Efficient LLM Pruning with Token-Dependency Awareness and
Hardware-Adapted Inference

Anonymous ACL submission

Abstract

Structured pruning removes entire components,
like attention heads or hidden dimensions to
yield faster dense large language models. How-
ever, previous methods are time-consuming and
inference speedup is bottlenecked by inefficient
GPU parallel processing due to mismatch in
pruned weight block dimensions with tensor
cores. Moreover, pruning of heads in grouped
query attentions is not widely attempted due to
challenges with their interdependencies. To ad-
dress these limitations, we propose (1) a struc-
tured pruning method for LLMs with grouped-
query attentions(GQA) that learn appropriate
key,value and shared query heads to retain ac-
cording to its importance for accurate predic-
tion. (2) a post-pruning weight update to better
retain performance of pruned LLMs. (3) a post-
pruning dimension adaptation step to enhance
GPU utilization of pruned models and signifi-
cantly speed up inference. Our method speeds
up inference by up to 60% over previous ap-
proaches. Evaluated on several language bench-
marks using variants of LLaMA models and
Mistral, our method shows a reduction in prun-
ing time by upto 90% with higher inference
speed and performance over a range of spar-
sity ratios. Additionally, our findings suggest
that pruning can reduce prediction confusion in
models.

1 Introduction

Deploying Large Language Models (LLMs) on
resource-constrained devices is challenging due
to their high computational and memory de-
mands (Le Scao et al., 2023). Pruning is an ef-
fective solution to reduce redundant model param-
eters and accelerate inference without sacrificing
task performance. Structured pruning (An et al.,
2024) involves removing layers, heads, interme-
diate dimensions which can lead to dense com-
pressed models with faster inference. While ef-
fective in maintaining model accuracy, gradient-

based methods (Ma et al., 2023) require substantial
memory resources and forward-pass only method
Dery et al. (2024) requires about 40 GPU hours for
continuous evaluation of sub-models. This makes
them impractical for scenarios with limited mem-
ory, power or time. On the other hand, unstruc-
tured pruning methods, which remove individual
weights, offer faster pruning but necessitate spe-
cialized hardware to accelerate the pruned mod-
els (Frantar and Alistarh, 2023). Quantization tech-
niques require specialized GPUs and libraries for
acceleration (Dettmers et al., 2022; Zhang et al.,
2024c).

Structured pruning methods often fail to prune
token embedding representations due to the com-
plex dependencies that span across layers of the
model, thereby missing out on added acceleration.
Pruning of attention heads in grouped query at-
tentions (GQA) (Ainslie et al., 2023) introduces
additional complexity since multiple query heads
share a single key and value head. This interde-
pendence implies that pruning a query head can
disrupt the functionality of the entire group. Very
few previous work undertake the structured pruning
of GQA-based models like Mistral and LLaMA-3.
The recent Bonsai (Dery et al., 2024) attempted
pruning Mistral but takes over 40 hours to search
for an optimal model limiting its use.

Prior work (An et al., 2024) shows 1.3x speedup
on NVIDIA A100 for 50% pruning, not scaling
linearly. A notable reason is that pruned weight
matrices often cannot fully exploit the parallelism
in GPU tensor cores (NVIDIA, 2024a) which
often perform operations in certain fixed block
sizes
speedups (Chen et al., 2024; Sheng et al., 2023;
Liu et al., 2023c) involving complex algorithms.

To address these challenges, we propose an effi-
cient structured pruning method for LLMs specif-
ically for grouped query-based models - Token
dependency-aware Variational Adapted pruning.

83 284 a : o
> % =] Speedup over Mistral 7B 3 Speedup over LLaMA-3-8B
£ D] ©22 ©2.2
9 63 S 64 g a
e I 0 8 0
& 43 ~ 44 gl 318
Ny % s &
g 23 <24 a14 214
= = c c
& = = -
s 3 4 1 1

0 02 04 06 08 0 02_04 06 038 0 02 04 06 08 0 02 04 06 08
Sparsity Sparsity Sparsity Sparsity
— Mistral-7B ----LLaMA-3-8B —=—Wanda-sp-gq —e—FLAP-gq —a— TVA-prune

Figure 1: Comparison of sparsity, perplexity and inference speedup of GQA-based LLaMA-3-8B and Mistral-7B
models pruned to different sparsity ratios with C4 train set and evaluated on Wikitext-2 validation set. Speedup is
measured on NVIDIA A100(GB) for evaluation on the validation set.

We extend the formulation of the Variational Infor-
mation Bottleneck (VIB) principle to include token
dependency-awareness in pruning grouped-query-
based models. Our method effectively removes
redundant grouped-heads, intermediate and global
token representation while preserving information
flow on a single GPU, adhering to a user-defined
sparsity criterion. Additionally, our post-pruning
weight update and dimension adaptation ensures
parallelism in the inference GPU and thus achieves
higher inference speedup. Pre-trained LLMs in-
cluding variants of LLaMA-7B (Touvron et al.,
2023a,b), and Mistral-7B (Jiang et al., 2023a) are
pruned, demonstrating superior performance com-
pared to prior methods. Our major contributions
are as follows:

* We propose an efficient structured approach
to prune LL.Ms with grouped query-based
attention (GQA) modules as in Mistral and
LLaMA-3.

¢ Our framework includes an immediate post-
pruning weight update that enhances pruned
model performance, surpassing previous struc-
tured pruning methods, even on non-GQA-
based models.

* We incorporate a post-pruning dimension ad-
justment that leverages GPU parallelism for
faster inference not explored in previous work,
with negligible changes in performance and
model size.

Evaluations on variants of LLaMA and Mis-
tral models across language modeling and rea-
soning tasks demonstrate that our method out-
performs previous state-of-the-art techniques.

2 Preliminaries

VIB-based Structured Pruning. Given a trans-
former model with pre-trained weights W, the ob-

jective is to remove rows and columns by elim-
inating redundant heads, intermediate layer and
token embedding hidden dimensions to obtain com-
pressed weights W. We formulate this as a problem
of searching for sparse masks mpsrp, masm 4 and
Myoken for MLP , Multi-Head Attention layers and
token representation dimensions across all layers.
Each of these masks have learnable parameters g,
o. VTrans (Dutta et al., 2024) estimates the im-
portance of each token representation in each layer
of LLMs using the Variational Information Bot-
tleneck principle (Slonim and Tishby, 1999; Dai
etal., 2018). A random set of vectors z;= p+nGOo
where 7 is sampled from N (0, I), is multiplied to
the previous layer output and the mask parameters
are trained using backpropagation with the follow-
ing objective function as defined by (Dutta et al.,
2024; Dai et al., 2018),

L T i 2
argmin,, , £ = Zﬂi Zlog (1 + <ZU> >

i j=1

—Ey [logq (yn | f(zn,m)] (1)

Given a dataset of samples x,vy, during back-
propagation, the gradient is the unbiased estimate
of the expectation. When for layer ¢ and structure

2
7, log % < 0, the mask m*7 is 0, that is the

corresporiéing weight parameters of structure j can
be pruned.

