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Abstract001

Structured pruning removes entire components,002
like attention heads or hidden dimensions to003
yield faster dense large language models. How-004
ever, previous methods are time-consuming and005
inference speedup is bottlenecked by inefficient006
GPU parallel processing due to mismatch in007
pruned weight block dimensions with tensor008
cores. Moreover, pruning of heads in grouped009
query attentions is not widely attempted due to010
challenges with their interdependencies. To ad-011
dress these limitations, we propose (1) a struc-012
tured pruning method for LLMs with grouped-013
query attentions(GQA) that learn appropriate014
key,value and shared query heads to retain ac-015
cording to its importance for accurate predic-016
tion. (2) a post-pruning weight update to better017
retain performance of pruned LLMs. (3) a post-018
pruning dimension adaptation step to enhance019
GPU utilization of pruned models and signifi-020
cantly speed up inference. Our method speeds021
up inference by up to 60% over previous ap-022
proaches. Evaluated on several language bench-023
marks using variants of LLaMA models and024
Mistral, our method shows a reduction in prun-025
ing time by upto 90% with higher inference026
speed and performance over a range of spar-027
sity ratios. Additionally, our findings suggest028
that pruning can reduce prediction confusion in029
models.030

1 Introduction031

Deploying Large Language Models (LLMs) on032

resource-constrained devices is challenging due033

to their high computational and memory de-034

mands (Le Scao et al., 2023). Pruning is an ef-035

fective solution to reduce redundant model param-036

eters and accelerate inference without sacrificing037

task performance. Structured pruning (An et al.,038

2024) involves removing layers, heads, interme-039

diate dimensions which can lead to dense com-040

pressed models with faster inference. While ef-041

fective in maintaining model accuracy, gradient-042

based methods (Ma et al., 2023) require substantial 043

memory resources and forward-pass only method 044

Dery et al. (2024) requires about 40 GPU hours for 045

continuous evaluation of sub-models. This makes 046

them impractical for scenarios with limited mem- 047

ory, power or time. On the other hand, unstruc- 048

tured pruning methods, which remove individual 049

weights, offer faster pruning but necessitate spe- 050

cialized hardware to accelerate the pruned mod- 051

els (Frantar and Alistarh, 2023). Quantization tech- 052

niques require specialized GPUs and libraries for 053

acceleration (Dettmers et al., 2022; Zhang et al., 054

2024c). 055

Structured pruning methods often fail to prune 056

token embedding representations due to the com- 057

plex dependencies that span across layers of the 058

model, thereby missing out on added acceleration. 059

Pruning of attention heads in grouped query at- 060

tentions (GQA) (Ainslie et al., 2023) introduces 061

additional complexity since multiple query heads 062

share a single key and value head. This interde- 063

pendence implies that pruning a query head can 064

disrupt the functionality of the entire group. Very 065

few previous work undertake the structured pruning 066

of GQA-based models like Mistral and LLaMA-3. 067

The recent Bonsai (Dery et al., 2024) attempted 068

pruning Mistral but takes over 40 hours to search 069

for an optimal model limiting its use. 070

Prior work (An et al., 2024) shows 1.3x speedup 071

on NVIDIA A100 for 50% pruning, not scaling 072

linearly. A notable reason is that pruned weight 073

matrices often cannot fully exploit the parallelism 074

in GPU tensor cores (NVIDIA, 2024a) which 075

often perform operations in certain fixed block 076

sizes like-128x256. Certain work aim at inference077

speedups (Chen et al., 2024; Sheng et al., 2023; 078

Liu et al., 2023c) involving complex algorithms. 079

To address these challenges, we propose an effi- 080

cient structured pruning method for LLMs specif- 081

ically for grouped query-based models - Token 082

dependency-aware Variational Adapted pruning. 083
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Figure 1: Comparison of sparsity, perplexity and inference speedup of GQA-based LLaMA-3-8B and Mistral-7B
models pruned to different sparsity ratios with C4 train set and evaluated on Wikitext-2 validation set. Speedup is
measured on NVIDIA A100(GB) for evaluation on the validation set.

