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Abstract

Reward design in reinforcement learning and op-
timal control is challenging. Preference-based
alignment addresses this by enabling agents to
learn rewards from ranked trajectory pairs pro-
vided by humans. However, existing methods
often struggle from poor robustness to unknown
false human preferences. In this work, we propose
a robust and efficient reward alignment method
based on a novel and geometrically interpretable
perspective: hypothesis space batched cutting.
Our method iteratively refines the reward hypoth-
esis space through “cuts” based on batches of
human preferences. Within each batch, human
preferences, queried based on disagreement, are
grouped using a voting function to determine the
appropriate cut, ensuring a bounded human query
complexity. To handle unknown erroneous prefer-
ences, we introduce a conservative cutting method
within each batch, preventing erroneous human
preferences from making overly aggressive cuts
to the hypothesis space. This guarantees prov-
able robustness against false preferences, while
eliminating the need to explicitly identify them.
We evaluate our method in a model predictive
control setting across diverse tasks. The results
demonstrate that our framework achieves compa-
rable or superior performance to state-of-the-art
methods in error-free settings while significantly
outperforming existing methods when handling a
high percentage of erroneous human preferences.
Paper website and code can be accessed via link.

1. Introduction
Reinforcement learning and optimal control have shown
great success in generating intricate behavior of an agen-
t/robot, such as dexterous manipulation (Qi et al., 2023;
Handa et al., 2023; Yin et al., 2023) and agile locomotion
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(Radosavovic et al., 2024; Tsounis et al., 2020; Hoeller et al.,
2024). In these applications, reward/cost functions are essen-
tial, as they dictate agent behavior by rewarding/penalizing
different aspects of motion in a balanced manner. How-
ever, designing different reward terms and tuning their rela-
tive weights is nontrivial, often requiring extensive domain
knowledge and laborious trial-and-error. This is further am-
plified in user-specific applications, where agent behavior
must be tuned to align with individual user preferences.

Reward alignment automates reward design by enabling an
agent to learn its reward function directly from intuitive
human feedback (Casper et al., 2023). In preference-based
feedback, a human ranks a pair of the agent’s motion trajec-
tories, and then the agent infers a reward function that best
aligns with human judgment. Numerous alignment methods
have been proposed (Christiano et al., 2017; Ibarz et al.,
2018; Hejna III & Sadigh, 2023), and most of them rely on
the Bradley-Terry model (Bradley & Terry, 1952), which
formalizes the rationality of human preferences. While
effective, these models are vulnerable to false human pref-
erences, where rankings may be irrational or inconsistent
due to human errors, mistakes, malicious interference, or
difficulty distinguishing between equally undesirable tra-
jectories. When a significant portion of human feedback is
erroneous, the learned reward function degrades substan-
tially, leading to poor agent behavior (Lee et al., 2021a).

In this paper, we propose a robust reward alignment frame-
work based on a novel and interpretable perspective: hy-
pothesis space batch cutting. We maintain a hypothesis
space of reward models during learning, where each batch
of human preferences introduces a nonlinear cut, removing
portions of the hypothesis space. Within each batch, human
preferences, queried based on disagreement over the current
hypothesis space, are grouped using a proposed voting func-
tion to determine the appropriate cut. This process ensures
a certifiable upper bound on the total number of human
preferences required. To tackle false human preferences, we
introduce a conservative cutting method within each batch.
This prevents false human preferences from making overly
aggressive cuts to the hypothesis space and ensures provable
robustness, while eliminating the need to explicitly identify
the false preferences. Extensive experiments demonstrate
that our framework achieves comparable or superior per-
formance to state-of-the-art methods in error-free settings
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while significantly outperforming existing approaches when
handling high rates of erroneous human preferences.

2. Related Works
2.1. Preference-Based Reward Learning
Learning rewards from preferences for reinforcement learn-
ing agents, also named as preference-based reinforcement
learning (PbRL)(Wirth et al., 2017), was early studied in
(Zucker et al., 2010; Akrour et al., 2012; 2014). Early work
focused on learning weights for weighted-sum feature rep-
resentations. With neural network representations, scalable
PbRL is developed in (Christiano et al., 2017), recently used
for fine-tuning large language models (Bakker et al., 2022;
Achiam et al., 2023). In those works, human preference
is modelled using the Bradley-Terry formulation (Bradley
& Terry, 1952). Numerous variants of PbRL have later
been developed (Hejna III & Sadigh, 2023; Hejna et al.,
2024; Myers et al., 2022; 2023). Recently, progress has
been made to improve human data complexity. PEBBLE
(Lee et al., 2021b) used unsupervised pretraining and expe-
rience re-labelling to achieve better human query efficiency.
SURF (Park et al., 2022) applied data augmentation and
semi-supervised learning to get a more diverse preference
dataset. RUNE (Liang et al., 2022) encourages agent explo-
ration with an intrinsic reward measuring the uncertainty of
reward prediction. MRN (Liu et al., 2022) jointly optimizes
the reward network and the pair of Q/policy networks in
a bi-level framework. Despite the above progress, most
methods are vulnerable to erroneous human preferences. As
shown in (Lee et al., 2021a), PEBBLE suffers from a 20%
downgrade when there exists a 10% error rate in preference
data. In real-world applications of PbRL, real human users
tend to make mistakes when providing feedback, due to
mistakes, malicious interference, or difficulty distinguishing
between equally undesirable motions.

2.2. Robust Learning from Noisy Labels
To tackle erroneous human preferences, recent PbRL meth-
ods draw on the methods in robust deep learning (Yao et al.,
2018; Lee et al., 2019; Lukasik et al., 2020; Zhang et al.,
2018; Amid et al., 2019; Ma et al., 2020; Jiang et al., 2018;
Zhou et al., 2020). For example, (Xue et al., 2024) uses
an encoder-decoder structure within the reward network to
mitigate the impact of preference outliers. RIME (Cheng
et al., 2024) and CANDERE-COACH (Li et al., 2024) han-
dle noisy human feedback labels by filtering—RIME uses
KL-divergence to filter and flip corrupted labels, while
CANDERE-COACH trains a neural classifier to predict
false preferences. These methods rely on prior knowledge
or assumptions of true human preference distribution for
false label identification. Uni-RLHF (Yuan et al.) intro-
duces an annotation platform with a large-scale feedback
dataset for reinforcement learning with human feedback,

where the quality of human feedback is achieved using ac-
curacy thresholds and manual verification. The method
may be difficult to use in practice due to the absence of
ground truth and the high cost of manual inspection. (Heo
et al., 2025) proposes a robust learning approach based
on the mixup technique (Zhang et al., 2018), which aug-
ments preference data by generating linear combinations of
preferences. While this approach eliminates the need for
additional training, false human preferences could propa-
gate through the augmentation process, ultimately degrading
learning performance.

The proposed method differs from existing methods in three
key aspects: (1) it requires no prior distribution assumptions
for correct or false human preferences, (2) it avoids addi-
tional classification training to assess feedback quality and
filter false preferences, (3) it directly updates the hypothesis
space conservatively based on entire preference batches.

2.3. Active Learning in Hypothesis Space
Active learning based on Bayesian approaches has been
extensively studied (Daniel et al., 2014; Biyik & Sadigh,
2018; Sadigh et al., 2017; Bıyık et al., 2024; Houlsby et al.,
2011; Biyik et al., 2024), and many of these methods can
be interpreted through the lens of hypothesis space removal.
In particular, the works of (Sadigh et al., 2017; Biyik &
Sadigh, 2018; Biyik et al., 2024) are closely related to ours.
They iteratively update a reward hypothesis space using a
Bayesian approach through (batches of) active preference
queries. However, their methods are limited to reward func-
tions that are linear combinations of preset features. More
recently, (Jin et al., 2022; Xie et al., 2024) have explored
learning reward or constraint functions via hypothesis space
cutting, where the hypothesis space is represented as a con-
vex polytope, and human feedback introduces linear cuts
to this space. Still, these approaches are restricted to linear
parameterizations of rewards/constraints.

