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ABSTRACT
To tackle the challenge of data heterogeneity in federated learning

(FL), personalized FL has been proposed to maximize individual

utility (model performance) by customizing personalized models for

clients. Considering the significance of individual rationality, exist-
ing works have formulated clients’ participation decisions problem

as hedonic games. However, they assume that clients can participate

in only one collaborative coalition, constraining players’ attempts

to join multiple coalitions. Different from prior works, we approach

personalized FL from the perspective of hedonic overlapping coali-
tion formation (OCF) games where rational clients can join multiple

coalitions and generate their personalized model by weighting the

local and coalition models. Nevertheless, the key challenge in ana-

lyzing the game is how to achieve a stable coalition structure where

no clients would deviate from the current structure. This leads

to our main question: what does a stable OCF structure look like?
To address this problem, we first investigate the linear FL models

for theoretical insights. Then, we design a heuristic algorithm for

achieving an individually stable OCF structure. Experimental re-

sults demonstrate the feasibility of our algorithm, and show that

our mechanism can improve the personalized model performance

by up to 19% over existing methods.

KEYWORDS
Personalized Federated Learning, Individual Rationality, Overlap-

ping Coalition Formation Game

1 INTRODUCTION
Recently, data isolation and concerns of privacy preservation have

aroused the wide study of federated learning (FL), where models

are trained across multiple decentralized clients holding local data

without exchanging data directly. In the vanilla FL setting, federat-

ing participants form a grand coalition and collaborate to train a

globally shared model. In practice, however, clients’ individual data

distributions are generally non-independent identically distributed

(non-IID), and thus it is difficult for a global model to perform well

on clients’ local distributions.

To this end, personalized FL is proposed to maximize individ-

ual utility (i.e., model performance) by customizing personalized

models for each client. Among the mainstream personalization

strategies, group collaboration techniques [11] encourage cluster-

level collaboration among similar clients to customize personalized

models for each client. However, in such group collaboration ap-

proaches, the collaboration arrangement for personalized FL designed
by the central server may end up being an unstable coalition struc-
ture, as the rational clients may deviate from the designed coalition
structure to join their favorite coalition for higher utility (i.e., per-
sonal model performance). Taking into account the significance of

individual rationality [12], some recent study has dissected the

clients’ participation decisions problem in FL as a hedonic coalition
formation game [8], where the utility-maximizing clients (referred

to as players interchangeably) arrange themselves into federating

coalitions.

However, a key limitation of the above game design is that they

require players join no more than one coalition, which constrains

players’ attempts or possibilities to participate in multiple coali-

tions. Intuitively, allowing players to join multiple coalitions could

potentially lead to an enhanced utility, as players can leverage the

knowledge embedded in different coalition-wide global models to

further optimize their personalized model.

We advocate a novel mechanism that allows players to engage

in multiple coalitions, and formulate their participation decisions

problem into an overlapping coalition formation (OCF) game. In the

proposed mechanism, each player weights their local model and

the coalition models to generate a personalized model. However,

an open problem in the proposed mechanism is to identify a stable

OCF structure where no player deviates from the current structure,

which leads to our key question: how does a stable OCF structure
look like?

In this paper, we characterize the model performance of each

potential coalition metric in a machine learning task by delving into

the linear regression model, which has proven to be insightful for

nonlinear models, as in [9]. Through the linear model setting, we

can quantify players’ utility (i.e., model error) in different coalitions.

These error values provide fundamental insights into understand-

ing which coalition a player would prefer to take part in during the

OCF game. We propose an effective and low-complexity heuristic

algorithm to obtain a stable OCF structure. The algorithm follows a

greedy strategy, where we rank players’ participation preferences

based on the error of coalition models and prioritize satisfying

the highest-ranked preference of each player in each round of the

game. This strategy accelerates the convergence process of coali-

tion formation, ensuring computational practicality and efficiency.

Moreover, among a set of players, there may exist multiple individ-
ually stable OCF structures where no player can deviate from the

current structure for higher utility. Our algorithm guarantees to

converge to one of these stable structures.

2 SYSTEM MODEL
In this section, we start by presenting our personalized FL model

and outlining the technical assumptions. Then, we provide essen-

tial definitions and notions related to the OCF game. Finally, we

formally formulate the problem that we aim to solve.

2.1 FL Model and Technical Assumptions
Consider a scenario with a fixed set of clients N = {1, 2, · · · , 𝑁 }
seeking to participate in FL, and each client has their true model

parameters 𝜃𝑖 which they aim to estimate. We focus on the linear

regression task and 𝜃𝑖 is a𝐷-dimensional linear vector representing

the coefficients for the classification function. The private dataset

consists of feature vectors X𝑖 and the corresponding labels Y𝑖 . Each
client utilizes the known data (X𝑖 ,Y𝑖 ) to estimate their unknown
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model parameter 𝜃𝑖 . We assume that each client corresponds to

an input distribution X𝑖 and 𝑛𝑖 input data points are drawn from

the distribution X𝑖 ∼ X𝑖 such that E𝑥∼X𝑖
[X𝑇

𝑖
X𝑖 ] = Σ𝑖 . They then

observe the noisy outputs which are drawn with a variance 𝜖2

𝑖

around the true mean of the distribution, i.e., Y𝑖 ∼ D𝑖 (X𝑖𝜃𝑖 , 𝜖
2

𝑖
).

The expectation of the error parameters is 𝜇𝑒 = E𝜖2

𝑖
∼P [𝜖2]. A client

can learn its model parameter through stochastic gradient descent

(SGD) [2, 5] or ordinary least squares (OLS) [6]. For theoretical

game reasoning to be feasible, we assume that X𝑇
𝑖
X𝑖 is invertible

such that each client can use OLS to compute their local model

parameters. The local estimation is given by

ˆ𝜃𝑖 = (X𝑇
𝑖 X𝑖 )−1Y𝑖 (1)

We consider that clients organize themselves into multiple col-

laborative groups, and each collaborative group is called a coalition,

denoted by C𝑗 . Let 𝑁 𝑗 denote the total number of samples in a

coalition, given by 𝑁 𝑗 =
∑
𝑖∈C𝑗 𝑛𝑖 . A coalition performs FL and

generates a coalition-wide global model:

Θ̂𝑗 =
∑︁
𝑖∈C𝑗

𝑛𝑖

𝑁 𝑗
· ˆ𝜃𝑖 (2)

We use Π𝑖 to indicate the collection of coalitions that player 𝑖

participates in. The aggregation function of the personalized model

is formalized as follows

ˆ𝜃Π𝑖 = 𝑤𝑖 · ˆ𝜃𝑖 +
∑︁
C𝑗 ∈Π𝑖

𝑤𝑖 𝑗 · Θ̂𝑗 (3)

for 𝑤 ∈ [0, 1] and 𝑤𝑖 +
∑
C𝑗 ∈Π𝑖

𝑤𝑖 𝑗 = 1. We use 𝑤𝑖 ,𝑤𝑖 𝑗 to respec-

tively refer to the aggregation weight of local model and the cor-

responding coalition model. Note that (𝑤𝑖 ,𝑤𝑖 𝑗 ) are player-specific

parameters that can be tuned.