We extend the formulation of the Variational Infor-084

mation Bottleneck (VIB) principle to include token085

dependency-awareness in pruning grouped-query-086

based models. Our method effectively removes087

redundant grouped-heads, intermediate and global088

token representation while preserving information089

flow on a single GPU, adhering to a user-defined090

sparsity criterion. Additionally, our post-pruning091

weight update and dimension adaptation ensures092

parallelism in the inference GPU and thus achieves093

higher inference speedup. Pre-trained LLMs in-094

cluding variants of LLaMA-7B (Touvron et al.,095

2023a,b), and Mistral-7B (Jiang et al., 2023a) are096

pruned, demonstrating superior performance com-097

pared to prior methods. Our major contributions098

are as follows:099

• We propose an efficient structured approach100

to prune LLMs with grouped query-based101

attention (GQA) modules as in Mistral and102

LLaMA-3.103

• Our framework includes an immediate post-104

pruning weight update that enhances pruned105

model performance, surpassing previous struc-106

tured pruning methods, even on non-GQA-107

based models.108

• We incorporate a post-pruning dimension ad-109

justment that leverages GPU parallelism for110

faster inference not explored in previous work,111

with negligible changes in performance and112

model size.113

• Evaluations on variants of LLaMA and Mis-114

tral models across language modeling and rea-115

soning tasks demonstrate that our method out-116

performs previous state-of-the-art techniques.117

2 Preliminaries118

VIB-based Structured Pruning. Given a trans-119

former model with pre-trained weights W , the ob-120

jective is to remove rows and columns by elim- 121

inating redundant heads, intermediate layer and 122

token embedding hidden dimensions to obtain com- 123

pressed weights Ŵ . We formulate this as a problem 124

of searching for sparse masks mMLP , mMHA and 125

mtoken for MLP , Multi-Head Attention layers and 126

token representation dimensions across all layers. 127

Each of these masks have learnable parameters µ, 128

σ. VTrans (Dutta et al., 2024) estimates the im- 129

portance of each token representation in each layer 130

of LLMs using the Variational Information Bot- 131

tleneck principle (Slonim and Tishby, 1999; Dai 132

et al., 2018). A random set of vectors zi= µ+η⊙σ 133

where η is sampled from N (0, I), is multiplied to 134

the previous layer output and the mask parameters 135

are trained using backpropagation with the follow- 136

ing objective function as defined by (Dutta et al., 137

2024; Dai et al., 2018), 138

argminµ,σ L =
L∑
i

βi

ri∑
j=1

log

(
1 +

(
µi,j

σi,j

)2
)

139

− Eη [log q (yn | f(xn, η))] (1) 140

Given a dataset of samples x,y, during back- 141

propagation, the gradient is the unbiased estimate 142

of the expectation. When for layer i and structure 143

j, log
µ2
i,j+ϵ

σ2
i,j

< 0, the mask mi,j is 0, that is the 144

corresponding weight parameters of structure j can 145

be pruned. 146

Pruning grouped-query attention challenges. 147

Grouped query Attention (GQA) (Ainslie et al., 148

2023) was introduced to reduce the amount of 149

cache and speed up inference in large language 150

models. It involves multiple query heads sharing a 151

single key and value head. But structured prun- 152

ing of heads with mask mMHA in Multi-Head 153

Attention modules (MHA) as in VTrans (Dutta 154

et al., 2024) assumes that all query heads have 155

a single key and value head. This does not hold 156
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Figure 2: (a) Structured pruning of weight matrices considering global token masks and module-specific dimension
mask. (b) Post-Prune Dimension Adaptation ensuring effective utilization of parallelism in GPUs during inference.
Here, fifth row is unpruned and fifth column is pruned to ensure alignment with block sizes in GPUs. (c) Post-Prune
Weight Update leveraging importance scores learned by VIB masks. (d) Final Model Weights

in grouped query-based attention modules, where157

pruning a query head can disrupt the group func-158

tionality and lead to inconsistencies in the attention159

module structure.160

Inference speedup challenges. When evaluated161

on the test set of Wikitext-2 dataset, models pruned162

by 50% with prior methods (Dery et al., 2024; An163

et al., 2024) show about 1.3× speedup over the164

unpruned model on NVIDIA A100 (40GB). This165

speedup is relatively modest given the 50% reduc-166

tion in parameters. Our investigation revealed that167

a key reason for this limited speedup is that pruned168

weight matrices often fail to fully leverage the par-169

allelism of GPU tensor cores (NVIDIA, 2024a),170

which typically operate in fixed block sizes like171

128x256. Additionally, some approaches targeting172

inference speedups (Sheng et al., 2023; Liu et al.,173

2023c) involve complex algorithms, potentially in-174

creasing computations and adding overhead before175

deploying pruned models.176

3 Method177

In this section, we describe the various aspects of178

our methodology to prune pre-trained LLMs in a179

structured manner: (1) Pruning attention heads in180

grouped-query attention (GQA)-based models (2)181

Post-pruning weight update (3) Dimension Adapta-182

tion of the weight matrices.183

3.1 Pruning Attention Heads in Grouped184

Query185

Multi-head attention allows for independent prun-186

ing of query, key, and value heads by masking in-187

dividual heads. However, pruning within Grouped188

Query Attention (GQA) groups is more complex189

due to the need to maintain group functionality190

despite pruning.191

For GQA we define separate masks for key- 192

value heads mi
v and query heads mi

q ∈ Rd for 193

ith layer with d heads. Only key-value heads mi
v 194

are assigned trainable parameters µi
v, σi

v. We 195

define a random set of vectors for the key-value 196

heads zi
v ∈ Rdim′×d such that dim′ = batches× 197

seqlence_length×head_dim× group_size and 198

zi
v = µi

v + η ⊙ σi
v. η ∈ Rdim′×d is sampled 199

from N (0, I). These random set of vectors are 200

multiplied by the output of the accumulated heads. 201

Sampling across groups ensures randomness within 202

groups of query heads to weigh their importance for 203

pruning. The learnable parameters are optimized 204

as per Equation 1. 205

Following the method described in (Dai et al., 206

2018), we observe that when αi,j
v =

(
µi,j
v +ϵ

σi,j
v

)2
207

with small ϵ approaches zero, it indicates that the 208

key-value head j contains no significant informa- 209

tion beyond what is captured in previous layers and 210

pruning it results in minimal performance degrada- 211

tion. Since g queries share the same key-value head, 212

token representations may share local dependencies 213

within the groups. To retain these dependencies, we 214

concatenate the key-head masks to form the query 215

head mask mi
q. Thus, the mask to prune key value 216

heads and query heads with g groups can then be 217

defined as, 218

mi,j
v =

{
1 if logαi,j

v > 0

0 otherwise
∀j ∈ d 219

mi
q = [mi

v,m
i
v, . . . ,m

i
v]︸ ︷︷ ︸

g times

(2) 220

For each key-value head pruned, our method 221

prunes all connected query heads in the group, 222

ensuring the pruning process does not disrupt 223

group functionality. 224
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Ensuring user-defined sparsity. Given a target225