In addition to their limitations to weight-feature parametric
rewards, the aforementioned methods do not address robust-
ness in the presence of erroneous human preference data. In
this paper, we show that the absence of robust design makes
these methods highly vulnerable to false preference data.

3. Problem Formulation
We formulate a Markov Decision Process (MDP) with a
parameterized reward as (S,A, rθ, Pdyn, p0), in which S is
the state space, A is the action space, rθ : S×A×Θ → R is
a reward function parameterized by θ ∈ Θ, Pdyn : S×A →
S is the dynamics and p0 is the initial state distribution. The
parameterization of rθ can be a neural network.

We call the entire parametric space of reward functions,
Θ ⊆ Rr, the reward hypothesis space. Given any specific
reward θ ∈ Θ, the agent plans its action sequence {a0:T−1}
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with a starting state s0 maximizes the cumulated reward

Jθ(a0:T−1) = Eξ={s0,a0,...,sT }
∑T−1

t=0
rθ(st,at) (1)

over a time horizon T . Here, the expectation is with respect
to initial state distribution, probabilistic dynamics, etc. The
action and the rollout state sequence forms an agent trajec-
tory ξ = {s0,a0, . . . , sT }. With a slight abuse of notation,
we denote below the reward of trajectory ξ also as Jθ(ξ).

Suppose a human user’s preference of agent behavior cor-
responds to an implicit reward function in the hypothesis
space θH ∈ Θ. The agent does not know θH , but can
query for human feedback over a trajectory pair (ξ0, ξ1).
Human returns a preference label ytrue for (ξ0, ξ1) base on
the rationality assumption (Shivaswamy & Joachims, 2015;
Christiano et al., 2017; Jin et al., 2022):

ytrue =

{
1 JθH

(ξ0) ≤ JθH
(ξ1)

0 otherwise
. (2)

We call (ξ0, ξ1, ytrue) a true human preference. Oftentimes,
the human can give false preference due to mistakes, errors,
intentional attacks, or misjudgment of two trajectories that
look very similar, this leads to a false human preference,
defined as (ξ0, ξ1, yfalse), where

yfalse =

{
0 JθH

(ξ0) ≤ JθH
(ξ1)

1 otherwise
. (3)

Problem statement: We consider human preferences are
queried and received incrementally, (ξ0k, ξ

1
k, yk), k =

1, 2, 3, ...K, where yk = ytrue
k or yk = yfalse

k and k is the
query index. We seek to answer two questions:

Q1: With all true human preferences, i.e., yk = ytrue
k for k =

1, 2, ..., how to develop a query-efficient learning process,
such that the agent can quickly learn θH with a certifiable
upper bound for human query count K?

Q2: When unknown false human preferences (3) exist, i.e.,
yk = yfalse

k , ∃k = 1, 2, ..., how to establish a provably
robust learning process, such that the agent can still learn
θH regardless of false preferences?

4. Method of Hypothesis Space Batch Cutting
In this section, we present an overview of our proposed Hy-
pothesis Space Batch Cutting (HSBC) method and address
the question of Q1. The proofs for all lemmas and theorems
can be found in Appendix D and E.

4.1. Overview
We start with first showing how a human preference leads to
a cut to the hypothesis space. Given a true or false human
preference (ξ0, ξ1, y), we can always define the function

f(θ, ξ0, ξ1, y) = (1− 2y)
(
Jθ(ξ

0)− Jθ(ξ
1)
)
. (4)

Here, Jθ(ξ0)−Jθ(ξ
1) is the reward gap between two paired

trajectories. The term 1 − 2y is the sign determined by
human label y. For a true human preference (ξ0, ξ1, ytrue),
it is easy to verify that (2) will lead to following constraints
on θH

θH ∈ {θ ∈ Θ|f(θ, ξ0, ξ1, ytrue) ≥ 0} (5)

This means that a true human preference will result in a
constraint (or a cut) in (5) on the hypothesis space Θ, and
the true human reward θH satisfies such constraint.

With the above premises, we present the overview of the
method of Hypothesis Space Batch Cutting (HSBC) below.

HSBC Algorithm

With initial hypothesis space Θ0 ⊆ Θ, perform the fol-
lowing three steps at iteration i = 0, 1, 2, ...I

Step 1: [Hypothesis sampling] Sample an ensemble
Ei of reward parameters θs from the latest hypothesis
space Θi for trajectory generation.

Step 2: [Disagreement-based human query] Use the
ensemble Ei to generate N trajectory pairs based on
disagreement for active human query and obtain a batch
of human preferences Bi = {(ξ0i,j , ξ

1
i,j , yi,j)}Nj=1.

Step 3: [Hypothesis space cutting] Calculate the con-
straint set (batch cuts) Ci:

Ci = {θ|f(θ, ξ0i,j , ξ
1
i,j , yi,j) ≥ 0, j = 1, ..., N}. (6)

and update the hypothesis space by

Θi+1 = Θi ∩ Ci, (7)

Figure 1: Illustration of update from Θi to Θi+1. Three constraints
are induced from a preference batch of size 3, with the simplified
notation fi,j(θ) = f(θ, ξ0

i,j , ξ
1
i,j , yi,j). Red arrows are the di-

rections of constraints, i.e., the region of {θ|fi,j(θ) ≥ 0}. New
Θi+1 is the regions in Θi satisfying all constraints.

As shown in Fig. 1, the intuitive idea of the HSBC algorithm
is to maintain and update a hypothesis space Θi, starting
from an initial set Θ0, based on batches of human prefer-
ences. Each batch of human preferences (Step 2) is actively
queried. The human preference batch is turned into a batch
cut (Step 3), removing a portion of the current hypothesis
space, leading to the next hypothesis space.
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From (7) in (Step 3), it follows Θ0 ⊇ Θ1 ⊇ Θ2 ⊇ . . . . This
means that the hypothesis space is not increasing. More
importantly, we have the following assertion, saying the
human reward is always contained in the current hypothesis
if all human preferences are true in a sense of (2).

Lemma 4.1. If all human preferences are true, i.e., yi,j =
ytrue
i,j , ∀i, j, and θH ∈ Θ0, then following HSBC Algorithm,

one has θH ∈ Θi for all i = 1, 2, ..., I .

4.2. Voting Function for Human Preference Batch
In the HSBC algorithm, directly handling batch cut Ci and
hypothesis space Θi can be computationally difficult, es-
pecially for high-dimensional parameter space, e.g., neural
networks. Thus, we next introduce the concept of “voting
function” on the hypothesis space.

Specifically, we define a voting function for a batch of hu-
man preferences Bi = {(ξ0i,j , ξ

1
i,j , yi,j)}Nj=1 as follows

Vi(θ) =
∑N

j=1
H(f(θ, ξ0i,j , ξ

1
i,j , yi,j)), (8)

where H is the Heaviside step function defined as H(x) = 1
if x ≥ 0 and H(x) = 0 otherwise. Intuitively, any point
θ ∈ Θ in the hypothesis space will get a “+1” vote if it
satisfies f(θ, ξ0i,j , ξ

1
i,j , yi,j) ≥ 0 and “0” vote otherwise.

Therefore, Vi(θ) represents the total votes of any point in the
hypothesis space after the ith batch of human preferences.