2.2 An OCF Game Formulation
In our mechanism, each client enjoys the autonomy to make inde-

pendent decisions. They prioritize their own interests when choos-

ing which coalition to join. To capture clients’ behaviors in making

participation decisions, we formulate their strategic interactions

into an OCF game.

Definition 1 (OCF game). In an OCF game with player set N ,
C ⊆ N ≠ ∅ is called a coalition on N . An OCF structure of N is a
collection Π = {C1, C2, · · · , C𝑚} such that

⋃𝑚
𝑖=1
C𝑖 = N . In addition,

the condition C𝑖 ∩ C𝑗 = ∅ for any C𝑖 , C𝑗 ∈ Π and C𝑖 ≠ C𝑗 is not a
prerequisite.

1)Player Payoff: In an OCF game, each player participating in

a coalition would expect to receive a positive payoff. The payoff

of player 𝑖 in coalition C𝑗 is the reduction in model error between

their local model and the coalition model, which is formalized as

𝜑+𝑖 (C𝑗 ) = 𝑒𝑟𝑟𝑖 ( ˆ𝜃𝑖 ) − 𝑒𝑟𝑟𝑖 (Θ̂𝑗 ) (4)

2)Collaboration Cost: In some scenarios, the computation and

communication costs incurred from FL are non-negligible, espe-

cially for players who joins multiple coalitions. Let 𝑐𝑖 denote the

unit cost of player 𝑖’s data trainingwhen it participates in a coalition,

therefore, the cost of player 𝑖 in coalition C𝑗 is defined as

𝜑−𝑖 (C𝑗 ) = 𝑐𝑖𝑛𝑖 (5)

3)Player Utility: In our formulated game, the utility of a player re-

lates to the performance of its personalized model and the computa-

tion/communication cost incurred from joining multiple coalitions.

Formally, the utility of player 𝑖 in an OCF structure Π is defined as

the difference between the error reduction and total collaboration

cost

U𝑖 (Π) = 𝑒𝑟𝑟𝑖 ( ˆ𝜃𝑖 ) − 𝑒𝑟𝑟𝑖 ( ˆ𝜃Π𝑖 ) −
∑︁
C𝑗 ∈Π𝑖

𝜑−𝑖 (C𝑗 ) (6)

Note that the limit of the utility function is 𝑒𝑟𝑟𝑖 ( ˆ𝜃𝑖 )−
∑
C𝑗 ∈Π𝑖

𝜑−
𝑖
(C𝑗 )

and players always pursue a positive utility, hence, the maximum

number of coalitions that a player would join can be estimated by

the condition limU𝑖 (Π) > 0, i.e.,𝑚𝑎𝑥 ( |Π𝑖 |) = 𝑒𝑟𝑟𝑖 ( ˆ𝜃𝑖 )/𝑐𝑖𝑛𝑖 . Play-
ers would stop attempting to join new coalitions when reaching

the maximum number of coalitions that they could participate in.

4) Individual Rationality: The players make independent deci-

sions on which coalitions to participate in, based on the potential

payoff they may get from the coalition. Individual rationality states

that an individual always chooses the action that maximizes its util-

ity. We assume that each player always tends to join the coalition

with the highest payoff in each round, i.e., the coalition C𝑗 chosen
by player 𝑖 satisfies

𝜑+𝑖 (C𝑗 ) ≥ 𝜑+𝑖 (C𝑘 ),∀C𝑘 ∈ Π, 𝑗 ≠ 𝑘 (7)

5) Joining Operation and Rule: Considering the stability of the

OCF structure, players cannot join their preferred coalition at will.

The execution of joining operations requires adherence to specific

rules. We denote the operation of player 𝑖 joining coalition C𝑗 as
𝐽𝑖C𝑗 , and give related definitions as follows

Definition 2 (Joining Operation). Given an OCF structure Π,
if the operation of player 𝑖 joining coalition C𝑗 is performed, then the
OCF structure is modified to Π∗ = {Π \ C𝑗 ∪ {C𝑗 ∪ 𝑖}}.

Definition 3 (Joining Rule). A joining operation can be exe-
cuted only if player 𝑖 can get a positive payoff from coalition C𝑗 and
the utility of existing players in that coalition should not be decreased.{

𝜑+
𝑖
(C𝑗 ∪ 𝑖 ) > 𝜑+

𝑖
({𝑖 })

𝜑+
𝑘
(C𝑗 ∪ 𝑖 ) ≥ 𝜑+

𝑘
(C𝑗 ), ∀𝑘 ∈ C𝑗

(8)

6) Stability of the OCF structure: There are various stability no-

tions in hedonic games [1, 13]. Stability concepts based on coali-

tional deviations (core stable and strictly core stable) are too strong

to assure the existence of stable coalition structures in the general

setting. Therefore, we adopt the stability notion based on individual

deviations [3] to guarantee the existence of different solutions. In

the following, we give the notion of individually stable.

Definition 4 (Individually Stable). An OCF structure Π is
individually stable if there does not exist a pair (𝑖, C𝑗 ) of 𝑖 ∈ N ,
C𝑗 ∈ Π and 𝑖 ∉ C𝑗 such that{

𝜑+
𝑖
(C𝑗 ∪ 𝑖 ) > 𝜑+

𝑖
({𝑖 })

𝜑+
𝑘
(C𝑗 ∪ 𝑖 ) ≥ 𝜑+

𝑘
(C𝑗 ), ∀𝑘 ∈ C𝑗

(9)

2.3 Problem Formulation
In this work, we aim to solve the client utility maximization problem

in personalized FL, while taking into account individual rationality

and ensuring the stability of the OCF structure.
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Algorithm 1 The OCF algorithm

Input: Player set N ;

Output: OCF structure Π;
1: // OCF structure initialization, each play organizes themselves

as a single-member coalition

2: Let OCF structure Π ← {{𝑖}}𝑁
𝑖=1

3: // overlapping coalition formation

4: while Π𝑡 ≠ Π𝑡−1 do
5: Broadcast OCF structure information Π𝑡−1

.

