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Abstract

Context-aware Machine Translation aims to im-001
prove translations of sentences by incorporat-002
ing surrounding sentences as context. Towards003
this task, two main architectures have been ap-004
plied, namely single-encoder (based on con-005
catenation) and multi-encoder models. In this006
study, we show that a special case of multi-007
encoder architecture, where the latent repre-008
sentation of the source sentence is cached and009
reused as the context in the next step, achieves010
higher accuracy on the contrastive datasets011
(where the models have to rank the correct012
translation among the provided sentences) and013
comparable COMET scores as the single- and014
multi-encoder approaches. Furthermore, we in-015
vestigate the application of Sequence Shorten-016
ing to the cached representations. We test three017
pooling-based shortening techniques and intro-018
duce two novel methods - Latent Grouping and019
Latent Selecting, where the network learns to020
group tokens or selects the tokens to be cached021
as context. Our experiments show that the two022
methods achieve competitive BLEU scores and023
accuracies on the contrastive datasets to the024
other tested methods while potentially allow-025
ing for higher interpretability and reducing the026
growth of memory requirements with increased027
context size.028

1 Introduction029

Following the introduction of the Transformer030

model (Vaswani et al., 2017), Sentence-level Ma-031

chine Translation, where the task is to translate032

separate sentences, has seen great success in recent033

years (Vaswani et al., 2017; Hassan et al., 2018;034

Costa-jussà et al., 2022; Tiedemann et al., 2022).035

However, real-world applications of the translation036

systems are often used to translate a whole doc-037

ument or a longer discourse (e.g. a transcribed038

speech). In those circumstances, Sentence-level039

Machine Translation processes each sentence sepa-040

rately and is incapable of leveraging the surround-041

ing or previous sentences (referred to as the context042

sentences). This is in contrast to the Context-aware 043

Machine Translation where the context sentences 044

are available to the system. The information in the 045

previous sentences can be helpful to maintain the 046

coherence of the translation and to resolve ambi- 047

guities (Agrawal et al., 2018; Bawden et al., 2018; 048

Müller et al., 2018; Voita et al., 2019b). Both the 049

sentences of the text in the source language and 050

the previously translated sentences can be used as 051

context. The former is referred to as source-side 052

context and the latter as target-side context. 053

Many Context-aware Machine Translation ap- 054

proaches have been proposed including novel ar- 055

chitectures that can be broadly categorized into 056

single-encoder and multi-encoder types. In single- 057

encoder architectures, the context sentences are 058

concatenated with the current sentence and pro- 059

cessed as a long sequence by a single encoder 060

(Tiedemann and Scherrer, 2017; Agrawal et al., 061

2018; Ma et al., 2020; Zhang et al., 2020; Ma- 062

jumde et al., 2022). In multi-encoder architec- 063

tures, the context sentences are processed by a sep- 064

arate encoder than the current sentence (Tu et al., 065

2017; Bawden et al., 2018; Miculicich et al., 2018; 066

Maruf et al., 2019; Huo et al., 2020; Zheng et al., 067

2021). Several multi-encoder approaches (Voita 068

et al., 2018; Li et al., 2020) involve sharing parame- 069

ters of encoders. This approach reduces the number 070

of parameters and could also increase the speed of 071

translation when translating the whole document 072

sentence-by-sentence. Inspired by this idea, we 073

investigate multi-encoder architectures where all 074

the encoder parameters are shared (Tu et al., 2018; 075

Voita et al., 2019b; Wu et al., 2022), which allows 076

caching the hidden representation of the current 077

sentence and reusing it as the hidden representation 078

of the context when translating subsequent sen- 079

tences. In this study, we refer to this architecture 080

as caching. 081

In Transformers, the number of tokens does 082

not change during the processing of the sequence 083
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through the encoder (and decoder) layers. Con-084

