000 001 002

003

004

006

008 009 010

011

013

014

015

016

017

018

019

021

024

025

026

027

028

029

031

032

034 035

HIERARCHICAL SELF-SUPERVISED GRAPH CON-TRASTIVE LEARNING: CAPTURING MULTI-SCALE STRUCTURAL INFORMATION

Anonymous authors

Paper under double-blind review

Abstract

Graph Neural Networks (GNNs) have emerged as powerful tools for learning representations from graph-structured data Kipf & Welling (2017); Veličković et al. (2018), but often rely heavily on labeled data for training. This paper introduces a novel hierarchical self-supervised graph contrastive learning framework that effectively leverages unlabeled data to enhance node representations. Our method captures rich structural information at multiple scales by incorporating contrastive objectives at the node, subgraph, and graph levels, extending previous work on self-supervised learning for graphs Veličković et al. (2019); You et al. (2020). We employ an adaptive graph augmentation strategy to generate meaningful views of the graph while preserving essential properties. Through extensive experiments on benchmark datasets, including Cora, Citeseer, PubMed Sen & Dhillon (2008), and Reddit Hamilton et al. (2017), we demonstrate that our approach consistently outperforms both supervised and self-supervised baseline models in node classification tasks. Our method shows particular strength in low-label regimes and exhibits strong generalization capabilities in both transductive and inductive settings. Ablation studies confirm the importance of each hierarchical component, while qualitative analyses illustrate the discriminative power of the learned embeddings. This work opens new avenues for self-supervised learning on graphs and has broad implications for applications where labeled data is scarce or expensive to obtain, such as in social networks Perozzi et al. (2014) and biological networks Zitnik et al. (2017).

1 INTRODUCTION

Graph-structured data is pervasive in numerous domains such as social networks Perozzi et al. (2014), biological networks Zitnik et al. (2017), recommendation systems Ying et al. (2018), and knowledge graphs Wang et al. (2017). Understanding the complex relationships and interactions among entities in these domains is crucial for various tasks, including node classification, link prediction, and community detection.

Graph Neural Networks (GNNs) have emerged as powerful tools for learning representations from
 graph-structured data Kipf & Welling (2017); Veličković et al. (2018); Hamilton et al. (2017). By
 leveraging the structural information inherent in graphs, GNNs can capture both local neighborhood
 patterns and global structural properties. However, traditional GNNs are typically trained in a su pervised manner, relying heavily on large amounts of labeled data. Obtaining labeled data in graph
 domains can be challenging due to the cost, time, and domain expertise required for annotation.

At the same time, vast amounts of unlabeled graph data are readily available, presenting an opportunity to leverage self-supervised learning methods. Self-supervised learning can exploit unlabeled data by designing auxiliary tasks that provide supervisory signals. In the context of graphs, self-supervised learning enables models to learn meaningful node representations without the need for extensive labeled data Veličković et al. (2019); You et al. (2020).

In this paper, we propose a novel *hierarchical self-supervised graph contrastive learning framework* that effectively leverages unlabeled data to enhance node representations. Our framework captures both local and global structural information by performing contrastive learning at multiple structural

levels: node, subgraph, and graph. By generating multiple augmented views of the original graph
 through an *adaptive graph augmentation strategy*, we ensure that essential structural properties are
 preserved while providing diverse contexts for learning robust representations.

057 We conduct extensive experiments on several benchmark datasets, including citation networks and 058 social networks, demonstrating that our method outperforms existing state-of-the-art models, espe-059 cially in scenarios where labeled data is scarce. Our contributions are summarized as follows. First, 060 we introduce a hierarchical contrastive learning framework that performs self-supervised learning 061 at the node, subgraph, and graph levels, capturing rich structural information. Second, we design 062 an adaptive graph augmentation strategy that generates meaningful augmented views, balancing the 063 preservation of essential graph properties with the introduction of sufficient diversity. Third, we 064 empirically validate our method on multiple benchmark datasets, showing significant improvements over baseline models in both transductive and inductive settings. 065

2 RELATED WORKS

066 067

068

076

077

084 085

087

880

089

096

098 099 100

103

069 2.1 GRAPH NEURAL NETWORKS

Graph Neural Networks (GNNs) have become the cornerstone for learning representations on graphstructured data Kipf & Welling (2017); Hamilton et al. (2017); Veličković et al. (2018). The seminal
work of Kipf and Welling Kipf & Welling (2017) introduced the Graph Convolutional Network
(GCN), which extends the concept of convolution to graphs by aggregating feature information
from a node's local neighborhood. on.

2.2 DEEP GRAPH INFOMAX

Deep Graph Infomax (DGI) Veličković et al. (2019) leveraged mutual information maximization for graph representation learning. DGI aims to learn node embeddings by maximizing the mutual information between node representations and a summary representation of the graph. Specifically, DGI uses a GNN encoder to produce node embeddings $\mathbf{H} = {\{\mathbf{h}_i\}}_{i=1}^N$ and computes a global summary vector s using a readout function:

$$\mathbf{s} = \operatorname{Readout}(\mathbf{H}) = \sigma\left(\frac{1}{N}\sum_{i=1}^{N}\mathbf{h}_{i}\right),\tag{1}$$

where σ is a non-linear activation function. The objective is to maximize the mutual information between h_i and s for real nodes while minimizing it for corrupted (negative) samples.

GraphCL Graph Contrastive Learning (GraphCL) You et al. (2020) introduced a framework that performs contrastive learning at the graph level. It applies various graph data augmentations to generate multiple views of the same graph, such as node dropping, edge perturbation, attribute masking, and subgraph sampling. By contrasting representations of different augmented views of the same graph, GraphCL learns embeddings that are invariant to these transformations.