Thus, θ ∈ Ci in (6) if and only if Vi(θ) = N because θs
need to satisfy all N constraints f(θ, ξ0i,j , ξ

1
i,j , yi,j) ≥ 0

for j = 1, 2, ..., N . As the number of votes in (8) only takes
integers, the batch cut Ci can be equivalently written as:

Ci = {θ|Vi(θ) ≥ N − 0.5}. (9)

Furthermore, the indicator of batch cut Ci can be written as:

1Ci
(θ) = H(Vi(θ)−N + 0.5). (10)

Following (7) in the HSBC, since Θi = Θ0 ∩
⋂i−1

k=0 Ck, we
can define the indicator function of Θi as:

1Θi
(θ) = 1Θ0

(θ)
∏i−1

k=0
1Ck

(θ), i ≥ 1 (11)

with 1Θ0
(θ) be the indicator function of initial hypothesis

space Θ0. With the indicator representation of Θi in (11),
we will show θ can be sampled from Θi (Step 1) using (11).

4.3. Disagreement-Based Query and its Complexity
In the HSBC algorithm, not all batch cuts have similar effec-
tiveness, i.e., some batch cut Ci can be redundant without
removing any volume of hypothesis space, leading to an
unnecessarily human query. To achieve effective cutting,
each trajectory pair (ξ0i,j , ξ

1
i,j , yi,j) should attain certain dis-

agreement on the current hypothesis space Θi, before sent
to the human for preference query.

Specifically, to collect human preference Bi, we only query
human using trajectory pairs (ξ0i,j , ξ

1
i,j , yi,j)s that satisfy

∃ θ1,θ2 ∈ Θi, f(θ1, ξ
0
i,j , ξ

1
i,j , yi,j) ≥ 0

and f(θ2, ξ
0
i,j , ξ

1
i,j , yi,j) ≤ 0, ∀yi,j (12)

Intuitively, the disagreement-based query can ensure at
least some portion of the hypothesis space is removed by
the constraint f(θ, ξ0i,j , ξ

1
i,j , yi,j) ≥ 0, no matter what

preference label yi,j human will provide. A geometric
illustration is given in Fig. 2, with simplified notation
fi,j(θ) := f(θ, ξ0i,j , ξ

1
i,j , yi,j). The above disagreement-

based query strategies are also related to prior work (Chris-
tiano et al., 2017; Lee et al., 2021b).

Figure 2: Illustration of disagreement-based preference query.
Regardless of the human actual preference label (which only deter-
mines which side is to cut), the disagreement condition will always
guarantee at least a portion of the hypothesis space is removed.

With the disagreement-based preference query in each batch,
the following assertion provides an upper bound on the
human query complexity of the HSBC algorithm given all
true human preferences.

Theorem 4.2. In the HSBC algorithm, suppose all true
human preferences. Let P (ξ0, ξ1, ytrue) be an unknown
distribution of true human preferences. Define err(rθ) =
P (f(θ, ξ0, ξ1, ytrue) < 0), which is the probability that rθ
makes different predictions than human. For any ϵ, δ,

P (err(rθ) ≤ ϵ) ≥ 1− δ (13)

holds with human query complexity:

K = NI ≤ O(ζ(d log ζ + log
(
log

1

ϵ
/δ
)
) log

1

ϵ
) (14)

where N and I are the batch size and the iteration number,ζ
is the disagreement coefficient related to the learning prob-
lem defined in Appendix E.2.3, and d is the VC-dimension
(Vapnik, 1998) of the reward model defined in Appendix E.1.

The above theorem shows that the proposed HSBC algo-
rithm can achieve Probably Approximately Correct (PAC)
learning of the human reward. The learned reward function
rθ can make preference prediction with an arbitrarily low
error rate ϵ under an arbitrary high probability 1− δ, under
the human preference data complexity in (14). In practi-
cal scenarios, the reward function rθ is often represented
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by a deep neural network. While Theorem 4.2 is stated in
terms of VC-dimension, the measure is applicable to many
neural network classes. For instance, in multilayer percep-
trons (MLPs) with ReLU activations and bounded weights,
the VC-dimension is finite and scales with the number of
parameters and layers (Bartlett et al., 2019).

5. Robust Alignment
In this section, we extend the HSBC algorithm to handle
false human preference data. We will establish a provably
robust learning process, such that the agent can still learn
θH regardless of unknown false human preferences.

First, for a false human preference (ξ0, ξ1, yfalse), it is easy
to verify that (3) will lead to

θH /∈ {θ ∈ Θ|f(θ, ξ0, ξ1, yfalse) ≥ 0} (15)

This means that a false human preference will mistakenly
exclude the true θH . In the HSBC algorithm, suppose a
batch Bm of human preference includes unknown false hu-
man preferences, i.e., ∃j = 1, 2, ..., N , ym,j = yfalse

m,j . We
have the following lemma stating the failure of the method.

Lemma 5.1. Following the HSBC Algorithm, if there exists
one false preference in m-th batch Bm of human preferences,
then θH /∈ Cm and for all i > m, θH /∈ Θi.

Geometrically, Lemma 5.1 shows that any false human pref-
erence in preference batch Bm will make the batch cut Cm
mistakenly “cut out” θH , i.e., θH ∈ Cm. In the following,
we show that the HSBC Algorithm will become provably
robust by a slight modification of (6) or (9).

5.1. Cutting with Conservativeness Level γ
Our idea is to adopt a worst-case, conservative cut to handle
unknown false human preferences. Specifically, let conser-
vativeness level γ ∈ [0, 1] denote the ratio of the maximum
number of false human preferences in a batch of N human
preferences. In other words, with γ, we suppose a prefer-
ence batch has at most ⌈γN⌉ (⌈·⌉ is the round-up operator)
false preference. γ is a worst-case or conservative estimate
of the false preference ratio and is not necessarily equal to
the real error rate, which is unknown. In practice, γ can
be treated as a hyperparameter to reflect varying levels of
human irrationality, or it can be adapted online based on
run-time estimation of human behavior. In this work, we
use γ as a constant hyperparameter for simplicity.

With the conservativeness level γ, one can change (9) into

Ci = {θ|Vi(θ) > ⌊(1− γ)N⌋ − 0.5}, (16)

where ⌊·⌋ is the round-down operator, and the indicator
function of the batch cut Ci thus can be expressed as

1Ci(θ) = H(Vi(θ)− ⌊(1− γ)N⌋+ 0.5). (17)

The following lemma states that with the above modification
of Ci, the HSBC algorithm can still achieve the provable
robustness against false human preference.

Lemma 5.2. With the conservativeness level γ and replac-
ing (9) with Ci in (16), the HSBC Algorithm will have
θH ∈ Ci and θH ∈ Θi, i=1,2,3...I, regardless of false
human preference.

The lemma means by simply replacing (9) with (16) while
keeping other settings unchanged, the HSBC algorithm is
robust against human false labels. (9) is a special case
of (16) since when γ = 0, ⌊(1 − γ)N⌋ = ⌊N⌋ = N .
Geometric interpretation of Lemma 5.2 is given below.

5.2. Geometric Interpretation

Figure 3: Geometry Interpretation of the robust HSBC with false
preferences. Red arrows are the direction of the constraints, i.e.,
the θ region satisfying {θ|fi,j(θ) ≥ 0}. Left: yfalse

i,3 is false human
preference, and thus simply taking the intersection will cut out θH .
Right: in robust HSBC, the regions with Vi(θ) ≥ 2 are kept, thus
θH is still contained in the new hypothesis space Θi+1.

Fig. 3 shows a 2D geometric interpretation of the robust
hypothesis cutting from Θi to Θi+1 in the presence of false
human preferences in batch Bi. Here, the batch size is
N = 3, and only the third preference (ξ0i,3, ξ

1
i,3, y

false
i,3 )

is false. We set γ = 1/3. As shown in Fig. 3, since
(ξ0i,3, ξ

1
i,3, y

false
i,3 ) is a false preference, it will induce a con-

straint fi,3(θ) := f(θ, ξ0i,3, ξ
1
i,3, y

false
i,3 ) ≥ 0 which θH does

not satisfy. As a result, simply taking the intersection of
all constraints {θ|fi,j(θ) ≥ 0, j = 1, 2, 3} will rule out θH

by mistake. However, in this case, one can still perform a
correct hypothesis space cutting (containing θH ) using (17).
Replacing N = 3 and γ = 1/3 in (17), the indicator func-
tion for the batched cut is 1Ci

(θ) = H(Vi(θ)− 1.5). This
means by keeping the region in Θi with voting value Vi(θ)
to be 2 or 3, θH ∈ Θi+1. In other words, by setting a mild
voting threshold ⌊(1 − γ)N⌋ − 0.5, a broader hypothesis
space containing θH can be preserved.

