(y)∥F .
Dereverberation. Reverberation is simulated by convolving xgt with a Room Impulse Response
(RIR) h, yielding y = h ∗ xgt. The objective is to recover the dry music xgt by minimizing:

LDerev(x,y) = ∥ψ(h ∗ x)− ψ(y)∥F .
Phase Retrieval. The magnitude spectrogram y = |F (xgt)| is obtained via the Short-Time Fourier
Transform (STFT) F , discarding the phase. The goal is to reconstruct xgt from y by minimizing:

LPR(x,y) = ∥ψ(|F (x)|)− ψ(y)∥F .

4 Experiments

4.1 Implementation Details

We sample 100 music tracks from the MoisesDB [21] and MusicCaps [22] datasets to construct
evaluation subsets. MoisesDB provides isolated instrument stems and structured mixtures, enabling
fine-grained analysis of instrument-specific restoration performance. In contrast, MusicCaps offers
broader stylistic diversity and rich textual annotations, making it well-suited for assessing model
generalization and exploring prompt-based conditioning. From each dataset, we randomly extract
non-overlapping 5-second segments from the original tracks, which are used consistently across all
restoration tasks. We adopt AudioLDM2 [12] as the pretrained diffusion backbone and process all
audio at a sampling rate of 16 kHz. Log-mel spectrograms are computed using a 1024-point FFT,
a hop size of 160 samples, and 64 mel frequency bins, yielding a time–frequency representation
compatible with the model’s input format. The denoising process follows the DDIM sampler with
500 steps, keeping all model parameters frozen during inference. A null-text prompt is used as the
conditioning input.
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Dataset
Inpainting Super-Resolution Dereverberation Phase Retrieval

LSD ↓ FAD ↓ LSD ↓ FAD ↓ LSD ↓ FAD ↓ LSD ↓ FAD ↓
MoisesDB

DPS [17] 0.7960 0.4847 1.1019 0.5794 1.1985 0.6482 0.6973 0.5325
MPGD [18] 1.7190 0.6108 1.7423 0.6096 1.7386 0.6011 1.7197 0.6018
DITTO [16] 1.1250 0.7284 1.1610 0.8863 1.2164 0.9149 0.8551 0.8353
DGG (Ours) 0.6363 0.2904 0.8897 0.4341 1.0582 0.4444 0.7056 0.4666

MusicCaps

DPS [17] 0.9026 0.5185 1.0453 0.4727 1.0449 0.5000 0.7388 0.5683
MPGD [18] 1.2734 0.5153 1.2864 0.5151 1.2815 0.5115 1.2632 0.5142
DITTO [16] 1.2304 0.8514 1.5580 0.9673 1.5316 0.7463 1.2598 0.9125
DGG (Ours) 0.7019 0.2597 0.9617 0.3244 0.9322 0.3278 0.8051 0.4430

Table 1: Quantitative results on music restoration tasks for two datasets. LSD and FAD are reported
separately. The best is marked in bold and the second best is underlined.

4.2 Results

DPS MPGD

Ground truth

Degraded music

DITTO DGG (Ours)

Figure 2: Qualitative comparison of mel-
spectrograms for the inpainting task. Dashed boxes
highlight regions with noticeable generation or re-
construction artifacts.

In Table 1, we report quantitative results for
four music restoration tasks on MoisesDB and
MusicCaps datasets using AudioLDM2 [12].
Our method, DGG, consistently outperforms
DPS [17], MPGD [18], and DITTO [16] in both
spectral distortion (LSD) and perceptual qual-
ity (FAD). Compared to DITTO, DGG achieves
over 5–6× faster inference time while maintain-
ing comparable efficiency to DPS and MPGD. In
addition, DITTO performs full-trajectory initial-
noise optimization, which suffers from instabil-
ity and exploding gradients, often degrading out-
put quality despite its high computational cost.
These results show that DGG not only restores
music with high fidelity, as indicated by lower
LSD, but also enhances perceptual realism, as
reflected in improved FAD, which is crucial for
real-world listening scenarios. In qualitative comparisons, DGG produces reconstructions that are
most consistent with the ground truth in both spectral structure and spectral energy. In contrast,
MPGD [18] fails to reconstruct coherent harmonic patterns, resulting in overly smeared and noisy out-
puts. DITTO [16] recovers low-frequency components but lacks detail in the mid-to-high frequency
range. DPS [17] performs reasonably well but introduces artifacts in the reconstructed region.