The contrastive loss in GraphCL is formulated as:

$$\mathcal{L}_{\text{GraphCL}} = -\sum_{i=1}^{K} \log \frac{\exp\left(\sin(\mathbf{z}_i, \mathbf{z}_i^+)/\tau\right)}{\sum_{j=1}^{2K} \mathbb{I}_{[j\neq i]} \exp\left(\sin(\mathbf{z}_i, \mathbf{z}_j)/\tau\right)},\tag{2}$$

where z_i and z_i^+ are embeddings of two augmented views of the same graph, sim (\cdot, \cdot) denotes cosine similarity, τ is a temperature parameter, and K is the number of graphs in the batch.

MVGRL Multi-View Graph Representation Learning (MVGRL) Hassani et al. (2020) extends
 contrastive learning to graphs by contrasting node embeddings derived from different graph diffusion processes. MVGRL generates multiple views of the graph through first-order adjacency and
 diffusion matrices. The model maximizes the mutual information between representations of nodes in these different views.

The objective function of MVGRL is similar to DGI but incorporates multiple graph views:

 $\mathcal{L}_{\text{MVGRL}} = \mathbb{E}_{G} \left[\log D\left(\mathbf{h}_{i}, \mathbf{s}\right) \right] + \mathbb{E}_{\tilde{G}} \left[\log \left(1 - D\left(\mathbf{h}_{i}, \mathbf{s}\right)\right) \right], \tag{3}$

(4)

where D is a discriminator, \mathbf{h}_i is the node representation from one view, and s is the summary vector from another view.

2.3 CONTRASTIVE LEARNING FUNDAMENTALS

In the context of graphs, positive pairs can be defined as different augmented views of the same node or graph, while negative pairs are views of different nodes or graphs. The InfoNCE loss Oord et al. (2018) is commonly used:

110

111

115

116

117

118

121 122

123 124

where \mathbf{z}_i and \mathbf{z}_i^+ are embeddings of positive pairs, \mathbf{z}_j are embeddings of negative samples, and N is the total number of samples.

 $\mathcal{L}_{\text{InfoNCE}} = -\log rac{\exp\left(\sin(\mathbf{z}_i, \mathbf{z}_i^+)/ au
ight)}{\sum_{j=1}^N \exp\left(\sin(\mathbf{z}_i, \mathbf{z}_j)/ au
ight)},$

Table 1: Comparison of related graph representation learning methods.

Method	Local Structure	Global Structure	Hierarchical Contrast
GCN Kipf & Welling (2017)	\checkmark		
DGI Veličković et al. (2019)		\checkmark	
GraphCL You et al. (2020)		\checkmark	
MVGRL Hassani et al. (2020)	\checkmark	\checkmark	
Ours	\checkmark	\checkmark	\checkmark

Table 1 summarizes the key differences between our proposed method and existing approaches. Our framework is the first to introduce hierarchical contrastive learning at multiple structural levels, enabling the model to capture comprehensive graph information.

138 139 140

141 142

143

135

136

137

3 Methodology

3.1 FRAMEWORK OVERVIEW

Our method begins by applying various graph augmentation techniques to generate different views of the original graph $G = (\mathcal{V}, \mathcal{E})$, where \mathcal{V} is the set of nodes and \mathcal{E} is the set of edges. These augmented graphs capture diverse structural variations while preserving essential properties of the original graph. A shared GNN encoder f_{θ} is then used to learn node embeddings from each augmented view. We perform hierarchical contrastive learning by maximizing the agreement between embeddings at the node, subgraph, and graph levels across different views.

Figure 1 illustrates the overall architecture of our framework. By integrating hierarchical contrastive objectives, our method captures rich structural information across multiple scales, leading to more informative and robust node representations.

- 152 153 154
- 3.2 GRAPH AUGMENTATION STRATEGIES

To prevent model collapse and encourage the learning of meaningful representations, we generate different views of the graph through adaptive graph augmentations. These augmentations are designed to introduce perturbations while preserving essential structural properties.

158 159

- 3.3 NODE-WISE AUGMENTATION
- **Node Feature Masking** We randomly mask a fraction of node features to create feature perturbations:

GNN Encoder Projection fθ g_{ϕ} $\mathbf{H}^{(1)}$ $\mathbf{Z}^{(1)}$ Augmented View 1 **Original Graph** G Augmentation (\mathbf{A}, \mathbf{X}) Hierarchical Contrastive Loss Augmented View 2 $\mathbf{H}^{(2)}$ $\mathbf{Z}^{(2)}$ Figure 1: An overview of our hierarchical self-supervised graph contrastive learning framework. The original graph G is augmented to generate multiple views, which are fed through a shared GNN encoder and projection head to obtain embeddings. Hierarchical contrastive learning is then performed at the node, subgraph, and graph levels.

$$\tilde{\mathbf{X}} = \mathbf{X} \odot \mathbf{M},\tag{5}$$

where $\mathbf{X} \in \mathbb{R}^{N \times F}$ is the node feature matrix, $\mathbf{M} \in \{0,1\}^{N \times F}$ is a masking matrix with entries sampled from a Bernoulli distribution $\mathcal{B}(p)$, and \odot denotes element-wise multiplication.

Node Dropping We randomly drop a fraction of nodes along with their connected edges:

$$\tilde{\mathcal{V}} = \mathcal{V} \setminus \mathcal{V}_d,\tag{6}$$

where \mathcal{V}_d is a set of nodes selected uniformly at random for removal.