6. Detailed Implementation
By viewing the case of all true human preferences as a
special case with conservativeness level γ = 0, we present
the implementation of the HSBC algorithm in Algorithm 1.
The details are presented below.

6.1. Hypothesis Space Sampling
The step of hypothesis space sampling is to sample an en-
semble of M parameters, Ei = {θk

i }Mk=1, from the current

5



Robust Reward Alignment via Hypothesis Space Batch Cutting

Algorithm 1 Implementation for HSBC Algorithm
Input: Batch size N , ensemble size M , conservativeness level
γ, disagreement threshold η, segment count per trajectory Z.
for i = 0 to I do

Sample an assemble Ei from current hypothesis space (if
i = 0, randomly initialize E0) with the method in Section
6.1. Filter and Densify Ei with the method in Section 6.2;

//Hypothesis Sampling
Based on Ei, generate trajectory using sampling-based MPC
(Section 6.3). Select trajectory pairs based on disagreement
score, and acquire a preference batch Bi (Section 6.3);

//Disagreement-based human query
Update the sampling objective function with (19) and (20)
using the new batch Bi;

//Hypothesis space Cutting
end for
return EI

hypothesis space Θi. We let the initial hypothesis space
Θ0 = Rr, that is, 1Θ0

= 1, which guarantees possible θH

is contained in Θ0. In our implementation, we use neural
networks as rewards, thus E0 is randomly initialized with
common distributions for neural network initialization.

For i > 0, sampling Ei can be reformulated as an optimiza-
tion with the indicator function (11), i.e.,

Ei ⊆ argmax
θ

1Θi
(θ) = argmax

θ

∏i−1

k=0
1Ck

(θ). (18)

To use a gradient-based optimizer, (18) needs to be differen-
tiable. Recall in (17) the only non-differentiable operation
is H. Thus, we use the smooth sigmoid function sigρ(·)
with temperature ρ to approximate H. In fact, other smooth
functions with a similar shape can be used. From (17), 1Ci

will be replaced by the smooth approximation:

1̂Ci(θ)≈sigβ

(∑N

j=1
sigα(fi,j(θ))−ν(1−γ)N

)
, (19)

where α, β, ν are the tunable hyperparameters. Therefore,
sampling Ei can be performed through

Ei ⊆ argmax
θ

∏i−1

k=0
1̂Ck

(θ). (20)

To get diverse θ samples in Ei, we optimize (20) in parallel
with diverse initial guesses. For i > 0, the optimization is
warm-started using the previous Ei−1 as initial values.

6.2. Sample Filtering and Densification
As Ei are solutions to a smoothed optimization (20), there
is no guarantee that the samples are all in Θi. Thus, we use
the original indicator function 1Θi(θ) to filter the collected
samples: remove θs that are not satisfying 1Θi(θ). Since
Ei after filtering may not have M samples, we propose a
densification step to duplicate some θs (with also adding
some noise) in Ei to maintain the same sample size M .

6.3. Reward Ensemble Trajectory Generation
With the ensemble Ei sampled from Θi, the reward used for
planning and control is defined by taking the mean value of
predictions from the reward ensemble, i.e.

rEi(s,a) = Eθ∈Eirθ(s,a). (21)

In our implementation, we use sampling-based model pre-
dictive control (MPC) in the MJX simulator (Todorov et al.,
2012) for trajectory generation. Half of the action plans gen-
erated from the MPC are perturbed with a decaying noise
for exploration in the initial stage of learning. It is possible
to use reinforcement learning for trajectory generation.

6.4. Disagreement Scoring and Query
In our algorithm, generated trajectories are stored in a buffer.
When a new trajectory is generated, we segment it into Z
segments, and mix them with old segments for randomly
picking segment pairs (ξ0, ξ1) for disagreement test.

For any segment pair (ξ0, ξ1), we measure their disagree-
ment on the current hypothesis space using the reward en-
semble Ei. We define the following disagreement score:

DISEi
(ξ0, ξ1) = 4n+

Ei
n−
Ei
/N2 (22)

where n+
Ei

is the number of θs in Ei such that Jθ(ξ0) >

Jθ(ξ
1); n−

Ei
= N − n+

Ei
. If no disagreement exist in

Ei, i.e., θ ∈ Ei makes one-sided judgment on (ξ0, ξ1),
DISEi

(ξ0, ξ1) = 0. When the disagreement is evenly split,
the score is 1. We use a disagreement threshold η ∈ (0, 1)
to select valid disagreement pairs for human queries. A
pair (ξ0, ξ1) is rejected if DISEi(ξ

0, ξ1) ≤ η; otherwise,
the human is queried for a preference label y for (ξ0, ξ1).
Trajectory generation and disagreement-based query are
performed iteratively until Bi contains N pairs.

7. Experiments
We test our method on 6 different tasks, as shown in Fig. 4:

Figure 4: Task environments of experiments.

3 dm-control tasks: including Cartpole-Swingup, Walker-
Walk, Humanoid-Standup. We directly use Cartpole, Walker
and Humanoid to denote the tasks.

2 in-hand dexterous manipulation tasks: An Allegro
hand in-hand reorients a cube and bunny object to any given
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(a) False Rate = 0 (b) False Rate = 10% (c) False Rate = 20% (d) False Rate = 30%

Figure 5: Learning curves for different tasks (rows) under different rates (columns) of false human preferences. The conservativeness level
in HSBC Algorithm is the same as actual human false rate. All results are reported over 5 runs. The results show our method significantly
outperforms the baseline when the false rate is high, and has a comparable performance when the false rate is 0 (no false preference).

(a) Ablation of γ (b) Ablation of η (c) Ablation of N (d) Ablation of M

Figure 6: Ablation study in Walker-Walk task for the choices of (a): conservativeness level γ, (b) disagreement threshold η, (c): batch size
N , (d): ensemble size N . The learning curves are reported across 5 individual runs.
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Table 1: Results on Tasks over 5 runs

TASKS
FALSE RATE 0 % FALSE RATE 10% FALSE RATE 20% FALSE RATE 30%

ORACLE BASELINE OURS BASELINE OURS BASELINE OURS BASELINE OURS

CARTPOLE 148.6 143.3 ±8.3 137.8 ±7.9 101.4 ±39.2 137.0 ±8.5 52.3 ±26.8 130.7 ±2.0 42.8 ±23.3 111.3 ±16.8
WALKER 472.9 444.4 ±13.4 459.4 ±3.9 421.2 ±20.6 441.4 ±15.0 401.8 ±37.6 447.1 ±14.4 277.0 ±62.3 417.2 ±12.3

HUMANOID 210.1 107.0 ±28.6 134.7 ±30.5 85.6 ±25.9 148.0 ±14.9 84.2 ±15.2 117.9 ±19.9 69.3 ±12.0 106.5 ±27.0
DEXMAN-CUBE -0.139 -0.281 ±0.080 -0.207 ±0.043 -0.291 ±0.092 -0.222 ±0.057 -0.360 ±0.131 -0.238 ±0.065 -0.342 ±0.024 -0.227 ±0.058

DEXMAN-BUNNY -0.155 -0.352 ±0.096 -0.220 ±0.038 -0.356 ±0.204 -0.278 ±0.218 -0.404 ±0.101 -0.236 ±0.026 -0.505 ±0.026 -0.263 ±0.050
GO2-STANDUP -30.6 -62.1 ±22.9 -43.9 ±4.2 -84.1 ±32.0 -36.7 ±4.3 -101.2 ±18.0 -75.6 ±21.7 -85.5 ±21.1 -80.5 ±26.4

target. The two objects demand different reward designs due
to the geometry-dependent policy. We use Dexman-Cube
and Dexman-Bunny to denote two tasks.