6: // active player set
7: N∗ = {𝑖 |𝑖 ∈ N , |Π𝑖 | < 𝑚𝑎𝑥 ( |Π𝑖 |)}
8: for client 𝑖 ∈ N∗ in parallel do
9: Π\𝑖 = {C𝑗 | 𝑖 ∉ C𝑗 }
10: C𝑘 ← minC

k
∈Π\i erri (Θ̂k

)
11: if Rule (8) is satisfied then
12: 𝐽𝑖C𝑘
13: Update OCF structure information Π𝑡

.

14: Return Π

The essence of personalized FL is to customize models for each

client who aims to minimize their average local loss at private data

distribution. For each personalized model
ˆ𝜃Π
𝑖
, personal distribution

D𝑖 and local loss function 𝑓 , the objective of our utility maximiza-

tion problem in personalized FL can be formulated as follows

min

{ ˆ𝜃Π
𝑖
}𝑁
𝑖=1

𝑁∑︁
𝑖=1

𝑓 ( ˆ𝜃Π𝑖 ,D𝑖 )

s.t. Π is individually stable

The aggregation function of each personalized model in Eq. (3)

indicates that coalition-wide global models have a significant impact

on personalized model performance. This means that the problem

of minimizing local error can be essentially translated into the

identification of coalition structure. Under a stable OCF structure,

each client is motivated to engage in FL and benefits from the

coalition-wide global model.

3 PERSONALIZED FL WITH OVERLAPPING
COALITION

In this section, we start with a theoretical analysis of players’ partic-

ipation decisions. Then, based on the fundamental insights obtained

from the theoretical analysis, we design a heuristic algorithm for

identifying a stable OCF structure. At last, we present the workflow

of personalized FL under a stable OCF structure.

3.1 The OCF algorithm
The pseudo-code presented in Algorithm 1 outlines the process of

our OCF game.

At the initialization phase, each player organizes themselves as

a single-member coalition, as shown in Line 2. Only players who

haven’t joined the maximum number of coalitions would attempt

to join new coalitions, and we call these players active players.

At the beginning of each iteration, the latest coalition structure

information will be broadcast to players. Each active player then

sorts their unjoined coalitions based on the estimated expected error

Algorithm 2 personalized FL with stable OCF structure

Input: OCF structure Π;

Output: Personalized models { ˆ𝜃Π
𝑖
}𝑁
𝑖=1

;

1: // coalition-wide global training

2: for coalition C𝑗 ∈ Π do
3: for client 𝑖 ∈ C𝑗 do
4: Local estimation based on Eq. (1)

5: Coalition model Θ̂𝑗 aggregation based on Eq. (2)

6: //Personalized model generation

7: for client 𝑖 ∈ N do
8: Personalized model

ˆ𝜃Π
𝑖
generation based on Eq. (3)

9: Return { ˆ𝜃Π
𝑖
}𝑁
𝑖=1

obtained from the coalition models, as illustrated in Line 9 - Line

10. Subsequently, they assess whether joining the coalition with

the least error would provide greater benefits than local training. A

joining operation can be executed only if a player can get a positive

payoff and the utility of existing members in that coalition should

not be decreased, and the corresponding code is Line 11 -Line 12.

The coalition structure will be updated after all players have made

their decisions.

The above procedure may take several iterations until no player

can successfully join any coalition.

Theorem 1. Starting from the initial OCF structure and after
several operations, our proposed OCF algorithm will converge to an
individually stable OCF structure in finite iterations.

Proof. See details in appendix. □

3.2 Personalized FL with stable OCF structure
The Algorithm 1 outputs a stable OCF structure where players

collaborate to train the coalition-wide global model. Personalized

FL begins after the stable OCF structure comes into being. Here,

we outline the workflow of personalized FL in Algorithm 2.

During the federated training phase (Line 2 - Line 6), players

would perform FL in the coalitions that they have successfully

joined. Correspondingly, each coalition aggregates the uploaded

parameters to generate a coalition-wide global model. The coalition

model is accessible to the players in that coalition. After the coali-

tion models converge, each player adjusts the aggregation weight

between their local model and the accessible coalition models to

produce their personalized model, as shown in Line 8 - Line 9.

4 EXPERIMENT
In this section, we provide a comprehensive evaluation of our mech-

anism, which comprises three parts. First, we validate the feasibility

and convergence of the OCF algorithm. Second, we evaluate the

performance of our mechanism under the OCF structure output

by the OCF algorithm and investigate the impact of aggregation

weight on the personalized model.

4.1 Experimental Setup
Platforms. We conduct experiments both in a simulated envi-

ronment and on a networked hardware prototype system. In the
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Figure 1: True model parame-
ters distribution (𝜃𝑖 = [𝛼𝑖 , 𝛽𝑖 ])
and the OCF algorithm output.

Figure 2: Local model similarity
(The darker color of the block
indicates a higher similarity).

Figure 3: Model error of the
10 clients under different col-
laboration mechanisms.

Figure 4: Overall error of the
100 clients under different
collaboration mechanisms.

Figure 5: The CDF of the to-
tal number of iterations.

Figure 6: The personalized
model error aggregation
weights.

simulated system, we simulate 100 virtual devices and a virtual

central server to experiment with linear regression tasks. On the

prototype system, we conducted a 10-client scale experiment. Rasp-

berry Pis serves as clients, and a laptop computer acts as the central

server.

Model & Dataset.We adopt a 2-dimensional linear regression

model for demonstration. Furthermore, the distribution of input

values X follows the multivariate normal distribution with 0 mean.

For a given data point 𝑥 = [𝑥0, 𝑥1], the true output is 𝑦 = 𝛼𝑥0 + 𝛽𝑥1.

However, each client observes noisy outputs 𝑦 = 𝑦 + 𝜖 and en-

deavors to estimate the authentic parameter 𝜃 = [𝛼, 𝛽]. For each
coalition, the experiments are conducted on the joint dataset.

Compared Methods & Evaluation Metric. To evaluate the per-

formance of our proposed method pfedocf, we compare it with

several benchmarks. The details of each method are introduced as

follows:

• local: Each client estimates their model parameter locally

without collaboration.

• grand(FedAvg): Vanilla FL setting. All clients form a grand

coalition and cooperatively train a uniform model. Without

fine-tuning, clients adopt this global model as their person-

alized model.

• disjoint: In the context of hedonic games, each client is con-

strained to join no more than one coalition and prioritize

choosing the one that offers the highest potential payoff.