current to Machine Translation, several techniques085

have been proposed to shorten the sequence of to-086

kens in the task of language modeling (Subrama-087

nian et al., 2020; Dai et al., 2020; Nawrot et al.,088

2022). In particular, the tokens are combined in the089

shortening modules that are added between a spec-090

ified number of encoder layers. Sequence Shorten-091

ing can lead to the reduction of the computational092

and memory requirements in the subsequent layers093

as the requirements of the self-attention module094

grow quadratically with the number of tokens (al-095

though a substantial amount of research is done096

to mitigate that (Kitaev et al., 2020; Wang et al.,097

2020)).098

In this paper, we investigate the application of099

Sequence Shortening to Context-aware Machine100

Translation. Specifically, we apply the shortening101

of the cached hidden representations of the context102

sentences in the caching multi-encoder architec-103

tures. The intuition behind this approach is that a104

compressed representation of the previously seen105

sentences should be enough to use as a context106

while possibly decreasing the computational and107

memory requirements during inference. Sequence108

Shortening can be seen as related to the concept109

of chunking from psychology (Miller, 1956; Ter-110

race, 2002; Mathy and Feldman, 2012). To limit111

the scope, we consider only the source-side con-112

text. Additionally, we introduce Latent Grouping113

and Latent Selecting - new shortening techniques114

where the network can learn how to group or select115

tokens to form a shortened sequence.116

2 Related Work117

2.1 Context-aware Machine Translation118

A straightforward approach to incorporate context119

into Machine Translation is to concatenate previ-120

ous sentences with the current sentence, which has121

been referred to as concatenation or single-encoder122

architecture because only a single encoder is used123

(Tiedemann and Scherrer, 2017; Ma et al., 2020;124

Zhang et al., 2020; Majumde et al., 2022). The125

multi-encoder approach is to encode the context126

sentences by a separate encoder (Jean et al., 2017;127

Miculicich et al., 2018; Maruf et al., 2019; Huo128

et al., 2020; Zheng et al., 2021). While the en-129

coders are separate in multi-encoder architectures,130

weight-sharing between them has been investigated131

in previous works (Voita et al., 2018; Tu et al.,132

2018; Li et al., 2020; Wu et al., 2022). Existing133

studies also investigated hierarchical attention (Mi- 134

culicich et al., 2018; Bawden et al., 2018; Wu et al., 135

2022; Chen et al., 2022), sparse attention (Maruf 136

et al., 2019; Bao et al., 2021), aggregating the hid- 137

den representation of the context tokens (Morishita 138

et al., 2021), post-processing the translation (Voita 139

et al., 2019b,a), and using a memory mechanism 140

(Tu et al., 2018; Feng et al., 2022). 141

Mostly orthogonal to architectural approaches, 142

another line of work concentrates on making the 143

models use the context more effectively. These 144

methods utilize regularization such as dropout of 145

the tokens in the source sentence (CoWord dropout; 146

Fernandes et al., 2021) or attention regularization 147

based on human translators (Yin et al., 2021) and 148

data augmentation (Lupo et al., 2022) along with 149

contrastive learning (Hwang et al., 2021). 150

It has been argued that widely used sentence- 151

level metrics (such as BLEU (Papineni et al., 2002)) 152

are ill-equipped to measure the translation qual- 153

ity with regard to the inter-sentential phenomena 154

(Hardmeier, 2012; Wong and Kit, 2012). For this 155

reason, research has been done to measure the 156

usage of context by machine translation models, 157

where two main avenues have been explored: intro- 158

ducing new metrics (Fernandes et al., 2021, 2023) 159

and contrastive datasets (Müller et al., 2018; Baw- 160

den et al., 2018; Voita et al., 2019b; Lopes et al., 161

2020). In the contrastive datasets, the model is pre- 162

sented with the task of ranking several translations 163

of the same source sentence with the same con- 164

text. The provided translations differ only partially 165

and the provided context is required to choose the 166

correct translation. 167

2.2 Sequence Shortening 168

Sequence Shortening has been introduced as a way 169

to exploit the hierarchical structure of language to 170

reduce the memory and computational cost of the 171

Transformer architecture (Subramanian et al., 2020; 172

Dai et al., 2020; Nawrot et al., 2022). Shortening 173

can be done by average pooling of the hidden repre- 174

sentation of the tokens (Subramanian et al., 2020). 175

Allowing the tokens of the shortened sequence to 176

attend to the hidden representation of the original 177

sequence was found beneficial (Dai et al., 2020). 178

Replacing average pooling with the linear transfor- 179

mation of the concatenated representation of the 180

tokens of the original sequence has also been used 181

(Nawrot et al., 2022). Another way of shortening 182

the sequence is to find and retain only the most 183
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important tokens of the original sequence (Goyal184

