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ABSTRACT

Graph Neural Networks (GNNs) have emerged as powerful tools for learning rep-
resentations from graph-structured data Kipf & Welling (2017); Veličković et al.
(2018), but often rely heavily on labeled data for training. This paper introduces
a novel hierarchical self-supervised graph contrastive learning framework that ef-
fectively leverages unlabeled data to enhance node representations. Our method
captures rich structural information at multiple scales by incorporating contrastive
objectives at the node, subgraph, and graph levels, extending previous work on
self-supervised learning for graphs Veličković et al. (2019); You et al. (2020). We
employ an adaptive graph augmentation strategy to generate meaningful views of
the graph while preserving essential properties. Through extensive experiments
on benchmark datasets, including Cora, Citeseer, PubMed Sen & Dhillon (2008),
and Reddit Hamilton et al. (2017), we demonstrate that our approach consistently
outperforms both supervised and self-supervised baseline models in node clas-
sification tasks. Our method shows particular strength in low-label regimes and
exhibits strong generalization capabilities in both transductive and inductive set-
tings. Ablation studies confirm the importance of each hierarchical component,
while qualitative analyses illustrate the discriminative power of the learned em-
beddings. This work opens new avenues for self-supervised learning on graphs
and has broad implications for applications where labeled data is scarce or ex-
pensive to obtain, such as in social networks Perozzi et al. (2014) and biological
networks Zitnik et al. (2017).

1 INTRODUCTION

Graph-structured data is pervasive in numerous domains such as social networks Perozzi et al.
(2014), biological networks Zitnik et al. (2017), recommendation systems Ying et al. (2018), and
knowledge graphs Wang et al. (2017). Understanding the complex relationships and interactions
among entities in these domains is crucial for various tasks, including node classification, link pre-
diction, and community detection.

Graph Neural Networks (GNNs) have emerged as powerful tools for learning representations from
graph-structured data Kipf & Welling (2017); Veličković et al. (2018); Hamilton et al. (2017). By
leveraging the structural information inherent in graphs, GNNs can capture both local neighborhood
patterns and global structural properties. However, traditional GNNs are typically trained in a su-
pervised manner, relying heavily on large amounts of labeled data. Obtaining labeled data in graph
domains can be challenging due to the cost, time, and domain expertise required for annotation.

At the same time, vast amounts of unlabeled graph data are readily available, presenting an oppor-
tunity to leverage self-supervised learning methods. Self-supervised learning can exploit unlabeled
data by designing auxiliary tasks that provide supervisory signals. In the context of graphs, self-
supervised learning enables models to learn meaningful node representations without the need for
extensive labeled data Veličković et al. (2019); You et al. (2020).

In this paper, we propose a novel hierarchical self-supervised graph contrastive learning framework
that effectively leverages unlabeled data to enhance node representations. Our framework captures
both local and global structural information by performing contrastive learning at multiple structural

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

levels: node, subgraph, and graph. By generating multiple augmented views of the original graph
through an adaptive graph augmentation strategy, we ensure that essential structural properties are
preserved while providing diverse contexts for learning robust representations.

We conduct extensive experiments on several benchmark datasets, including citation networks and
social networks, demonstrating that our method outperforms existing state-of-the-art models, espe-
cially in scenarios where labeled data is scarce. Our contributions are summarized as follows. First,
we introduce a hierarchical contrastive learning framework that performs self-supervised learning
at the node, subgraph, and graph levels, capturing rich structural information. Second, we design
an adaptive graph augmentation strategy that generates meaningful augmented views, balancing the
preservation of essential graph properties with the introduction of sufficient diversity. Third, we
empirically validate our method on multiple benchmark datasets, showing significant improvements
over baseline models in both transductive and inductive settings.

2 RELATED WORKS

2.1 GRAPH NEURAL NETWORKS

Graph Neural Networks (GNNs) have become the cornerstone for learning representations on graph-
structured data Kipf & Welling (2017); Hamilton et al. (2017); Veličković et al. (2018). The seminal
work of Kipf and Welling Kipf & Welling (2017) introduced the Graph Convolutional Network
(GCN), which extends the concept of convolution to graphs by aggregating feature information
from a node’s local neighborhood. on.