Within each coalition, clients collectively train a coalition

model. This coalition-wide global model servers as their per-

sonalized model.

• gand*(FedAvg with fine-tuning): This approach is a variation

of the previous grand method, the only difference is that each

Table 1: The personalized model performance improvement
of the 100 clients.

performance improvement compared to local

<0% [0,50)% [50,70)% [70,90)% [90,100)%

grand 72 14 4 6 4

grand* 1 17 42 40 0

disjoint 69 9 10 8 4

pfedocf 0 1 11 75 13

client can weight the global model with their local model to

produce a personalized model.

• pfedocf: In the context of hedonic games, clients have the

flexibility to join multiple coalitions. Each client weights

the coalition models with their local model to produce a

personalized model.

4.2 Performance Results
We present the experiment results and analyze the observation to

demonstrate our mechanism.

1) Feasibility of the OCF algorithm: Fig. 1 pictures the true model

parameters distribution of 10 clients and the derived OCF structure

from our OCF algorithm. Each circle in the diagram represents a

coalition, and the points inside the circle represent the members of

that coalition. Overlapping circles indicate that the clients join mul-

tiple coalitions. Fig. 2 illustrates the local model similarity between

the 10 clients. We observe that clients with high pairwise similarity

in Fig. 2 have formed partnerships in the stable OCF structure out-

put by Fig. 1. This observation demonstrates the feasibility of our

algorithm in identifying the formation of stable collaboration, as

in general, clients with similar distribution are more likely to see a

reduction in model error and thus more willing to collaborate with

each other.

2) Performance under the derived OCF structure: For a comprehen-

sive evaluation, we carried out experiments involving two different

client scale scenarios. Fig. 3 illustrates the model error of 10 clients

under various mechanisms, while Fig. 4 demonstrates the overall

model error of 100 clients under different collaboration approaches.

It is evident that our approach outperforms other methods in both

scenarios. Worth noting that client 4 in the 10-client scenario opts

for local estimation as it was unable to identify any viable coalition

to join during the game.
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3) Superiority of the proposed mechanism: We summarize the

percentage distribution of 100 clients across different performance

improvement intervals in Table 1. By comparing the results of grand
and grand*, we can conclude that weighting the global model with

the local model enables the global model to better accommodate

clients’ local distributions, thereby reducing errors. The experi-

mental results of disjoint and pfedocf demonstrate that enabling

clients to engage in multiple coalitions helps them further improve

personal model performance.

4) Convergence analysis: Fig. 5 shows the convergence result of
the OCF algorithm. We can observe the cumulative distribution

function (CDF) of the total number of iterations, versus the number

of iterations, with a different number of clients. Higher CDF in

fewer rounds, indicating a faster convergence rate. It is obvious

that our OCF algorithm can converge within 10 iterations in all

the scenarios, revealing that the computational complexity of our

proposed algorithm is rather smaller.

5) Impact of model aggregation weight: Fig. 6 illustrates the fluctu-
ation of personalized model errors as the aggregation weight of the

local model ranges from 0 to 1. It’s noteworthy that the personalized

model error of client 4, who does not participate in any coalition,

remains unaffected by the model aggregation weights and equals

its local model error. We can also see that the personalized model

performance of client 4 who participates in multiple coalitions is

getting worse when the local model weights more. Moreover, it

can be observed from the results that the optimal weight of model

aggregation differs for each client.

5 RELATEDWORK
To address the statistical diversity challenge of clients with non-IID

data, personalized FL has recently emerged as a promising solution

that is attracting more attention.

FedAMP[10] and FedFomo[14] encourage pairwise collaboration

between clients with relevant local target distribution. Although

pairwise collaboration methods have achieved good results, they

only rely on one-to-one model similarity, and the communication

efficiency is also adversely affected owing to iterative pair com-

parison. Superior to pairwise collaboration, group collaboration

schemes [4, 11] encourage cluster-level collaboration and have

achieved a promising performance. Yet, the traditional group col-

laboration approaches assume that all clients voluntarily take part

in FL, which neglects the significance of individual rationality.

There are existing works that take individual rationality into

consideration where game theory is employed as a powerful tool

to study this issue. For instance, one recent work [7] considers the

clustering of clients in the form of hedonic games and investigates

how clients make decisions to participate in the FL setting. Much

of this paper analyzes the stability of coalition structures instead of

searching for a stable coalition structure. However, they assume that

players join no more than one coalition, which constrains clients’

participation and attempts to take part in multiple coalitions.

Paper [15] explores the conditions under which stable coalition

structures can be formed and provides insights into their computa-

tional aspects, which has inspired us to introduce the concept of

overlapping games into the research field of personalized FL. Their

research applies to more general classes of games, while we focus

on a specific problem domain, resulting in a distinct game model.

In contrast to all existing works, we propose a mechanism where

utility-maximizing clients can strategically join multiple coalitions,

and then we formulate clients’ participation decisions problem into

an OCF game. In our heuristic algorithm, the game will finally

converge to an individually stable OCF structure.

6 CONCLUSION
In this work, we have studied personalized FL from a cooperative

game theoretical perspective. We formulate the strategic interac-

tion among the clients into an OCF game where each client can

participate in multiple coalitions and generate their personalized

model by weighting the local model and coalition models. Then,

we design a heuristic algorithm to derive an individually stable

OCF structure. Extensive experimentation results demonstrate the

effectiveness of our proposed algorithm and validate the superiority

of our mechanism. Although we focus on a linear regression task

for game theoretical reasoning to be feasible, the OCF mechanism

can also be applied to other popular non-linear models.
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A ANALYSIS OF PARTICIPATION DECISION
Given the nature of utility-maximizing problems in OCF games,

which involve players’ participation decisions about which coali-

tions to join, it is crucial to analyze players’ utility. To facilitate

this analysis, we provide the exact mean square error (MSE) that a

player would experience when joining different coalitions.