Pruning grouped-query attention challenges.
Grouped query Attention (GQA) (Ainslie et al.,
2023) was introduced to reduce the amount of
cache and speed up inference in large language
models. It involves multiple query heads sharing a
single key and value head. But structured prun-
ing of heads with mask m;g4 in Multi-Head
Attention modules (MHA) as in VTrans (Dutta
et al., 2024) assumes that all query heads have
a single key and value head. This does not hold

token

l
l

dim
(a) Pruning with VIB masks
|:| Pruned Weights

D Frozen Model Weights . Trainable VIB masks

S

(b) Post-Prune
Dimension Adaption

(d) Final Compressed
Weights

(c) Post-Prune
Weight Update

Figure 2: (a) Structured pruning of weight matrices considering global token masks and module-specific dimension
mask. (b) Post-Prune Dimension Adaptation ensuring effective utilization of parallelism in GPUs during inference.
Here, fifth row is unpruned and fifth column is pruned to ensure alignment with block sizes in GPUs. (c) Post-Prune
Weight Update leveraging importance scores learned by VIB masks. (d) Final Model Weights

in grouped query-based attention modules, where
pruning a query head can disrupt the group func-
tionality and lead to inconsistencies in the attention
module structure.

Inference speedup challenges. When evaluated
on the test set of Wikitext-2 dataset, models pruned
by 50% with prior methods (Dery et al., 2024; An
et al., 2024) show about 1.3 x speedup over the
unpruned model on NVIDIA A100 (40GB). This
speedup is relatively modest given the 50% reduc-
tion in parameters. Our investigation revealed that
a key reason for this limited speedup is that pruned
weight matrices often fail to fully leverage the par-
allelism of GPU tensor cores (NVIDIA, 2024a),
which typically operate in fixed block sizes like
128x256. Additionally, some approaches targeting
inference speedups (Sheng et al., 2023; Liu et al.,
2023c) involve complex algorithms, potentially in-
creasing computations and adding overhead before
deploying pruned models.

3 Method

In this section, we describe the various aspects of
our methodology to prune pre-trained LLMs in a
structured manner: (1) Pruning attention heads in
grouped-query attention (GQA)-based models (2)
Post-pruning weight update (3) Dimension Adapta-
tion of the weight matrices.

3.1 Pruning Attention Heads in Grouped
Query

Multi-head attention allows for independent prun-
ing of query, key, and value heads by masking in-
dividual heads. However, pruning within Grouped
Query Attention (GQA) groups is more complex
due to the need to maintain group functionality
despite pruning.

For GQA we define separate masks for key-
value heads m}, and query heads m! € R for
it" layer with d heads. Only key-value heads m}
are assigned trainable parameters pl, of. We
define a random set of vectors for the key-value
heads z? € R¥"™ >4 such that dim’ = batches x
seqlence_length x head_dim X group_size and
zf} = Mf, e/ XO, o-,f}. n € R4 ™ *xd is sampled
from AN (0,I). These random set of vectors are
multiplied by the output of the accumulated heads.
Sampling across groups ensures randomness within
groups of query heads to weigh their importance for
pruning. The learnable parameters are optimized
as per Equation 1.

Following the method described in (Dai et al.,

I
.U’v’] +e€
,J

2018), we observe that when o’ =

with small e approaches zero, it indicates t%vat the
key-value head j contains no significant informa-
tion beyond what is captured in previous layers and
pruning it results in minimal performance degrada-
tion. Since g queries share the same key-value head,
token representations may share local dependencies
within the groups. To retain these dependencies, we
concatenate the key-head masks to form the query
head mask mfl. Thus, the mask to prune key value
heads and query heads with g groups can then be
defined as,

1 if logal? >0
mi = B Vjed
0 otherwise
my = [mi,mi, ... mi])

g times

For each key-value head pruned, our method
prunes all connected query heads in the group,
ensuring the pruning process does not disrupt
group functionality.

Ensuring user-defined sparsity. Given a target
sparsity ¢, during pruning, using binary masks
m, we calculate the expected model sparsity s,
as the ratio of pruned parameters to the initial
count. We use a Lagrangian term similar to Xia
et al. (2022) by enforcing an equality constraint
Se = t and introducing a violation penalty
as,Ls = A1 - (8¢ —t) + A2 - (5c — t)? where A1, Ao
are jointly updated during the pruning.

3.2 Post-Pruning Dimension Adaptation

The dimensions in pre-trained unpruned models
are optimized for efficient GPU execution using

specific block sizes (NVIDIA, 2024b) like 128x256.

However, pruned model dimensions may not align
with these block sizes. To address this, we propose
a post-pruning technique that initially identifies
the indices where the masks myoken, and my,,, are
non-zero and estimates the corresponding weight
dimensions as n = |I|; I = {i | myoken[i] # 0}.
It adjusts the mask lengths such that each of the
pruned weight dimension n’ would be the nearest
multiple of the specified tensor dimension 7" (say

128) as,
()

To account for the new dimension, it sorts log «
in descending order, gets the new threshold and
recomputes the mask with d dimension based on
the new threshold as,

T = (log a)sorted [nl]

N 1 ifloga; > 7
Mtoken,j = .
foken.g 0 otherwise

Overall, there is a negligible change in the model
size. In our experiments, we observe a significant
inference speedup due to this step.

Vied (@)

3.3 Post-Pruning Weight Update

Instead of applying binary masks as defined in
Equation 2 that merely retain or discard weights,
we leverage the continuous importance scores
of representations (mean values) learned by
the VIB. We modify all the binary masks to be
weighted masks as,

i {um if loga; > 7
0

Vied 5
otherwise J)

Wikitext-2 Inference Tokens/s

Model PPL | Speedup

Mistral-7B 4.77 1x 24.78
Wanda-sp-gq 116 1.1x 27.26
FLAP-gq 34.97 1.28 % 31.73
Bonsai 47.50 1.66x % 41.13
TVA-Prune 18.37 1.67 x 41.39
Bonsai f 10.08 1.66x% 41.13
TVA-Prune 10.12 1.67 x 41.39
LLaMA-3-8B 5.57 1 x 25.13
Wanda-sp-gq 106 1.1x 27.64
FLAP-gq 34.90 1.2x 30.16
TVA-Prune 27.50 1.61x 40.94

Table 1: Performance comparison of Mistral-7B and
LLaMA-3-8B models pruned by 50%. Our method
outperforms others without any finetuning. findicates
finetuned with LoRA. $Result on Bonsai is taken from
(Dery et al., 2024) where inference was performed on a
different GPU.

Since each weight matrix W of a module has two
dimensions, as for the MLP layer it is the interme-
diate dimension and the global token representation
dimension, we update the unpruned weights using
both the global token mask m;e,, and the interme-
diate mask 1m,,,;,. The updated weights for layer i
for the mlp module may be represented as,

&pd = (mf‘,oken & m;nlp) * W (6)

By multiplying the pre-trained remaining weights
with the mask weights, the model achieves a nu-
anced adjustment that emphasizes more relevant
features. The compressed updated weights Wép d
can be obtained by removing the zeroed out rows
and columns of Wf;pd.