192 3.4 EDGE-WISE AUGMENTATION

Edge Perturbation We randomly add or remove edges to alter the graph's connectivity:

$$\tilde{\mathbf{A}} = \mathbf{A} + \Delta \mathbf{A},\tag{7}$$

where $\mathbf{A} \in \{0,1\}^{N \times N}$ is the adjacency matrix, and $\Delta \mathbf{A}$ represents the changes made by randomly flipping the states of a fraction of edges.

201 3.5 SUBGRAPH SAMPLING

We extract subgraphs centered around each node using techniques like k-hop neighborhoods or random walks. For node i, the subgraph G_i is defined as:

$$\mathcal{G}_i = (\mathcal{V}_i, \mathcal{E}_i), \quad \text{where} \quad \mathcal{V}_i = \{j \mid d(i, j) \le k\},$$
(8)

and d(i, j) is the shortest path distance between nodes *i* and *j*.

210 3.6 GLOBAL AUGMENTATION

Attribute Masking We mask global attributes or inject noise into them to create variations at the
 graph level.

Virtual Node Addition We add a virtual node connected to all other nodes to modify global connectivity patterns.

216 3.7 HIERARCHICAL CONTRASTIVE OBJECTIVES217

Our hierarchical contrastive learning framework comprises three levels: node-level, subgraph-level, and graph-level contrasts.

3.8 NODE-LEVEL CONTRAST

At the node level, we aim to maximize the agreement between embeddings of the same node from different augmented views while minimizing the agreement with other nodes.

Let $\mathbf{h}_i^{(1)}$ and $\mathbf{h}_i^{(2)}$ be the embeddings of node *i* from two augmented views. The node-level contrastive loss is defined as:

$$\mathcal{L}_{\text{node}} = -\sum_{i \in \mathcal{V}} \log \frac{\exp\left(\sin\left(\mathbf{z}_{i}^{(1)}, \mathbf{z}_{i}^{(2)}\right) / \tau\right)}{\sum_{j \in \mathcal{V}} \exp\left(\sin\left(\mathbf{z}_{i}^{(1)}, \mathbf{z}_{j}^{(2)}\right) / \tau\right)},\tag{9}$$

where $\mathbf{z}_i^{(k)} = g_{\phi}(\mathbf{h}_i^{(k)})$ is the projected embedding of node *i* from view *k*, g_{ϕ} is the projection head, $sim(\cdot, \cdot)$ denotes cosine similarity, and τ is the temperature parameter.

3.9 SUBGRAPH-LEVEL CONTRAST

At the subgraph level, we focus on capturing local neighborhood structures by contrasting embeddings of subgraphs containing the same central node across different views.

Let $s_i^{(k)}$ be the embedding of the subgraph centered at node *i* from view *k*. The subgraph-level contrastive loss is:

$$\mathcal{L}_{\text{subgraph}} = -\sum_{i \in \mathcal{V}} \log \frac{\exp\left(\sin\left(\mathbf{s}_{i}^{(1)}, \mathbf{s}_{i}^{(2)}\right) / \tau\right)}{\sum_{j \in \mathcal{V}} \exp\left(\sin\left(\mathbf{s}_{i}^{(1)}, \mathbf{s}_{j}^{(2)}\right) / \tau\right)}.$$
(10)

Subgraph embeddings are obtained by pooling the node embeddings within the subgraph:

$$\mathbf{s}_{i}^{(k)} = \operatorname{Pool}\left(\left\{\mathbf{h}_{j}^{(k)} \mid j \in \mathcal{V}_{i}\right\}\right).$$
(11)

(12)

3.10 GRAPH-LEVEL CONTRAST

At the graph level, we capture global structural information by maximizing the agreement between node embeddings and a global graph representation.

The global graph embedding $g^{(k)}$ for view k is computed using a readout function over all node embeddings:

 $\mathbf{g}^{(k)} = \operatorname{Readout}\left(\left\{\mathbf{h}_{i}^{(k)} \mid i \in \mathcal{V}\right\}\right).$

The graph-level contrastive loss is defined as:

$$\mathcal{L}_{\text{graph}} = -\sum_{i \in \mathcal{V}} \left(\log \frac{\exp\left(\sin\left(\mathbf{z}_{i}^{(1)}, \mathbf{g}^{(2)}\right) / \tau \right)}{\sum_{j \in \mathcal{V}} \exp\left(\sin\left(\mathbf{z}_{j}^{(1)}, \mathbf{g}^{(2)}\right) / \tau \right)} + \log \frac{\exp\left(\sin\left(\mathbf{z}_{i}^{(2)}, \mathbf{g}^{(1)}\right) / \tau \right)}{\sum_{j \in \mathcal{V}} \exp\left(\sin\left(\mathbf{z}_{j}^{(2)}, \mathbf{g}^{(1)}\right) / \tau \right)} \right).$$
(13)

3.11 MODEL ARCHITECTURE

Our model consists of a shared GNN encoder f_{θ} and a projection head g_{ϕ} .

3.12 GNN ENCODER

We employ a GNN encoder to learn node embeddings from each augmented view. The encoder can be any message-passing neural network such as GCN Kipf & Welling (2017) or GIN Xu et al. (2019). For each view k, the node embeddings are computed as:

$$\mathbf{H}^{(k)} = f_{\theta} \left(\tilde{\mathbf{A}}^{(k)}, \tilde{\mathbf{X}}^{(k)} \right), \tag{14}$$

where $\tilde{\mathbf{A}}^{(k)}$ and $\tilde{\mathbf{X}}^{(k)}$ are the augmented adjacency matrix and feature matrix for view k.