et al., 2020).185

The most related work to one of our methods La-186

tent Grouping is the Charformer (Tay et al., 2021)187

architecture, where the tokenization is performed188

by a sub-network that learns to select block sizes189

for characters of the input sequence. The block190

size representations are subsequently summed with191

weights predicted by the sub-network. Latent192

Grouping differs from Charformer in the placement193

of the grouping (after the encoder in the case of La-194

tent Grouping) and the aggregated representation195

(encoder representations of tokens themselves in196

the case of Latent Grouping).197

Our work lies in the intersection of Context-198

aware Machine Translation and Sequence Short-199

ening. We test the performance of caching architec-200

ture against single- and multi-encoder architectures201

and investigate applying shortening to the cached202

sentences.203

3 Background204

3.1 Transformer205

The Transformer architecture, introduced for206

sentence-level translation, consists of the encoder207

and decoder (Vaswani et al., 2017). The sentence208

in the source language is tokenized and embedded209

before it is passed to the encoder. The encoder210

processes the sequence by L consecutive encoder211

layers, each consisting of the self-attention mod-212

ule and the element-wise feed-forward network.213

Residual connection is added around both modules214

followed by Layer Normalization (Ba et al., 2016).215

Hidden representation of the L-th encoder layer216

HL is fed into the decoder, which auto-regressively217

produces the output sequence Y = (y1, ..., yT ), un-218

til it reaches the end-of-sequence token. Decoder219

layers process the currently produced sequence220

with the self-attention module, followed by the221

cross-attention module and feed-forward network.222

Unlike in the encoder, the self-attention module in223

the decoder uses causal masking (the tokens can224

not attend to the future tokens). In Cross-attention,225

multi-head attention uses the decoded sequence226

as queries and encoder output as keys and values.227

Residual connection and Layer Normalization are228

applied after each module.229

3.2 Pooling-based Shortening230

Sequence Shortening is a method that results in a231

reduction in the number of tokens in a sequence232

by combining the tokens of the hidden represen- 233

tation of the input sequence HL. In the pooling- 234

based shortening the sequence is divided into non- 235

overlapping groups of K neighboring tokens each 236

(K is a hyper-parameter). Pooling of the tokens in 237

each group is then performed: 238

G̃ = Pooling(HL), (1) 239

where G̃ is the sequence of size ⌈M/K⌉ of the 240

pooled tokens. Subsequently, the pooled tokens G̃ 241

attend to the hidden representation of the original 242

sequence using the attention module followed by 243

the residual connection and the Layer Normaliza- 244

tion: 245

G = LayerNorm(G̃+Attn(G̃,HL, HL)),
(2) 246

where G is the final shortened sequence. Com- 247

monly used pooling operations are average (Dai 248

et al., 2020) and linear pooling (Nawrot et al., 2022) 249

(transformation of the concatenated tokens). 250

4 Method 251

4.1 Latent Grouping 252

Figure 1: Illustration of Grouping Shortening with the
number of groups set to three.

In contrast to pooling, Latent Grouping, illus- 253

trated in Figure 1, results in a fixed number of 254

tokens in the shortened sequence corresponding 255

to the number of groups K, which is a hyper- 256

parameter. Each token is categorized into a group 257

by the feed-forward network with the number of 258

outputs equal to the number of groups. We obtain 259

the categorization for the i-th token to k-th group 260

ci,k by applying the Softmax function to the outputs 261
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in the dimension of the groups:262

