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1. Introduction

Figure 1: Streamlines from Tract-
to-learn (Théberge et al.
(2021)) at an early stage
of the training (epoch 5).
It’s apparent that the pre-
dictions collapsed towards
a few global directions.

Diffusion MRI-based tractography is a promising
noninvasive brain connectivity and neural pathway
approximation method (Sotiropoulos et al. (2010)).
The ill-posed nature of the problem, Mangin et al.
(2013), and a lack of biologically reliable ground
truth damages the credibility of automatically gen-
erated tractograms. Instead of relying on only a
single voxel during the streamline tracking, incorpo-
rating neighboring regions has improved tractogra-
phy Rowe et al. (2013). Recent research suggests
a data-driven approach to learning the complex rela-
tionship between tractography update directions and
local neighborhoods. This work extends the rein-
forcement learning framework Tract-to-learn (TTL)
proposed by Théberge et al. (2021) by integrating
spherical harmonics CNN (Ha and Lyu (2022); Co-
hen et al. (2018); Esteves et al. (2017)) into the actor
models. While the original TTL does not preserve
the inherent rotational equivariance between the in-
put state and the predicted output (figure 1), our
method enforces this equivariance by design. This
increases the reliability of the method when exposed
to unseen data by decoupling the directional dependence of the predictions from the training
data and also improves the explainability of the prediction.

2. Methods

2.1. Tractography by Reinforcement Learning

During training, the environment emits rewards to the agent as a reaction to previous ac-
tions. In RL-based tractography, the rewards usually guide the agents towards streamlines
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that follow the underlying diffusion MRI data. The rationale here is that the agent maxi-
mizes the cumulative rewards received during an episode (i.e., from the start to the end of
a streamline) by selecting a feasible action based on a current state. The state is modeled
here by a local subset of the input data.

2.2. State: Spherical Local Neighbourhood

Figure 2: Illustration of the state assembly. A
local neighborhood (a) within the
diffusion image is weighted (b) de-
pendent on the distance to the cen-
ter. The fods are then accumulated
and form the state (c) together with
a spHarm function indicating the
previous direction.

We assume here that this data is provided
as fiber orientational distribution functions
(fodf) at every voxel of the MRI image.
In this sense, a dMRI signal can be rep-
resented by a function fdMRI : Z3 → S2.
More precisely, the fodfs are represented
in the spherical harmonic basis (SpHarm).
The state is formed by a local neighbor-
hood around the current particle location.
Therefore, the receptive field of the agent
is limited to nearby fodfs. Note that fdMRI

as a discrete signal only defines values for
the center of each voxel. Since the agent
can traverse space continuously, some ag-
gregation scheme is required to assemble
a local signal from nearby voxels. Instead
of the bilinear interpolation/nearest neigh-
bor method, we apply a custom aggregation
method as follows. A bounded cubical re-
gion is taken around the current location.
The fodfs in this region are then weighted
based on their distance to the current par-
ticle location. Signals close to the center contribute the most to the estimation of the next
direction. Local noise, irregularities, and well-known problems of tractography methods in
crossing regions require information about the more distant signal components. We, there-
fore, propose to weight the signals by a gaussian pdf centered at different distances and
assemble the average of the resulting spHarm signals as individual input channels for the
actor models (figure 2). Effectively, we decompose the neighborhood signals into different
spherical shells. In addition, we append one more spHarm channel to the model inputs to
indicate the direction of the previous location of the agent. While this disrespects the strict
Markov property of RL, it is required to ensure that the agent can navigate with antipodal
fodfs (in other words, this provides information on which way is forward and backward).

2.3. Action: Spherical Harmonics to Directional Update

The central motivation of this work is the exploitation of the rotational equivariance rela-
tionship between the spherical state and the direction of the action. Therefore, we train a
spherical harmonics model based on the implementation by Ha and Lyu (2022). The model
receives the state and outputs a spHarm signal of degree 1. The location of the maximum of
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Figure 3: Tractograms of the proposed method after 100 epochs. Left: original tractogram
from the model training. Left to right: inferences after rotating the input image
by 0, 90, 180, and 270 degrees.

this output signal is then translated into a cartesian vector for the direction of the next step.
Moreover, by following the work of Théberge et al. (2021), we employ an adapted version
of Twin-Delayed Deep-Deterministic Policy Gradient (TD3) (Fujimoto et al. (2018)).