sparsity t, during pruning, using binary masks226

m, we calculate the expected model sparsity se227

as the ratio of pruned parameters to the initial228

count. We use a Lagrangian term similar to Xia229

et al. (2022) by enforcing an equality constraint230

se = t and introducing a violation penalty231

as,Ls = λ1 · (se − t) + λ2 · (se − t)2 where λ1, λ2232

are jointly updated during the pruning.233

234

3.2 Post-Pruning Dimension Adaptation235

The dimensions in pre-trained unpruned models236

are optimized for efficient GPU execution using237

specific block sizes (NVIDIA, 2024b) like 128x256.238

However, pruned model dimensions may not align239

with these block sizes. To address this, we propose240

a post-pruning technique that initially identifies241

the indices where the masks mtoken and mmlp are242

non-zero and estimates the corresponding weight243

dimensions as n = |I|; I = {i | mtoken[i] ̸= 0}.244

It adjusts the mask lengths such that each of the245

pruned weight dimension n′ would be the nearest246

multiple of the specified tensor dimension T (say247

128) as,248

n′ =

(⌊
n+ T/2

T

⌋)
× T (3)249

To account for the new dimension, it sorts logα
in descending order, gets the new threshold and
recomputes the mask with d dimension based on
the new threshold as,

τ = (logα)sorted[n
′]

250

m̂token,j =

{
1 if logαj > τ

0 otherwise
∀j ∈ d (4)251

Overall, there is a negligible change in the model252

size. In our experiments, we observe a significant253

inference speedup due to this step.254

255

3.3 Post-Pruning Weight Update256

Instead of applying binary masks as defined in257

Equation 2 that merely retain or discard weights,258

we leverage the continuous importance scores259

of representations (mean values µ) learned by260

the VIB. We modify all the binary masks to be261

weighted masks as,262

m̂i,j =

{
µi,j if logαj > τ

0 otherwise
∀j ∈ d (5)263

Model
Wikitext-2 Inference Tokens/s

PPL ↓ Speedup
Mistral-7B 4.77 1× 24.78
Wanda-sp-gq 116 1.1× 27.26
FLAP-gq 34.97 1.28× 31.73
Bonsai 47.50 1.66×‡ 41.13
TVA-Prune 18.37 1.67× 41.39
Bonsai † 10.08 1.66×‡ 41.13
TVA-Prune † 10.12 1.67× 41.39
LLaMA-3-8B 5.57 1 × 25.13
Wanda-sp-gq 106 1.1× 27.64
FLAP-gq 34.90 1.2× 30.16
TVA-Prune 27.50 1.61× 40.94

Table 1: Performance comparison of Mistral-7B and
LLaMA-3-8B models pruned by 50%. Our method
outperforms others without any finetuning. †indicates
finetuned with LoRA. ‡Result on Bonsai is taken from
(Dery et al., 2024) where inference was performed on a
different GPU.

Since each weight matrix W of a module has two 264

dimensions, as for the MLP layer it is the interme- 265

diate dimension and the global token representation 266

dimension, we update the unpruned weights using 267

both the global token mask mtoken and the interme- 268

diate mask mmlp. The updated weights for layer i 269

for the mlp module may be represented as, 270

W i
upd = (m̂i

token ⊗ m̂i
mlp) ∗W i (6) 271

By multiplying the pre-trained remaining weights 272

with the mask weights, the model achieves a nu- 273

anced adjustment that emphasizes more relevant 274

features. The compressed updated weights Ŵ i
upd 275

can be obtained by removing the zeroed out rows 276

and columns of W i
upd. 277

Finetuning with LoRA. Although our method 278

achieves better performance than previous ap- 279

proaches even without finetuning, post-pruning 280

finetuning (Dery et al., 2024; Ma et al., 2023) 281

using Low Rank Adapters (LoRA) (Hu et al., 282

2021) on a downstream task further improves per- 283

formance. Additionally, we distil knowledge from 284

the teacher logits Ht to the pruned student logits 285

Hs (Xia et al., 2022) by minimizing the following: 286

Ldis = MSE(Hs,Ht) 287

4 Experiments 288

Datasets. We prune models using the training set 289

of C4 (Raffel et al., 2020) and Wikitext-2 (Merity 290

et al., 2016). We test our pruned models on the val- 291

idation set of Wikitext-2 and on six zero-shot tasks 292

designed to test for common sense reasoning using 293
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Model
LLaMA-7B LLaMA-2-7B