ci = Softmax(FFN(hL
i )),

∀i = 1, ...,M,
(3)263

where hL is the hidden representation of the last en-264

coder layer and ci is the vector of size K represent-265

ing the categorizations of the i-th token to all the266

groups. As an alternative to Softmax, Sparsemax267

function (Martins and Astudillo, 2016) can also be268

used resulting in the categorizations of tokens that269

are more sparse, which means that a token is cate-270

gorized into a smaller number of groups, and most271

categorizations are equal to zero. Subsequently, the272

groups G̃ are constructed as the sum of the hidden273

representations hL with categorizations ai,k used274

as weights:275

g̃k =
∑
i

ci,kh
L
i ,

∀k = 1, ...,K,

(4)276

where g̃k is a k-th grouped token composing the277

sequence G̃ in the equation (1). The network278

learns how to soft assign each token to the groups.279

A group representation is computed using the280

weighted average of tokens, which makes back-281

propagations into the categorizing network possi-282

ble. Finally, the attention module is applied as in283

equation (2).284

4.2 Latent Selecting285

Latent Selecting differs from Latent Grouping by286

enabling the groups to select tokens to aggregate287

rather than assigning each token to a group and288

allowing the model to ignore tokens entirely rather289

than assigning them to at least one group. This is290

similar to selecting the hub tokens in Power-BERT291

(Goyal et al., 2020), where the selection is based on292

the attention scores of the previous layer. Although293

Latent Selecting can be achieved by maintaining a294

categorizing feed-forward network for each group,295

we utilize the same network as described for Latent296

Grouping but apply the Softmax (or Sparsemax)297

function in equation (3) in the sequence dimension298

instead of the token dimension.299

4.3 Context Shortening300

The architecture we use, illustrated in Figure 2, is301

based on caching the hidden representations pro-302

duced by the encoder, where the representations of303

the tokens of the current sentence are stored and304

can be reused as context when the subsequent sen-305

tences are translated. Although this architecture306

uses only a single encoder, it is different from the 307

single-encoder models because the current sentence 308

and the context sentences are processed separately. 309

While in the standard caching architecture the hid- 310

den representation of all the tokens is stored, we 311

introduce a Sequence Shortening module directly 312

after the encoder, which returns the compressed hid- 313

den representation usually containing fewer tokens 314

than the original sequence. We consider: mean 315

pooling (Dai et al., 2020), max pooling, linear pool- 316

ing (Nawrot et al., 2022), latent grouping, and la- 317

tent selecting. Additionally, we also test the simple 318

aggregation of the whole context sequences into 319

a single vector by averaging the tokens. Concep- 320

tually, Sequence Shortening of the context can be 321

seen as a middle-ground between storing tokens 322

and sentence aggregations. 323

The integration of the context with the decoder 324

can also be done in several ways. Firstly, the con- 325

text sentences can be concatenated to the current 326

sentence. This method is similar to the single- 327

encoder (concatenating) architecture, where the 328

difference is that the encoder does not have access 329

to other sentences in the case of caching architec- 330

ture. In this case, the decoder layers are the same 331

as in the vanilla transformer with self- and cross- 332

attention modules. Secondly, the context sentences 333

can be processed in the decoder layers by a sepa- 334

rate context-attention module, where the decoder 335

tokens attend to the context tokens. We experiment 336

with the parallel and serial alignment of the cross- 337

and context-attention modules. Additionally, we 338

also experiment with gating the representation re- 339

sulting from applying context-attention using the 340

following equation: 341

λi = σ(FFN(ĥi)),

ĥ′
i = λiĥi,

∀i = 1, ...,M

(5) 342

where ĥi is the i-th token representation returned 343

by the context-attention module, FFN is a token- 344

wise linear layer with one output, σ is the Sigmoid 345

function. 346

For Sentence Aggregation and Shortening archi- 347

tectures, the aggregated or shortened representation 348

of the current sentence can be included in context 349

sentences. This helps with the training, as often 350

none of the previous sentences has an effect on the 351

translation, known as the two-fold sparsity prob- 352

lem (Lupo et al., 2022), and the context attention 353
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Figure 2: The illustration of a Shortening Architecture with the representation of the two previous sentences being
cached. The dashed line represents the optional blocking of the gradient during training.

module can still be trained to attend to the represen-354

tation of the current sentence. To allow the decoder355

to distinguish between context sentences we em-356

ploy learned segment embeddings (Devlin et al.,357

2019). Similarly, we also add learned positional358

encoding for the shortened tokens inside context359

sentences.360

During training, caching is not used, meaning361

that the model receives tokenized context sentences362

and processes them using the same encoder. This363

implies that the weights of the encoder receive the364

backpropagation gradient from multiple sources -365

the current sentence and each of the context sen-366

tences, which can lead to difficulties in training.367

Therefore, we consider blocking the gradient after368

the encoder and before shortening where applicable369

by allowing the gradient information to flow for a370

specified number of context sentences, after which,371

the gradient is blocked.372

5 Experiments373

All our experiments are implemented1 in fairseq374

framework (Ott et al., 2019). We used the code375

repository of Fernandes et al. (2021) as the base for376

our implementation.377

5.1 Data378

We used the English to German and English to379

French directions of the IWSLT 2017 (Cettolo et al.,380

2017) document-level dataset that is based on the381

1The code for this paper (based on https:
//github.com/neulab/contextual-mt) can be found
on Github https://anonymous.4open.science/r/
shortening-context-mt-F8C1.