Finetuning with LoRA. Although our method
achieves better performance than previous ap-
proaches even without finetuning, post-pruning
finetuning (Dery et al., 2024; Ma et al., 2023)
using Low Rank Adapters (LoRA) (Hu et al.,
2021) on a downstream task further improves per-
formance. Additionally, we distil knowledge from
the teacher logits H; to the pruned student logits
H, (Xiaetal., 2022) by minimizing the following:
Lais = MSE(H,, H,)

4 Experiments

Datasets. We prune models using the training set
of C4 (Raffel et al., 2020) and Wikitext-2 (Merity
et al., 2016). We test our pruned models on the val-
idation set of Wikitext-2 and on six zero-shot tasks
designed to test for common sense reasoning using

Model LLaMA-7B LLaMA-2-7B
PPL | Speedup Tokens/s | PPL | Speedup Tokens/s

Unpruned 5.68 1x 26.21 5.11 1x 25.46
Wanda-sp 366.43 1.24x 32.50 1320 1.29x 32.84
LLM-pruner 11244 1.23x 32.24 95.26 1.29x 32.84
FLAP # 35.10 1.26x 33.02 2540 1.32x 33.61
Bonsai 28.65 1.26x 33.02 2232 1.28% 32.59
VTrans 25.87 1.32x 34.60 21.54 1.34x 34.12
TVA-Prune 18.62 1.75x 45.87 1844 1.82x 45.83
TVA-Prune w/o DimAdapt | 18.56 1.23x 32.23 18.49 1.25x 31.83
TVA-Prune w/o WUpdate 25.13 1.75x% 45.87 2132 1.82x 45.83
Wanda-sp 67.24 1.24x 32.50 46.54 1.29x 32.84
LLM-prunert 38.12 1.23x 32.24 29.56 1.29x 32.84
Bonsai | 11.02 1.26x 33.02 9.87 1.28x 32.59
VTranst 10.79 1.32x 34.60 9.92 1.34x 34.12
TVA-Prune 10.58 1.75x 45.87 9.65 1.82x 45.83

Table 2: Performance comparison of pruning methods in a task-agnostic manner with C4 train set and zero-shot
evaluation on Wikitext-2. Our method outperforms structured pruning (wanda-sp, Bonsai, LLM-pruner and FLAP)
tindicates finetuned with LoRA. fadds extra bias parameters. w/o DimAdapt speed reduction is due to inefficient
parallelism in GPU. Post-prune dimension adaption leads to negligible change in model size. Inference speedup is
measured on the Wikitext-2 validation set while Tokens/s throughput is on one batch of data.

the EleutherAI LM Harness (Gao et al., 2023).
Baseline Models. We prune the LLaMA-7B,
LLaMA-2-7B (Touvron et al., 2023a) and GQA-
based models LLaMA-3-8B and Mistral-7B (Jiang
et al., 2023a), to evaluate our method and com-
pare against other structured pruning methods. We
modify the pruning process in Wanda (Sun et al.,
2023) to be structured (Wanda-sp) and account
for grouped-query attention (Wanda-sp-gq). Simi-
larly, we modify FLAP (An et al., 2024) to prune
grouped-query and name it FLAP-gq. Additionally,
we compare the pruned mistral model with Bon-
sai (Dery et al., 2024). Comparison of pruning of
LLaMA 1 and 2 variants also includes other base-
line methods: LLM-Pruner (Ma et al., 2023), Lo-
RAPrune (Zhang et al., 2023b)and VTrans (Dutta
et al., 2024).

Experimental Settings. To prune LLaMA-3, we
use a sequence length of 400 to fit in a single GPU.
Similarly, we reduce the maximum position em-
beddings of the Mistral model to 8192. For the
task-specific experiments, we use the training set
of Wikitext-2 dataset to prune models. We report
the average of five runs with random seeds. The few
hyperparameters used are listed in the Appendix.
All experiments are conducted on a single NVIDIA
A100 (40GB) GPU.

4.1 Language Modelling Tasks

Performance comparison on GQA models
Table 1 shows TVA-Prune is highly effective for
pruning Mistral-7B model with grouped query at-
tention (GQA) with the least perplexity among all
techniques without any finetuning. While Bonsai
achieves a lower perplexity post-finetuning with
LoRA, our method takes about 20 times lower com-
pression time compared to Bonsai. TVA-Prune
offers higher inference speed than all of the ap-
proaches. Similar, our method prunes LLaMA-3
and retains higher performance than other meth-
ods without any finetuning. The pruned LLaMA-3
model in our case is about 40% faster than FLAP
and wanda.

Task-agnostic pruning Comparison. Table 2
compares our method with other structured prun-
ing techniques to prune LLaMA-7B and LLaMA-
2-7B. It highlights the superior performance of our
method in terms of perplexity on Wikitext-2 with-
out even finetuning. Upon finetuning, the perfor-
mance is comparable to Bonsai and VTrans. We
see that without the dimension adaptation compo-
nent, the inference speedup of our method becomes
similar to previous approaches. Similarly, without
the weight update step, our method generalizes to
the performance of VTrans, but with higher infer-
ence speedup of the pruned model. Our pruned

Method BoolQ PIQA HellaSwag WinoGrande ARC-e ARC-c Averagef
Acc Acc Acc Acc Acc Acc Acc
LLaMA-3-8B | 81.28 79.70 60.17 72.37 80.09 50.59 70.70
Wanda-sp-gq 41.60 54.57 26.90 52.24 29.62 18.55 37.24
FLAP-gq 43773 56.74 27.71 50.98 3320 20.64 38.83
TVA-Prune 62.96 65.83 36.81 57.61 47.81 23.37 49.06
Mistral-7B 83.66 80.57 61.22 73.87 80.89 50.42 71.77
Wanda-sp-gq 60.14 55.72 26.47 50.10 30.84 19.63 40.48
FLAP-gq 62.12 57.02 27.70 49.81 32.02 21.50 41.69
TVA-Prune 62.20 67.03 37.64 57.14 46.29 22.26 48.76
Wanda-sp-gqf | 53.26 58.45 36.14 52.95 42.87 30.45 45.68
FLAP-gqt 54.25 68.24 40.75 57.89 4995 31.85 50.49
TVA-Prunef 64.52 70.50 44.02 58.95 56.15 27.90 53.67

Table 3: Performance comparison of the 50% pruned LLaMA-8B and Mistral-7B models on six zero shot tasks.
tdenotes finetuned with LoRA. Finetuning enhances the performance all pruned models, yet our pruned model still

generalizes better across the tasks. .

models observe a 40% faster inference over other
models.

Task-specific pruning comparison. For task-
specific pruning with Wikitext-2 training set it is
observed that there is an improvement in perplex-
ity on the validation set for all the methods. Our
method outperforms Bonsai, FLAP and wanda by
a wide margin. It yields model similar in perfor-
mance to VTrans but with faster inference. Obser-
vations are deferred to the Appendix 10.

Various Sparsity Ratios. We see in Figure 1 that
our method performs better than other methods
from about 30% sparsity and maintains the stable
performance as sparsity increases. This is in con-
trast to FLAP and Wanda where the performance
deteriorates sharply after 50% and 40% sparsity
ratio respectively. At sparsity ratios lower than
30%, our method performs similarly to FLAP. Be-
low 30% sparsity, Wanda and FLAP retain similar
performance to ours. Our models pruned from
LLaMA-3 and Mistral have much faster inference
at all sparsity levels than FLAP and Wanda.