3.13 PROJECTION HEAD

Following recent contrastive learning frameworks Chen et al. (2020), we use a projection head q_{ϕ} to map the node embeddings into a latent space where contrastive learning is performed:

$$\mathbf{Z}^{(k)} = g_{\phi} \left(\mathbf{H}^{(k)} \right). \tag{15}$$

The projection head is implemented as a multi-layer perceptron (MLP) with non-linear activation functions.

295	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~				
296	Gſ	NN Encoder		Projection	
297	Augmented Graph $(ilde{\mathbf{A}}^{(k)}, ilde{\mathbf{X}}^{(k)})$ -	f_{θ} ,	Node Embeddings	g_{ϕ} ,	Latent Embeddings
298	Augmented Oraph $(\mathbf{A}^{(1)}, \mathbf{A}^{(2)})$	($\mathbf{H}^{(k)}$	· · · · · · · · · · · · · · · · · · ·	$\mathbf{Z}^{(k)}$
299		l			

Figure 2: The model architecture consists of a GNN encoder and a projection head. The encoder learns node embeddings from the augmented graph, which are then projected into a latent space for contrastive learning.

Figure 2 depicts the model architecture, highlighting the flow from the augmented graph to the latent embeddings used in contrastive learning.

3.14 COMPOSITE LOSS FUNCTION

We combine the hierarchical contrastive losses into a single objective function:

$$\mathcal{L}_{\text{total}} = \alpha \mathcal{L}_{\text{node}} + \beta \mathcal{L}_{\text{subgraph}} + \gamma \mathcal{L}_{\text{graph}}, \tag{16}$$

where α , β , and γ are hyperparameters controlling the contributions of each loss component.

3.15 Optimization

We optimize the total loss \mathcal{L}_{total} using stochastic gradient descent with the Adam optimizer Kingma & Ba (2015). The temperature parameter τ and the hyperparameters α , β , and γ are tuned based on validation performance.

To enhance the effectiveness of contrastive learning, we employ techniques such as temperature scaling and hard negative mining. Temperature scaling adjusts the concentration level of the distri-bution defined by the softmax function, while hard negative mining focuses on challenging negative samples that are similar to the anchor.

324 3.16 TRAINING PROCEDURE

Algorithm 1 outlines the training procedure of our hierarchical self-supervised graph contrastive learning framework.

Algorithm 1 Hierarchical Self-Supervised Graph	C
Require: Graph $G = (\mathcal{V}, \mathcal{E}, \mathbf{X})$, batch size B , number $G = (\mathcal{V}, \mathcal{E}, \mathbf{X})$, batch size B , number $G = (\mathcal{V}, \mathcal{E}, \mathbf{X})$, batch size B , number $G = (\mathcal{V}, \mathcal{E}, \mathbf{X})$, batch size B , number $G = (\mathcal{V}, \mathcal{E}, \mathbf{X})$, batch size B , number $G = (\mathcal{V}, \mathcal{E}, \mathbf{X})$, batch size B , number $G = (\mathcal{V}, \mathcal{E}, \mathbf{X})$, batch size B , number $G = (\mathcal{V}, \mathcal{E}, \mathbf{X})$, batch size B , number $G = (\mathcal{V}, \mathcal{E}, \mathbf{X})$, batch size B , number $G = (\mathcal{V}, \mathcal{E}, \mathbf{X})$, batch size B , number $G = (\mathcal{V}, \mathcal{E}, \mathbf{X})$, batch size B , number $G = (\mathcal{V}, \mathcal{E}, \mathbf{X})$, batch size B , number $G = (\mathcal{V}, \mathcal{E}, \mathbf{X})$, batch size B , number $G = (\mathcal{V}, \mathcal{E}, \mathbf{X})$, batch size B , number $G = (\mathcal{V}, \mathcal{E}, \mathbf{X})$, batch size B , number $G = (\mathcal{V}, \mathcal{E}, \mathbf{X})$, batch size B , number $G = (\mathcal{V}, \mathcal{E}, \mathbf{X})$, batch size B , number $G = (\mathcal{V}, \mathcal{E}, \mathbf{X})$, batch size B , number $G = (\mathcal{V}, \mathcal{E}, \mathbf{X})$, batch size B , number $G = (\mathcal{V}, \mathcal{E}, \mathbf{X})$, batch size B , number $G = (\mathcal{V}, \mathcal{E}, \mathbf{X})$, batch size B , number $G = (\mathcal{V}, \mathcal{E}, \mathbf{X})$, batch size B , number $G = (\mathcal{V}, \mathcal{E}, \mathbf{X})$, batch size B , number $G = (\mathcal{V}, \mathcal{E}, \mathbf{X})$, batch size B , number $G = (\mathcal{V}, \mathcal{E}, \mathbf{X})$, batch size B , number $G = (\mathcal{V}, \mathcal{E}, \mathbf{X})$, batch size B , number $G = (\mathcal{V}, \mathcal{E}, \mathbf{X})$, batch size B , number $G = (\mathcal{V}, \mathcal{E}, \mathbf{X})$, batch size B , number $G = (\mathcal{V}, \mathcal{E}, \mathbf{X})$, batch size B , number $G = (\mathcal{V}, \mathcal{E}, \mathbf{X})$, batch size B , number $G = (\mathcal{V}, \mathcal{E}, \mathbf{X})$, batch size B , number $G = (\mathcal{V}, \mathcal{E}, \mathbf{X})$, batch size B , number $G = (\mathcal{V}, \mathcal{E}, \mathbf{X})$, batch size B , number $G = (\mathcal{V}, \mathcal{E}, \mathbf{X})$, batch size B , number $G = (\mathcal{V}, \mathcal{E}, \mathbf{X})$, batch size B , number $(\mathcal{V}, \mathcal{E}, \mathbf{X})$, batch size B , number $(\mathcal{V}, \mathcal{E}, \mathbf{X})$, batch size B , number $(\mathcal{V}, \mathcal{E}, \mathbf{X})$, batch size B , number $(\mathcal{V}, \mathcal{E}, \mathbf{X})$, batch size B , number $(\mathcal{V}, \mathcal{E}, \mathbf{X})$, batch size B , number $(\mathcal{V}, \mathcal{E}, \mathbf{X})$, batch size B , number $(\mathcal{V}, \mathcal{E}, \mathbf{X})$, batch size B , numbe	nber of epochs E
Ensure: Learned node embeddings H	
for epoch = 1 to E do	~ ~
Generate two augmented views $(\tilde{\mathbf{A}}^{(1)}, \tilde{\mathbf{X}}^{(1)})$,	$(\mathbf{\hat{A}}^{(2)},\mathbf{\hat{X}}^{(2)})$
Compute node embeddings: $\mathbf{H}^{(1)} = f_{\theta} \left(\tilde{\mathbf{A}}^{(1)} \right)$	$\tilde{\mathbf{X}}^{(1)}$
Compute node embeddings: $\mathbf{H}^{(2)} = f_{\theta} \left(\tilde{\mathbf{A}}^{(2)} \right)$	$(\tilde{\mathbf{X}}^{(2)})$
Compute projected embeddings: $\mathbf{Z}^{(1)} = g_{\phi}$ (2)	
Compute projected embeddings: $\mathbf{Z}^{(2)} = g_{\phi}$ (2)	$\mathbf{H}^{(2)}$
Compute subgraph embeddings $\mathbf{S}^{(1)}, \mathbf{S}^{(2)}$	
Compute global embeddings $g^{(1)}, g^{(2)}$	
Compute \mathcal{L}_{node} , $\mathcal{L}_{subgraph}$, \mathcal{L}_{graph}	
Compute total loss: $\mathcal{L}_{\text{total}} = \alpha \mathcal{L}_{\text{node}} + \beta \mathcal{L}_{\text{subgr}}$	$\gamma_{anh} + \gamma \mathcal{L}_{graph}$
Update parameters θ , ϕ using gradients from	
end for	