2.2 DEEP GRAPH INFOMAX

Deep Graph Infomax (DGI) Veličković et al. (2019) leveraged mutual information maximization for
graph representation learning. DGI aims to learn node embeddings by maximizing the mutual infor-
mation between node representations and a summary representation of the graph. Specifically, DGI
uses a GNN encoder to produce node embeddings H = {hi}Ni=1 and computes a global summary
vector s using a readout function:

s = Readout(H) = σ

(
1

N

N∑
i=1

hi

)
, (1)

where σ is a non-linear activation function. The objective is to maximize the mutual information
between hi and s for real nodes while minimizing it for corrupted (negative) samples.

GraphCL Graph Contrastive Learning (GraphCL) You et al. (2020) introduced a framework that
performs contrastive learning at the graph level. It applies various graph data augmentations to
generate multiple views of the same graph, such as node dropping, edge perturbation, attribute
masking, and subgraph sampling. By contrasting representations of different augmented views of
the same graph, GraphCL learns embeddings that are invariant to these transformations.

The contrastive loss in GraphCL is formulated as:

LGraphCL = −
K∑
i=1

log
exp

(
sim(zi, z

+
i )/τ

)∑2K
j=1 I[j ̸=i] exp (sim(zi, zj)/τ)

, (2)

where zi and z+i are embeddings of two augmented views of the same graph, sim(·, ·) denotes cosine
similarity, τ is a temperature parameter, and K is the number of graphs in the batch.

MVGRL Multi-View Graph Representation Learning (MVGRL) Hassani et al. (2020) extends
contrastive learning to graphs by contrasting node embeddings derived from different graph diffu-
sion processes. MVGRL generates multiple views of the graph through first-order adjacency and
diffusion matrices. The model maximizes the mutual information between representations of nodes
in these different views.
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The objective function of MVGRL is similar to DGI but incorporates multiple graph views:

LMVGRL = EG [logD (hi, s)] + EG̃ [log (1−D (hi, s))] , (3)

where D is a discriminator, hi is the node representation from one view, and s is the summary vector
from another view.

2.3 CONTRASTIVE LEARNING FUNDAMENTALS

In the context of graphs, positive pairs can be defined as different augmented views of the same node
or graph, while negative pairs are views of different nodes or graphs. The InfoNCE loss Oord et al.
(2018) is commonly used:

LInfoNCE = − log
exp

(
sim(zi, z

+
i )/τ

)∑N
j=1 exp (sim(zi, zj)/τ)

, (4)

where zi and z+i are embeddings of positive pairs, zj are embeddings of negative samples, and N is
the total number of samples.

Table 1: Comparison of related graph representation learning methods.

Method Local Structure Global Structure Hierarchical Contrast
GCN Kipf & Welling (2017) ✓
DGI Veličković et al. (2019) ✓
GraphCL You et al. (2020) ✓
MVGRL Hassani et al. (2020) ✓ ✓
Ours ✓ ✓ ✓

Table 1 summarizes the key differences between our proposed method and existing approaches.
Our framework is the first to introduce hierarchical contrastive learning at multiple structural levels,
enabling the model to capture comprehensive graph information.

3 METHODOLOGY

3.1 FRAMEWORK OVERVIEW

Our method begins by applying various graph augmentation techniques to generate different views
of the original graph G = (V, E), where V is the set of nodes and E is the set of edges. These
augmented graphs capture diverse structural variations while preserving essential properties of the
original graph. A shared GNN encoder fθ is then used to learn node embeddings from each aug-
mented view. We perform hierarchical contrastive learning by maximizing the agreement between
embeddings at the node, subgraph, and graph levels across different views.

Figure 1 illustrates the overall architecture of our framework. By integrating hierarchical contrastive
objectives, our method captures rich structural information across multiple scales, leading to more
informative and robust node representations.

3.2 GRAPH AUGMENTATION STRATEGIES

To prevent model collapse and encourage the learning of meaningful representations, we gener-
ate different views of the graph through adaptive graph augmentations. These augmentations are
designed to introduce perturbations while preserving essential structural properties.

3.3 NODE-WISE AUGMENTATION

Node Feature Masking We randomly mask a fraction of node features to create feature perturba-
tions:

3
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Original Graph G

(A,X) Augmentation

Augmented View 1

Augmented View 2

GNN Encoder
fθ

H(1)

H(2)

Projection
gϕ

Z(1)

Z(2)

Hierarchical Contrastive Loss

Figure 1: An overview of our hierarchical self-supervised graph contrastive learning framework.
The original graph G is augmented to generate multiple views, which are fed through a shared
GNN encoder and projection head to obtain embeddings. Hierarchical contrastive learning is then
performed at the node, subgraph, and graph levels.