Dataset Docs Sent/Doc Tok/Sent
En-De Train 1698 121.4 21.9
En-De Valid 62 87.6 20.6
En-De Test 12 90.0 20.8
En-Fr Train 1914 121.6 22.0
En-Fr Valid 66 88.2 20.9
En-Fr Test 12 100.8 21.4

Table 1: The details of the IWSLT 2017 datasets.

subtitles of the TED Talks2. Following Fernandes 382

et al. (2021), we used tst2011-tst2014 as valida- 383

tion subset and tst2015 as the test subset. The data 384

is byte-pair encoded (Sennrich et al., 2016) using 385

SentencePiece framework (Kudo and Richardson, 386

2018) on the training subset with 20,000 vocab- 387

ulary size for each language separately (see Ta- 388

ble 1). We measured BLEU (Papineni et al., 2002) 389

using sacreBleu library (Post, 2018). We also re- 390

port COMET (Rei et al., 2020) in Appendix B. 391

To measure the context usage of the trained mod- 392

els, we employed ContraPro (Müller et al., 2018) 393

contrastive dataset for English to German direction, 394

and the contrastive dataset by Lopes et al. (2020) 395

for English to French direction. Both are based on 396

the OpenSubtitles 2018 dataset (Lison et al., 2018). 397

These datasets consist of the source sentence with 398

the context (previous sentences on the source and 399

target side) with several translations differing only 400

in a pronoun that requires context to be correctly 401

translated. Models rank the translations by assign- 402

ing probabilities to each of them. The translation is 403

considered to be accurate when the right translation 404

2https://www.ted.com/
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Model BLEU Accuracy
Sentence-level 28.11 43.67%

Context: 1 Context: 2 Context: 3
Model BLEU Accuracy BLEU Accuracy BLEU Accuracy
Single-encoder 28.31 47.42% 27.95 48.18% 27.88 48.88%
Multi-encoder 28.67 44.93% 28.50 46.65% 28.26 45.00%
Caching Tokens 28.35 54.06% 28.50 54.13% 29.08 51.23%
Caching Sentence 28.38 45.72% 26.73 45.26% 26.70 44.91%
Shortening - Max Pooling 27.62 51.67% 27.88 55.08% 28.26 50.89%
Shortening - Avg Pooling 28.09 53.37% 27.85 54.81% 28.38 50.54%
Shortening - Linear Pooling 27.62 52.71% 28.03 52.13% 28.18 51.27%
Shortening - Grouping 28.21 56.98% 28.70 54.51% 28.49 51.16%
Shortening - Selecting 28.15 54.48% 28.55 54.21% 28.01 51.95%

Table 2: Results of the En-De IWSLT 2017 experiment. The models were trained to use only the source-side context.
We report BLEU of the test subset and the accuracy of the ContraPro (Müller et al., 2018) contrastive dataset.

