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ABSTRACT

Spatial Light Modulators (SLMs) are devices that can modulate the amplitude or
the phase of a beam of light. These devices are used in applications such as beam
front aberration and microscopic manipulation with optical tweezers. Here, we
study the problem of learning to modulate light in a new type of temperature-
controlled SLM. These SLMs are panels that use a thin viscous film in which
shallow wave patterns can be induced by varying the temperature of the panel.
This method can be used for modulating light such as high-power lasers. The
problem here is to learn which input temperature signal is necessary in order to
induce a given pattern in the reflected light. We propose a deep E(2)-equivariant
model to learn this relationship. We generate a synthetic dataset consisting of
temperature signals and corresponding light patterns by simulating the thin film
lubrication equation that governs the phenomenon of thermocapillary dewetting.
We use this dataset to train our networks. We demonstrate the advantage of using
equivariant neural networks over convolutional neural networks in order to learn
the mapping.

1 INTRODUCTION

Deep learning models have proven helpful in analyzing and understanding complex material struc-
tures and properties. The most difficult such tasks involve predicting the changes in material prop-
erties over time. However, recent work has shown deep learning can be effective in modeling many
different dynamical systems and can provide a method for solving difficult differential equations
(Wang et al. (2020a), Wang et al. (2020b)). Data-driven methods have an advantage over traditional
computational methods in that they are several orders of magnitude faster, can operate in partially
observed systems, and are robust to noise. Perhaps most importantly, a differentiable model of
system dynamics can be optimized for control or design applications.

In this paper, we propose to use deep learning to predict the temperature signal required to induce a
given pattern of reflected light in a thermocapillary dewetting-based dynamic spatial light modulator
(Kovacevich et al. (2021)). Solving the thin film lubrication equation that governs the phenomenon
of thermocapillary dewetting is computationally expensive. We demonstrate that deep models can
predict the signal quickly and accurately.

For this particular problem, traditional neural networks need a large dataset to learn the relationship
between the height profile and the temperature profile required to induce it. However, in experi-
mental applications like this, real data is scarce. By incorporating the symmetries of the lubrication
equation into the neural network, we build equivariant networks which are able to learn with fewer
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samples. Another advantage is that such networks have better generalization ability and physical
accuracy than unconstrained models Wang et al. (2020b). Specifically, we incorporate rotational
and translational symmetry into the model using E(2)-equivariant networks Weiler & Cesa (2019).

Our contributions include:

• We study the problem of controlling the input temperature profile required to induce a given
height profile in a thermocapillary dewetting-based dynamic spatial light modulator.

• We generate a synthetic dataset by simulating the thin film lubrication equation for two-
dimensional inputs.

• We use equivariant neural networks to enforce rotational symmetry from the physical sys-
tem and demonstrate improved accuracy.

2 BACKGROUND

2.1 SLMS AND THERMOCAPILLARY DEWETTING

Figure 1: Schematic of multilayer SLM
showing forward and backward modeling
tasks.

Spatial light modulators. Dynamic SLMs are devices
that can precisely modulate a beam of light by tuning
either the phase or the intensity of an array of pixels
in parallel. SLMs are used in optics to control the be-
havior of light and are used for a number of applica-
tions like projectors, laser beam shaping, beam front
aberration, etc. They can also be used to manipulate
the properties of microscopic particles and materials
by applying different light patterns to them.

Conventional dynamic SLMs are normally incompati-
ble with high-powered sources like lasers. To address
this issue, Kovacevich et al. (2021) present the usage of
thermocapillary dewetting to dynamically control the
thickness of a thin viscous, reflowable film. This film,
when used with an SLM, results in the incident beam
of light being phase-shifted and focused based on the
height map (pattern) of the film.

Thermocapillary dewetting is a phenomenon where a
temperature gradient acting on a thin liquid film creates a thermocapillary force that leads to the
deformation of the liquid film (Bénard, 1900; C.E., 1855; Darhuber & Troian, 2005; Bénard, Henri,
1901). The driving force of thermocapillary dewetting is the thermocapillary shear τ = β∇T . The
evolution of the height profile of the film is described by the thin film lubrication equation,

dh

dt
= −∇.