PPL ↓ Speedup Tokens/s PPL ↓ Speedup Tokens/s
Unpruned 5.68 1× 26.21 5.11 1× 25.46
Wanda-sp 366.43 1.24× 32.50 132.0 1.29× 32.84
LLM-pruner 112.44 1.23× 32.24 95.26 1.29× 32.84
FLAP ‡ 35.10 1.26× 33.02 25.40 1.32× 33.61
Bonsai 28.65 1.26× 33.02 22.32 1.28× 32.59
VTrans 25.87 1.32× 34.60 21.54 1.34× 34.12
TVA-Prune 18.62 1.75× 45.87 18.44 1.82× 45.83
TVA-Prune w/o DimAdapt 18.56 1.23× 32.23 18.49 1.25× 31.83
TVA-Prune w/o WUpdate 25.13 1.75× 45.87 21.32 1.82× 45.83
Wanda-sp † 67.24 1.24× 32.50 46.54 1.29× 32.84
LLM-pruner† 38.12 1.23× 32.24 29.56 1.29× 32.84
Bonsai † 11.02 1.26× 33.02 9.87 1.28× 32.59
VTrans† 10.79 1.32× 34.60 9.92 1.34× 34.12
TVA-Prune † 10.58 1.75× 45.87 9.65 1.82× 45.83

Table 2: Performance comparison of pruning methods in a task-agnostic manner with C4 train set and zero-shot
evaluation on Wikitext-2. Our method outperforms structured pruning (wanda-sp, Bonsai, LLM-pruner and FLAP)
†indicates finetuned with LoRA. ‡adds extra bias parameters. w/o DimAdapt speed reduction is due to inefficient
parallelism in GPU. Post-prune dimension adaption leads to negligible change in model size. Inference speedup is
measured on the Wikitext-2 validation set while Tokens/s throughput is on one batch of data.

the EleutherAI LM Harness (Gao et al., 2023).294

Baseline Models. We prune the LLaMA-7B,295

LLaMA-2-7B (Touvron et al., 2023a) and GQA-296

based models LLaMA-3-8B and Mistral-7B (Jiang297

et al., 2023a), to evaluate our method and com-298

pare against other structured pruning methods. We299

modify the pruning process in Wanda (Sun et al.,300

2023) to be structured (Wanda-sp) and account301

for grouped-query attention (Wanda-sp-gq). Simi-302

larly, we modify FLAP (An et al., 2024) to prune303

grouped-query and name it FLAP-gq. Additionally,304

we compare the pruned mistral model with Bon-305

sai (Dery et al., 2024). Comparison of pruning of306

LLaMA 1 and 2 variants also includes other base-307

line methods: LLM-Pruner (Ma et al., 2023), Lo-308

RAPrune (Zhang et al., 2023b)and VTrans (Dutta309

et al., 2024).310

Experimental Settings. To prune LLaMA-3, we311

use a sequence length of 400 to fit in a single GPU.312

Similarly, we reduce the maximum position em-313

beddings of the Mistral model to 8192. For the314

task-specific experiments, we use the training set315

of Wikitext-2 dataset to prune models. We report316

the average of five runs with random seeds. The few317

hyperparameters used are listed in the Appendix.318

All experiments are conducted on a single NVIDIA319

A100 (40GB) GPU.320

4.1 Language Modelling Tasks 321

Performance comparison on GQA models 322

Table 1 shows TVA-Prune is highly effective for 323

pruning Mistral-7B model with grouped query at- 324

tention (GQA) with the least perplexity among all 325

techniques without any finetuning. While Bonsai 326

achieves a lower perplexity post-finetuning with 327

LoRA, our method takes about 20 times lower com- 328

pression time compared to Bonsai. TVA-Prune 329

offers higher inference speed than all of the ap- 330

proaches. Similar, our method prunes LLaMA-3 331

and retains higher performance than other meth- 332

ods without any finetuning. The pruned LLaMA-3 333

model in our case is about 40% faster than FLAP 334

and wanda. 335

Task-agnostic pruning Comparison. Table 2 336

compares our method with other structured prun- 337

ing techniques to prune LLaMA-7B and LLaMA- 338

2-7B. It highlights the superior performance of our 339

method in terms of perplexity on Wikitext-2 with- 340

out even finetuning. Upon finetuning, the perfor- 341

mance is comparable to Bonsai and VTrans. We 342

see that without the dimension adaptation compo- 343

nent, the inference speedup of our method becomes 344

similar to previous approaches. Similarly, without 345

the weight update step, our method generalizes to 346

the performance of VTrans, but with higher infer- 347

ence speedup of the pruned model. Our pruned 348
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Method
BoolQ PIQA HellaSwag WinoGrande ARC-e ARC-c Average↑

Acc Acc Acc Acc Acc Acc Acc
LLaMA-3-8B 81.28 79.70 60.17 72.37 80.09 50.59 70.70
Wanda-sp-gq 41.60 54.57 26.90 52.24 29.62 18.55 37.24
FLAP-gq 43.73 56.74 27.71 50.98 33.20 20.64 38.83
TVA-Prune 62.96 65.83 36.81 57.61 47.81 23.37 49.06
Mistral-7B 83.66 80.57 61.22 73.87 80.89 50.42 71.77
Wanda-sp-gq 60.14 55.72 26.47 50.10 30.84 19.63 40.48
FLAP-gq 62.12 57.02 27.70 49.81 32.02 21.50 41.69
TVA-Prune 62.20 67.03 37.64 57.14 46.29 22.26 48.76
Wanda-sp-gq† 53.26 58.45 36.14 52.95 42.87 30.45 45.68
FLAP-gq† 54.25 68.24 40.75 57.89 49.95 31.85 50.49
TVA-Prune† 64.52 70.50 44.02 58.95 56.15 27.90 53.67