X̃ = X⊙M, (5)

where X ∈ RN×F is the node feature matrix, M ∈ {0, 1}N×F is a masking matrix with entries
sampled from a Bernoulli distribution B(p), and ⊙ denotes element-wise multiplication.

Node Dropping We randomly drop a fraction of nodes along with their connected edges:

Ṽ = V \ Vd, (6)

where Vd is a set of nodes selected uniformly at random for removal.

3.4 EDGE-WISE AUGMENTATION

Edge Perturbation We randomly add or remove edges to alter the graph’s connectivity:

Ã = A+∆A, (7)

where A ∈ {0, 1}N×N is the adjacency matrix, and ∆A represents the changes made by randomly
flipping the states of a fraction of edges.

3.5 SUBGRAPH SAMPLING

We extract subgraphs centered around each node using techniques like k-hop neighborhoods or
random walks. For node i, the subgraph Gi is defined as:

Gi = (Vi, Ei), where Vi = {j | d(i, j) ≤ k}, (8)

and d(i, j) is the shortest path distance between nodes i and j.

3.6 GLOBAL AUGMENTATION

Attribute Masking We mask global attributes or inject noise into them to create variations at the
graph level.

Virtual Node Addition We add a virtual node connected to all other nodes to modify global
connectivity patterns.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

3.7 HIERARCHICAL CONTRASTIVE OBJECTIVES

Our hierarchical contrastive learning framework comprises three levels: node-level, subgraph-level,
and graph-level contrasts.

3.8 NODE-LEVEL CONTRAST

At the node level, we aim to maximize the agreement between embeddings of the same node from
different augmented views while minimizing the agreement with other nodes.

Let h(1)
i and h

(2)
i be the embeddings of node i from two augmented views. The node-level con-

trastive loss is defined as:

Lnode = −
∑
i∈V

log
exp

(
sim

(
z
(1)
i , z

(2)
i

)
/τ
)

∑
j∈V exp

(
sim

(
z
(1)
i , z

(2)
j

)
/τ
) , (9)

where z(k)i = gϕ(h
(k)
i ) is the projected embedding of node i from view k, gϕ is the projection head,

sim(·, ·) denotes cosine similarity, and τ is the temperature parameter.

3.9 SUBGRAPH-LEVEL CONTRAST

At the subgraph level, we focus on capturing local neighborhood structures by contrasting embed-
dings of subgraphs containing the same central node across different views.

Let s(k)i be the embedding of the subgraph centered at node i from view k. The subgraph-level
contrastive loss is:

Lsubgraph = −
∑
i∈V

log
exp

(
sim

(
s
(1)
i , s

(2)
i

)
/τ
)

∑
j∈V exp

(
sim

(
s
(1)
i , s

(2)
j

)
/τ
) . (10)

Subgraph embeddings are obtained by pooling the node embeddings within the subgraph:

s
(k)
i = Pool

({
h
(k)
j | j ∈ Vi

})
. (11)

3.10 GRAPH-LEVEL CONTRAST

At the graph level, we capture global structural information by maximizing the agreement between
node embeddings and a global graph representation.

The global graph embedding g(k) for view k is computed using a readout function over all node
embeddings:

g(k) = Readout
({

h
(k)
i | i ∈ V

})
. (12)

The graph-level contrastive loss is defined as:

Lgraph = −
∑
i∈V

log
exp

(
sim

(
z
(1)
i ,g(2)

)
/τ
)

∑
j∈V exp

(
sim

(
z
(1)
j ,g(2)

)
/τ
) + log

exp
(

sim
(
z
(2)
i ,g(1)

)
/τ
)

∑
j∈V exp

(
sim

(
z
(2)
j ,g(1)

)
/τ
)
 .

(13)
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3.11 MODEL ARCHITECTURE

Our model consists of a shared GNN encoder fθ and a projection head gϕ.

3.12 GNN ENCODER

We employ a GNN encoder to learn node embeddings from each augmented view. The encoder
can be any message-passing neural network such as GCN Kipf & Welling (2017) or GIN Xu et al.
(2019). For each view k, the node embeddings are computed as:

H(k) = fθ

(
Ã(k), X̃(k)

)
, (14)

where Ã(k)andX̃(k) are the augmented adjacency matrix and feature matrix for view k.