Lemma 1 (Lemma 4.1, from Donahue and Kleinberg [7]). For
linear regression, the expected MSE that player 𝑖 with 𝑛𝑖 samples
derives from local estimation is:

𝜇𝑒 · 𝑡𝑟 [Σ𝑖EX𝑖∼X𝑖 [(X
𝑇
𝑖 X𝑖 )−1]] (10)

if the distribution of input values X𝑖 is a 𝐷-dimensional multivariate
normal distribution with 0 mean, the expected MSE of local estimation
can be simplified to:

𝜇𝑒 ·
𝐷

𝑛𝑖 − 𝐷 − 1

(11)

Lemma 2. For linear regression, the expected MSE that player 𝑖
with 𝑛𝑖 samples derives from the personalized model is:

𝜇𝑒

∑︁
𝑘∈𝑃𝑖 ,𝑘≠𝑖

(
∑︁

C𝑗 ∈Π𝑖 ,𝑘∈C𝑗
𝑤𝑖 𝑗

𝑛𝑘

𝑁 𝑗
)2 · 𝑡𝑟 [Σ𝑖EX𝑘∼X𝑘 [(X

𝑇
𝑘
X𝑘 )−1]]

+ 𝜇𝑒 (𝑤𝑖 +
∑︁
C𝑗 ∈Π𝑖

𝑤𝑖 𝑗
𝑛𝑖

𝑁 𝑗
)2 · 𝑡𝑟 [Σ𝑖EX𝑖∼X𝑖 [(X

𝑇
𝑖 X𝑖 )−1]]

+ Σ𝑖
©«

∑︁
𝑘∈𝑃𝑖 ,𝑘≠𝑖

∑︁
C𝑗 ∈Π𝑖 ,𝑘∈C𝑗

𝑤𝑖 𝑗
𝑛𝑘

𝑁 𝑗
(𝜃𝑘 − 𝜃𝑖 )

ª®¬
2

(12)

if the distribution of input values X is a 𝐷-dimensional multivariate
normal distribution with 0 mean, it can be simplified to:

𝜇𝑒

∑︁
𝑘∈𝑃𝑖 ,𝑘≠𝑖

(
∑︁

C𝑗 ∈Π𝑖 ,𝑘∈C𝑗
𝑤𝑖 𝑗

𝑛𝑘

𝑁 𝑗
)2 · 𝐷

𝑛𝑘 − 𝐷 − 1

+ 𝜇𝑒 (𝑤𝑖 +
∑︁
C𝑗 ∈Π𝑖

𝑤𝑖 𝑗
𝑛𝑖

𝑁 𝑗
)2 · 𝐷

𝑛𝑖 − 𝐷 − 1

+ Σ𝑖
©«

∑︁
𝑘∈𝑃𝑖 ,𝑘≠𝑖

∑︁
C𝑗 ∈Π𝑖 ,𝑘∈C𝑗

𝑤𝑖 𝑗
𝑛𝑘

𝑁 𝑗
(𝜃𝑘 − 𝜃𝑖 )

ª®¬
2

(13)

Proof. Recall that each player’s local model
ˆ𝜃𝑖 can be estimated

as follows:

ˆ𝜃𝑖 = (X𝑇
𝑖 X𝑖 )−1Y𝑖 = (X𝑇

𝑖 X𝑖 )−1 (X𝑖𝜃𝑖 + 𝜂𝑖 )
The aggregation function of each coalition model is given by

Θ𝑗 =
∑︁
𝑖∈C𝑗

𝑛𝑖

𝑁 𝑗
· 𝜃𝑖 (14)

where 𝑁 𝑗 =
∑
𝑖∈C𝑗 𝑛𝑖 denotes the total number of samples in coali-

tion C𝑗 .
The personalized model generation is a combination of local

model and coalition models, which is formalized as

𝜃Π𝑖 = 𝑤𝑖 · 𝜃𝑖 +
∑︁
C𝑗 ∈Π𝑖

𝑤𝑖 𝑗 · Θ𝑗 (15)

for𝑤 ∈ [0, 1] and𝑤𝑖 +
∑
C𝑗 ∈Π𝑖

𝑤𝑖 𝑗 = 1.

With Eq. (14), we can equivalently transform Eq. (15) as follows:

𝜃Π𝑖 =
∑︁
𝑗∈𝑃𝑖

𝑣𝑖 𝑗𝜃 𝑗 (16)

for 𝑣𝑖 𝑗 denoting the weight of player 𝑗 ’s local model in player 𝑖’s

personalized model and we have 𝑣𝑖 𝑗 =
∑
C𝑘 ∈Π𝑖 , 𝑗∈C𝑘

𝑛 𝑗

𝑁𝑘
𝑤𝑖𝑘 and

𝑣𝑖𝑖 = 𝑤𝑖 +
∑
C𝑘 ∈Π𝑖

𝑛𝑖
𝑁𝑘

𝑤𝑖𝑘 .

First, note that the expected error of a set of parameters at a

particular point 𝑥 is determined by the E𝑥∼X𝑖
[(𝑥𝑇 ˆ𝜃𝑖 − 𝑥𝑇 𝜃𝑖 )2].

Let’s expand the inner expression

(𝑥𝑇 𝜃𝑖 − 𝑥𝑇 ˆ𝜃Π𝑖 )
2 = (𝑥𝑇 𝜃𝑖 + 𝑥𝑇 𝜃Π𝑖 − 𝑥

𝑇 𝜃Π𝑖 − 𝑥
𝑇 ˆ𝜃Π𝑖 )

2

= (𝑥𝑇 𝜃𝑖 − 𝑥𝑇 𝜃Π𝑖 )
2 + (𝑥𝑇 𝜃Π𝑖 − 𝑥

𝑇 ˆ𝜃Π𝑖 )
2

+ 2(𝑥𝑇 𝜃𝑖 − 𝑥𝑇 𝜃Π𝑖 ) (𝑥
𝑇 𝜃Π𝑖 − 𝑥

𝑇 ˆ𝜃Π𝑖 )

(17)

As we have EY∼D(𝜃𝑖 ,𝜖2

𝑖
) [𝑥𝑇 𝜃Π𝑖 − 𝑥

𝑇 ˆ𝜃Π
𝑖
] = 0, the last term in Eq.

