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Abstract
As the importance of causality in machine learning grows,
we expect the model to learn the correct causal mechanism
for robustness even under distribution shifts. Since most of
the prior benchmarks focused on vision and language tasks,
domain or temporal shifts in causal inference tasks have not
been well explored. To this end, we introduce Backend-TS
dataset for modeling uplift in continual learning scenarios.
We build the dataset with CRUD data and propose continual
learning tasks under temporal and domain shifts.

Introduction
Uplift modeling is a particular type of predictive causal
model with broad applications in marketing, personalized
medicines, and politics. Uplift is defined as Individual Treat-
ment Effect (ITE), but its evaluation metric differs from the
other causal tasks (Radcliffe and Surry 1999). Separating
causality from spurious relationships and precise estimation
of treatment effects are crucial in causal tasks. However, by
modeling uplift with causality, p(y|do(t), x), we ultimately
target a subgroup of individuals with high uplift scores, and
therefore, the model’s performance is measured by cumula-
tive uplift across the population. Identifying this subgroup
cannot be answered by the propensity model, p(y|t = 1, x),
which merely predicts one’s future behavior.

In practice, the bottlenecks of causal models are data
availability, scalability, and distribution shifts. In random-
ized controlled trials (RCTs), an individual’s treatment is
randomly assigned; therefore, we can identify Average
Treatment Effect (ATE) with the difference between the
treatment and control group’s average outcomes (Pearl
2010). In many cases where RCTs are infeasible, however,
practitioners are given observational data. No matter how
many variables one has collected, unobserved confounders
may still exist. Even if one can collect more covariates, the
curse of dimensionality may occur. It is problematic, par-
ticularly for causal inference with high-dimensional data, as
the chance of violating the positivity assumption increases
(Zhao, Small, and Ertefaie 2017; D’Amour et al. 2021).
Moreover, distribution may change over time and among dif-
ferent domains, resulting in improper validation and, even-
tually, the degradation of the fitted model.
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To challenge the aforementioned issues with causality in
high-dimensional spaces and bridge the gap between re-
search and practice environments, we publish Backend-TS
dataset1, a real-world uplift dataset from mobile game users.
The task is to predict uplift to push notifications by recog-
nizing patterns from each user’s CRUD2 history. A model
must learn underlying causal mechanisms and continuously
adapt to distributions varying over time and to other games;
otherwise, its performance will drop sharply when the distri-
bution changes. We also argue that distribution changes can
cause severe problems in causal inference since we model
future customer behaviors based on their history. To the best
of our knowledge, Backend-TS is the first uplift dataset with
time-series under domain shifts.

Background
Causal inference and its notations. Potential outcomes
framework (Rubin 1974) defines causal effect as the differ-
ence between two potential outcomes Y (1) − Y (0): when
receiving treatment (T = 1) and under control (T =
0). The fundamental problem of causal inference (Holland
1986) states that either Yi(1) or Yi(0) is observable for
each unit indexed by i ∈ {1, . . . , n}, and the unobserved
outcome is called counterfactual. To estimate ITE, or up-
lift, ui := Yi(1) − Yi(0), we model Conditional Aver-
age Treatment Effect (CATE) conditioned on features X,
i.e., u(X) := E [Y (1)− Y (0)|X]. Among the assumptions
needed to identify CATE, two assumptions are crucial and
often likely to be violated (Pearl 2010; Neal 2020): uncon-
foundedness, i.e., Y ⊥⊥ T |X, and positivity, i.e., P (T |X =
x) > 0,∀x : P (X = x) > 0.

Uplift modeling. Here, we introduce marketing terms fol-
lowing Radclifte and Simpson (2008) to illustrate the con-
cept of uplift modeling. Individuals can be segmented into
four groups along two axes: received treatment and re-
sponse to it. Sure Things will stay (or buy a product)

1The dataset is available under CC BY-NC-SA 4.0 li-
cense at https://blog.thebackend.io/research/backend-ts, and the
baseline code for models and dataloader is available at
https://github.com/nannullna/ts4uplift

2CRUD refers to the four functions necessary for storage and
server applications: create, read, update, and delete.



whether or not they receive treatment (e.g., an advertise-
ment), and Lost Causes will leave (or not buy the product)
in either case. In short, the treatment has neither positive nor
negative effects on both groups, i.e., ui = Yi(1)−Yi(0) ≈ 0.
On the other hand, Persuadables are likely to stay only if
they receive the treatment, i.e., ui > 0, but Sleeping Dogs
would be annoyed and eventually leave, i.e., ui < 0. Based
upon this fundamental segmentation, the main goal is thus
to identify as many Persuadables as possible while avoiding
Sleeping Dogs for the treatment.