3.17 COMPLEXITY ANALYSIS

The computational complexity of our method is primarily determined by the GNN encoder and the contrastive loss calculations. Assuming L layers in the GNN and F features per node, the time complexity per epoch is $O(L|\mathcal{E}|F + |\mathcal{V}|^2F)$ due to the message passing and the computation of similarities between node pairs. However, in practice, we can leverage mini-batch training and approximate nearest neighbor techniques to scale to large graphs.

4 EXPERIMENTS

4.1 DATASETS

We conduct experiments on four widely used benchmark datasets: Cora, Citeseer, PubMed, and Reddit. The statistics of these datasets are summarized in Table 2.

Table 2: Statistics	of the	datasets	used in	our experiments.
---------------------	--------	----------	---------	------------------

Dataset	# Nodes	# Edges	# Features	# Classes	Туре
Cora	2,708	5,429	1,433	7	Citation Network
Citeseer	3,327	4,732	3,703	6	Citation Network
PubMed	19,717	44,338	500	3	Citation Network
Reddit	232,965	11,606,919	602	41	Social Network

Table 3: Proportion of labeled and unlabeled nodes in benchmark graph datasets.

72	Dataset	Total Nodes	Labeled Nodes	Percentage Labeled
73	Dataset	Total Noues	Labeleu Noues	I el celitage Labeleu
74	Cora	2,708	140	5.17%
'5	Citeseer	3,327	120	3.61%
6	PubMed	19,717	60	0.30%
77	Reddit	232,965	23,296	10.00%

3784.2 EXPERIMENTAL SETUP379

380 Data Splits For Cora, Citeseer, and PubMed, we use the splits with 20 nodes per class for training,
381 500 nodes for validation, and 1,000 nodes for testing. For Reddit, we follow the setup in Hamilton
a1. (2017), using 66% of the nodes for training, 10% for validation, and 24% for testing.

To evaluate performance under low-label regimes, we vary the number of labeled nodes per class from 1 to 10 for training, keeping the validation and test sets the same.

Evaluation Protocols We evaluate our method in both transductive and inductive settings:

Transductive Setting: The model has access to the entire graph structure during training, including unlabeled nodes.

Inductive Setting: The model is trained on a subgraph and tested on unseen nodes or subgraphs,assessing its generalization capability.

392

396

Metrics We use accuracy as the primary evaluation metric for node classification. For multi-class
 classification tasks, accuracy is calculated as the proportion of correctly predicted nodes over the
 total number of nodes in the test set.

Implementation Details Our GNN encoder is a 2-layer Graph Isomorphism Network (GIN) Xu et al. (2019) with hidden dimension 128. The projection head is a 2-layer MLP with hidden dimension 64. We set the temperature parameter $\tau = 0.5$ and hyperparameters $\alpha = \beta = \gamma = 1$ unless otherwise specified.

We optimize the model using Adam Kingma & Ba (2015) with a learning rate of 0.001 and weight
decay of 5e-4. Models are trained for 200 epochs with early stopping based on validation loss.
Experiments are conducted on a machine with an NVIDIA Tesla V100 GPU with 32GB memory.

5 Results

405 406 407

408

404

Table 4: Node classification accuracy (%) on benchmark datasets under the transductive setting. The best results are in bold.