Table 3: Performance comparison of the 50% pruned LLaMA-8B and Mistral-7B models on six zero shot tasks.
†denotes finetuned with LoRA. Finetuning enhances the performance all pruned models, yet our pruned model still
generalizes better across the tasks. .

models observe a 40% faster inference over other349

models.350

Task-specific pruning comparison. For task-351

specific pruning with Wikitext-2 training set it is352

observed that there is an improvement in perplex-353

ity on the validation set for all the methods. Our354

method outperforms Bonsai, FLAP and wanda by355

a wide margin. It yields model similar in perfor-356

mance to VTrans but with faster inference. Obser-357

vations are deferred to the Appendix 10.358

Various Sparsity Ratios. We see in Figure 1 that359

our method performs better than other methods360

from about 30% sparsity and maintains the stable361

performance as sparsity increases. This is in con-362

trast to FLAP and Wanda where the performance363

deteriorates sharply after 50% and 40% sparsity364

ratio respectively. At sparsity ratios lower than365

30%, our method performs similarly to FLAP. Be-366

low 30% sparsity, Wanda and FLAP retain similar367

performance to ours. Our models pruned from368

LLaMA-3 and Mistral have much faster inference369

at all sparsity levels than FLAP and Wanda.370

Pruning Time comparison. As illustrated in Fig-371

ure 3, our pruning method exhibits comparable372

pruning times to VTrans while achieving signifi-373

cantly better model performance. When compared374

to more rapid techniques such as LLM-pruner and375

FLAP, our method delivers more than double the376

performance improvement. Additionally, our ap-377

proach prunes models six times faster than the378

faster variant of Bonsai(p = 0.2) and twelve times379

faster than LoRA-prune. Moreover, our method380

allows further lowering of the pruning time with381

Bonsai(p0.2) LoRA-prune Vtrans
LLM-pruner FLAP TVA-Prune
Wikitext2 PPL
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Figure 3: Comparison of Perplexity and time to prune
LLaMA-7B by 50% with different structured pruning
methods. Our method (TVA-prune) is more efficient
yielding models with lower perplexity than methods
taking similar or lower time to prune.

lower number of data samples as explored in Ap- 382

pendix A. 383

4.2 Performance on zero-shot tasks 384

In Table 3, we compare the performance of pruned 385

models on six zero-shot reasoning tasks to as- 386

sess the generalization efficiency of 50% pruned 387

LLaMA-3 and Mistral models on unseen tasks. Our 388

pruned LLaMA-3 models and pruned Mistral mod- 389

els outperform FLAP-gq and Wanda-sp-gq across 390

all tasks. Since the TVA-prune (ours) model al- 391

ready generalises well to the tasks without any fine- 392

tuning as per its capacity, finetuning it increases 393

its performance by only about 3% on average. De- 394

spite a general decrease in performance for all the 395

pruned models compared to their unpruned coun- 396

terparts, our method most effectively preserves the 397

generalization capabilities of the LLMs. 398
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LLaMA Mistral
2-7B 3-8B 7B

TVA-prune 18.44 27.50 18.37
w/o weight update +2.88 +5.32 +2.17

w/o dimension adapt +0.05 +0.15 +0.42

Table 4: Performance of models on Wikitext-2 with
and without post-prune weight update and dimension
adaptation

Dimension Multiple
0 8 64 128 256

50% pruned LLaMA-3-8B
Speedup 0.9× 1.45× 1.60× 1.59× 1.59×
△PPL ↓ 0 0 0 -0.1 -0.2
△Sparsity(%) 0 0 0.2 0.4 0.3

50% pruned Mistral-7B
Speedup 1.1× 1.48× 1.52× 1.67× 1.40×
△PPL -0.5 0 -0.5 -0.2 2.3
△Sparsity(%) 0 0 0.3 0.6 0.8

50% pruned LLaMA-2-7B
Speedup 1.25× 1.52× 1.75× 1.82× 1.75×
△PPL 0 0 0 -0.05 -1.8
△Sparsity(%) 0 0 0.2 0.2 0.6

Table 5: Change in speedup, perplexity on Wikitext-
2, and model sparsity on varying post-prune adapted
dimension multiples. Across models it can be observed
that adapting weight dimensions to be multiples of 64 or
128 yields the best speedup with least change in sparsity
and often lower perplexity

4.3 Ablation Study399

Increase in speedup due to adaptation. Figure 4400

illustrates the inference speedup on an NVIDIA401

A100 (40GB) GPU for 50% pruned models, com-402

paring scenarios with and without post-pruning403

dimension adaptation. The y-axis represents the404

speedup factor over the unpruned models, with a405

value greater than 1 indicating faster performance.406

The results show that dimension adaptation signifi-407

cantly enhances speedup across all models.408

Effect of adaptation in LLM modules. Figure 5409

compares inference times for different modules in410

the Mistral-7B model: unpruned, TVA-prune with411

adaptation, and without adaptation. Adaptation412

significantly reduces attention module inference413

time over others. For the Intermediate module,414

the pruned model without adaptation increases in-415

ference time substantially, while adaptated model416

takes almost the same time as the unpruned module,417

likely due to parallel processing.418

Which dimension multiple is the best? Adjust-419

ing weight matrix dimensions to be multiples of420

certain values, as shown in Table 5, optimizes421
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Figure 4: Inference speedup on NVIDIA A100(40GB)
with and without our post-pruning dimension adaptation
in 50% pruned models.
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Figure 5: Time taken to infer on a single batch from
Wikitext-2 by each module in Mistral-7B.