Time-series modeling. Time-series is a sequence of
discrete-time data. Many previous works have dealt with
regular time-series, but in this paper, we mainly focus on
irregular time-series, where intervals between two consecu-
tive data points are not the same. RNNs (Rumelhart, Hinton,
and Williams 1986; Hochreiter and Schmidhuber 1997; Cho
et al. 2014), TCNs (Bai, Kolter, and Koltun 2018) with di-
lated convolutions (Yu and Koltun 2015), and Transformers
(Vaswani et al. 2017) have become popular choices for han-
dling time-series data. However, there is no one-size-fits-all
augmentation strategy in various types of time-series (Yue
et al. 2022) except for dropout (Srivastava et al. 2014), or
random masking (Devlin et al. 2018; He et al. 2022).

Continual learning. Continual Learning (CL) aims to ef-
fectively learn new tasks and adapt a model to distribu-
tion shifts over time while minimizing performance degra-
dation in the learned scenarios, which is called catastrophic
forgetting (McCloskey and Cohen 1989; Kirkpatrick et al.
2017). It is also infeasible in practice to fully retrain the
model whenever new data are available due to training costs
or the unavailability of previous data. Therefore, recent al-
gorithms for CL aim to accumulate knowledge and reuse
them in future scenarios without forgetting information (e.g.,
iCaRL (Rebuffi et al. 2017), A-GEM (Chaudhry et al. 2019),
EWC (Kirkpatrick et al. 2017), SI (Zenke, Poole, and Gan-
guli 2017)). Moreover, causal inference tasks require the
model to capture the causal mechanism over distributional
shifts, on which existing CL algorithms have not focused.

Previous Benchmarks
Benchmarks for uplift modeling. Researchers on uplift
have relied on (semi-)synthetic data for testing algorithms
since underlying causal mechanisms are fully specified and
counterfactuals thus exist. On the other hand, as of now,
the largest observational benchmark is Criteo dataset (Eu-
stache et al. 2018) with 12 static features from ∼14M real-
world users. Thus far, there has been little motivation to use
deep learning, and therefore, related works have been re-
stricted to smaller neural networks (# params < 1K) or other
machine learning algorithms. With regard to causal infer-
ence with time-series, a subset of MIMIC II/III (Johnson
et al. 2016) has been used for causal discovery or inference.
See Moraffah et al. (2021) for a comprehensive review.

Benchmarks for CL. Benchmarks in various fields and
tasks with CL scenarios have been introduced, e.g., object
recognition in robotics (Fanello et al. 2013; Lomonaco and
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Figure 1: Illustration of Backend-TS dataset construction.

Maltoni 2017; She et al. 2020), classification tasks in vari-
ous domains on images (Rebuffi, Bilen, and Vedaldi 2017;
Lake, Salakhutdinov, and Tenenbaum 2015; He, Shen, and
Cui 2021), videos (Roady et al. 2020), 3D objects (Stojanov
et al. 2019), and natural language (Hussain et al. 2021; Srini-
vasan et al. 2022). However, domain or temporal shifts in
causal inference tasks have not been well explored.

Backend-TS Dataset
In this section, we introduce Backend-TS dataset. The
dataset construction method and the proposed tasks are
briefly illustrated in Figure 1.

Background. We collected data from AFI Inc., a
Backend-as-a-Service (BaaS) company specializing in mo-
bile games. The company owns backend servers and pro-
vides APIs that game developers can access to quickly re-
lease their apps without backend servers of their own. One
of the features is to send a push notification to all users
at the same time. We wanted to build a model that targets
only a subset of users with high gains from a push message.
However, CRUD log data are only available to us since the
company does not collect user-specific information and has
no access to each game’s code or internal data.

Construction. The treatment is not assigned randomly in
a typical observational dataset, and the true treatment as-
signment mechanism is unknown. In our data, however, the
treatment group only exists as the push message is given to
all users simultaneously. To circumvent this problem, for a
train set, we sampled a pseudo-control group exactly one
week before the push so as to eliminate the time and week-
day effect. We also introduced a concept of no push area, an
-12∼+6 hour window around which no other pushes must
exist to prevent interference from them. Note that some users
exist in both groups, and utilizing those data points (e.g., ran-
domly choosing either one or using both) is up to modeling
strategies. For a test set, we randomly split those overlapping
users into either group to simulate RCTs.

Overview. The dataset consists of three games (A, B, and
C) with a total of 16.7M lines of CRUD logs from 5,360
users. Only a handful of games met the conditions men-
tioned above among hundreds of games in service, most of



which either sent pushes too frequently or did not use this
API at all. Each consists of a triple (Xi, Ti, Yi), where Xi is
a sequence of categorical variables along with correspond-
ing timestamps, and Ti, Yi ∈ {0, 1} are binary indicators of
the treatment and whether a gamer logged in within {three,
six, twelve}3 hours after the push message had been sent.
Although the games use the same APIs provided by the com-
pany, they differ in response rates, lengths, API usage, and
other factors. For example, two different games may use the
same type of API calls for different purposes.