Pruning Time comparison. As illustrated in Fig-
ure 3, our pruning method exhibits comparable
pruning times to VTrans while achieving signifi-
cantly better model performance. When compared
to more rapid techniques such as LLM-pruner and
FLAP, our method delivers more than double the
performance improvement. Additionally, our ap-
proach prunes models six times faster than the
faster variant of Bonsai(p = 0.2) and twelve times
faster than LoRA-prune. Moreover, our method
allows further lowering of the pruning time with

) 200
< T
z 1606
(G] o
GE) 1204>_'-<
= 80 £

4
2 =
S 40
a

0

Vtrans
B TVA-Prune

Bonsai(p0.2) m LoRA-prune
LLM-pruner ®FLAP
a Wikitext2 PPL

Figure 3: Comparison of Perplexity and time to prune
LLaMA-7B by 50% with different structured pruning
methods. Our method (TVA-prune) is more efficient
yielding models with lower perplexity than methods
taking similar or lower time to prune.

lower number of data samples as explored in Ap-
pendix A.

4.2 Performance on zero-shot tasks

In Table 3, we compare the performance of pruned
models on six zero-shot reasoning tasks to as-
sess the generalization efficiency of 50% pruned
LLaMA-3 and Mistral models on unseen tasks. Our
pruned LLaMA-3 models and pruned Mistral mod-
els outperform FLAP-gq and Wanda-sp-gq across
all tasks. Since the TVA-prune (ours) model al-
ready generalises well to the tasks without any fine-
tuning as per its capacity, finetuning it increases
its performance by only about 3% on average. De-
spite a general decrease in performance for all the
pruned models compared to their unpruned coun-
terparts, our method most effectively preserves the
generalization capabilities of the LLMs.

LLaMA Mistral

2-7B 3-8B 7B
TVA-prune 18.44 27.50 18.37
w/o weight update | +2.88 +5.32 +2.17
w/o dimension adapt | +0.05 +0.15 +0.42

Table 4: Performance of models on Wikitext-2 with
and without post-prune weight update and dimension
adaptation

Dimension Multiple
0 8 64 128 256
50% pruned LLaMA-3-8B
Speedup 09x 1.45x 1.60x 1.59x 1.59x
APPL | 0 0 0 -0.1 -0.2
ASparsity(%) 0 0 0.2 0.4 0.3
50% pruned Mistral-7B
Speedup 1.Ix 1.48x 1.52x 1.67x 1.40x
APPL -0.5 0 -0.5 -0.2 2.3
ASparsity(%) 0 0 0.3 0.6 0.8
50% pruned LLaMA-2-7B
Speedup 1.25x 1.52x 1.75x 1.82x 1.75x
APPL 0 0 0 -0.05 -1.8
ASparsity(%) 0 0 0.2 0.2 0.6

Table 5: Change in speedup, perplexity on Wikitext-
2, and model sparsity on varying post-prune adapted
dimension multiples. Across models it can be observed
that adapting weight dimensions to be multiples of 64 or
128 yields the best speedup with least change in sparsity
and often lower perplexity

4.3 Ablation Study

Increase in speedup due to adaptation. Figure 4
illustrates the inference speedup on an NVIDIA
A100 (40GB) GPU for 50% pruned models, com-
paring scenarios with and without post-pruning
dimension adaptation. The y-axis represents the
speedup factor over the unpruned models, with a
value greater than 1 indicating faster performance.
The results show that dimension adaptation signifi-
cantly enhances speedup across all models.

Effect of adaptation in LLM modules. Figure 5
compares inference times for different modules in
the Mistral-7B model: unpruned, TVA-prune with
adaptation, and without adaptation. Adaptation
significantly reduces attention module inference
time over others. For the Intermediate module,
the pruned model without adaptation increases in-
ference time substantially, while adaptated model
takes almost the same time as the unpruned module,
likely due to parallel processing.

Which dimension multiple is the best? Adjust-
ing weight matrix dimensions to be multiples of
certain values, as shown in Table 5, optimizes

2

0

LLaMA-1 LLaMA-2 LLaMA-3 Mistral
B without adapt

Speedup over
unpruned

® with adapt

Figure 4: Inference speedup on NVIDIA A100(40GB)
with and without our post-pruning dimension adaptation
in 50% pruned models.

15

Inference time (s)

Attention Intermediate

0

m Mistral mw/o adaptation mTVA-prune

Figure 5: Time taken to infer on a single batch from
Wikitext-2 by each module in Mistral-7B.

GPU tensor core parallelism. When dimensions
align with these multiples, computations parallelize
more effectively, leading to significant speedups.
As shown in the table, dimensions that are multi-
ples of 64, 128, or 256 can maximize the utilization
of tensor cores and increase throughput with min-
imal trade-offs as evidenced by the performance
metrics of LLaMA and Mistral models.

Effect of post-prune weight update. Table 4
presents the performance of LLaMA and Mistral
models with and without post-prune weight update
and dimension adaptation. Omitting the weight
update results in performance drops of 2.88 for
LLaMA-2-7B, 5.32 for LLaMA-3-8B, and 2.17
for Mistral-7B, highlighting the crucial role of
weight updates in maintaining high performance.
Without dimension adaptation, the performance de-
creases slightly by 0.05 for LLaMA-2-7B, 0.15
for LLaMA-3-8B, and 0.42 for Mistral-7B. These
results suggest that while dimension adaptation pro-
vides inference speedup benefits, the post-pruning
weight update is significantly more critical for pre-
serving the performance of the models. Overall,
the combination of both techniques ensures the best
performance retention in pruned models.

ARC-e | HellaSwag
Pruned | -17.30 -57.26
Unpruned | -8.53 -35.95

Table 6: Average log likelihood of correct predictions
by the 50% pruned and unpruned Mistral models shows
that the pruned model is more uncertain about its correct
predictions

4.4 Qualitative Analysis

As seen in Table 3, the pruned Mistral model shows
a significant drop in factual knowledge, particularly
in its ARC-e and ARC-c performance. However,
further analysis reveals that the pruned model cor-
rectly classifies 62 ARC-e samples (2% of the total)
that the unpruned model does not. As illustrated
in Table 13, the pruned model often selects the
annotated correct answer in cases where choices
may seem ambiguous. For instance, on the ques-
tion "Which is the best way to help prevent the
flu from becoming a pandemic?", the unpruned
model closely weighs "getting a vaccination" and
"washing hands often," ultimately choosing the
latter, while the pruned model selects "getting a
vaccination." In most cases of incorrect prediction,
the unpruned model shows confusion in its log-
its by weighing two choices in a multiple-choice
question almost equally and choosing an answer
different from the annotated one, while the pruned
model displays less confusion and selects the cor-
rect answer. This raises the question of whether
more ‘knowledge’ in models leads to more confu-
sion and if pruning alleviates this. Additionally,
in some instances (seen in Table 13), the pruned
model is more factually accurate than the unpruned
model, suggesting that overfitting during pretrain-
ing might cause the unpruned model’s incorrect
answers. Table 6 shows that the pruned model is
overall more uncertain about its choices than the
unpruned model.