(17) equals to 0. Next, we expand the second term in Eq. (17) as

follows

(𝑥𝑇 𝜃Π𝑖 − 𝑥
𝑇 ˆ𝜃Π𝑖 )

2 =
©«𝑥𝑇

∑︁
𝑗∈𝑃𝑖

𝑣𝑖 𝑗𝜃 𝑗 − 𝑥𝑇
∑︁
𝑗∈𝑃𝑖

𝑣𝑖 𝑗 ˆ𝜃 𝑗
ª®¬

2

=
©«
∑︁
𝑗∈𝑃𝑖

𝑣𝑖 𝑗𝑥
𝑇 (𝜃 𝑗 − ˆ𝜃 𝑗 )ª®¬

2

=
∑︁
𝑗∈𝑃𝑖

(
𝑣𝑖 𝑗𝑥

𝑇 (𝜃 𝑗 − ˆ𝜃 𝑗 )
)

2

+
∑︁
𝑗∈𝑃𝑖

∑︁
𝑗≠𝑘

(
𝑣𝑖 𝑗𝑥

𝑇 (𝜃 𝑗 − ˆ𝜃 𝑗 )𝑣𝑖𝑘𝑥𝑇 (𝜃𝑘 − ˆ𝜃𝑘 )
)

(18)

Note that we assume the true model parameter of each client is

irrelevant, i.e., the expectation of 𝜃 𝑗 − ˆ𝜃 𝑗 is 0. Therefore, the second

term in Eq. (18) ends up being 0. Remaining the first term and

rewrite it as follows: ∑︁
𝑗∈𝑃𝑖

𝑣2

𝑖 𝑗 (𝑥
𝑇 𝜃 𝑗 − 𝑥𝑇 ˆ𝜃 𝑗 )2

The term (𝑥𝑇 𝜃 𝑗 − 𝑥𝑇 ˆ𝜃 𝑗 )2 is the value of local estimation in Lemma

1, which has been calculated in prior work. Hence, we can rewrite

it as

𝜇𝑒

∑︁
𝑗∈𝑃𝑖

𝑣2

𝑖 𝑗 · 𝑡𝑟 [Σ𝑖EX𝑗∼X𝑗
[(X𝑇

𝑗 X𝑗 )−1]]

if X𝑗 follows the multivariate normal distribution with 0 mean, it

can be simplified to

𝜇𝑒

∑︁
𝑗∈𝑃𝑖

𝑣2

𝑖 𝑗 ·
𝐷

𝑛 𝑗 − 𝐷 − 1

As we have∑︁
𝑗 ∈𝑃𝑖

𝑣2

𝑖 𝑗 =
∑︁

𝑗 ∈𝑃𝑖 𝑗≠𝑖
𝑣2

𝑖 𝑗 + 𝑣2

𝑖𝑖

=
∑︁

𝑗 ∈𝑃𝑖 , 𝑗≠𝑖
(

∑︁
C𝑘 ∈Π𝑖 , 𝑗 ∈C𝑘

𝑤𝑖𝑘

𝑛 𝑗

𝑁𝑘

)2 + (𝑤𝑖 +
∑︁
C𝑘 ∈Π𝑖

𝑤𝑖𝑘

𝑛𝑖

𝑁𝑘

)2



An Overlapping Coalition Game for Individual Utility Maximization in Federated Learning FedKDD ’24, August 26, 2024, Barcelona, Spain.

Eq. (18) isequivalent to

(𝑥𝑇 𝜃Π𝑖 − 𝑥
𝑇 ˆ𝜃Π𝑖 )

2

=𝜇𝑒

∑︁
𝑗∈𝑃𝑖 , 𝑗≠𝑖

(
∑︁

C𝑘 ∈Π𝑖 , 𝑗∈C𝑘
𝑤𝑖𝑘

𝑛 𝑗

𝑁𝑘

)2 · 𝑡𝑟 [Σ𝑖EX∼X𝑗
[(X𝑇

𝑗 X𝑗 )−1]]

+𝜇𝑒 (𝑤𝑖 +
∑︁
C𝑘 ∈Π𝑖

𝑤𝑖𝑘

𝑛𝑖

𝑁𝑘

)2 · 𝑡𝑟 [Σ𝑖EX∼X𝑖 [(X
𝑇
𝑖 X𝑖 )−1]]

At last, we consider the first term in Eq. (17)

(𝑥𝑇 𝜃𝑖 − 𝑥𝑇 𝜃Π𝑖 )
2 = (𝑥𝑇 (𝜃𝑖 − 𝜃Π𝑖 ))

𝑇 𝑥𝑇 (𝜃𝑖 − 𝜃Π𝑖 )

= (𝜃𝑖 − 𝜃Π𝑖 )
𝑇 𝑥𝑥𝑇 (𝜃𝑖 − 𝜃Π𝑖 )

Wenote that the above quantity is a scalar. For a scale, 𝑡𝑟 (𝑎) = 𝑎, and

for any matrix 𝑡𝑟 (𝐴𝐵) = 𝑡𝑟 (𝐵𝐴). Taking the expectation through

the cyclic property of trace, we can translate the above equation:

(𝑥𝑇 𝜃𝑖 − 𝑥𝑇 𝜃Π𝑖 )
2

=𝑡𝑟 [(𝜃𝑖 − 𝜃Π𝑖 )
𝑇E𝑥∼X [𝑥𝑥𝑇 ] (𝜃𝑖 − 𝜃Π𝑖 )]

=𝑡𝑟 [Σ𝑖 (𝜃𝑖 − 𝜃Π𝑖 )
𝑇 (𝜃𝑖 − 𝜃Π𝑖 )]

(19)

Using Eq. (16), we can simplify the inner term of Eq. (19) involving

the 𝜃 values:

(𝜃𝑖 − 𝜃Π𝑖 )𝑇 (𝜃𝑖 − 𝜃Π𝑖 )

=(𝜃𝑖 −
∑︁
𝑗 ∈𝑃𝑖

𝑣𝑖 𝑗𝜃 𝑗 )𝑇 (𝜃𝑖 −
∑︁
𝑗 ∈𝑃𝑖

𝑣𝑖 𝑗𝜃 𝑗 )

=
©«(1 − 𝑣𝑖𝑖 )𝜃𝑖 −

∑︁
𝑗 ∈𝑃𝑖 , 𝑗≠𝑖

𝑣𝑖 𝑗𝜃 𝑗
ª®¬
𝑇 ©«(1 − 𝑣𝑖𝑖 )𝜃𝑖 −

∑︁
𝑗 ∈𝑃𝑖 , 𝑗≠𝑖

𝑣𝑖 𝑗𝜃 𝑗
ª®¬

Note that 𝑣𝑖𝑖 +
∑

𝑗∈𝑃𝑖 , 𝑗≠𝑖 𝑣𝑖 𝑗 = 1 and 𝑣𝑖 𝑗 =
∑
C𝑘 ∈Π𝑖 , 𝑗∈C𝑘 𝑤𝑖𝑘

𝑛 𝑗

𝑁𝑘
, so

we can rewrite the above equation as

(𝜃𝑖 − 𝜃Π𝑖 )𝑇 (𝜃𝑖 − 𝜃Π𝑖 )