Tasks. We experimented on uplift modeling in the follow-
ing proposed tasks:
• In-domain (ID): train with the game A (APR, MAY) and

test on 20% random-split holdout set.
• Temporal shift (TS): train with the game A (APR, MAY)

and test on the game A (JUN).
• Out-of-domain (OOD): train with the game A (APR,

MAY) and test on the game B with fine-tuning (OOD w/)
or on the game C without fine-tuning (OOD w/o).

Experiments

Model Ckpt ID TS OOD w/ OOD w/o

Dragon VAL .091/.056 .006/.003 .118/.038 .037/.023
MAX .112/.074 .372/.082 .123/.081

Siamese VAL .145/.062 -.036/-.011 .154/.057 -.057/-.030
MAX .249/.067 .207/.075 .036/.022

P (Y = 1) 11.9% 12.2% 5.9% 22.4%

Table 1: Baseline results. VAL denotes the best checkpoint
on the holdout set, and MAX denotes the best metric during
entire training, showing the discrepancy of the performance.

Baselines. We used Dragonnet (Shi, Blei, and Veitch
2019) and Siamese network (Mouloud, Olivier, and Ghaith
2020) with 11 TCN blocks (receptive field of length 2,048,
and each time-series was truncated accordingly.) and applied
EWC for CL. Dragonnet is trained to directly predict a con-
ditional mean E[Y |T,X] as well as the propensity score,
e(X) := P (T = 1|X), based on its sufficiency for adjust-
ment (Rosenbaum and Rubin 1983). For Siamese network,
a variable transformation method, Zi = TiYi

e(Xi)
− (1−Ti)Yi

1−e(Xi)
,

was used based on the fact that its conditional expectation,
i.e., E[Z|X], is equal to the true uplift u(X) (Athey and Im-
bens 2015). We attached an embedding layer with Layer-
Norm (Ba, Kiros, and Hinton 2016) which is similar to lan-
guage models like BERT (Devlin et al. 2018) for categorical
variables and used sinusoidal functions to encode second,
hour and weekday information as follows:

f(t) =

[
sin

(
2πt

maxt

)
, cos

(
2πt

maxt

)]
,

where maxt is the maximum possible value of t, i.e., 3600
seconds in an hour, 24 hours in a day, and 7 for weekday.

3The shorter the time interval, the greater the influence of the
push, but the smaller the number of people responding. In our ex-
periment, ”three hours” was used as a target.

Evaluation. The performance of an uplift model can be
evaluated by qini coefficients (QINI) (Radcliffe 2007) and
area under uplift curve (AUUC) (Devriendt et al. 2020). The
two metrics are basically similar, measuring cumulative in-
cremental gains when the treatment is given only to the top
individuals sorted by uplift scores predicted by the model.

Results. Table 1 shows QINIs (left) and AUUCs (right) of
the best checkpoint on the holdout set (VAL) and among the
entire training checkpoints (MAX) for each task. The differ-
ence between VAL and MAX can be attributed to the model
capturing spurious correlations rather than the true mecha-
nisms and the wrong validation due to distributional shifts.

• TS: The performance gap between VAL and MAX was sig-
nificant, and VAL actually performed worse than random
targeting (QINI & AUUC below zero). This empirically
shows the existence of the temporal distribution changes.

• OOD W/: Fine-tuning with the additional data using the
CL algorithm has somewhat reduced the performance
gap. We conjecture that the model became more robust
since it further learns common mechanisms and forgets
relationships irrelevant to the true effect.

• OOD W/O: The performance dropped sharply without
fine-tuning. We emphasize that the true causal model
should perform equally well both in ID and TS and gener-
alize to different games even without training, although
they may potentially have a very different user base.

Conclusion and Future Work
In this paper, we introduce Backend-TS dataset and pro-
pose uplift tasks accordingly, combining causal inference
with CL scenarios. We demonstrate that naı̈vely applying
existing methods may fail as uplift modeling tries to pre-
dict future behaviors based on historical data. All observa-
tional datasets have inherent biases; identifying causal rela-
tionships and eliminating undesirable effects would be one
of the most important follow-up research topics. We believe
that learning causal mechanisms invariant over time is cru-
cial for the way toward general-level AI and that the dataset
will contribute to developing such algorithms.

Ethical Statement and Societal Impact
We did not collect any sensitive information, and all data
have been fully anonymized. Do not attempt to misuse it for
purposes other than research, including but not limited to,
identifying individuals or games, hacking, and cracking the
system. Backend-TS will contribute to developing robust
models and algorithms that can infer correct causal mecha-
nisms in high-dimensional spaces.
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