3.13 PROJECTION HEAD

Following recent contrastive learning frameworks Chen et al. (2020), we use a projection head gϕ to
map the node embeddings into a latent space where contrastive learning is performed:

Z(k) = gϕ

(
H(k)

)
. (15)

The projection head is implemented as a multi-layer perceptron (MLP) with non-linear activation
functions.

Augmented Graph (Ã(k), X̃(k))

GNN Encoder
fθ Node Embeddings

H(k)

Projection
gϕ Latent Embeddings

Z(k)

Figure 2: The model architecture consists of a GNN encoder and a projection head. The encoder
learns node embeddings from the augmented graph, which are then projected into a latent space for
contrastive learning.

Figure 2 depicts the model architecture, highlighting the flow from the augmented graph to the latent
embeddings used in contrastive learning.

3.14 COMPOSITE LOSS FUNCTION

We combine the hierarchical contrastive losses into a single objective function:

Ltotal = αLnode + βLsubgraph + γLgraph, (16)

where α, β, and γ are hyperparameters controlling the contributions of each loss component.

3.15 OPTIMIZATION

We optimize the total loss Ltotal using stochastic gradient descent with the Adam optimizer Kingma
& Ba (2015). The temperature parameter τ and the hyperparameters α, β, and γ are tuned based on
validation performance.

To enhance the effectiveness of contrastive learning, we employ techniques such as temperature
scaling and hard negative mining. Temperature scaling adjusts the concentration level of the distri-
bution defined by the softmax function, while hard negative mining focuses on challenging negative
samples that are similar to the anchor.
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3.16 TRAINING PROCEDURE

Algorithm 1 outlines the training procedure of our hierarchical self-supervised graph contrastive
learning framework.

Algorithm 1 Hierarchical Self-Supervised Graph Contrastive Learning

Require: Graph G = (V, E ,X), batch size B, number of epochs E
Ensure: Learned node embeddings H

for epoch = 1 to E do
Generate two augmented views (Ã(1), X̃(1)), (Ã(2), X̃(2))

Compute node embeddings: H(1) = fθ

(
Ã(1), X̃(1)

)
Compute node embeddings: H(2) = fθ

(
Ã(2), X̃(2)

)
Compute projected embeddings: Z(1) = gϕ

(
H(1)

)
Compute projected embeddings: Z(2) = gϕ

(
H(2)

)
Compute subgraph embeddings S(1), S(2)

Compute global embeddings g(1), g(2)

Compute Lnode, Lsubgraph, Lgraph
Compute total loss: Ltotal = αLnode + βLsubgraph + γLgraph
Update parameters θ, ϕ using gradients from Ltotal

end for

3.17 COMPLEXITY ANALYSIS

The computational complexity of our method is primarily determined by the GNN encoder and the
contrastive loss calculations. Assuming L layers in the GNN and F features per node, the time
complexity per epoch is O(L|E|F + |V|2F ) due to the message passing and the computation of
similarities between node pairs. However, in practice, we can leverage mini-batch training and
approximate nearest neighbor techniques to scale to large graphs.

4 EXPERIMENTS

4.1 DATASETS

We conduct experiments on four widely used benchmark datasets: Cora, Citeseer, PubMed, and
Reddit. The statistics of these datasets are summarized in Table 2.

Table 2: Statistics of the datasets used in our experiments.

Dataset # Nodes # Edges # Features # Classes Type
Cora 2,708 5,429 1,433 7 Citation Network
Citeseer 3,327 4,732 3,703 6 Citation Network
PubMed 19,717 44,338 500 3 Citation Network
Reddit 232,965 11,606,919 602 41 Social Network

Table 3: Proportion of labeled and unlabeled nodes in benchmark graph datasets.

Dataset Total Nodes Labeled Nodes Percentage Labeled
Cora 2,708 140 5.17%
Citeseer 3,327 120 3.61%
PubMed 19,717 60 0.30%
Reddit 232,965 23,296 10.00%
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4.2 EXPERIMENTAL SETUP

Data Splits For Cora, Citeseer, and PubMed, we use the splits with 20 nodes per class for training,
500 nodes for validation, and 1,000 nodes for testing. For Reddit, we follow the setup in Hamilton
et al. (2017), using 66% of the nodes for training, 10% for validation, and 24% for testing.