=(
∑︁

𝑗 ∈𝑃𝑖 , 𝑗≠𝑖
𝑣𝑖 𝑗𝜃𝑖 −

∑︁
𝑗 ∈𝑃𝑖 , 𝑗≠𝑖

𝑣𝑖 𝑗𝜃 𝑗 )𝑇 (
∑︁

𝑗 ∈𝑃𝑖 , 𝑗≠𝑖
𝑣𝑖 𝑗𝜃𝑖 −

∑︁
𝑗 ∈𝑃𝑖 , 𝑗≠𝑖

𝑣𝑖 𝑗𝜃 𝑗 )

=
©«

∑︁
𝑗 ∈𝑃𝑖 , 𝑗≠𝑖

𝑣𝑖 𝑗 (𝜃𝑖 − 𝜃 𝑗 )
ª®¬
𝑇 ©«

∑︁
𝑗 ∈𝑃𝑖 , 𝑗≠𝑖

𝑣𝑖 𝑗 (𝜃𝑖 − 𝜃 𝑗 )
ª®¬

=
©«

∑︁
𝑗 ∈𝑃𝑖 , 𝑗≠𝑖

∑︁
C𝑘 ∈Π𝑖 , 𝑗 ∈C𝑘

𝑤𝑖𝑘

𝑛 𝑗

𝑁𝑘

(𝜃 𝑗 − 𝜃𝑖 )ª®¬
𝑇

· ©«
∑︁

𝑗 ∈𝑃𝑖 , 𝑗≠𝑖

∑︁
C𝑘 ∈Π𝑖 , 𝑗 ∈C𝑘

𝑤𝑖𝑘

𝑛 𝑗

𝑁𝑘

(𝜃 𝑗 − 𝜃𝑖 )
ª®¬

=
©«

∑︁
𝑗 ∈𝑃𝑖 , 𝑗≠𝑖

∑︁
C𝑘 ∈Π𝑖 , 𝑗 ∈C𝑘

𝑤𝑖𝑘

𝑛 𝑗

𝑁𝑘

(𝜃 𝑗 − 𝜃𝑖 )
ª®¬

2

Finally, we can recombine our simplification into Eq. (17) to rewrite

it:

𝜇𝑒

∑︁
𝑗∈𝑃𝑖 , 𝑗≠𝑖

(
∑︁

C𝑘 ∈Π𝑖 , 𝑗∈C𝑘
𝑤𝑖𝑘

𝑛 𝑗

𝑁𝑘

)2 · 𝑡𝑟 [Σ𝑖EX𝑗∼X𝑗
[(X𝑇

𝑗 X𝑗 )−1]]

+ 𝜇𝑒 (𝑤𝑖 +
∑︁
C𝑘 ∈Π𝑖

𝑤𝑖𝑘

𝑛𝑖

𝑁𝑘

)2 · 𝑡𝑟 [Σ𝑖EX𝑖∼X𝑖 [(X
𝑇
𝑖 X𝑖 )−1]]

+ Σ𝑖 ©«
∑︁

𝑗∈𝑃𝑖 , 𝑗≠𝑖

∑︁
C𝑘 ∈Π𝑖 , 𝑗∈C𝑘

𝑤𝑖𝑘

𝑛 𝑗

𝑁𝑘

(𝜃 𝑗 − 𝜃𝑖 )ª®¬
2

(20)

At this point, the proof of Lemma 2 is complete. □

Lemma 3. For linear regression, the expected MSE that player 𝑖
with 𝑛𝑖 samples derives from the uniform model of coalition C𝑗 is

𝜇𝑒

∑︁
𝑘∈C𝑗

𝑛2

𝑘

𝑁 2

𝑗

· 𝑡𝑟 [Σ𝑖EX𝑘∼X𝑘 [(X
𝑇
𝑘
X𝑘 )−1]]

+ Σ𝑖
©«

∑︁
𝑘∈C𝑗 ,𝑘≠𝑖

𝑛𝑘

𝑁 𝑗
· (𝜃𝑘 − 𝜃𝑖 )

ª®¬
2

(21)

if the distribution of input values X is a 𝐷-dimensional multivariate
normal distribution with 0 mean, the expected MSE can be simplified
to:

𝜇𝑒

∑︁
𝑘∈C𝑗

𝑛2

𝑘

𝑁 2

𝑗

𝐷

𝑛𝑘 − 𝐷 − 1

+ ©«
∑︁

𝑘∈C𝑗 ,𝑘≠𝑖

𝑛𝑘

𝑁 𝑗
(𝜃𝑘 − 𝜃𝑖 )

ª®¬
2

(22)

Proof. Lemma 3 can be derived from Lemma 2 by setting𝑤𝑖 to 0.

Remarkably, when considering only one coalition, 𝑃𝑖 is equivalent

to C𝑗 and Π𝑖 equals to {C𝑗 }. □

Theorem 2. In our model, a player 𝑖 with 𝑛𝑖 samples would receive
positive payoff from a new coalition C𝑗 iff

𝑛𝑖 < 𝐷 + 1 +
𝜇𝑒𝐷 (1 − (1 −

∑
𝑘∈C𝑗

𝑛𝑘
𝑁 𝑗
)2)

𝜇𝑒
∑

𝑘∈C𝑗

𝑛2

𝑘

𝑁 2

𝑗

𝐷
𝑛𝑘−𝐷−1

+
( ∑
𝑘∈C𝑗

𝑛𝑘
𝑁 𝑗
(𝜃𝑘 − 𝜃𝑖 )

)
2

(23)

Proof. Expr. (11) in Lemma 1 and Expr. (22) in Lemma 3 respec-

tively give the exact errors that a player would expect from local

training and collaborative training in a coalition. Let Expr. (11) >

Expr. (22), we can determine the possible range of sample sizes

when a player would consider joining a new coalition.