GPU tensor core parallelism. When dimensions 422

align with these multiples, computations parallelize 423

more effectively, leading to significant speedups. 424

As shown in the table, dimensions that are multi- 425

ples of 64, 128, or 256 can maximize the utilization 426

of tensor cores and increase throughput with min- 427

imal trade-offs as evidenced by the performance 428

metrics of LLaMA and Mistral models. 429

Effect of post-prune weight update. Table 4 430

presents the performance of LLaMA and Mistral 431

models with and without post-prune weight update 432

and dimension adaptation. Omitting the weight 433

update results in performance drops of 2.88 for 434

LLaMA-2-7B, 5.32 for LLaMA-3-8B, and 2.17 435

for Mistral-7B, highlighting the crucial role of 436

weight updates in maintaining high performance. 437

Without dimension adaptation, the performance de- 438

creases slightly by 0.05 for LLaMA-2-7B, 0.15 439

for LLaMA-3-8B, and 0.42 for Mistral-7B. These 440

results suggest that while dimension adaptation pro- 441

vides inference speedup benefits, the post-pruning 442

weight update is significantly more critical for pre- 443

serving the performance of the models. Overall, 444

the combination of both techniques ensures the best 445

performance retention in pruned models. 446
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ARC-e HellaSwag
Pruned -17.30 -57.26

Unpruned -8.53 -35.95

Table 6: Average log likelihood of correct predictions
by the 50% pruned and unpruned Mistral models shows
that the pruned model is more uncertain about its correct
predictions

4.4 Qualitative Analysis447

As seen in Table 3, the pruned Mistral model shows448

a significant drop in factual knowledge, particularly449

in its ARC-e and ARC-c performance. However,450

further analysis reveals that the pruned model cor-451

rectly classifies 62 ARC-e samples (2% of the total)452

that the unpruned model does not. As illustrated453

in Table 13, the pruned model often selects the454

annotated correct answer in cases where choices455

may seem ambiguous. For instance, on the ques-456

tion "Which is the best way to help prevent the457

flu from becoming a pandemic?", the unpruned458

model closely weighs "getting a vaccination" and459

"washing hands often," ultimately choosing the460

latter, while the pruned model selects "getting a461

vaccination." In most cases of incorrect prediction,462

the unpruned model shows confusion in its log-463

its by weighing two choices in a multiple-choice464

question almost equally and choosing an answer465

different from the annotated one, while the pruned466

model displays less confusion and selects the cor-467

rect answer. This raises the question of whether468

more ‘knowledge’ in models leads to more confu-469

sion and if pruning alleviates this. Additionally,470

in some instances (seen in Table 13), the pruned471

model is more factually accurate than the unpruned472

model, suggesting that overfitting during pretrain-473

ing might cause the unpruned model’s incorrect474

answers. Table 6 shows that the pruned model is475

overall more uncertain about its choices than the476

unpruned model.477

5 Related Work478

Efficient Transformers. As LLMs continue to479

grow in size, several methods have been developed480

to reduce their memory and computational con-481

straints (Yun et al., 2024; Xiao et al., 2023). These482

methods broadly fall into two categories: quanti-483

zation (Frantar et al., 2023; Dettmers et al., 2022,484

2023; Zhang et al., 2024c; Lin et al., 2024; Shao485

et al., 2023) that reduce full precision weights to486

fewer bits and pruning (Xia et al., 2022; Sanh et al.,487

2020; Jiang et al., 2023b; Lagunas et al., 2021; 488

Li et al., 2023) that removes weights and tokens. 489

While being orthogonal approaches to compression, 490

they have been combined to enhance compression 491

further (Namburi et al., 2023; Saha et al., 2024). 492

Several methods use knowledge distillation for per- 493

formance recovery during pruning (Ko et al., 2023; 494

Liu et al., 2023a; Lee et al., 2023; Liu et al., 2023b). 495

Pruning LLMs. Pruning methods are broadly cat- 496

egorized as unstructured pruning (Frantar and Al- 497

istarh, 2023; Xu et al., 2024; Zhang et al., 2024b) 498

that targets individual weights within the LLM 499

but yield models with faster inference only with 500

specialized accelerators. Structured pruning (An 501

et al., 2024; Zhang et al., 2024a) aims to elimi- 502

nate redundant structures for faster inference but 503

previous gradient-based methods (Ma et al., 2023; 504

Zhang et al., 2023a) are limited by their substan- 505

tial memory requirements, where as forward-pass 506

only method Bonsai (Dery et al., 2024) takes nearly 507

40 hours for pruning during its search for optimal 508

submodels. VTrans (Dutta et al., 2024), although a 509

faster method, fails to prune heads in grouped query 510

attentions and provides limited inference speedups. 511

6 Conclusion 512

We propose TVA-prune, a structured pruning 513

method that can effectively compress grouped- 514

query attention (GQA) based LLMs. It in- 515

volves sharing key-head Variational Information 516

Bottleneck-masks within groups of query heads to 517

prune key, value and query heads and still maintain 518

the structural integrity. The post-pruning dimen- 519

sion adaptation technique enhances parallelism, re- 520

sulting in higher acceleration for pruned models 521

without compromising performance. Morever, the 522

post-pruning weight updates leverages importance 523

scores of token representations and significantly 524

contributes to maintaining the performance of the 525

pruned models. We demonstrate the effectiveness 526

of TVA-prune in retaining performance even in 527

higher sparsity ratios. Further, it is more effective 528

even in pruning MHA-based models. By training 529

only the masks to prune LLM modules, TVA-prune 530

has considerably lower pruning time compared to 531

other gradient-based and some forward-pass-only 532

approaches. Overall, TVA-prune shows improved 533

resource utilization, achieving significant enhance- 534

ments in both speed and performance suggesting its 535

potential effectiveness in optimizing large language 536

models for practical deployment. 537
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7 Limitations538