is ranked the highest by the model.405

5.2 Models406

Based on the described methods, we trained the407

following caching models:408

• Caching Tokens - where the encoder repre-409

sentations of the context sentences are stored410

directly,411

• Caching Sentences - where the representa-412

tions of the context sentences are averaged413

and stored,414

• Shortening - Mean Pooling - Sequence short-415

ening with Mean Pooling applied to the out-416

puts of the encoder, based on (Dai et al.,417

2020),418

• Shortening - Max Pooling - shortening with419

Max Pooling,420

• Shortening - Linear Pooling - shortening421

with Linear Pooling, based on (Nawrot et al.,422

2022),423

• Shortening - Grouping - shortening with La-424

tent Grouping (Section 4.1),425

• Shortening - Selecting - shortening with La-426

tent Selecting (Section 4.2).427

For all the aggregating models, the current sentence428

is also used as context and is concatenated with the429

context sentences after embedding. Moreover, we430

also test the following baseline models:431

• Sentence-level Transformer - where context432

sentences are ignored,433

• Single-encoder Transformer - where con-434

text sentences are prepended to the current435

sentence and processed by the encoder, we436

used Fernandes et al. (2021) implementation,437

• Multi-encoder Transformer - with the sepa- 438

rate encoder (without weights-sharing) used 439

to encode the context sentences, again based 440

on the Fernandes et al. (2021) implementation, 441

where the context and the current sentence are 442

concatenated in the decoder. Our experiments 443

revealed that this integration yields better re- 444

sults than with the separate context-attention 445

module. 446

All tested models are based on the Transformer 447

base architecture (Vaswani et al., 2017). The hyper- 448

parameters and model details can be found in Ap- 449

pendix A. We tuned the hyper-parameters of the 450

models based on the performance on the validation 451

subset. From the K values of [2, 3, 4] for pooling 452

architectures 2 was selected. For grouping and 453

selecting architectures, we considered K values 454

of [8, 9, 10, 11] and selected 9 and 10 respectively 455

for English-German translation and 11 (for both 456

models) for English-French translation. For the 457

categorizing network, we used one hidden layer 458

with 512 units and the Sparsemax activation func- 459

tion to obtain more sparse categorizations. We 460

performed preliminary experiments to find the ar- 461

chitectural choices (gradient stopping and decoder 462

integration) for each caching model. In Caching To- 463

kens, Caching Sentence, and Pooling architectures, 464

we block gradient past the encoder for context sen- 465

tences. Additionally, we allow gradient into the 466

shortening from one and two context sentences for 467

Selecting and Grouping architectures respectively. 468

All models apart from Caching Sentence use se- 469

quential attention modules in the decoder (self- 470

attention, cross-attention, and context-attention) 471
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Model BLEU Accuracy
Sentence-level 37.64 75.92%

Context: 1 Context: 2 Context: 3
Model BLEU Accuracy BLEU Accuracy BLEU Accuracy
Single-encoder 37.25 77.27% 37.18 78.98% 37.12 80.87%
Multi-encoder 37.44 75.72% 37.12 77.23% 37.34 75.76%
Caching Tokens 36.88 79.67% 37.29 80.14% 37.73 79.90%
Caching Sentence 36.50 77.33% 34.21 76.25% 34.78 75.71%
Shortening - Max Pooling 37.48 79.51% 36.72 80.59% 37.85 79.71%
Shortening - Avg Pooling 37.13 77.75% 37.12 80.16% 38.18 80.41%
Shortening - Linear Pooling 37.02 80.47% 37.12 79.37% 37.42 79.64%
Shortening - Grouping 37.05 79.91% 37.98 81.13% 37.18 79.54%
Shortening - Selecting 37.38 80.89% 37.83 80.32% 37.81 80.09%

Table 3: Results of the En-Fr IWSLT 2017 experiment. The models were trained to use only the source-side context.
We report BLEU of the test subset and the accuracy of the contrastive dataset by Lopes et al. (2020).