Method	Cora	Citeseer	PubMed	Reddit
Supervised Methods				
GCN Kipf & Welling (2017)	81.5	70.3	79.0	93.8
GAT Veličković et al. (2018)	83.0	72.5	79.0	94.0
GraphSAGE Hamilton et al. (2017)	79.2	68.2	77.8	95.4
Self-Supervised Methods				
DGI Veličković et al. (2019)	82.3	71.8	77.4	94.0
GRACE Zhu et al. (2020)	83.3	72.1	79.5	94.5
MVGRL Hassani et al. (2020)	84.5	73.3	80.1	95.3
GraphCL You et al. (2020)	82.5	71.1	78.6	94.2
Ours	86.2	74.6	81.5	96.1

⁴²¹ 422 423

424

425 426

427

429

Our method achieves the highest accuracy on all datasets, demonstrating the effectiveness of capturing hierarchical structural information through self-supervised learning.

5.1 PERFORMANCE IN LOW-LABEL REGIMES

428 5.2 ABLATION STUDIES

The results indicate that each component contributes positively to the overall performance. The
 removal of the node-level contrast leads to the most significant drop, suggesting its critical role in
 learning discriminative node representations.

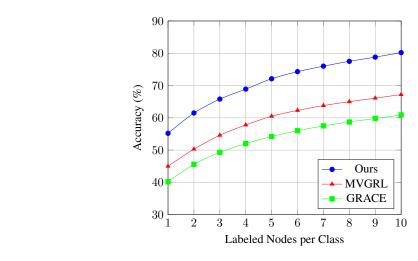


Figure 3: Node classification accuracy on Cora with varying numbers of labeled nodes per class. Our method consistently outperforms baseline methods, particularly in scenarios with very limited labeled data.

Table 5: Ablation study on Cora dataset. Each row shows the node classification accuracy (%) when a specific component is removed from the framework.

Model Variant	Components Removed	Accuracy (%)
Full Model (Ours)	None	86.2
Without Node-Level Contrast Without Subgraph-Level Contrast Without Graph-Level Contrast	$\mathcal{L}_{ ext{node}} \ \mathcal{L}_{ ext{subgraph}} \ \mathcal{L}_{ ext{graph}}$	83.5 84.1 84.7
Without Node & Subgraph Contrast Without Node & Graph Contrast Without Subgraph & Graph Contrast	$\mathcal{L}_{ ext{node}}, \mathcal{L}_{ ext{subgraph}} \ \mathcal{L}_{ ext{node}}, \mathcal{L}_{ ext{graph}} \ \mathcal{L}_{ ext{subgraph}}, \mathcal{L}_{ ext{graph}}$	81.9 82.4 81.2

5.3 EMBEDDING VISUALIZATION

To qualitatively assess the quality of the learned node embeddings, we use t-SNE Maaten & Hinton (2008) to project the high-dimensional embeddings onto a 2D space. Figure 4 shows the embeddings of nodes in the Cora dataset obtained by our method and by DGI.

As seen in the figure, the embeddings learned by our method exhibit clearer cluster structures corresponding to the class labels, indicating better discriminative ability.

5.4 INDUCTIVE LEARNING PERFORMANCE

To evaluate the generalization ability of our method, we perform experiments under the inductive setting on the Reddit dataset. Following the protocol in Hamilton et al. (2017), we train the model on a subgraph containing 90% of the nodes and test on the remaining 10% unseen nodes.

Table 6: Node classification accuracy (%) on the Reddit dataset under the inductive setting.

481	Method	Accuracy (%)
482	GraphSAGE Hamilton et al. (2017)	95.0
483	DGI Veličković et al. (2019)	94.5
484	MVGRL Hassani et al. (2020)	95.6
485	Ours	96.4

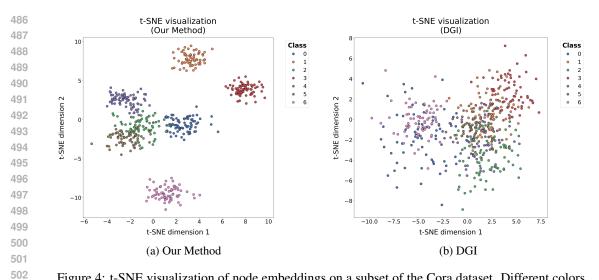


Figure 4: t-SNE visualization of node embeddings on a subset of the Cora dataset. Different colors represent different classes. Our method produces more distinct and well-separated clusters compared to DGI.

Our method achieves the highest accuracy, demonstrating strong inductive learning capabilities and the ability to generalize to unseen data.

5.5 CONCLUSION

We have introduced a novel hierarchical self-supervised graph contrastive learning framework that effectively leverages unlabeled data to learn enhanced node representations. By capturing structural information at multiple hierarchical levels and using an adaptive graph augmentation strategy, our method outperforms state-of-the-art models on various benchmark datasets, particularly in low-label regimes.

Our approach demonstrates strong generalization capabilities in both transductive and inductive settings, making it suitable for a wide range of graph-based applications. We believe that our hierarchical contrastive learning framework opens new avenues for research in graph representation learning and self-supervised methods.

Future work will focus on extending the framework to heterogeneous and dynamic graphs, as well
 as exploring integrations with other advanced techniques. We anticipate that our contributions will
 inspire further developments in the field of graph neural networks and self-supervised learning.