Although we have tackled recently published GQA-539

based and other diverse set of models, sparsity tar-540

gets and datasets, there is still a vast list of bench-541

marks and models that could potentially reveal dis-542

tinct behavior compared to the findings in this work.543

Hence, our work does not aim to provide an ex-544

haustive set of results to universally characterize545

all models. In the experiments, we test with upto546

8B models on a single GPU of 40GB. Extending it547

to larger models would require larger memory or548

more GPUs which we have not tested for in this549

work. However, our methodology would theoreti-550

cally require low amount of memory, computations551

and provide greater inference speedups even for552

larger models. We plan to explore layer-wise prun-553

ing using our formulation to prune models larger554

than 13B on a single GPU in future work.555
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A Sample size vs pruning time. 806

2k 4k 6k
Prune Time (hrs) 1 2 3
LLaMA-3 PPL 30.12 27.50 27.73
Mistral PPL 21.63 18.37 18.29

Table 7: Varying sample size impacts the performance
of pruned models and pruning time. Reducing sample
size favors pruning time but increases perplexity, while
increasing sample size does not significantly improve
performance.

Table 7 illustrates the impact of varying sample 807

sizes (2k, 4k, 6k) on the performance and pruning 808

time of pruned models, specifically LLaMA-3 and 809

Mistral. As the sample size increases, pruning time 810

also increases, while its reduction results in higher 811

perplexity (PPL). Since increasing the sample size 812

does not lead to significant improvements in per- 813

plexity, we choose to prune with 4000 samples for 814

all types of models. 815

B Proportion of sub-layer parameters 816

pruned 817

Figure 6 shows the proportion of the remaining 818

parameters in the attention, the intermediate lay- 819

ers and the embedding layer after pruning each 820

of the pre-trained LLaMA models to 50% spar- 821

sity. Lower number of attention parameters can 822

be related to a slightly higher inference speedup 823

in case of LLaMA-2 pruned model with respect to 824

LLaMA-1 pruned model.

0.93

0.422 0.52

0.91

0.58
0.42

Embeddings Attention Intermediate

50% LLaMA-2 50% LLaMA

Figure 6: Proportion of remaining parameters in each of
the LLM modules after pruning 50% of the total model
parameters.

825

C Hyper-parameters for pruning and 826

finetune 827

The hyper-parameters used for pruning LLaMA 828

and Mistral models on one NVIDIA A100 (40GB) 829

is given in Table 8 and for finetuning is given in 830
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Table 9. We take a data blockor sequence_length of831

400 while pruning LLaMA-3-7B to fit the training832

of masks in a single GPU.

VIB LR Dataset size block_size
5× 10−2, 1× 10−1 4000 512

Table 8: Hyper-parameters for pruning LLaMA and
Mistral with TVA-Prune

833

weights LR LoRA-rank LoRA-α η (distill Weight) block_size
1x10−4 128 4×rank 0.01 512

Table 9: Hyper-parameters for fine-tuning LLaMA and
Mistral compressed models

D Algorithm834

Algorithm 1 Pruning LLM with VIB masks, fol-
lowed by post-prune adaptation

Input: Target model sparsity t, Pretrained model
weights W
Initialize:VIB masks mi,mi

hor mi
vh

for e = 1, ..., Samples do
Sample η ∼ N (0, I),apply random vectors z
as in sec 3.1
Calculate VIB loss as in Eq 1 and sparsity loss
Ls as in sec. 3.1
Backprop through total loss Ltotal = L+ Ls

Update µ,σ of m masks, sparsity coefficients
λ1, λ2

end for
Adapt dimensions as in section 3.2
Update weights as in section 3.3
Get sparser weights as in Eq 6
Remove zeroed out columns and rows in weights

Optionally fine-tune remaining weights with
LoRA by minimizing: Ltotal = Ldis + Ltask
Output: Compressed model weights Ŵ

E Task-specific pruning835

Table 10 shows task specific pruning with Wikitext-836

2 dataset.837

F Improved stability of our pruning838

method839

In Table 11 we compare the standard deviation of840

performance measured over 5 random seeds for841

different pruning methods and observe that our842

Model
LLaMA-2-7B

PPL ↓ Speedup
Unpruned 5.11 1×
Wanda-sp 97.70 1.29×
FLAP ‡ 14.92 1.32×
Bonsai 19.24 1.28×
VTrans 11.88 1.33x
TVA-Prune 11.86 1.82×

Table 10: Performance comparison of task-specific prun-
ing with Wikitext-2 train set and evaluation on the val-
idation set. Our method outperforms other structured
pruning methods (wanda-sp, Bonsai and FLAP) and
is similar to VTrans with faster inference. †indicates
finetuned with LoRA. ‡adds extra bias parameters.

method yields models with more consistent perfor- 843

mance.