Quadruped robot stand-up task: A Go2 quadruped robot
learns a reward to stand up with two back feet and raise the
two front feet. We use Go2-Standup to denote the task.

Detailed settings are in Appendix B.3. Similar to MJPC
(Howell et al., 2022) but to better support GPU-accelerated
sampling-based MPC, we re-implemented all environments
in MJX (Todorov et al., 2012) with MPPI (Williams et al.,
2015) as the MPC policy. Note that our method implemen-
tation is also applicable to other simulated environments,
either by accepting slower policy inference in the absence
of GPU parallelization, or by adapting alternative policy
classes (e.g., RL-based policies) to generate trajectories.

Simulated (false) human preference: Similar to (Lee et al.,
2021b; Cheng et al., 2024), a “simulated human” is imple-
mented as a computer program to provide preference for
the reward learning. The simulated human uses the ground-
truth reward rθH

(see the ground truth reward of each task in
Appendix B) to rank trajectory pairs. To simulate different
rates of false human preferences, in each batch, a random
selection of human preference labels is flipped.

Baseline: Throughout the experiment, we compare our
method against a baseline implemented using the reward
learning approach from PEBBLE (details in Appendix A).

HSBC Algorithm settings: In all tasks, rewards are MLP
models. Unless specially mentioned, batch size N = 10,
ensemble size M = 16, and disagreement threshold η =
0.75. In dm-control tasks and Go2-Standup, trajectory pairs
of the first few batches are generated by a random policy for
better exploration. Refer to Appendix C for other settings.

7.1. Results
For each task, we test our method and the baseline each for
5 independent runs with different random seeds. During the
learning process, the reward ensemble Ei at the checkpoint
iteration i is saved for evaluation. The evaluation involves
using the saved reward ensemble Ei to generate a new tra-
jectory, for which the performance is calculated using the
ground-truth reward. Each evaluation is performed in 5 runs
with different random seeds. Evaluation performance at
different learning checkpoints will yield the learning curve.
We show the learning curves in Fig. 5. The mean and stan-
dard deviation across different runs are reported. To better

show the human query complexity, we set the x-axis as the
number of queries, and the y-axis is the performance of Ei
evaluated by ground-truth reward. Quantitatively, Table 1
shows the evaluation reward results of all tasks.

From both Fig. 5 and Table 1, we observe a comparable per-
formance of our proposed method and the baseline for zero
false human preferences. Both methods successfully learn
reward functions to complete different tasks. As the rate of
false preference increases, from 10% to 30%, we observe
a significant performance drop of the baseline method. In
contrast, the drop of the proposed method over a high rate
of false human preference is not significant. These results
demonstrate the robustness of the proposed method for re-
ward learning against a high rate of false human preferences.

7.2. Ablation Study
Conservativeness level γ Given a fixed rate of false hu-
man preference, We evaluate how different settings of con-
servativeness levels γ = 0, 10%, 20%, 30% affect the per-
formance of the proposed method. Here, the actual human
preferences have a fixed false rate of 20%. The ablation is
tested for the Walker task, and the results over 5 runs are
reported in Fig. 6(a). The results show that when γ = 0
(i.e., the algorithm aggressively cuts the hypothesis space
without conservatism), the learning performance drops sig-
nificantly. When γ = 30% exceeds the actual false rate
(20%) but remains within a reasonable range, it has little
impact on learning performance. However, we postulate
that, in general, a higher γ increases query complexity, as
less of the hypothesis space is cut per iteration.

Disagreement threshold η We evaluate the performance
of our algorithm under different disagreement thresholds η
given all true human preferences. The test is in the Walker
task. We set η to 0, 0.5, 0.75 and show corresponding learn-
ing curves in Fig. 6(b). The results show that disagreement-
based query can accelerate the learning convergence.

Batch size N In Fig. 6(c), we show the reward learning
performance for the Walker task with different choices of
preference batch sizes, N = 5, 10, 15, 20, under a fixed rate
20% of false human preference. The results indicate a simi-
lar performance, suggesting that the learning performance
is not sensitive to the setting of preference batch sizes.

Ensemble size M In Fig. 6(d), we present the reward
learning performance on the Walker task with varying en-
semble sizes, M = 4, 8, 16, 32, under a fixed 20% rate of
false human preferences and η = 0.75. The results show
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Table 2: Comparison with multiple other methods under 20% and 30% false preference
TASK ORACLE OURS PEBBLE RIME SURF MAE T-CE

CARTPOLE-20% 148.6 130.7 ±2.0 52.3 ±26.8 75.0 ±45.3 98.0 ±35.8 98.6 ±25.9 73.3 ±16.3
CARTPOLE-30% 148.6 111.3 ±16.8 42.8 ±23.3 81.0 ±37.0 62.3 ±42.0 59.9 ±30.7 52.0 ±30.5
WALKER-20% 472.9 447.0 ±14.4 401.9 ±37.6 408.4 ±24.8 397.2 ±30.7 425.5 ±30.2 410.8 ±19.9
WALKER-30% 472.9 417.2 ±12.2 277.0 ±62.3 310.2 ±84.0 292.0 ±69.0 288.3 ±139.0 345.6 ±52.2

that increasing the ensemble size can slightly improve the
performance, but not significantly.

7.3. Comparison with Other Methods
We compare our HSBC algorithm against two state-of-the-
art preference-based reward learning methods, SURF (Park
et al., 2022) and RIME (Cheng et al., 2024), the PEBBLE
baseline, and two other robust learning methods, MAE
(Ghosh et al., 2017) and t-CE (Feng et al., 2021). All meth-
ods are evaluated on Cartpole and Walker tasks, with false
preference rate of 20% and 30%, respectively. The com-
parison results are given in Table 2. Our HSBC method
outperforms all of other methods in robust reward learning
under high error rates. Among all those comparing methods,
RIME excels at handling false preference labels with its
label denoising design. In the Walker task, using t-CE loss
also achieves robust results. The detailed experiment set-
tings and the corresponding learning curves for each method
are provided in the Appendix F.

7.4. Statistical Analysis of Learned Rewards
To evaluate the consistency between the learned and ground-
truth rewards, we compute the Pearson correlation coeffi-
cient in three dm-control tasks under different false prefer-
ence rates. For each task, we generate five 200-step trajecto-
ries and report the mean and standard deviation of the corre-
lation values. The results, shown in Table 3, indicate strong
correlations, suggesting that the learned rewards align well
with ground-truth for high rates false human preference.

Table 3: Correlation between learned and ground-truth rewards.
TASK FALSE RATE - 0% 10% 20% 30%

CARTPOLE 0.928 ±0.025 0.888 ±0.031 0.914 ±0.022 0.851 ±0.062
WALKER 0.584 ±0.035 0.636 ±0.060 0.598 ±0.070 0.430 ±0.062

HUMANOID 0.673 ±0.070 0.657 ±0.066 0.546 ±0.134 0.500 ±0.079

7.5. Different False Preference Types
We further test our method under different types of irrational
human preference labels (teachers) defined in B-Pref (Lee
et al., 2021a), including “Stoc,” “Mistake,” and “Myopic”
teachers (note we exclude “Equal” teacher, as ties are not
considered in our formulation). The valuations are con-
ducted on the Cartpole task with B-Pref hyperparameters
set as β = 10.0 for Stoc, ϵ = 0.2 for Mistake, and γ = 0.98
for Myopic. The conservativeness level of HSBC is fixed at
20%, and all other settings follow the original B-Pref setup.
The results in Table 4 show our method handles “Mistake”
and “Myopic” teachers well, but struggles with “Stoc” teach-
ers. The reason could be that in the late stage of learning,
the trajectories in a pair are close enough in reward values,

and thus “Stoc” teacher tends to provide very noisy labels,
which hinders the convergence of the algorithm.