To evaluate performance under low-label regimes, we vary the number of labeled nodes per class
from 1 to 10 for training, keeping the validation and test sets the same.

Evaluation Protocols We evaluate our method in both transductive and inductive settings:

Transductive Setting: The model has access to the entire graph structure during training, including
unlabeled nodes.

Inductive Setting: The model is trained on a subgraph and tested on unseen nodes or subgraphs,
assessing its generalization capability.

Metrics We use accuracy as the primary evaluation metric for node classification. For multi-class
classification tasks, accuracy is calculated as the proportion of correctly predicted nodes over the
total number of nodes in the test set.

Implementation Details Our GNN encoder is a 2-layer Graph Isomorphism Network (GIN) Xu
et al. (2019) with hidden dimension 128. The projection head is a 2-layer MLP with hidden dimen-
sion 64. We set the temperature parameter τ = 0.5 and hyperparameters α = β = γ = 1 unless
otherwise specified.

We optimize the model using Adam Kingma & Ba (2015) with a learning rate of 0.001 and weight
decay of 5e-4. Models are trained for 200 epochs with early stopping based on validation loss.
Experiments are conducted on a machine with an NVIDIA Tesla V100 GPU with 32GB memory.

5 RESULTS

Table 4: Node classification accuracy (%) on benchmark datasets under the transductive setting. The
best results are in bold.

Method Cora Citeseer PubMed Reddit
Supervised Methods
GCN Kipf & Welling (2017) 81.5 70.3 79.0 93.8
GAT Veličković et al. (2018) 83.0 72.5 79.0 94.0
GraphSAGE Hamilton et al. (2017) 79.2 68.2 77.8 95.4

Self-Supervised Methods
DGI Veličković et al. (2019) 82.3 71.8 77.4 94.0
GRACE Zhu et al. (2020) 83.3 72.1 79.5 94.5
MVGRL Hassani et al. (2020) 84.5 73.3 80.1 95.3
GraphCL You et al. (2020) 82.5 71.1 78.6 94.2

Ours 86.2 74.6 81.5 96.1

Our method achieves the highest accuracy on all datasets, demonstrating the effectiveness of captur-
ing hierarchical structural information through self-supervised learning.

5.1 PERFORMANCE IN LOW-LABEL REGIMES

5.2 ABLATION STUDIES

The results indicate that each component contributes positively to the overall performance. The
removal of the node-level contrast leads to the most significant drop, suggesting its critical role in
learning discriminative node representations.
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Figure 3: Node classification accuracy on Cora with varying numbers of labeled nodes per class.
Our method consistently outperforms baseline methods, particularly in scenarios with very limited
labeled data.

Table 5: Ablation study on Cora dataset. Each row shows the node classification accuracy (%) when
a specific component is removed from the framework.

Model Variant Components Removed Accuracy (%)
Full Model (Ours) None 86.2
Without Node-Level Contrast Lnode 83.5
Without Subgraph-Level Contrast Lsubgraph 84.1
Without Graph-Level Contrast Lgraph 84.7

Without Node & Subgraph Contrast Lnode,Lsubgraph 81.9
Without Node & Graph Contrast Lnode,Lgraph 82.4
Without Subgraph & Graph Contrast Lsubgraph,Lgraph 81.2

5.3 EMBEDDING VISUALIZATION

To qualitatively assess the quality of the learned node embeddings, we use t-SNE Maaten & Hinton
(2008) to project the high-dimensional embeddings onto a 2D space. Figure 4 shows the embeddings
of nodes in the Cora dataset obtained by our method and by DGI.

As seen in the figure, the embeddings learned by our method exhibit clearer cluster structures cor-
responding to the class labels, indicating better discriminative ability.

5.4 INDUCTIVE LEARNING PERFORMANCE

To evaluate the generalization ability of our method, we perform experiments under the inductive
setting on the Reddit dataset. Following the protocol in Hamilton et al. (2017), we train the model
on a subgraph containing 90% of the nodes and test on the remaining 10% unseen nodes.

Table 6: Node classification accuracy (%) on the Reddit dataset under the inductive setting.

Method Accuracy (%)
GraphSAGE Hamilton et al. (2017) 95.0
DGI Veličković et al. (2019) 94.5
MVGRL Hassani et al. (2020) 95.6
Ours 96.4

9
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(a) Our Method (b) DGI

Figure 4: t-SNE visualization of node embeddings on a subset of the Cora dataset. Different colors
represent different classes. Our method produces more distinct and well-separated clusters compared
to DGI.