Method Sparsity Ratios Average
0.3 0.5 0.6 0.7 0.8 deviation

Wanda-sp 1.2 65 27 783 4340 1043
FLAP 0.18 3.4 24.09 110.9 3220 671
TVA-prune (ours) 0.16 1.65 5.42 7.72 14.18 6

Table 11: Comparison of standard deviation of perfor-
mance (perplexity) measured over 5 random seeds on
Wikitext-2. Our pruning method yields models more
consistent in performance across sparsity ratios

844

G Zero shot results on LLaMA-1 and 845

LLaMA-2 846

In Table 12 we show the zero-shot performance of 847

LLaMA-1 and LLaMA-2 models. 848

H More explanation on optimizing GPU 849

Performance with adjusted pruned 850

weight dimensions 851

Having pruned weight dimensions in multiples of 852

256 enhances the performance of pruned models 853

on NVIDIA V100 and A100 GPUs. Tiles are fixed- 854

size blocks of matrix elements that GPUs process 855

in parallel. Aligning matrix dimensions with pre- 856

ferred tile sizes like 256x128 ensures optimal use 857

of Tensor Cores, minimizing computational waste 858

due to tile quantization, where partially filled tiles 859

perform unnecessary operations (NVIDIA, 2024b). 860

Wave quantization occurs when the number of tiles 861

doesn’t match the number of streaming multipro- 862

cessors (SMs), leading to underutilized SMs and 863

reduced performance. SMs are the primary com- 864

putational units in NVIDIA GPUs, each capable 865
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Method
BoolQ PIQA HellaSwag WinoGrande ARC-e ARC-c Average↑

Acc Acc Acc Acc Acc Acc Acc
LLaMA-7B 75.12 78.23 57.65 70.1 75.11 41.32 66.25
Wanda-sp† 50.58 55.01 37.57 54.65 41.72 31.89 45.23
LLM-Pruner† 60.28 69.31 47.06 53.43 45.96 29.18 45.95
FLAP † 60.21 67.52 40.07 57.54 49.66 28.49 50.57
LoRAPrune† 61.88 71.53 47.86 55.01 45.13 31.62 52.17
TVA-Prune† 62.92 68.25 41.95 58.42 56.68 27.14 52.56
LLaMA-2-7B 77.70 78.07 57.16 69.06 76.34 43.43 66.96
Wanda-sp† 51.43 55.46 37.24 53.98 42.26 28.68 45.51
FLAP † 60.54 66.78 40.76 57.32 50.18 28.74 50.72
TVA-Prune† 63.24 66.12 42.37 58.84 56.82 28.42 52.63

Table 12: Performance comparison of the 50% pruned LLaMA-1-7B and LLaMA-2-7B models on six zero shot
tasks. †denotes finetuned with LoRA. Finetuning enhances the performance all pruned models, yet our pruned
model still generalizes better across the tasks. .

of executing multiple threads in parallel. Efficient866

distribution of workload across all SMs is crucial867

for maximizing GPU performance.868

I Qualitative comparison on examples869

from ARC-easy dataset870

In Table 13 we show examples where the pruned871

model predicts more accurately than the unpruned872

Mistral model.873
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Instances where the choices might seem ambiguous; pruned model correctly chooses the annotated answer
Question : Which is the best way to help prevent the flu from becoming a pandemic?
Choices: "getting a vaccination", "taking antibiotics", "eating fruits and vegetables", "washing hands often"
Annotated: "getting a vaccination"
unpruned "washing hands often"
pruned "getting a vaccination"
Question : Which of these traits is most influenced by environment?
Choices: "weight", "hair color", "blood type", "handedness"
Annotated: "weight"
unpruned "hair color"
pruned "weight"
Question : What safety procedure should a student follow when a thermometer is broken during a lab experiment?
Choices : "tell the teacher immediately", "stop the experiment immediately",

"sweep the glass into a biohazard container", "use a paper towel to pick up the pieces"
Annotated: "tell the teacher immediately"
unpruned: "stop the experiment immediately"
pruned: "tell the teacher immediately"

Instances where pruned model is factually correct while the unpruned is not
Question: "Which is a characteristic of both plants and animals?"
Choices : "life cycles", "learned behaviors", "produce their own food", "reproduce using seeds"
Annotated: "life cycles"
unpruned: "produce their own food"
pruned: "life cycles"
Question" Which of these atomic structures has the least amount of mass?
Choices: "an"an ion", "a proton", "a neutron", "an electron"
Annotated: "an electron"
unpruned: "a proton"
pruned: "an electron"
Question: "What should be added to soil to increase its water retention?"
Choices: "pebbles", "sand", "rocks", "clay"
Annotated: "clay"
unpruned: "sand"
pruned: "clay"

Instances where pruned model chooses incorrectly while unpruned chooses correctly
Question: "To express the distance between the Milky Way galaxy and other galaxies,

the most appropriate unit of measurement is the"
Choices: "meter." "kilometer.", "light-year.", "astronomical unit."
Annotated: "light-year."
unpruned: "light-year."
pruned: "meter"

Table 13: Examples from the ARC-easy dataset where Mistral 50% pruned model’s answers are compared to the
unpruned model
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