Table 4: Evaluation under different B-Pref teacher models.
TEACHER ORACLE STOC MISTAKE MYOPIC

REWARD 148.6 93.6 ±30.7 122.6 ±14.6 127.0 ±26.5

7.6. Evaluation on Real Human Data
We finally evaluate our HSBC algorithm using real human
feedback on the CartPole and Walker tasks, with four hu-
man volunteers. We report the performance of the learned
rewards across participants. To efficiently bootstrap learn-
ing, human feedback was collected after a small amount of
simulated feedback—50 for CartPole and 100 for Walker.
Each volunteer provided 50 preferences for CartPole and
100 for Walker. Due to the inherent noise of real human
preferences, γ was set to 40%. HSBC was compared against
the PEBBLE baseline under identical conditions. The learn-
ing curves are presented in Fig. 7. The results demonstrate
that HSBC achieves more stable convergence and superior
performance when learning from real human feedback.

(a) Cartpole (b) Walker

Figure 7: Reward learning with real human preference. HSBC
outperforms baseline in reward performance and learning stability.

8. Conclusion
This paper proposes Hypothesis Space Batch Cutting
(HSBC), a method for robust reward alignment from hu-
man preference that may include unknown false feedback.
HSBC selects batches of human preference data based on
disagreement and uses them to iteratively refine the hypoth-
esis space of reward functions. Each preference batch leads
to a voting function over the hypothesis space, which is
then used to eliminate portions of the hypothesis space. To
guard against false preference labels, a conservative cutting
strategy is proposed to avoid overly aggressive hypothesis
cutting. HSBC is geometrically interpretable and certifiable
on human query complexity. Across diverse control tasks,
HSBC matches the state-of-the-art methods with clean data
and outperforms them under high false preference rates.
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Impact Statement
The HSBC method improves both interpretability and ro-
bustness in reward alignment by offering a geometric per-
spective on hypothesis space updates and a certifiable bound
on human query complexity. Its conservative cutting strat-
egy enables reliable learning even under a high rate of false
preference labels, without requiring explicit identification
of those labels. As a result, HSBC is resilient to noisy or
adversarial human feedback and remains simple to imple-
ment, requiring no additional classification modules. These
strengths make HSBC particularly well-suited for applica-
tions in robotics, autonomous systems, and human-in-the-
loop decision-making, where false or inconsistent data are
common and accurate alignment with human intent is criti-
cal. By enhancing robustness while preserving interpretabil-
ity, HSBC provides a principled framework for preference-
based learning in uncertain real-world environments.
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A. Baseline Method for Comparison
We present the details of the baseline method used for comparison. It is inspired by the method of PEBBLE (Lee et al.,
2021b) on training the reward model, while uses the same setting to plan the trajectories and collect the preferences. The
only differences between the baseline and our method are the ensemble size and the objective function. An ensemble of 3
reward models is maintained. After i batches of preferences, the reward models are tuned to optimize the Bradley-Terry loss
function of all previous preferences:

L =

i−1∑
k=0

N−1∑
j=0

(1− yk,j)P
BT
θ (ξ1k,j ≻ ξ0k,j) + yk,jP

BT
θ (ξ1k,j ≻ ξ0k,j) (23)

where

PBT
θ (ξ0 ≻ ξ1) =

expαbaseJθ(ξ
0)

expαbaseJθ(ξ
0) + expαbaseJθ(ξ

1)
(24)

The parameter αbase is the temperature of the Bradley-Terry model. In the dexterous manipulation tasks, αbase = 0.5. In all
other tasks, αbase = 3. In the experiments of cartpole swingup, αbase = 10. The preferences are selected with disagreement
threshold η = 0.8, which is similar to our approach.

B. Detailed Description of the Tasks
B.1. DM-Control Tasks

We re-implemented three dm-control tasks in MJX to perform sampling-based MPC, similar to (Howell et al., 2022).

Cartpole We directly use the environment xml file in dm-control, with the same state and action definition in the original
library. The goal is to swing up the pole to an upright position and balance the system in the middle of the trail. Use φ, φ̇ to
denote the angle and angular velocity of the pole, x, ẋ to denote the horizontal position and velocity of the cart. The system
is initialized with x = 0 and φ = π, along with a normal noise with standard deviation 0.01 imposed on all joint positions
and velocities. s = (x, sinφ, cosφ, ẋ, φ̇) and a is a 1D control scalar signal for the horizontal force applied on the cart. We
use a ground truth reward function:

r(s,a) = upright(s) ∗middle(s) ∗ small ctrl(a) ∗ small vel(s) (25)

where upright(s) = (cosφ + 1)/2, middle(s) = exp(−x2), small ctrl(a) = (4 + exp(−4a2))/5, small vel(s) =
(1 + exp(−0.5ẋ2))/2.

Walker We directly use the environment xml file in dm-control. The goal is to make the agent walk forward with a steady
speed. The system is initialized at a standing position and a normal noise with standard deviation 0.01 is imposed on all
joint positions and velocities. Use z to denote the sum of z−coordinate of the torso and a bias −1.2, thus the value z = 0
when the walker stands up-straight. φy to denote the torso orientation in xz−plane, q to denote all joints between links and
ẋ to denote the torso linear velocity on x−axis. s = (z, φy, q, ẋ, ż, φ̇y, q̇) and a ∈ [0, 1]6 stands for torques applied on all
joints. We use a ground truth reward function:

r(s,a) =
3 ∗ standing(s) + upright(s)

4
∗move(s) (26)

where standing(s) = clip(1− |z|, 0, 1), upright(s) = (cosφy + 1)/2, move(s) = clip(ẋ, 0, 1).

Humanoid We directly use the environment XML file in dm-control. The goal is to stand up from a lying position.
The system is initialized at a lying position and a uniform noise between -0.01 and 0.01 is imposed on all joint positions
and velocities. Use z, quat to denote the z−coordinate and quaternion orientation of the humanoid torso. Use v =
[vx, vy, vz], w = [wx, wy, wz] to denote 3D linear and angular velocity of the torso. Use q to denote all of the joints in the
humanoid agent. s = [z, quat, q, v, w, q̇] and a ∈ [0, 1]17 stands for torques applied on all joints. We use a ground truth
reward function:

r(s,a) = standing(a) ∗ small vel(s) (27)

where standing(s) = clip(z/1.2, 0, 1) and small vel(s) = exp(−0.1 ∗
√

v2x + v2y − 0.3 ∥w∥).
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B.2. In-hand Dexterous Manipulation

We mainly focus on Allegro robot in-hand re-orientation of two different objects, a cube and a bunny. An allegro hand and an
object are simulated in the environment. The allegro hand is tilted with quaternion [0.0, 0.82, 0.0, 0.57]. The objects have an
initial position of [0.0, 0.0, 0.05] with quaternion [0, 0, 0, 1]. At the beginning of every trajectory planning during training, a
target orientation in the form of an axis-angle is randomly selected. The axis is uniformly randomly selected from x, y, z axis
and the angle is uniformly randomly selected from the set {±π

4 ,±
π
2 ,±

3π
4 , π}. This angle-axis rotation is then converted to

the target quaternion qtarg . The goal is to use the fingers of the robotic hand to rotate the object to the target orientation, as
well as remain the object in the center of the hand. Use q to denote the joint positions of the robot hand, p to denote the object
position, ∆quat to denote the quaternion different between current object pose and target pose (∆quat = 1− (qTcurrqtarg)

2)
and fftip,mftip, rftip, thtip to denote the positions of four fingertips (forefinger, middle finger, ring finger and thumb).
The object and fingertip positions are multiplied by 10 to balance the scale. s = [q, p,∆quat, fftip,mftip, rftip, thtip].
a ∈ [0, 1]12 is the delta-position command on all joints and is multiplied by 0.2 to generate actual control signals. The
ground truth reward is designed to be:

r(s,a) = −cost quat(s)− 0.4cost pos(s)− 0.05cost contact(s) (28)

Where cost quat(s) = ∆quat, cost pos(s) = ∥p− (0.0, 0.0, 0.01) ∗ 10∥2 and cost contact(s) = ∥p− fftip∥2 +

∥p−mftip∥2 + ∥p− rftip∥2 + ∥p− thtip∥2.