5 Related Work

Efficient Transformers. As LLMs continue to
grow in size, several methods have been developed
to reduce their memory and computational con-
straints (Yun et al., 2024; Xiao et al., 2023). These
methods broadly fall into two categories: quanti-
zation (Frantar et al., 2023; Dettmers et al., 2022,
2023; Zhang et al., 2024c; Lin et al., 2024; Shao
et al., 2023) that reduce full precision weights to
fewer bits and pruning (Xia et al., 2022; Sanh et al.,

2020; Jiang et al., 2023b; Lagunas et al., 2021;
Li et al., 2023) that removes weights and tokens.
While being orthogonal approaches to compression,
they have been combined to enhance compression
further (Namburi et al., 2023; Saha et al., 2024).
Several methods use knowledge distillation for per-
formance recovery during pruning (Ko et al., 2023;
Liu et al., 2023a; Lee et al., 2023; Liu et al., 2023b).
Pruning LLLMs. Pruning methods are broadly cat-
egorized as unstructured pruning (Frantar and Al-
istarh, 2023; Xu et al., 2024; Zhang et al., 2024b)
that targets individual weights within the LLM
but yield models with faster inference only with
specialized accelerators. Structured pruning (An
et al., 2024; Zhang et al., 2024a) aims to elimi-
nate redundant structures for faster inference but
previous gradient-based methods (Ma et al., 2023;
Zhang et al., 2023a) are limited by their substan-
tial memory requirements, where as forward-pass
only method Bonsai (Dery et al., 2024) takes nearly
40 hours for pruning during its search for optimal
submodels. VTrans (Dutta et al., 2024), although a
faster method, fails to prune heads in grouped query
attentions and provides limited inference speedups.

6 Conclusion

We propose TVA-prune, a structured pruning
method that can effectively compress grouped-
query attention (GQA) based LLMs. It in-
volves sharing key-head Variational Information
Bottleneck-masks within groups of query heads to
prune key, value and query heads and still maintain
the structural integrity. The post-pruning dimen-
sion adaptation technique enhances parallelism, re-
sulting in higher acceleration for pruned models
without compromising performance. Morever, the
post-pruning weight updates leverages importance
scores of token representations and significantly
contributes to maintaining the performance of the
pruned models. We demonstrate the effectiveness
of TVA-prune in retaining performance even in
higher sparsity ratios. Further, it is more effective
even in pruning MHA-based models. By training
only the masks to prune LLM modules, TVA-prune
has considerably lower pruning time compared to
other gradient-based and some forward-pass-only
approaches. Overall, TVA-prune shows improved
resource utilization, achieving significant enhance-
ments in both speed and performance suggesting its
potential effectiveness in optimizing large language
models for practical deployment.

7 Limitations

Although we have tackled recently published GQA-
based and other diverse set of models, sparsity tar-
gets and datasets, there is still a vast list of bench-
marks and models that could potentially reveal dis-
tinct behavior compared to the findings in this work.
Hence, our work does not aim to provide an ex-
haustive set of results to universally characterize
all models. In the experiments, we test with upto
8B models on a single GPU of 40GB. Extending it
to larger models would require larger memory or
more GPUs which we have not tested for in this
work. However, our methodology would theoreti-
cally require low amount of memory, computations
and provide greater inference speedups even for
larger models. We plan to explore layer-wise prun-
ing using our formulation to prune models larger
than 13B on a single GPU in future work.

References

Joshua Ainslie, James Lee-Thorp, Michiel de Jong, Yury
Zemlyanskiy, Federico Lebrén, and Sumit Sanghai.
2023. Gqa: Training generalized multi-query trans-
former models from multi-head checkpoints. arXiv
preprint arXiv:2305.13245.

Yongqi An, Xu Zhao, Tao Yu, Ming Tang, and Jinqiao
Wang. 2024. Fluctuation-based adaptive structured
pruning for large language models. In Proceedings
of the AAAI Conference on Artificial Intelligence,
volume 38, pages 10865—-10873.

Zhuoming Chen, Avner May, Ruslan Svirschevski,
Yuhsun Huang, Max Ryabinin, Zhihao Jia, and
Beidi Chen. 2024. Sequoia: Scalable, robust, and
hardware-aware speculative decoding. arXiv preprint
arXiv:2402.12374.

Bin Dai, Chen Zhu, Baining Guo, and David Wipf. 2018.
Compressing neural networks using the variational
information bottleneck. In International Conference
on Machine Learning, pages 1135-1144. PMLR.

Lucio Dery, Steven Kolawole, Jean-Francois Kagey, Vir-
ginia Smith, Graham Neubig, and Ameet Talwalkar.
2024. Everybody prune now: Structured pruning
of llms with only forward passes. arXiv preprint
arXiv:2402.05406.

Tim Dettmers, Mike Lewis, Younes Belkada, and Luke
Zettlemoyer. 2022. Gpt3. int8 (): 8-bit matrix mul-
tiplication for transformers at scale. Advances in
Neural Information Processing Systems, 35:30318-
30332.

Tim Dettmers, Ruslan Svirschevski, Vage Egiazarian,
Denis Kuznedelev, Elias Frantar, Saleh Ashkboos,
Alexander Borzunov, Torsten Hoefler, and Dan Alis-
tarh. 2023. Spqr: A sparse-quantized representation

for near-lossless llm weight compression. Preprint,
arXiv:2306.03078.

Oshin Dutta, Ritvik Gupta, and Sumeet Agarwal. 2024.
Vtrans: Accelerating transformer compression with
variational information bottleneck based pruning.
https://arxiv.org/abs/2406.05276v2.

Elias Frantar and Dan Alistarh. 2023. Sparsegpt: Mas-
sive language models can be accurately pruned in
one-shot. In International Conference on Machine

Learning, pages 10323-10337. PMLR.

Elias Frantar, Saleh Ashkboos, Torsten Hoefler, and
Dan Alistarh. 2023. Gptq: Accurate post-training
quantization for generative pre-trained transformers.
Preprint, arXiv:2210.17323.

Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman,
Sid Black, Anthony DiPofi, Charles Foster, Laurence
Golding, Jeffrey Hsu, Alain Le Noac’h, Haonan Li,
Kyle McDonell, Niklas Muennighoff, Chris Ociepa,
Jason Phang, Laria Reynolds, Hailey Schoelkopf,
Aviya Skowron, Lintang Sutawika, Eric Tang, An-
ish Thite, Ben Wang, Kevin Wang, and Andy Zou.
2023. A framework for few-shot language model
evaluation.

E Hu, Y Shen, P Wallis, Z Allen-Zhu, Y Li, S Wang,
L Wang, and W Chen. 2021. Low-rank adaptation of
large language models. arXiv.

Albert Q. Jiang, Alexandre Sablayrolles, Arthur Men-
sch, Chris Bamford, Devendra Singh Chaplot, Diego
de las Casas, Florian Bressand, Gianna Lengyel, Guil-
laume Lample, Lucile Saulnier, Lélio Renard Lavaud,
Marie-Anne Lachaux, Pierre Stock, Teven Le Scao,
Thibaut Lavril, Thomas Wang, Timothée Lacroix,
and William EI Sayed. 2023a. Mistral 7b. Preprint,
arXiv:2310.06825.

Ting Jiang, Deqing Wang, Fuzhen Zhuang, Ruobing
Xie, and Feng Xia. 2023b. Pruning pre-trained
language models without fine-tuning. Preprint,
arXiv:2210.06210.