5 Conclusion

We propose Diffusion Geodesic Guidance (DGG), a geometry-aware, zero-shot guidance framework
that updates noisy samples along geodesics of the hyperspherical geometry induced by the Gaussian
prior. By leveraging spherical linear interpolation, DGG preserves the distribution-induced geometry
throughout the denoising process, mitigating instability and preventing samples from drifting off the
data manifold. Experiments on four music restoration tasks show that DGG consistently outperforms
recent inference-time optimization methods, achieving state-of-the-art performance in both LSD and
FAD with comparable inference speed.
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Appendix

A Derivation of Diffusion Geodesic Guidance (DGG)

In this section, we derive the DGG update by interpreting guidance as a Riemannian gradient step
constrained to the diffusion sphere. This geometric viewpoint leads naturally to an exponential
map formulation, yielding a closed-form spherical interpolation between the noise and task gradient
directions.

Riemannian Gradient Direction. To remain on St, as defined in Equation 1, we move along the
tangent space at zt. The orthogonal projection of∇zt

L onto tangent space is

gradL := ∇zt
L − ⟨∇zt

L, ϵt⟩
∥ϵt∥22

ϵt.

Let ĝradL := gradL/∥ gradL∥2 be the unit tangent descent direction. Define the angle β :=
∠(ϵt,−∇zt

L) ∈ [0, π]. Then

ĝradL =
1

sinβ

( ∇zt
L

∥∇zt
L∥2

+ cosβ
ϵt
∥ϵt∥2

)
.

Exponential Map Update on the Sphere. A geodesic step of size η > 0 along −ĝradL on the
sphere of radius σt∥ϵt∥2 centered at µθ,t is

zt−1 = Expzt
(−ηĝradL)

= µθ,t + cos

(
η

σt∥ϵt∥2

)
σtϵt − sin

(
η

σt∥ϵt∥2

)
σt∥ϵt∥2ĝradL

= µθ,t + σt

[(
cos

(
η

σt∥ϵt∥2

)
− cotβ sin

(
η

σt∥ϵt∥2

))
ϵt −

sin[η/(σt∥ϵt∥2)]
sinβ

· ∥ϵt∥2∥∇zt
L∥2
∇ztL

]
.

From Exponential Map to Spherical Linear Interpolation. Choose the step size to match the
geodesic interpolation parameter: set

η

σt∥ϵt∥2
= λβ with λ ∈ [0, 1].

Then

cos

(
η

σt∥ϵt∥2

)
− cotβ sin

(
η

σt∥ϵt∥2

)
=

sin[(1− λ)β]
sinβ

and
sin[η/(σt∥ϵt∥2)]

sinβ
=

sin(λβ)

sinβ
.

Therefore, we have

zt−1 = µθ,t + σt

(
sin[(1− λ)β]

sinβ
ϵt −

sin(λβ)

sinβ
· ∥ϵt∥2∥∇zt

L∥2
∇zt
L
)
.

This is exactly spherical linear interpolation on St between the current direction ϵt/∥ϵt∥2 and the
gradient direction −∇zt

L/∥∇zt
L∥2, with interpolation parameter λ ∈ [0, 1].

B More Implementation Details

B.1 Algorithms of Baseline Methods

We adopt diffusion-based music foundation models, using AudioLDM2 [12] as the backbone, and
compare our method against several zero-shot baselines: DITTO [16], DPS [17] and MPGD [18]).
For a fair comparison, we use the best-performing hyperparameters reported for each baseline: a
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guidance strength of 5×10−4 for DPS, 5×10−3 for MPGD, and a learning rate of 0.5 for DITTO. For
our proposed DGG, we set the guidance strength to 0.08, which we found to be the best-performing
parameter based on our experiments. For DITTO, we follow its original setup with 20 diffusion
timesteps, gradient descent with 100 inner loop. The detailed algorithms for DPS are provided in
Algorithm 1, for MPGD in Algorithm 2, for DITTO in Algorithm 3 and for DGG in Algorithm 4.

Algorithm 1 DPS [17]

1: Input: Degraded music y, UNet ϵθ, VAE decoder Dθ, Vocoder vϕ, DDIM parameters ᾱt, Noise
levels σt, Task specific loss L, Guidance strength γ > 0.

2: zT ∼ N (0, I).
3: for t = T to 1 do
4: ϵt ∼ N (0, I).
5: ẑ0|t ← 1√

ᾱt

(
zt −

√
1− ᾱtϵθ(zt, t)

)
.

6: ẑt−1 ←
√
ᾱt−1ẑ0|t +

√
1− ᾱt−1 − σ2

t ϵθ(zt, t) + σtϵt.
7: x̂0|t ← (vϕ ◦ Dθ)(ẑ0|t).
8: zt−1 ← ẑt−1 − γ∇zt

L(x̂0|t,y).
9: end for

10: return (vϕ ◦ Dθ)(z0).

Algorithm 2 MPGD [18]

1: Input: Degraded music y, UNet ϵθ, VAE decoder Dθ, Vocoder vϕ, DDIM parameters ᾱt, Noise
levels σt, Task specific loss L, Guidance strength γ > 0.