without any gating mechanism. Caching Sentence472

yields the highest performance when parallel cross-473

and context-attention decoder is used with the gate474

on the context branch (see equation (5)).475

5.3 Results476

The results of the single run (with the predeter-477

mined seed) of the English-to-German translation478

on the IWSLT 2017 dataset can be seen in Ta-479

ble 2. The BLEU score of the context-aware480

models is generally similar to or slightly higher481

than the sentence-level Transformer. BLEU does482

not correlate well with the contrastive accuracy,483

which is strictly higher for all context-aware mod-484

els. This confirms that sentence-level metrics do485

not reflect the context usage of the models. The486

highest contrastive dataset accuracy was achieved487

by the Grouping Shortening model for the context488

size of one, the Max Pooling Shortening model for489

the context size of two, and the Selecting Short-490

ening model for the context size of three. The491

highest accuracy averaged over the tested context492

sizes was reached by the model employing Latent493

Grouping, followed by the Latent Selecting model.494

Caching Tokens architecture exhibits comparable495

COMET scores to the Single- and Multi-encoder496

architectures while achieving higher accuracy on497

the contrastive dataset. Caching Sentence archi-498

tecture performed worse than other tested models,499

suggesting that representing the whole sentence500

as a single vector is not sufficient for contextual501

translation.502

Table 3 shows the results of the English-to-503

French translation. The BLEU scores of all models504

are comparable (apart from the Caching Sentence 505

architecture). Latent Grouping achieved the high- 506

est accuracy on the contrastive dataset for the con- 507

text size of one, and Lateng Selecting and Single- 508

encoder architectures for the context sizes of one 509

and three, respectively. The results in terms of 510

COMET (Rei et al., 2020) can be found in Ap- 511

pendix B. 512

In general, Caching Tokens and Shortening mod- 513

els achieved higher accuracies than the Single- and 514

Multi-encoder architectures (with the exception 515

of the Single-encoder on English-French transla- 516

tion with a context size of three). Applying La- 517

tent Grouping and Latent Selecting to the cached 518

sentence does not hurt the performance while re- 519

ducing the memory footprint of the inference (Sec- 520

tion 5.5) and increasing the interpretability of the 521

model through the sparse assignment of tokens into 522

groups (Section 5.4). 523

5.4 Token Assignment Visualization 524

An example visualization of groupings and selec- 525

tions of the Latent Grouping and Selecting architec- 526

tures can be seen in Figure 3 and more can be found 527

in Appendix C. Latent Grouping seems to group 528

tokens according to position with nouns given a 529

high categorization score within a group. Surpris- 530

ingly, only four groups out of nine are utilized by 531

the model. We hypothesize that the rest are used as 532

the no-op tokens (Clark et al., 2019) in the context- 533

attention when the context is not needed. Latent 534

Selecting, by design, has to assign tokens to each 535

group. Again, nouns seem to be included in a 536

group more often than other parts of speech. Some 537

7



(a) Latent Grouping

(b) Latent Selecting

Figure 3: Visualization of tokens of the sentence from
the ContraPro dataset grouped (3a) and selected (3b) by
the model using Latent Grouping and Latent Selecting.

groups select punctuation marks and the <eos> to-538

ken, which could take the role of the no-op tokens.539

5.5 Memory Usage540

We measured the memory used by the541

tested models as the value returned by the542

torch.cuda.max_memory_allocated() func-543

tion. For clarity we omit the Caching Sentence544

model (as the worst performing) and the Max545

Pooling model (with results the same as the Avg546

Pooling model). Additionally, we measured the547

operation memory - the memory on top of the548

memory taken by the model during inference549

- on the examples from the test subset of the550

English-German IWSLT 2017 dataset with551

different numbers of context sentences. For552

context sizes above three, we used the models553

trained on the context size of three. The results554

are presented in Figure 4. Although the number555

of parameters (see Appendix A) is a dominant556

factor determining the overall memory usage, the557

operation memory grows at different paces for 558

different architectures with the increased context 559

size. The operational memory of the single- and 560

multi-encoder models grows quadratically, while 561

for caching and shortening architectures it grows 562

linearly. Furthermore, the rate of increase is 563

slower for shortening architectures compared to 564

the caching architecture, which can allow the 565

significant advantage of shortening in the setting 566

of long sentences or large contexts. 567

Figure 4: The mean operation memory of the models
when performing inference on the examples from the
English-German IWSLT 2017 test subset with the vary-
ing context sizes. For the context sizes above three, we
used the models trained on the context size of three.

6 Conclusions 568

Caching architectures for Context-aware Machine 569

Translation have not been widely explored in the lit- 570

erature so far. In this study, we show that a simple 571

method of remembering the hidden representation 572

of the previous sentences is comparable with more 573

established Single- and Multi-encoder approaches 574

in terms of BLEU and can be more effective in 575

capturing context (up to 6 percentage points for the 576

context size of one), measured by the accuracy on 577

the contrastive datasets. The downside of caching 578

methods is the diminishing returns in terms of con- 579

text usage with increased context size. 580

Pooling-based shortening of the cached sentence 581

maintains the comparable results to the caching 582

architecture, while our introduced shortening meth- 583

ods - Latent Grouping and Selecting - show on av- 584

erage strong performance both in terms of BLEU 585

and accuracy while maintaining slower growth of 586

the memory usage during inference, and poten- 587

tial increased interpretability of the model through 588

sparse assignment of tokens into groups. In future 589

work, we will explore the integration of Sequence 590

Shortening with the target-side context. 591

8



7 Limitations592

Our investigation is limited to the source-side con-593

text. There exist linguistic phenomena that can only594

be addressed by using target-side context (Voita595

et al., 2019b). While both caching and shortening596

could be applied to the target side as well, we do597

not provide an empirical evaluation of the perfor-598

mance of this approach.599

Furthermore, we do not apply sentence-level600

pre-training to our models. Architectures using601

Sequence Shortening could benefit from multiple602

stages of pre-training.603

Lastly, our experiments involve language pairs604

from the same language family (English to German605

and English to French). We trained the models606

using the relatively low-resource datasets (IWSLT607

2017) and the contrastive datasets used in this work608

target only the pronoun disambiguation task.609
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A Models and Training Details965