Jongwoo Ko, Seungjoon Park, Yujin Kim, Sumyeong
Ahn, Du-Seong Chang, Euijai Ahn, and Se-Young
Yun. 2023. Nash: A simple unified framework of
structured pruning for accelerating encoder-decoder
language models. arXiv preprint arXiv:2310.10054.

Francois Lagunas, Ella Charlaix, Victor Sanh, and
Alexander Rush. 2021. Block pruning for faster trans-
formers. In Proceedings of the 2021 Conference on
Empirical Methods in Natural Language Process-
ing, pages 10619-10629, Online and Punta Cana,
Dominican Republic. Association for Computational
Linguistics.

Teven Le Scao, Angela Fan, Christopher Akiki, El-
lie Pavlick, Suzana Ili¢, Daniel Hesslow, Roman
Castagné, Alexandra Sasha Luccioni, Frangois Yvon,
Matthias Gallé, et al. 2023. Bloom: A 176b-
parameter open-access multilingual language model.

https://arxiv.org/abs/2306.03078
https://arxiv.org/abs/2306.03078
https://arxiv.org/abs/2306.03078
https://arxiv.org/abs/2210.17323
https://arxiv.org/abs/2210.17323
https://arxiv.org/abs/2210.17323
https://doi.org/10.5281/zenodo.10256836
https://doi.org/10.5281/zenodo.10256836
https://doi.org/10.5281/zenodo.10256836
https://arxiv.org/abs/2310.06825
https://arxiv.org/abs/2210.06210
https://arxiv.org/abs/2210.06210
https://arxiv.org/abs/2210.06210
https://doi.org/10.18653/v1/2021.emnlp-main.829
https://doi.org/10.18653/v1/2021.emnlp-main.829
https://doi.org/10.18653/v1/2021.emnlp-main.829

Hayeon Lee, Rui Hou, Jongpil Kim, Davis Liang,
Hongbo Zhang, Sung Ju Hwang, and Alexander
Min. 2023. Co-training and co-distillation for quality
improvement and compression of language models.
arXiv preprint arXiv:2311.02849.

Jianwei Li, Qi Lei, Wei Cheng, and Dongkuan Xu. 2023.
Towards robust pruning: An adaptive knowledge-
retention pruning strategy for language models.
arXiv preprint arXiv:2310.13191.

Ji Lin, Jiaming Tang, Haotian Tang, Shang Yang,
Wei-Ming Chen, Wei-Chen Wang, Guangxuan
Xiao, Xingyu Dang, Chuang Gan, and Song Han.
2024. Awq: Activation-aware weight quantization
for llm compression and acceleration. Preprint,
arXiv:2306.00978.

Chang Liu, Chongyang Tao, Jianxin Liang, Jiazhan
Feng, Tao Shen, Quzhe Huang, and Dongyan Zhao.
2023a. Length-adaptive distillation: Customizing
small language model for dynamic token pruning.
In The 2023 Conference on Empirical Methods in
Natural Language Processing.

Jiduan Liu, Jiahao Liu, Qifan Wang, Jingang Wang,
Xunliang Cai, Dongyan Zhao, Ran Lucien Wang,
and Rui Yan. 2023b. Retrieval-based knowl-
edge transfer: An effective approach for extreme
large language model compression. arXiv preprint
arXiv:2310.15594.

Zichang Liu, Jue Wang, Tri Dao, Tianyi Zhou, Binhang
Yuan, Zhao Song, Anshumali Shrivastava, Ce Zhang,
Yuandong Tian, Christopher Re, et al. 2023c. Deja
vu: Contextual sparsity for efficient llms at infer-
ence time. In International Conference on Machine

Learning, pages 22137-22176. PMLR.

Xinyin Ma, Gongfan Fang, and Xinchao Wang. 2023.
Llm-pruner: On the structural pruning of large lan-
guage models. arXiv preprint arXiv:2305.11627.

Stephen Merity, Caiming Xiong, James Bradbury, and
Richard Socher. 2016. Pointer sentinel mixture mod-
els. Preprint, arXiv:1609.07843.

Satya Sai Srinath Namburi, Makesh Sreedhar, Srinath
Srinivasan, and Frederic Sala. 2023. The cost of
compression: Investigating the impact of compres-
sion on parametric knowledge in language models.
In Findings of the Association for Computational
Linguistics: EMNLP 2023, pages 5255-5273.

NVIDIA. 2024a. Inference optimization.
https://developer.nvidia.com/blog/

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J Liu. 2020. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. The Journal of Machine Learning Research,
21(1):5485-5551.

Rajarshi Saha, Naomi Sagan, Varun Srivastava, An-
drea J Goldsmith, and Mert Pilanci. 2024. Com-
pressing large language models using low rank
and low precision decomposition. arXiv preprint
arXiv:2405.18886.

Victor Sanh, Thomas Wolf, and Alexander Rush. 2020.
Movement pruning: Adaptive sparsity by fine-tuning.
In Advances in Neural Information Processing Sys-
tems, volume 33, pages 20378-20389. Curran Asso-
ciates, Inc.

Wengi Shao, Mengzhao Chen, Zhaoyang Zhang, Peng
Xu, Lirui Zhao, Zhiqgian Li, Kaipeng Zhang, Peng
Gao, Yu Qiao, and Ping Luo. 2023. Omniquant:
Omnidirectionally calibrated quantization for large
language models. arXiv preprint arXiv:2308.13137.

Ying Sheng, Lianmin Zheng, Binhang Yuan, Zhuo-
han Li, Max Ryabinin, Beidi Chen, Percy Liang,
Christopher Ré, Ion Stoica, and Ce Zhang. 2023.
Flexgen: High-throughput generative inference of
large language models with a single gpu. In Infer-
national Conference on Machine Learning, pages
31094-31116. PMLR.

Noam Slonim and Naftali Tishby. 1999. Agglomera-
tive information bottleneck. In Advances in Neural
Information Processing Systems, volume 12. MIT
Press.

Mingjie Sun, Zhuang Liu, Anna Bair, and J Zico
Kolter. 2023. A simple and effective pruning ap-
proach for large language models. arXiv preprint
arXiv:2306.11695.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Roziere, Naman Goyal, Eric Hambro, Faisal
Azhar, et al. 2023a. Llama: Open and effi-
cient foundation language models. arXiv preprint
arXiv:2302.13971.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton
Ferrer, Moya Chen, Guillem Cucurull, David Esiobu,
Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller,
Cynthia Gao, Vedanuj Goswami, Naman Goyal, An-
thony Hartshorn, Saghar Hosseini, Rui Hou, Hakan

mastering-1lm-techniques-inference-optimizationinan, Marcin Kardas, Viktor Kerkez, Madian Khabsa,

NVIDIA. 2024b. Linear/fully-connected
layers user’s guide. https://docs.
nvidia.com/deeplearning/performance/

dl-performance-fully-connected/index.
html.