In evaluation, 6 trajectories are planned by setting different target of ±π
2 rotation on x, y, z axis. The mean reward per

trajectory per time step is calculated and recorded.

B.3. Go2-Standup

In this task, a go2 quadruped robot is simulated and the goal is to stand up on two back feet to keep the torso height on
0.6, and raise two front feet to the height of 1.2. The initial pose and the target pose are shown in Fig. 8. The system is
initialized at a standing position on four legs, and a uniform noise between -0.01 and 0.01 is imposed on all joint positions
and velocities. Use zt, quat to denote the z−coordinate and quaternion orientation of the robot torso. Use zff , zrf to
denote z−coordinates of two front feet and two rear feet. To balance the scale, all features related to the z-coordinates are
multiplied by 10. Use v = [vx, vy, vz], w = [wx, wy, wz] to denote 3D linear and angular velocity of the torso. Use q to
denote all of the joint positions. s = [zt, quat, q, zff , zrf , v, w, q̇] and a ∈ [0, 1]12 stands for the desired delta-position on
all joints. We define the ground truth reward function as:

r(s,a) = −2.5height cost(s)− 0.5feet cost(s)− 10−6ang vel cost(s)− 10−2vel cost(s) (29)

where height cost(s) = (z − 0.6)2, feet cost(s) = ∥zff − 1.2∥2 + ∥zrf∥2, ang vel cost(s) = ∥w∥2 and vel cost(s) =

∥v∥2.

(a) Initial Position (b) Stand-up Position

Figure 8: Illustration of the Go2-Standup task, the goal is to reach a stand-up posture with two feet.

C. Model and Parameters in Experiment
Reward Neural Networks For all tasks, we use an MLP with 3 hidden layers of 256 hidden units to parameterize reward
functions. The activation function of the network is ReLU. In the dm-control tasks, the input is a concatenated vector of
state s and action a. In dexterous manipulation and quadruped locomotion tasks, the input is purely the state s to perform
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Table 5: Learning Parameter in Different Tasks

TASK α β Z I T Teval Tseg

CARTPOLE 10.0 3.0 2 50/80 100 200 50
WALKER 5.0 3.0 2 80/120 150 500 50
HUMANOID 5.0 3.0 3 100/150 200 300 50
DEXMAN-CUBE 5.0 3.0 3 30/40 100 150 20
DEXMAN-BUNNY 5.0 3.0 3 30/40 100 150 20
GO2-STANDUP 5.0 3.0 3 80/120 150 100 25

Table 6: MPPI Parameter in Different Tasks

TASK Num Hor λ Std

CARTPOLE 256/512 20/25 0.01/0.01 1.0/0.75
WALKER 512/1024 25/30 0.01/0.01 1.0/0.75
HUMANOID 1024/1024 25/25 0.01/0.01 1.2/0.75
DEXMAN-CUBE 1024/1024 5/5 0.01/0.01 1.0/1.0
DEXMAN-BUNNY 1024/1024 5/5 0.01/0.01 1.0/1.0
GO2-STANDUP 1024/1024 25/25 0.005/0.01 1.0/0.75

faster learning. The output scalar value of the reward is scaled to the interval [−1, 1] using the Tanh function. In particular,
in the dexterous manipulation tasks, an intrinsic reward −0.5cost contact(s) is imposed to the network output, forming a
predicted reward to encourage grasping the object and bootstrapping the learning.

Learning Settings The parameters α, β, Z, I , trajectory length T , segment length Tseg and evaluation trajectory length
Teval slightly varies from the tasks, see Table 5. In the Table, the two number of batch number I corresponds to the number
with irrationality {0, 10%} and {20%, 30%}. The Adam (Kingma, 2014) optimizer parameter is identical for all dm-control
and Go2-Standup tasks, the learning rate is set to be 0.005 with a weight decay coefficient 0.001. In dexterous manipulation
tasks, the learning rate is 0.002 with a weight decay coefficient 0.001.

MPPI Parameter The number of samples (Num), planning horizon (Hor), temperature (λ) and the standard deviation
(Std) of the normal sampling distribution determine the quality of trajectories planned by MPPI. These parameters varies
from different tasks, see Table 6. In the table, two numbers on each entry denotes the different settings in the training and
evaluation stages.

D. Proof of the Lemmas
D.1. Proof of Lemma 4.1

Proof. By the definition of ytrue in (2),
f(θ, ξ0i,j , ξ

1
i,j , y

true
i,j ) ≥ 0 (30)

combining the definition of Ci in (6), θH ∈ Ci, ∀i. Hypothesis space Θi = Θ0 ∩ C0 ∩ · · · ∩ Ci−1. Combining θH ∈ Θ0 and
θH ∈ Ci, ∀i, θH ∈ Θi, ∀i.

D.2. Proof of Lemma 5.1

Proof. Without loss of generality, suppose jth preference in mth batch (ξ
(0)
m,j , ξ

(1)
m,j , y

false
m,j ) has false label, Thus,

fm,j(θH) < 0 (31)

Which means θH /∈ Cm. With definition of Cm and Θi, for all i > m,

Θi ⊆ Θm ⊆ Cm (32)

that leads to θH /∈ Θi for all i > m.
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D.3. Proof of Lemma 5.2

Proof. With the definition of γ, there are at most ⌈γN⌉ incorrect labels and at least ⌊(1− γ)N⌋ correct labels in one batch
Bi. For all θH ∈ ΘH , fi,j(θH) ≥ 0 holds for all tuples with correct labels (ξ0i,j , ξ

1
i,j , y

true
i,j ). As a result, in the voting

process of Vi(θH) shown in (8), there will be at least ⌊(1− γ)N⌋ ”+1” votes and Vi(θH) ≥ ⌊(1− γ)N⌋. With the modified
definition of Ci in (16), θH ∈ Ci and we have θH ∈ Θi

E. Proof of the Theorem 4.2
The proof of the theorem follows the pipeline in Chapter 6 in (Settles, 2012). In order for the paper to be self-contained, we
include the complete proof here.

E.1. Reward-Induced Classifier

The preference alignment can be viewed as a classification task. Use the new notation x = (ξ0, ξ1) to denote a trajectory pair.
This pair is fed to the classifier to predict a 0-1 label y of which trajectory is better in human’s sense. For any parameterized
reward model rθ, a classifier hθ can be induced by defining:

hθ(x) =

{
0, Jθ(ξ

0) ≥ Jθ(ξ
1)

1, Jθ(ξ
0) < Jθ(ξ

1)
(33)

Recall that function g is used to calculate the average reward on any trajectory. All of the classifiers induced by rθ
parameterized by θ ∈ Θ0 forms a concept class H = {hθ|θ ∈ Rr}. We assume the VC dimension of H is a finite number d.

Specifically, there is a human classifier correspond to rθH
which defines the label y corresponds to x:

y = hH(x) =

{
0, JθH

(ξ0) ≥ JθH
(ξ1)

1, JθH
(ξ0) < JθH

(ξ1)
(34)

Using PXY to denote the data-label joint distribution and use PX to define the marginal distribution of x for simplicity.
There exists one aligned classifier h∗ ∈ H such that:

∀x, y ∼ PXY , h
∗(x) = y (35)

Define the error rate of any h ∈ H as:
err(h) = PX(h(x) ̸= h∗(x)), (36)

it is equivalent to express the preference prediction error rate err(rθ) = P (f(θ, ξ0, ξ1, ytrue) < 0) in Theorem as err(rθ) =
err(hθ).