540	References
541	

547

551

552

553

554

555

- Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework for
 contrastive learning of visual representations. *International Conference on Machine Learning*,
 pp. 1597–1607, 2020.
- William L Hamilton, Rex Ying, and Jure Leskovec. Inductive representation learning on large graphs. In *Advances in Neural Information Processing Systems*, pp. 1024–1034, 2017.
- Hamidreza Hassani, Mehrdad Khasahmadi, and Nima Ghasemian. Multi-view graph representation
 learning via contrastive mutual information maximization. In *Proceedings of the 37th International Conference on Machine Learning (ICML)*, 2020.
 - Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In *International Conference on Learning Representations (ICLR)*, 2015.
 - Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional networks. In *International Conference on Learning Representations (ICLR)*, 2017.
- Laurens van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. Journal of Machine
 Learning Research, 9:2579–2605, 2008.
- Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with contrastive predictive coding. *arXiv preprint arXiv:1807.03748*, 2018.
- Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. Deepwalk: Online learning of social representations. In *Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining*, pp. 701–710. ACM, 2014.
- Prithviraj Sen and Ishwar Dhillon. Collective classification in network data. In *Proceedings of the 24th International Conference on Machine Learning (ICML)*, pp. 589–596. Morgan Kaufmann, 2008.
- Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua
 Bengio. Graph attention networks. In *International Conference on Learning Representations* (*ICLR*), 2018.
- Petar Veličković, William Fedus, William L Hamilton, Pietro Li, Yoshua Bengio, and R Devon Hjelm. Deep graph infomax. In *International Conference on Learning Representations (ICLR)*, 2019.
- Qiaozhu Wang, Xuanhui Wang, Xiang He, Yang Cao, Wenwu Ma, and Jian Guo. Knowledge graph
 embedding: A survey of approaches and applications. In *Knowledge Graphs*, pp. 34–62. Springer, 2017.
- Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural networks? In *International Conference on Learning Representations (ICLR)*, 2019.
- Rex Ying, Ruining He, Kaifeng Chen, Huan Eksombatchai, William L Hamilton, and Jure Leskovec.
 Graph convolutional neural networks for web-scale recommender systems. In *Proceedings of the* 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 974– 983. ACM, 2018.
- Tian You, Rex Ying Liu, Jiaxuan Yin, and Xiangnan Chen. Graph contrastive learning with aug mentations. In *Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining*, pp. 270–279. ACM, 2020.
- Ziliang Zhu, Wenbing Wu, Yang Liu, and Shi Zhu. Grace: A deep graph contrastive representation learning framework. In *Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining*, pp. 1671–1681. ACM, 2020.
- 592 Michal Zitnik, Aritra Agrawal, and Jure Leskovec. Predicting multicellular function through multi 593 scale graph convolutions. *Nature Communications*, 8:1–13, 2017.

594 INDEX OF VARIABLES Α 595 596 $G = (\mathcal{V}, \mathcal{E})$ Graph with node set \mathcal{V} and edge set \mathcal{E} 597 Adjacency matrix Α 598 х Node feature matrix Ã Augmented adjacency matrix 600 Ã Augmented feature matrix \mathbf{M} 601 Masking matrix for node feature masking \mathcal{V}_d Set of nodes selected for removal in node dropping 602 \mathcal{G}_i Subgraph centered around node *i* 603 fθ GNN encoder function with parameters θ 604 g_{ϕ} Projection head function with parameters ϕ 605 $\mathbf{H}^{(k)}$ Node embeddings from view k606 $\mathbf{Z}^{(k)}$ Projected embeddings from view k607 $\mathbf{h}_{i}^{(k)}$ Embedding of node i from view k608 $\mathbf{z}_{i}^{(k)}$ Projected embedding of node i from view k609 $\mathbf{s}_{i}^{(k)}$ 610 Subgraph embedding centered at node i from view k $\mathbf{g}^{(k)}$ 611 Global graph embedding from view k612 auTemperature parameter for contrastive loss 613 α, β, γ Hyperparameters for weighting contrastive losses Node-level contrastive loss 614 \mathcal{L}_{node} $\mathcal{L}_{subgraph}$ Subgraph-level contrastive loss 615 Graph-level contrastive loss $\mathcal{L}_{\text{graph}}$ 616 $\mathcal{L}_{\text{total}}$ Total loss combining all contrastive objectives 617

B DATASETS

Cora, Citeseer, and PubMed These are citation networks where nodes represent documents and edges represent citation relationships Sen & Dhillon (2008). Node features are bag-of-words representations of the documents, and labels correspond to the academic topics of the documents.

Reddit The Reddit dataset Hamilton et al. (2017) is a large social network where nodes represent posts, and edges represent comments made by users on the same post. Node features are obtained from the text and metadata of the posts, and labels correspond to the communities (subreddits) to which the posts belong.

628 629 630

631 632

633

634 635

637

641

642 643

644 645

646

647

618

619 620 621

622

623 624

625

626

627

C IMPLEMENTATION DETAILS FOR REPRODUCIBILITY

C.1 Hyperparameters

Table 7 summarizes the hyperparameters used in our experiments across different datasets.

636 C.2 DATA PREPROCESSING

All feature vectors were normalized using L2 normalization. For the Reddit dataset, we used a sparse adjacency matrix representation to handle the large graph size efficiently. Graph data was loaded and processed using PyTorch Geometric (version 2.0.4).