10

Isabel Kloumann, Artem Korenev, Punit Singh Koura,
Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Di-
ana Liskovich, Yinghai Lu, Yuning Mao, Xavier Mar-
tinet, Todor Mihaylov, Pushkar Mishra, Igor Moly-
bog, Yixin Nie, Andrew Poulton, Jeremy Reizen-
stein, Rashi Rungta, Kalyan Saladi, Alan Schelten,

https://arxiv.org/abs/2306.00978
https://arxiv.org/abs/2306.00978
https://arxiv.org/abs/2306.00978
https://arxiv.org/abs/1609.07843
https://arxiv.org/abs/1609.07843
https://arxiv.org/abs/1609.07843
https://developer.nvidia.com/blog/mastering-llm-techniques-inference-optimization
https://developer.nvidia.com/blog/mastering-llm-techniques-inference-optimization
https://developer.nvidia.com/blog/mastering-llm-techniques-inference-optimization
https://docs.nvidia.com/deeplearning/performance/dl-performance-fully-connected/index.html
https://docs.nvidia.com/deeplearning/performance/dl-performance-fully-connected/index.html
https://docs.nvidia.com/deeplearning/performance/dl-performance-fully-connected/index.html
https://docs.nvidia.com/deeplearning/performance/dl-performance-fully-connected/index.html
https://docs.nvidia.com/deeplearning/performance/dl-performance-fully-connected/index.html
https://docs.nvidia.com/deeplearning/performance/dl-performance-fully-connected/index.html
https://docs.nvidia.com/deeplearning/performance/dl-performance-fully-connected/index.html
https://proceedings.neurips.cc/paper_files/paper/2020/file/eae15aabaa768ae4a5993a8a4f4fa6e4-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/1999/file/be3e9d3f7d70537357c67bb3f4086846-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/1999/file/be3e9d3f7d70537357c67bb3f4086846-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/1999/file/be3e9d3f7d70537357c67bb3f4086846-Paper.pdf

Ruan Silva, Eric Michael Smith, Ranjan Subrama-
nian, Xiaoqing Ellen Tan, Binh Tang, Ross Tay-
lor, Adina Williams, Jian Xiang Kuan, Puxin Xu,
Zheng Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan,
Melanie Kambadur, Sharan Narang, Aurelien Ro-
driguez, Robert Stojnic, Sergey Edunov, and Thomas
Scialom. 2023b. Llama 2: Open foundation and
fine-tuned chat models. Preprint, arXiv:2307.09288.

Mengzhou Xia, Zexuan Zhong, and Danqi Chen. 2022.
Structured pruning learns compact and accurate mod-
els. In Association for Computational Linguistics

(ACL).

Chaojun Xiao, Yuqi Luo, Wenbin Zhang, Pengle Zhang,
Xu Han, Yankai Lin, Zhengyan Zhang, Ruobing
Xie, Zhiyuan Liu, Maosong Sun, et al. 2023. Vari-
ator: Accelerating pre-trained models with plug-
and-play compression modules. arXiv preprint
arXiv:2310.15724.

Peng Xu, Wenqi Shao, Mengzhao Chen, Shitao Tang,
Kaipeng Zhang, Peng Gao, Fengwei An, Yu Qiao,
and Ping Luo. 2024. Besa: Pruning large language
models with blockwise parameter-efficient sparsity
allocation. Preprint, arXiv:2402.16880.

Jungmin Yun, Mihyeon Kim, and Youngbin Kim. 2024.
Focus on the core: Efficient attention via pruned
token compression for document classification. arXiv
preprint arXiv:2406.01283.

Mingyang Zhang, Hao Chen, Chunhua Shen,
Zhen Yang, Linlin Ou, Xinyi Yu, and Bohan
Zhuang. 2023a. Loraprune: Pruning meets low-
rank parameter-efficient fine-tuning. Preprint,
arXiv:2305.18403.

Mingyang Zhang, Chunhua Shen, Zhen Yang, Linlin
Ou, Xinyi Yu, Bohan Zhuang, et al. 2023b. Prun-
ing meets low-rank parameter-efficient fine-tuning.
arXiv preprint arXiv:2305.18403.

Yang Zhang, Yawei Li, Xinpeng Wang, Qianli Shen,
Barbara Plank, Bernd Bischl, Mina Rezaei, and Kenji
Kawaguchi. 2024a. Finercut: Finer-grained inter-
pretable layer pruning for large language models.
arXiv preprint arXiv:2405.18218.

Yingtao Zhang, Haoli Bai, Haokun Lin, Jialin Zhao,
Lu Hou, and Carlo Vittorio Cannistraci. 2024b. Plug-
and-play: An efficient post-training pruning method
for large language models. In The Twelfth Interna-
tional Conference on Learning Representations.

Zhenyu Zhang, Shiwei Liu, Runjin Chen, Bhavya
Kailkhura, Beidi Chen, and Atlas Wang. 2024c¢. Q-
hitter: A better token oracle for efficient llm inference
via sparse-quantized kv cache. Proceedings of Ma-
chine Learning and Systems, 6:381-394.

11

A Sample size vs pruning time.

2k 4k 6k
Prune Time (hrs) 1 2 3
LLaMA-3 PPL 30.12 27.50 27.73
Mistral PPL 21.63 18.37 18.29

Table 7: Varying sample size impacts the performance
of pruned models and pruning time. Reducing sample
size favors pruning time but increases perplexity, while
increasing sample size does not significantly improve
performance.

Table 7 illustrates the impact of varying sample
sizes (2k, 4k, 6k) on the performance and pruning
time of pruned models, specifically LLaMA-3 and
Mistral. As the sample size increases, pruning time
also increases, while its reduction results in higher
perplexity (PPL). Since increasing the sample size
does not lead to significant improvements in per-
plexity, we choose to prune with 4000 samples for
all types of models.

B Proportion of sub-layer parameters
pruned

Figure 6 shows the proportion of the remaining
parameters in the attention, the intermediate lay-
ers and the embedding layer after pruning each
of the pre-trained LLaMA models to 50% spar-
sity. Lower number of attention parameters can
be related to a slightly higher inference speedup
in case of LLaMA-2 pruned model with respect to
LLaMA-1 pruned model.

m50% LLaMA-2 = 50% LLaMA

0.93 0.91
0.58
0.422 052 4 45
Embeddings Attention Intermediate

Figure 6: Proportion of remaining parameters in each of
the LLM modules after pruning 50% of the total model
parameters.

C Hyper-parameters for pruning and
finetune

The hyper-parameters used for pruning LLaMA
and Mistral models on one NVIDIA A100 (40GB)
is given in Table 8 and for finetuning is given in

https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/2402.16880
https://arxiv.org/abs/2402.16880
https://arxiv.org/abs/2402.16880
https://arxiv.org/abs/2402.16880
https://arxiv.org/abs/2402.16880
https://arxiv.org/abs/2305.18403
https://arxiv.org/abs/2305.18403
https://arxiv.org/abs/2305.18403

Table 9. We take a data blockor sequence_length of
400 while pruning LLaMA-3-7B to fit the training

of masks in a single GPU.
VIB LR Dataset size block_size
5x107%,1 x 10! 4000 512

Table 8: Hyper-parameters for pruning LLaMA and
Mistral with TVA-Prune

weights LR LoRA-rank LoRA-a 7 (distill Weight) block_size
1x10~* 128 4xrank 0.01 512

Table 9: Hyper-parameters for fine-tuning LLaMA and
Mistral compressed models

D Algorithm

Algorithm 1 Pruning LLM with VIB masks, fol-
lowed by post-prune adaptation

Input: Target model sparsity ¢, Pretrained model

weights W

Initialize: VIB masks m;, m;

fore =1,..., Samples do
Sample ~ N(0, I),apply random vectors z
as in sec 3.1
Calculate VIB loss as in Eq 1 and sparsity loss
L asin sec. 3.1
Backprop through total loss Ly = £ + L5
Update p, o of mm masks, sparsity coefficients
A1, A2

end for

Adapt dimensions as in section 3.2

Update weights as in section 3.3

Get sparser weights as in Eq 6

Remove zeroed out columns and rows in weights

h

or m; "

Optionally fine-tune remaining weights with
LoRA by minimizing: Lo = Lais + /émsk
Output: Compressed model weights W

E Task-specific pruning

Table 10 shows task specific pruning with Wikitext-
2 dataset.