Firstly, we emphasize some key points in derivation. To estimate

a player’s benefit in a coalition, we would initially pretend player 𝑖

joins the coalition C𝑗 to help the coalition model generation, i.e.,

C∗
𝑗
= {𝑖} ∪ C𝑗 . Thus, we have

𝜇𝑒

∑︁
𝑘∈C∗

𝑗

𝑛2

𝑘

𝑁 2

𝑗

𝐷

𝑛𝑘 − 𝐷 − 1

=𝜇𝑒

∑︁
𝑘∈C∗

𝑗
,𝑘≠𝑖

𝑛2

𝑘

𝑁 2

𝑗

𝐷

𝑛𝑘 − 𝐷 − 1

+ 𝜇𝑒
𝑛2

𝑖

𝑁 2

𝑗

𝐷

𝑛𝑖 − 𝐷 − 1

Referring to the model aggregation equation within a coalition de-

fined in Eq. (2) of Section 2.1, we have
𝑛𝑖
𝑁 𝑗

= 1− ∑
𝑘∈C∗

𝑗
,𝑘≠𝑖

𝑛𝑘
𝑁 𝑗

. Review

that Expr. (11) is 𝜇𝑒
𝐷

𝑛𝑖−𝐷−1
, Expr. (22) is 𝜇𝑒

∑
𝑘∈C∗

𝑗

𝑛2

𝑘

𝑁 2

𝑗

𝐷
𝑛𝑘−𝐷−1

+(∑
𝑘∈C∗

𝑗
,𝑘≠𝑖

𝑛𝑘
𝑁 𝑗
(𝜃𝑘 − 𝜃𝑖 )

)
2

. Let Expr. (11) > Expr. (22), i.e.,

𝜇𝑒
𝐷

𝑛𝑖 − 𝐷 − 1

> 𝜇𝑒
𝑛2

𝑖

𝑁 2

𝑗

𝐷

𝑛𝑖 − 𝐷 − 1

+

𝜇𝑒

∑︁
𝑘∈C∗

𝑗
,𝑘≠𝑖

𝑛2

𝑘

𝑁 2

𝑗

𝐷

𝑛𝑘 − 𝐷 − 1

+
©«

∑︁
𝑘∈C∗

𝑗
,𝑘≠𝑖

𝑛𝑘

𝑁 𝑗
(𝜃𝑘 − 𝜃𝑖 )

ª®®¬
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As we have

∑ 𝑛𝑖
𝑁 𝑗

= 1− ∑
𝑘∈C∗

𝑗
,𝑘≠𝑖

𝑛𝑘
𝑁 𝑗

, the above inequation becomes

𝜇𝑒
𝐷

𝑛𝑖 − 𝐷 − 1

> 𝜇𝑒 (1 −
∑︁

𝑘∈C∗
𝑗
,𝑘≠𝑖

𝑛𝑘

𝑁 𝑗
)2 𝐷

𝑛𝑖 − 𝐷 − 1

+

𝜇𝑒

∑︁
𝑘∈C∗

𝑗
,𝑘≠𝑖

𝑛2

𝑘

𝑁 2

𝑗

𝐷

𝑛𝑘 − 𝐷 − 1

+
©«

∑︁
𝑘∈C∗

𝑗
,𝑘≠𝑖

𝑛𝑘

𝑁 𝑗
(𝜃𝑘 − 𝜃𝑖 )

ª®®¬
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Solving the above inequation, we derive

𝑛𝑖 < 𝐷 + 1 +
𝜇𝑒𝐷 (1 − (1 −

∑
𝑘∈C∗

𝑗
,𝑘≠𝑖

𝑛𝑘
𝑁 𝑗
)2)

𝜇𝑒
∑

𝑘∈C∗
𝑗
,𝑘≠𝑖

𝑛2

𝑘

𝑁 2

𝑗

𝐷
𝑛𝑘−𝐷−1

+
(∑

𝑘∈C∗
𝑗
,𝑘≠𝑖

𝑛𝑘
𝑁 𝑗
(𝜃𝑘 − 𝜃𝑖 )

)
2

For C∗
𝑗
= {𝑖} ∪ C𝑗 ,

𝑛𝑖 < 𝐷 + 1 +
𝜇𝑒𝐷 (1 − (1 −

∑
𝑘∈C𝑗

𝑛𝑘
𝑁 𝑗
)2)

𝜇𝑒
∑

𝑘∈C𝑗

𝑛2

𝑘

𝑁 2

𝑗

𝐷
𝑛𝑘−𝐷−1

+
(∑

𝑘∈C𝑗
𝑛𝑘
𝑁 𝑗
(𝜃𝑘 − 𝜃𝑖 )

)
2

proof is completed. □

Remark. Theorem 2 plays a significant role in the OCF algorithm

design. Even though the true model parameter 𝜃𝑖 remains unknown,

it’s logical for players to utilize their local model
ˆ𝜃𝑖 for gauging the

potential gains from joining a new coalition.

Theorem 3. In our game, the error of a player’s personalizedmodel
would not increase after joining a new coalition.

Proof. Let 𝑒𝑟𝑟𝑖 (Π\C𝑗 ), 𝑒𝑟𝑟𝑖 (Π) respectively denote the person-

alized model error of player 𝑖 before and after joining coalition

C𝑗 . As we can observe from Lemma 2, 𝑒𝑟𝑟𝑖 (Π\C𝑗 ) is a special case
of 𝑒𝑟𝑟𝑖 (Π) when the coefficient 𝑤𝑖 𝑗 is set to 0. As long as there

exists a coalition C𝑘 that player 𝑖 joined previously and 𝑒𝑟𝑟𝑖 (Θ̂𝑘 ) is
greater than 𝑒𝑟𝑟𝑖 (Θ̂𝑗 ), we can find out a set of aggregation weights

to make 𝑒𝑟𝑟𝑖 (Π) less than 𝑒𝑟𝑟𝑖 (Π\C𝑗 ). Even in the worst-case sce-

nario where such a coalition does not exist, we can guarantee that

𝑒𝑟𝑟𝑖 (Π) equals to 𝑒𝑟𝑟𝑖 (Π\C𝑗 ). □

B PROOF OF THEOREM 1
Proof. In iteration 𝑡 , the OCF structure changes from Π𝑡−1

to Π𝑡
. During this process, player 𝑖 checks the current structure

structure Π𝑡−1
and tend to join its preferred coalition, which sat-

isfies U𝑖 (Π𝑡 ) ≥ U𝑖 (Π𝑡−1). Rule (8) ensures that player 𝑖’s strat-

egy doesn’t negatively impact the utilities of other players, i.e.,

U𝑗 (Π𝑡 ) ≥ U𝑗 (Π𝑡−1),∀𝑗 ≠ 𝑖 . Consequently, the utility of any player

will not decrease from Π𝑡−1 to Π𝑡 . The pseudo-code reveals that the

number of players per coalition gradually increases over iterations.

Given that the collaboration cost limits the maximum number of

coalitions that each player could join, the possible OCF structures

are finite. More importantly, the number of players per coalition

will not continuously grow due to data heterogeneity. This im-

plies that, as the game processes on, few joining operations will

be performed. The algorithm terminates when the OCF structure

no longer updates, i.e., no joining operations are successfully per-

formed during the last iteration. According to the Definition 4, an

OCF structure is called individually stable when players cannot

deviate from their current structure by joining any new coalition

to achieve higher utility. Our algorithm satisfies this definition and

ultimately converges to an individually stable OCF structure. □
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