2: zT ∼ N (0, I).
3: for t = T to 1 do
4: ϵt ∼ N (0, I).
5: ẑ0|t ← 1√

ᾱt

(
zt −

√
1− ᾱtϵθ(zt, t)

)
.

6: x̂0|t ← (vϕ ◦ Dθ)(ẑ0|t).
7: ẑ∗

0|t ← ẑ0|t − γ∇ẑ0|tL(x̂0|t,y).

8: zt−1 ←
√
ᾱt−1ẑ

∗
0|t +

√
1− ᾱt−1 − σ2

t

(
zt−

√
ᾱtẑ

∗
0|t√

1−ᾱt

)
+ σtϵt.

9: end for
10: return (vϕ ◦ Dθ)(z0).

Algorithm 3 DITTO [16]

1: Input: Degraded music y, UNet ϵθ, VAE decoder Dθ, Vocoder vϕ, DDIM parameters ᾱt, Noise
levels σt, Task specific loss L, Guidance strength γ > 0.

2: z
(0)
T ∼ N (0, I).

3: for k = 0 to K − 1 do
4: for t = T to 1 do
5: ϵ

(k)
t ∼ N (0, I).

6: z
(k)
t−1 ←

√
ᾱt−1√
ᾱt

(
z
(k)
t −√1− ᾱtϵθ(z

(k)
t , t)

)
+
√

1− ᾱt−1 − σ2
t ϵθ(z

(k)
t , t) + σtϵ

(k)
t .

7: end for
8: x

(k)
0 ← (vϕ ◦ Dθ)(z

(k)
0 ).

9: z
(k+1)
T ← z

(k)
T − γ∇

z
(k)
T

L(x̂(k)
0 ,y).

10: end for
11: return x

(K−1)
0 .
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Algorithm 4 DGG (Ours)

1: Input: Degraded music y, UNet ϵθ, VAE decoder Dθ, Vocoder vϕ, DDIM parameters ᾱt, Noise
levels σt, Task specific loss L, Guidance strength 0 ≤ λ ≤ 1.

2: zT ∼ N (0, I).
3: for t = T to 1 do
4: ẑ0|t ← 1√

ᾱt

(
zt −

√
1− ᾱtϵθ(zt, t)

)
.

5: µθ,t ←
√
ᾱt−1ẑ0|t +

√
1− ᾱt−1 − σ2

t ϵθ(zt, t).
6: x̂0|t ← (vϕ ◦ Dθ)(ẑ0|t).
7: g ← ∇zt

L(x̂0|t,y).
8: ϵt ∼ N (0, I).
9: β ← ∠(ϵt,−g).

10: zt−1 ← µθ,t + σt

(
sin[(1−λ)β]

sin β ϵt − sin(λβ)
sin β ·

∥ϵt∥F

∥g∥F
g
)

.
11: end for
12: return (vϕ ◦ Dθ)(z0).

B.2 Experimental Setup for Music Restoration

We evaluate DGG on four music restoration tasks with the following configurations. (i) Music
Inpainting masks the segment between 2–3 seconds without downsampling (scale = 1), with three
masking strategies: fixed box (2–3s), random (mask ratio 0.3), and periodic (interval 1s, mask duration
0.1s). (ii) Super-Resolution downsamples the audio by a factor of 2 before reconstruction. (iii)
Phase Retrieval reconstructs the phase from the magnitude spectrogram, using the same spectrogram
configuration as in the global setup, namely a 1024-point FFT with a hop size of 160 and a window
length of 1024. (iv) Music Dereverberation applies simulated reverberation with an impulse response
length of 5000 and a decay factor of 0.99. Here, the reverberation is synthetically added and does not
correspond to natural recording or mixing conditions, so its removal can be viewed as eliminating an
artificial degradation. All experiments are implemented in PyTorch and executed on a single NVIDIA
GeForce RTX 4090 GPU.

B.3 Evaluation Metrics

We employ two complementary metrics to evaluate restoration quality: Log-Spectral Distance
(LSD) [23] in the frequency domain, and Fréchet Audio Distance (FAD) [24, 25] with the CLAP
music backbone to measure perceptual similarity at the distribution level. Both metrics are applied
uniformly across all restoration tasks to ensure consistent and fair comparison.

C Broader Impacts and Limitation

Music restoration is crucial for enhancing archival recordings, improving user-generated content, and
enabling interactive music editing tools. Our proposed DGG method is a plug-and-play approach that
can be applied to any pretrained music diffusion model for music restoration. It is computationally
efficient and avoids the expensive cost of supervised training, making restoration methods more
accessible for both research and creative applications. However, its effectiveness is inherently
bounded by the capability of the underlying pretrained music diffusion model, meaning that if the
backbone model lacks sufficient representation power for certain genres or instruments, the restoration
performance may degrade accordingly.
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