E.2. Definition of some Helper Functions, Sets and Coefficients

In this section we establish some definitions of helper functions, sets or coefficients, which are used in the main proof of
Theorem 4.2.

E.2.1. VERSION SPACE

Similar to the definition of H, the classifier set generated by every Θi can be notes as Vi = {hθ|θ ∈ Θi}, which is typically
called version space in the context of active learning. By the definition of Θi, for all h ∈ Vi, h can make perfect classfication
of all data (x, y) formed by the trajectory pairs and labels in all previous batches B0, . . .Bi−1. Also, since ΘH ⊆ Θi,
h∗ ∈ Vi for all the time. Because the hypothesis space for parameters is shrinking, i.e., Θi ⊇ Θi+1, the version space is also
shrinking such that Vi ⊇ Vi+1.

E.2.2. DIFFERENCE BETWEEN CLASSIFIERS ON Ξ AND CORRESPONDING BALLS

The data distribution provides a straightforward measure between two classifiers h1, h2 ∈ H, by directly examining the
proportion of data that they behave differently. A difference ∆(h1, h2) can be defined as the probability that two classifiers
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behave differently, under the data distribution Ξ:

∆(h1, h2) = PX(h1(x) ̸= h2(x)) (37)

With this different as a distance measure, an ρ−ball with radius ρ and center hc can be defined as:

B(hc, ρ) = {h ∈ H|∆(hc, h) ≤ ρ} (38)

E.2.3. REGION OF DISAGREEMENT AND DISAGREEMENT COEFFICIENT

For a given version space V and use X to denote the instance space of x, the region of disagreement is a subset of the
instance space:

DIS(V) = {x ∈ X |∃h1, h2 ∈ V : h1(x) ̸= h2(x)} (39)

With the definition of the region of disagreement, a disagreement coefficient was proposed by (Hanneke, 2007) to characterize
the difficulty of active learning, which is defined with the expression

ζ = sup
ρ>0

PX(DIS(B(h∗, ρ)))

ρ
(40)

The value ζ is determined by H and Ξ. The greater ζ is, the more the volume of the disagreement region of the ρ−ball
around h∗ scales with ρ, which signifies greater learning difficulty.

E.3. Passive PAC Sample Complexity Bound

Since the training set from the distribution ΞXY is perfectly seperateble as in, using the famous probably approximately
correct (PAC) bound for passive learning, with arbitary ϵ and δ, P (err(h) ≤ ϵ) ≥ 1− δ can be achieved by perfectly fit
training data with size LPASS :

LPASS ≤ O(
1

ϵ
(d log(

1

ϵ
) + log

1

δ
)) ≃ O(

d

ϵ
) (41)

E.4. Formal Proof of Theorem 4.2

Proof. For arbitary ϵ and δ, define batch size N to be:

N = ⌈cζ(d log ζ + log
1

δ′
)⌉ (42)

with c as a constant and a specially chosen δ′ (the definition of which is shown later in the proof). With probability 1− δ′

and for all h ∈ Vi+1:

PX(h(x) ̸= h∗(x)|x ∈ DIS(Vi)) ≤
c′

N
(d log

N

d
+ log

1

δ′
) (43)

This is because data batch Bi is selected by disagreement (12). By the definition of Vi+1, all of the data Bi comes from the
set DIS(Vi) and all of the classifiers in Vi+1 perfectly fits this batch. By switching the PAC bound LPASS in Appendix E.3
with M and solving for ϵ we get the RHS of the inequality.

With proper choice of c, c′, log N
d ≤ log ζ and the RHS of (43):

c′

N
(d log

N

d
+ log

1

δ′
) ≤ c′

cζ
≤ 1

2ζ
(44)

As a result, for all h ∈ Vi+1,

err(h) =PX(h(x) ̸= h∗(x)) (45)
=PX(h(x) ̸= h∗(x)|x ∈ DIS(Vi))PX(x ∈ DIS(Vj))+ (46)
PX(h(x) ̸= h∗(x)|x /∈ DIS(Vi))PX(x /∈ DIS(Vj)) (47)
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By the property Vi+1 ⊆ Vi, h ∈ Vi and combining with h∗ ∈ Vi, PX(h(x) ̸= h∗(x)|x /∈ DIS(Vi)) = 0 and

err(h) ≤ PX(x ∈ DIS(Vi))

2ζ
=

PX(DIS(Vi))

2ζ
(48)

This means Vi+1 ⊆ B(h∗, PX(DIS(Vi))
2ζ ), with the definition of the disagreement coefficient ζ,

PX(DIS(Vi+1)) ≤ PX(DIS(B(h∗,
PX(DIS(Vi))

2ζ
))) ≤ PX(DIS(Vi))

2
(49)

Thus, let U0 = PX(DIS(V0))/2ζ , after I = log2(U0/ϵ) batches of data and with δ′ = δ/I , for all h ∈ VI , The relationship

err(h) ≤ U02
−I = ϵ (50)

holds with a union bound probability 1−Iδ′ = 1−δ. With the definition of VI , for all θ ∈ ΘI , err(rθ) = err(hθ ∈ VI) ≤ ϵ.
Thus, the total number of the queries to perform PAC alignment can be expressed as:

K = IN = O(ζ(d log ζ + log
log 1/ϵ

δ
) log

1

ϵ
) (51)

This is the bound shown in Theorem 4.2 and completes the proof.

F. Additional Experiments
F.1. Comparison with Multiple Reward Learning Methods

The comparison includes two advanced preference-based reward learning methods, SURF (Park et al., 2022) and RIME
(Cheng et al., 2024), as well as the PEBBLE (Lee et al., 2021b) baseline with two robust reward functions, MAE (Ghosh
et al., 2017) and t-CE (Feng et al., 2021). For fairness in all comparisons (including the PEBBLE baseline in Section A),
we replace the original RL policies in all methods with MPPI-based planners. The reward learning components remain
consistent with their original implementations to ensure a fair evaluation of planning performance.

For the comparison of RIME (Cheng et al., 2024) and SURF (Park et al., 2022), we used the same settings as the original
PEBBLE baseline for collecting trajectory segments. In RIME, KL-divergence between predicted preference probabilities
and labels filters untrustworthy labels and flips them for improved learning. We set RIME parameters to α = 0.25,
βmax = 3.0, βmin = 1.0, τupper = − ln(0.005), k = 1/60 for the Cartpole-Swingup task, and α = 0.3, βmax = 2.2,
βmin = 1.7, τupper = − ln(0.005), k = 1/100 for the Walker-Walk task.

For SURF, we changed the length of collected segments to 60 and used temporal data augmentation to crop segments to
a fixed length of 50. We choose τ = 0.95, µ = 1.0, and λ = 1.0 in both tasks. All algorithm parameters are selected to
ensure the best performance of the baseline methods.

In MAE (Ghosh et al., 2017), the original loss function in PEBBLE baseline is replaced with LMAE = E|ŷ − Pθ| for robust
reward learning. In t-CE (Feng et al., 2021), the loss is replaced with Lt-CE = E

∑t
i=1

1−ŷ⊤Pθ

i . Here, ŷ is the one-hot
version of the noisy label, and Pθ is the predicted probability of human preference on trajectory pairs. We choose t = 4 in
the t-CE loss based on its best performance.

The learning curves are shown in Fig. 9.
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(a) Cartpole, 20% false rate (b) Cartpole, 30% false rate

(c) Walker, 20% false rate (d) Walker, 30% false rate

Figure 9: Learning curves of the methods used for comparison.
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