3. Results

Table 1: Averaged streamline length in
mm of tractograms from the
proposed method.

Rotation Avg. Length

0 degree (training) 95.18 +/- 21.48
90 degree (testing) 95.24 +/- 22.96
180 degree (testing) 95.15 +/- 22.11
270 degree (testing) 96.24 +/- 22.95

In order to access the rotational equivariance
property of the method, we train a model on
the ”Fiber Cup” dataset (Côté et al. (2013))
and test it with rotated versions. Preliminary
qualitative (figure 3) and quantitative (table 1)
evaluations support the thesis that our pipeline
indeed inherits the rotational equivariance from
the spherical models in use.

4. Discussion

This work established a proof of concept of how rotational equivariance can be integrated
into reinforcement learning-based tractography via spherical harmonical CNNs. We disclaim
here that this project is still ongoing at the moment of writing, and the results should
therefore be considered preliminary. One limitation regards the data that we used for
the current experiments. While the evaluated fiber cup phantom serves as a valuable test
case during method design, more sophisticated experiments or clinical dMRI brain images
are expedient for an actual performance assessment. Another limitation of the current
framework concerns the reward function of the RL environment. Concretely, models were
reinforced based on three criteria of the resulting tractogram, namely 1. the alignment of the
predicted direction with the underlying dMRI data, 2. the smoothness of the streamline, and
3. the total length of the streamline. However, a tractogram that is optimal concerning those
three criteria is not necessarily desirable for actual medical problems. In the following stages
of this project, we, therefore, intend to introduce a reconstruction reward that measures the
capability of the method to produce tractograms that can be mapped back to the original
dMRI images, inspired by (Christiaens et al. (2015)) among others.
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Jean Christophe Houde, and Maxime Descoteaux. Tractometer: towards validation of
tractography pipelines. Medical image analysis, 17(7):844–857, 10 2013. ISSN 1361-
8423. doi: 10.1016/J.MEDIA.2013.03.009. URL https://pubmed.ncbi.nlm.nih.gov/

23706753/.

Carlos Esteves, Christine Allen-Blanchette, Ameesh Makadia, and Kostas Daniilidis. Learn-
ing SO(3) Equivariant Representations with Spherical CNNs. 11 2017. URL http:

//arxiv.org/abs/1711.06721.

Scott Fujimoto, Herke Van Hoof, and David Meger. Addressing Function Approximation
Error in Actor-Critic Methods. 35th International Conference on Machine Learning,
ICML 2018, 4:2587–2601, 2 2018. doi: 10.48550/arxiv.1802.09477. URL https://arxiv.

org/abs/1802.09477v3.

Seungbo Ha and Ilwoo Lyu. SPHARM-Net: Spherical Harmonics-based Convolution for
Cortical Parcellation. IEEE Transactions on Medical Imaging, pages 1–1, 2022. ISSN
0278-0062. doi: 10.1109/TMI.2022.3168670.

J. F. Mangin, P. Fillard, Y. Cointepas, D. Le Bihan, V. Frouin, and C. Poupon. Toward
global tractography. NeuroImage, 80:290–296, 10 2013. ISSN 1095-9572. doi: 10.1016/J.
NEUROIMAGE.2013.04.009. URL https://pubmed.ncbi.nlm.nih.gov/23587688/.

Matthew Rowe, Hui Gary Zhang, Neil Oxtoby, and Daniel C. Alexander. Beyond crossing
fibers: tractography exploiting sub-voxel fibre dispersion and neighbourhood structure.
Information processing in medical imaging : proceedings of the ... conference, 23:402–413,
2013. ISSN 1011-2499. doi: 10.1007/978-3-642-38868-2{\ }34. URL https://pubmed.

ncbi.nlm.nih.gov/24683986/.

Stamatios N. Sotiropoulos, Li Bai, Paul S. Morgan, Cris S. Constantinescu, and Christo-
pher R. Tench. Brain tractography using Q-ball imaging and graph theory: Improved
connectivities through fibre crossings via a model-based approach. NeuroImage, 49(3):
2444–2456, 2 2010. ISSN 1053-8119. doi: 10.1016/J.NEUROIMAGE.2009.10.001.
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