To implement and train our models we used fairseq966

framework (Ott et al., 2019) and based our code on967

the codebase of Fernandes et al. (2021). All models968

were based on the transformer-base configuration.969

The shared hyper-parameters are presented in Ta-970

ble 4. We trained each model on a single GPU971

(NVIDIA GeForce RTX 3090 24GB).972

For Latent Grouping and Shortening, we used a973

categorizing FFN with 512 hidden units, the num-974

ber of inputs equal to the Embed Dim, and the975

number of outputs equal to the number of groups.976

Table 5 shows the number of parameters for each 977

model. 978

Hyper-parameter Value
Encoder Layers 6
Decoder Layers 6
Attention Heads 8
Embed Dim 512
FFN Embed Dim 2048
Dropout 0.3
Share Decoder In/Out Embed True
Optimizer Adam
Adam Betas 0.9, 0.98
Adam Epsilon 1e-8
Learning Rate 5e-4
LR Scheduler Inverse Sqrt
LR Warmup Updates 2500
Weight Decay 0.0001
Label Smoothing 0.1
Clip Norm 0.1
Batch Max Tokens 4096
Update Frequency 8
Max Epoch -
Patience 5
Beam 5
Max Vocab Size 20000
Seed 42

Table 4: The shared hyper-parameters of the tested mod-
els.

Model Parameters
Sentence-level 64.42M
Single-encoder 64.42M
Multi-encoder 83.33M
Caching Tokens 71.25M
Caching Sentence 71.26M
Shortening - Max Pooling 72.83M
Shortening - Avg Pooling 72.83M
Shortening - Linear Pooling 73.35M
Shortening - Grouping 72.58M
Shortening - Selecting 72.58M

Table 5: The number of parameters in the tested models.

B Extended Results 979

Apart from BLEU and contrastive dataset ac- 980

curacy presented in Section 5, we also mea- 981

sured COMET (Rei et al., 2020) based on 982

Unbabel/wmt22-comet-da model (Rei et al., 983
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2022). See Tables 6 and 7 for the results on En-De984

and En-Fr respectively.985

C Groupings and Selections Visualization986

The visualizations of groupings and selections done987

by the models using Latent Grouping and Select-988

ing of the additional examples from the ContraPro989

dataset (Müller et al., 2018) can be found in Fig-990

ure 5. Figure 6 shows the visualizations of the991

groupings and selections of the sentences from the992

contrastive dataset by Lopes et al. (2020).993
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Model Context: 0
Sentence-level 0.7778
Model Context: 1 Context: 2 Context: 3
Single-encoder 0.7831 0.7789 0.7758
Multi-encoder 0.7831 0.7871 0.7856
Caching Tokens 0.7806 0.7776 0.7821
Caching Sentence 0.7712 0.7640 0.7673
Shortening - Max Pooling 0.7743 0.7772 0.7799
Shortening - Avg Pooling 0.7774 0.7770 0.7844
Shortening - Linear Pooling 0.7757 0.7745 0.7823
Shortening - Grouping 0.7842 0.7828 0.7811
Shortening - Selecting 0.7774 0.7826 0.7836

Table 6: Results in terms of COMET (Rei et al., 2020) based on Unbabel/wmt22-comet-da model (Rei et al., 2022)
of the En-De IWSLT 2017 experiment.

Model Context: 0
Sentence-level 0.7943
Model Context: 1 Context: 2 Context: 3
Single-encoder 0.7930 0.7979 0.7913
Multi-encoder 0.7968 0.7934 0.7934
Caching Tokens 0.7923 0.7935 0.7945
Caching Sentence 0.7845 0.7654 0.7737
Shortening - Max Pooling 0.7911 0.7913 0.7974
Shortening - Avg Pooling 0.7920 0.7924 0.7952
Shortening - Linear Pooling 0.7933 0.7951 0.7927
Shortening - Grouping 0.7933 0.7976 0.7921
Shortening - Selecting 0.7951 0.7945 0.7935

Table 7: Results in terms of COMET (Rei et al., 2020) based on Unbabel/wmt22-comet-da model (Rei et al., 2022)
of the En-Fr IWSLT 2017 experiment.
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(a) Latent Grouping (b) Latent Selecting

(c) Latent Grouping (d) Latent Selecting

(e) Latent Grouping (f) Latent Selecting

Figure 5: Visualization of tokens of the sentences from the ContraPro dataset (Müller et al., 2018) grouped (5a, 5c,
5e) and selected (5b, 5d, 5f) by the model using Latent Grouping and Latent Selecting.
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(a) Latent Grouping (b) Latent Selecting

(c) Latent Grouping (d) Latent Selecting

(e) Latent Grouping (f) Latent Selecting

Figure 6: Visualization of tokens of the sentences from the contrastive dataset by Lopes et al. (2020) grouped (6a,
6c, 6e) and selected (6b, 6d, 6f) by the model using Latent Grouping and Latent Selecting.
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