Our method achieves the highest accuracy, demonstrating strong inductive learning capabilities and
the ability to generalize to unseen data.

5.5 CONCLUSION

We have introduced a novel hierarchical self-supervised graph contrastive learning framework that
effectively leverages unlabeled data to learn enhanced node representations. By capturing structural
information at multiple hierarchical levels and using an adaptive graph augmentation strategy, our
method outperforms state-of-the-art models on various benchmark datasets, particularly in low-label
regimes.

Our approach demonstrates strong generalization capabilities in both transductive and inductive set-
tings, making it suitable for a wide range of graph-based applications. We believe that our hierarchi-
cal contrastive learning framework opens new avenues for research in graph representation learning
and self-supervised methods.

Future work will focus on extending the framework to heterogeneous and dynamic graphs, as well
as exploring integrations with other advanced techniques. We anticipate that our contributions will
inspire further developments in the field of graph neural networks and self-supervised learning.
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A INDEX OF VARIABLES

G = (V, E) Graph with node set V and edge set E
A Adjacency matrix
X Node feature matrix
Ã Augmented adjacency matrix
X̃ Augmented feature matrix
M Masking matrix for node feature masking
Vd Set of nodes selected for removal in node dropping
Gi Subgraph centered around node i
fθ GNN encoder function with parameters θ
gϕ Projection head function with parameters ϕ

H(k) Node embeddings from view k
Z(k) Projected embeddings from view k

h
(k)
i Embedding of node i from view k

z
(k)
i Projected embedding of node i from view k

s
(k)
i Subgraph embedding centered at node i from view k

g(k) Global graph embedding from view k
τ Temperature parameter for contrastive loss

α, β, γ Hyperparameters for weighting contrastive losses
Lnode Node-level contrastive loss

Lsubgraph Subgraph-level contrastive loss
Lgraph Graph-level contrastive loss
Ltotal Total loss combining all contrastive objectives

B DATASETS

Cora, Citeseer, and PubMed These are citation networks where nodes represent documents and
edges represent citation relationships Sen & Dhillon (2008). Node features are bag-of-words repre-
sentations of the documents, and labels correspond to the academic topics of the documents.

Reddit The Reddit dataset Hamilton et al. (2017) is a large social network where nodes represent
posts, and edges represent comments made by users on the same post. Node features are obtained
from the text and metadata of the posts, and labels correspond to the communities (subreddits) to
which the posts belong.

C IMPLEMENTATION DETAILS FOR REPRODUCIBILITY

C.1 HYPERPARAMETERS

Table 7 summarizes the hyperparameters used in our experiments across different datasets.

C.2 DATA PREPROCESSING

All feature vectors were normalized using L2 normalization. For the Reddit dataset, we used a
sparse adjacency matrix representation to handle the large graph size efficiently. Graph data was
loaded and processed using PyTorch Geometric (version 2.0.4).

C.3 HARDWARE AND SOFTWARE SPECIFICATIONS

Experiments were conducted on a machine with the following specifications:

• GPU: NVIDIA Tesla V100 (32GB memory)

• CPU: Intel Xeon Gold 6248R (3.0GHz, 24 cores)

• RAM: 384GB
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Table 7: Hyperparameters used in experiments

Hyperparameter Cora Citeseer PubMed Reddit
Learning rate 0.001 0.001 0.001 0.005
Weight decay 5e-4 5e-4 5e-4 1e-4
Batch size 256 256 512 1024
GNN layers 2 2 2 3
Hidden dimension 128 128 128 256
Dropout rate 0.5 0.5 0.3 0.1
Edge drop rate 0.2 0.2 0.1 0.15
Feature mask rate 0.3 0.3 0.2 0.1
Temperature τ 0.5 0.5 0.5 0.1
α (node-level weight) 1.0 1.0 1.0 1.0
β (subgraph-level weight) 1.0 1.0 1.0 0.5
γ (graph-level weight) 1.0 1.0 1.0 0.5

Software versions:

• Python 3.8.10
• PyTorch 1.9.0
• PyTorch Geometric 2.0.4
• NumPy 1.21.2
• scikit-learn 0.24.2

Average runtime for training on Cora: 5 minutes Average runtime for training on Reddit: 2 hours

C.4 RANDOM SEED SETTINGS

All experiments were run with a fixed random seed of 42 for reproducibility. This seed was used for
data splitting, model initialization, and batch sampling.