F Improved stability of our pruning
method

In Table 11 we compare the standard deviation of
performance measured over 5 random seeds for
different pruning methods and observe that our

12

LLaMA-2-7B
Model PPL | Speedup
Unpruned | 5.11 1x
Wanda-sp 9770 1.29x
FLAP i 1492 1.32x
Bonsai 19.24 1.28x
VTrans 11.88 1.33x
TVA-Prune | 11.86 1.82x

Table 10: Performance comparison of task-specific prun-
ing with Wikitext-2 train set and evaluation on the val-
idation set. Our method outperforms other structured
pruning methods (wanda-sp, Bonsai and FLAP) and
is similar to VTrans with faster inference. findicates
finetuned with LoRA. }adds extra bias parameters.

method yields models with more consistent perfor-
mance.

Method Sparsity Ratios Average
03 05 0.6 0.7 0.8 | deviation
Wanda-sp 1.2 65 27 783 4340 1043
FLAP 0.18 34 2409 1109 3220 671
TVA-prune (ours) 0.16 1.65 542 7.72 14.18 6

Table 11: Comparison of standard deviation of perfor-
mance (perplexity) measured over 5 random seeds on
Wikitext-2. Our pruning method yields models more
consistent in performance across sparsity ratios

G Zero shot results on LLaMA-1 and
LLaMA-2

In Table 12 we show the zero-shot performance of
LLaMA-1 and LLaMA-2 models.

H More explanation on optimizing GPU
Performance with adjusted pruned
weight dimensions

Having pruned weight dimensions in multiples of
256 enhances the performance of pruned models
on NVIDIA V100 and A100 GPUs. Tiles are fixed-
size blocks of matrix elements that GPUs process
in parallel. Aligning matrix dimensions with pre-
ferred tile sizes like 256x128 ensures optimal use
of Tensor Cores, minimizing computational waste
due to tile quantization, where partially filled tiles
perform unnecessary operations (NVIDIA, 2024b).
Wave quantization occurs when the number of tiles
doesn’t match the number of streaming multipro-
cessors (SMs), leading to underutilized SMs and
reduced performance. SMs are the primary com-
putational units in NVIDIA GPUs, each capable

Method BoolQ PIQA HellaSwag WinoGrande ARC-e ARC-c Averagef
Acc Acc Acc Acc Acc Acc Acc
LLaMA-7B 75.12 78.23 57.65 70.1 75.11 41.32 66.25
Wanda-spt 50.58 55.01 37.57 54.65 41.72 31.89 45.23
LLM-Pruner{ | 60.28 69.31 47.06 53.43 4596 29.18 45.95
FLAP ¥ 60.21 67.52 40.07 57.54 49.66 28.49 50.57
LoRAPrunet 61.88 71.53 47.86 55.01 45.13 31.62 52.17
TVA-Prunet 62.92 68.25 41.95 58.42 56.68 27.14 52.56
LLaMA-2-7B | 77.70 78.07 57.16 69.06 76.34 43.43 66.96
Wanda-spt 5143 5546 37.24 53.98 4226 28.68 45.51
FLAP T 60.54 66.78 40.76 57.32 50.18 28.74 50.72
TVA-Prunef 63.24 66.12 42.37 58.84 56.82 28.42 52.63

Table 12: Performance comparison of the 50% pruned LLaMA-1-7B and LLaMA-2-7B models on six zero shot
tasks. fdenotes finetuned with LoRA. Finetuning enhances the performance all pruned models, yet our pruned
model still generalizes better across the tasks. .

of executing multiple threads in parallel. Efficient
distribution of workload across all SMs is crucial
for maximizing GPU performance.

I Qualitative comparison on examples
from ARC-easy dataset

In Table 13 we show examples where the pruned
model predicts more accurately than the unpruned
Mistral model.

13

Instances where the choices might seem ambiguous; pruned model correctly chooses the annotated answer

Question : | Which is the best way to help prevent the flu from becoming a pandemic?
Choices: "getting a vaccination", "taking antibiotics", "eating fruits and vegetables", "washing hands often"
Annotated: | "getting a vaccination"
unpruned "washing hands often"
pruned "getting a vaccination”
Question : | Which of these traits is most influenced by environment?
Choices: "weight", "hair color", "blood type", "handedness"
Annotated: | "weight"
unpruned "hair color"
pruned "weight"
Question : | What safety procedure should a student follow when a thermometer is broken during a lab experiment?
Choices : "tell the teacher immediately", "stop the experiment immediately",
"sweep the glass into a biohazard container", "use a paper towel to pick up the pieces"
Annotated: | "tell the teacher immediately"
unpruned: | "stop the experiment immediately"
pruned: "tell the teacher immediately"
Instances where pruned model is factually correct while the unpruned is not
Question: "Which is a characteristic of both plants and animals?"
Choices : "life cycles", "learned behaviors", "produce their own food", "reproduce using seeds"
Annotated: | "life cycles"
unpruned: | "produce their own food"
pruned: "life cycles"
Question" | Which of these atomic structures has the least amount of mass?
Choices: "an"an ion", "a proton", "a neutron", "an electron"
Annotated: | "an electron”
unpruned: | "a proton"
pruned: "an electron"
Question: "What should be added to soil to increase its water retention?"
Choices: "pebbles", "sand", "rocks", "clay"
Annotated: | "clay"
unpruned: | "sand"
pruned: "clay"
Instances where pruned model chooses incorrectly while unpruned chooses correctly
Question: "To express the distance between the Milky Way galaxy and other galaxies,
the most appropriate unit of measurement is the"
Choices: "meter." "kilometer.", "light-year.", "astronomical unit."
Annotated: | "light-year."
unpruned: | "light-year."
pruned: "meter"

Table 13: Examples from the ARC-easy dataset where Mistral 50% pruned model’s answers are compared to the
unpruned model

14

	Introduction
	Preliminaries
	Method
	Pruning Attention Heads in Grouped Query
	Post-Pruning Dimension Adaptation
	Post-Pruning Weight Update

	Experiments
	Language Modelling Tasks
	Performance on zero-shot tasks
	Ablation Study
	Qualitative Analysis

	Related Work
	Conclusion
	Limitations
	Sample size vs pruning time.
	Proportion of sub-layer parameters pruned
	Hyper-parameters for pruning and finetune
	Algorithm
	Task-specific pruning
	Improved stability of our pruning method
	Zero shot results on LLaMA-1 and LLaMA-2
	More explanation on optimizing GPU Performance with adjusted pruned weight dimensions
	Qualitative comparison on examples from ARC-easy dataset