(
h2β∇T

2µ
+

h3

3µ

(
γ∇2h+

dV

dh

))
(1)

where µ is the fluid viscosity, h is the film thickness, and V encapsulates surface interactions (Becker
et al. (2003)). When the thin film is heated, it becomes thin in the heated areas and becomes thick
around it, which leads to the formation of trench and ridge structures. Kovacevich et al. (2021)
explains the real-world experimental setup along with images.

2.2 EQUIVARIANT NETWORKS

We incorporate equivariance into two architectures - ResNet (He et al. (2016)) and U-Net (Ron-
neberger et al. (2015)). The architectures of the equivariant models are adapted from Wang et al.
(2020b). The models from Wang et al. (2020b) were built for fluid flow vector fields, and were
applied autoregressively for dynamic prediction whereas here we consider scalar fields. We incor-
porate rotational and translational symmetry into our models by enforcing equivariance.
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A function f is said to be equivariant if when the input of f is transformed by a symmetry group
element g, the output of the function is also transformed by the same symmetry group element g:

f(g.x) = g.f(x). (2)

In this paper, both the forward modeling task (predicting the height profile for a given temperature
profile) and the backward modeling task (predicting the temperature profile for a given height pro-
file) are rotationally and translation equivariant due to invariances in the underlying equations Jafari
& Tanhaeivash (2021).

Figure 2: Rotational equivariance
of the backward task mapping tem-
perature to height with respect to
g = rot(π/2)

Rotational equivariance. To incorporate rotational symme-
try from the underlying physical system into our networks,
we use the results from Cohen & Welling (2016a) and Cohen
& Welling (2016b) that describe how the convolution opera-
tion can be constrained by addition weight sharing to enforce
rotational equivariance on each layer of CNN. The RotEq
models are built using the E(2)-CNN architecture by Weiler &
Cesa (2019). Figure 2 shows an illustration of an output being
transformed by the symmetry that acts upon an input. For this
paper, we use the discrete cyclic rotation group G = C4.

3 EXPERIMENTS

We compare rotationally equivariant versions of ResNet and
U-net called RotEq-ResNet and RotEq-Unet (Wang
et al. (2020b)) with convolutional neural network architec-
tures (CNN, U-Net, and ResNet). We test our models on
the synthetic dataset generated by simulating Equation 1.

Evaluation Metrics. For accuracy, we use Root Mean Square Error (RMSE) between the predic-
tions and the ground truth over all pixels.

Experimental Setup. Unless otherwise mentioned, the models are trained for 60 epochs. We use
a training set of size 300, validation set of size 70 and test set of size 100.

Model Architecture. We implement a CNN as our baseline model. We use 4 hidden layers with a
kernel size of 2 and stride of 1. ResNet He et al. (2016) and U-Net (Ronneberger et al. (2015))
are effective deep convolutional architectures and are well-suited for our tasks. Hence, we im-
plement these two architectures with rotational symmetry, which we name RotEq-ResNet and
RotEq-Unet. We use a kernel size of 3. All models predict the input temperature signal required
to induce a given pattern of light in the SLM as the backward task (backward modeling) and predict
the height profile for a given temperature profile as the forward task (forward modeling) as shown
in Figure 1.

3.1 DATA SIMULATION AND DESCRIPTION

The experiments necessary for real-world data are expensive. For our proof of concept study, we
simulate the thin film lubrication equation (TFLE) shown in equation 1, which is the governing equa-
tion for thermocapillary dewetting, using finite-difference methods to generate a synthetic dataset.

We simulate the TFLE for an input 200×200 array representing the temperature profile. The output
of the simulation is a 200×200 array representing the height profile. The temperature profile consists
of peaks of temperatures in random patterns across the thin film after a sufficient amount of time
such that the profile has stabilized. This results in the ridge and trench pattern in the resulting height
profile. Temperatures are in Celcius and heights are in nanometers. We resize it to 192 × 192 for
our experiments.
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3.2 EXPERIMENTS ON SIMULATED DATA

3.2.1 FORWARD MODELING

While our primary goal is the backward task of finding the temperature field to produce a desired
height profile, we also demonstrate our model can learn the forward task to show the model can
capture system dynamics. All the models are trained with temperature profiles as the input and
height profiles as the output.