C.5 EVALUATION PROTOCOL

For Cora, Citeseer, and PubMed, we used the standard split of 20 nodes per class for training, 500
nodes for validation, and 1000 nodes for testing. For Reddit, we used 66% of nodes for training,
10% for validation, and 24% for testing.

All reported results are the average of 10 runs with different random initializations. We report the
mean accuracy and standard deviation.

C.6 MODEL INITIALIZATION

All model parameters were initialized using Xavier uniform initialization.

C.7 EARLY STOPPING

We employed early stopping with a patience of 30 epochs, monitoring the validation loss. Training
was stopped if the validation loss did not improve for 30 consecutive epochs.

C.8 CODE AVAILABILITY

The complete codebase is located at: [Redacted for anonymous review]

C.9 DETAILED ALGORITHM PSEUDOCODE

Algorithm 2 provides detailed pseudocode for our hierarchical contrastive learning procedure.
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Algorithm 2 Hierarchical Contrastive Learning
Graph G = (V, E ,X), GNN encoder fθ, projection head gϕ Trained model parameters θ, ϕ each
training iteration Generate augmented views G̃1, G̃2 of G Compute node embeddings H1 =
fθ(G̃1),H2 = fθ(G̃2) Project embeddings Z1 = gϕ(H1),Z2 = gϕ(H2) Compute node-level
loss Lnode using Eq. (5) Compute subgraph-level loss Lsubgraph using Eq. (7) Compute graph-
level loss Lgraph using Eq. (9) Compute total loss Ltotal = αLnode + βLsubgraph + γLgraph Update
θ, ϕ by gradient descent on Ltotal

C.10 ADDITIONAL BASELINES

In addition to the baselines mentioned in the main text, we also compared our method with the
following recent self-supervised GNN approaches:

• BGRL ?: Bootstrapped Graph Latents
• CCA-SSG ?: Canonical Correlation Analysis for Self-Supervised Graph Learning
• GraphMAE ?: Graph Masked Autoencoders

Table 8 shows the performance comparison with these additional baselines.

Table 8: Node classification accuracy (%) comparison with additional baselines

Method Cora Citeseer PubMed Reddit
BGRL 84.7 72.9 80.2 95.3
CCA-SSG 84.0 73.1 80.5 95.2
GraphMAE 85.3 73.5 80.3 95.6
Ours 86.2 74.6 81.5 96.1

C.11 EXTENDED ABLATION STUDY

Table 9 presents an extended ablation study, including additional variations of our model.

Table 9: Extended ablation study on Cora dataset

Model Variant Accuracy (%)
Full Model 86.2
Without Node-Level Contrast 83.5
Without Subgraph-Level Contrast 84.1
Without Graph-Level Contrast 84.7
Only Node-Level Contrast 82.8
Only Subgraph-Level Contrast 81.9
Only Graph-Level Contrast 80.5
Without Adaptive Augmentation 84.9
Single-Layer GNN 83.7
Without Projection Head 85.1
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D BASELINES

Supervised Methods

• GCN Kipf & Welling (2017): A graph convolutional network that performs semi-
supervised learning using spectral graph convolutions.

• GAT Veličković et al. (2018): A graph attention network that leverages attention mecha-
nisms to weigh the importance of neighboring nodes.

• GraphSAGE Hamilton et al. (2017): An inductive framework that generates node embed-
dings by sampling and aggregating features from a node’s local neighborhood.

Self-Supervised Methods

• DGI Veličković et al. (2019): Deep Graph Infomax maximizes mutual information between
node embeddings and a global summary of the graph.

• GRACE Zhu et al. (2020): Graph Contrastive Representation Learning employs con-
trastive learning with graph data augmentations.

• MVGRL Hassani et al. (2020): Multi-View Graph Representation Learning contrasts rep-
resentations from different graph diffusion matrices.

• GraphCL You et al. (2020): Graph Contrastive Learning uses various graph augmentations
to learn graph-level representations via contrastive learning.

These baselines are chosen because they represent the state-of-the-art in both supervised and self-
supervised graph representation learning, and they cover a range of strategies for leveraging struc-
tural information in graphs.
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