Forward Modeling Backward Modeling

Config Parameters Train RMSE Test RMSE Train RMSE Test RMSE
CNN 3.5M 0.29± 0.02 0.23± 0.03 0.35± 0.02 0.32± 0.03
U-Net 3.6M 0.28± 0.02 0.17± 0.03 0.27± 0.03 0.31± 0.03
ResNet 3.8M 0.23± 0.03 0.12± 0.02 0.26± 0.03 0.18± 0.04

RotEq U-Net 3.6M 0.24± 0.02 0.15± 0.03 0.18± 0.01 0.16± 0.02
RotEq ResNet 3.9M 0.19 ± 0.02 0.11 ± 0.02 0.16 ± 0.02 0.11 ± 0.03

Table 1: RMSE of CNN, ResNet, U-Net and the RotEq-ResNet, RotEq-UNet trained and
tested on the simulated data for forward and backward modeling.

Prediction Performance. Table 1 shows the RMSE of CNN, ResNet, U-Net and the
RotEq-ResNet, RotEq-UNet on the train and test sets. We report mean errors over three ran-
dom runs. Both equivariant models perform better than the non-equivariant baseline on RMSE.
RotEq-ResNet achieves the lowest RMSE. The baseline models have a higher error in capturing
the peaks in the height profile. ResNet and U-Net have similar RMSE while RotEq-ResNet
performs better than RotEq-UNet and generalizes better. Refer to Appendix A for the ground truth
and the predicted height profiles from forward modeling as well as the ground truth and prediction
by the models for a random row of the height profile.

3.2.2 BACKWARD MODELING

Figure 3: Random row of temperature pro-
file (backward modeling)

Our primary goal in this paper is the backward task of
finding the temperature profile required to produce a
desired height profile. All the models are trained with
height profiles as the input and temperature profiles as
the output.

Prediction Performance. Table 1 shows the RMSE
of CNN, ResNet, U-Net and the RotEq-ResNet,
RotEq-UNet on the train and test sets. We report
mean errors over three random runs. Both equivariant
models perform better than the non-equivariant base-
line on RMSE. RotEq-ResNet achieves the lowest
RMSE. Figure 3 shows the ground truth and predic-
tion by the models for a random row of the tempera-
ture profile. We can see that the baseline models do
not capture the peaks well compared to the equivari-
ant models. ResNet and U-Net have similar RMSE
while RotEq-ResNet performs better than RotEq-UNet. Figure 4 shows the ground truth and
the predicted temperature profiles by all the models for a given height profile. All the models either
have a similar or better RMSE for the backward modeling compared to the forward modeling.

4 CONCLUSION AND FUTURE WORK

We develop methods to predict the temperature profile required to induce a given height profile
in a thermocapillary dewetting-based dynamic spatial light modulator. We incorporate rotational
symmetry by using equivariant neural networks. We show that the equivariant neural networks out-
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Figure 4: Height profile, ground truth and predicted temperature profiles by CNN, U-Net,
ResNet, RotEq-Unet, RotEq-ResNet

perform the traditional architectures experimentally in terms of accuracy because they incorporate
physical symmetries.

Future work includes carrying out simulations to generate a more diversified synthetic dataset with
different patterns for the temperature and height profiles. We will be incorporating other symmetries
into the equivariant models. Lastly, we plan to test our models on real-world data.
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A PREDICTIONS FROM FORWARD MODELING

Figure 5: Random row of height profile (forward modeling)

Figure 6 shows the ground truth and predicted height profiles by all the models for a given tempera-
ture profile.
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Figure 6: Temperature profile, ground truth and predicted height profiles by CNN, U-Net,
ResNet, RotEq-Unet, RotEq-ResNet

7


	Introduction
	Background
	SLMs and thermocapillary dewetting
	Equivariant networks

	Experiments
	Data simulation and description
	Experiments on Simulated Data
	Forward modeling
	Backward modeling


	Conclusion and Future Work
	Acknowledgement
	Predictions from forward modeling