C.3 HARDWARE AND SOFTWARE SPECIFICATIONS

Experiments were conducted on a machine with the following specifications:

- GPU: NVIDIA Tesla V100 (32GB memory)
- CPU: Intel Xeon Gold 6248R (3.0GHz, 24 cores)
- RAM: 384GB

	Hyperparameter	Cora	Citeseer	PubMed	Reddi
	Learning rate	0.001	0.001	0.001	0.005
	Weight decay	5e-4	5e-4	5e-4	1e-4
	Batch size	256	256	512	1024
	GNN layers	2	2	2	3
	Hidden dimension	128	128	128	256
	Dropout rate	0.5	0.5 0.2	0.3	0.1
	Edge drop rate Feature mask rate	0.2 0.3	0.2	0.1 0.2	0.15 0.1
	Temperature τ	0.5	0.5	0.2	0.1
	α (node-level weight)	1.0	1.0	1.0	1.0
	β (subgraph-level weight)	1.0	1.0	1.0	0.5
	γ (graph-level weight)	1.0	1.0	1.0	0.5
a c					
Softv	vare versions:				
	• Python 3.8.10				
	• PyTorch 1.9.0				
	PyTorch Geometric 2.0.4				
	•				
	• NumPy 1.21.2				
	• scikit-learn 0.24.2				
Aver	age runtime for training on Cora: 5 m	inutes A	verage runti	me for traini	ng on P
AVCI -	ige fundime for training on Cora. 5 m	inucs A	verage runn		ing on K
C.4	RANDOM SEED SETTINGS				
0.1					
	xperiments were run with a fixed rand			producibility	7. This so
data	splitting, model initialization, and bate	ch sampl	ing.		
C.5	EVALUATION PROTOCOL				
		the stone	lard split of	20 nodes pe	er class
	Cora, Citeseer, and PubMed, we used				
node	s for validation, and 1000 nodes for t				
node 10%	s for validation, and 1000 nodes for t for validation, and 24% for testing.	testing.	For Reddit,	we used 66	% of no
node 10% All r	s for validation, and 1000 nodes for t for validation, and 24% for testing. eported results are the average of 10 r	testing.	For Reddit,	we used 66	% of no
node 10% All r	s for validation, and 1000 nodes for t for validation, and 24% for testing.	testing.	For Reddit,	we used 66	% of no
node 10% All ro mean	s for validation, and 1000 nodes for t for validation, and 24% for testing. eported results are the average of 10 n accuracy and standard deviation.	testing.	For Reddit,	we used 66	% of no
node 10% All re mean	s for validation, and 1000 nodes for t for validation, and 24% for testing. eported results are the average of 10 r	testing.	For Reddit,	we used 66	% of no
node 10% All ro mear C.6	s for validation, and 1000 nodes for t for validation, and 24% for testing. eported results are the average of 10 n accuracy and standard deviation.	testing.	For Reddit, 1 different r	we used 66	% of no
node 10% All ro mean C.6 All n	s for validation, and 1000 nodes for t for validation, and 24% for testing. eported results are the average of 10 n accuracy and standard deviation. MODEL INITIALIZATION nodel parameters were initialized usin	testing.	For Reddit, 1 different r	we used 66	% of no
node 10% All ro mean C.6 All n	s for validation, and 1000 nodes for t for validation, and 24% for testing. eported results are the average of 10 n accuracy and standard deviation. MODEL INITIALIZATION	testing.	For Reddit, 1 different r	we used 66	% of no
node 10% All re mean C.6 All n C.7 We e	s for validation, and 1000 nodes for t for validation, and 24% for testing. eported results are the average of 10 n accuracy and standard deviation. MODEL INITIALIZATION nodel parameters were initialized usin, EARLY STOPPING mployed early stopping with a patient	testing. T runs with g Xavier ce of 30	For Reddit, n different r n uniform ini epochs, mo	we used 66 andom initia tialization.	% of no lization: validatic
node 10% All re mean C.6 All n C.7 We e	s for validation, and 1000 nodes for t for validation, and 24% for testing. eported results are the average of 10 n accuracy and standard deviation. MODEL INITIALIZATION nodel parameters were initialized usin, EARLY STOPPING	testing. T runs with g Xavier ce of 30	For Reddit, n different r n uniform ini epochs, mo	we used 66 andom initia tialization.	% of no lization: validatic
node 10% All ro mean C.6 All n C.7 We e was s	s for validation, and 1000 nodes for t for validation, and 24% for testing. eported results are the average of 10 n accuracy and standard deviation. MODEL INITIALIZATION nodel parameters were initialized usin, EARLY STOPPING mployed early stopping with a patient topped if the validation loss did not in	testing. T runs with g Xavier ce of 30	For Reddit, n different r n uniform ini epochs, mo	we used 66 andom initia tialization.	% of no lization: validatic
node 10% All re mean C.6 All n C.7 We e	s for validation, and 1000 nodes for t for validation, and 24% for testing. eported results are the average of 10 n accuracy and standard deviation. MODEL INITIALIZATION nodel parameters were initialized usin, EARLY STOPPING mployed early stopping with a patient	testing. T runs with g Xavier ce of 30	For Reddit, n different r n uniform ini epochs, mo	we used 66 andom initia tialization.	% of no lizations
node 10% All ro mear C.6 All n C.7 We e was s C.8	s for validation, and 1000 nodes for t for validation, and 24% for testing. eported results are the average of 10 n accuracy and standard deviation. MODEL INITIALIZATION nodel parameters were initialized usin, EARLY STOPPING mployed early stopping with a patient topped if the validation loss did not in	testing. T runs with g Xavier ce of 30 mprove f	For Reddit, n different r uniform ini epochs, mo or 30 conse	we used 66 andom initia tialization. nitoring the cutive epoch	% of no lizations
node 10% All ro mean C.6 All n C.7 We e was s C.8	s for validation, and 1000 nodes for t for validation, and 24% for testing. eported results are the average of 10 for accuracy and standard deviation. MODEL INITIALIZATION model parameters were initialized using EARLY STOPPING mployed early stopping with a patient topped if the validation loss did not in CODE AVAILABILITY	testing. T runs with g Xavier ce of 30 mprove f	For Reddit, n different r uniform ini epochs, mo or 30 conse	we used 66 andom initia tialization. nitoring the cutive epoch	% of no lization: validatic
node 10% All ro mean C.6 All n C.7 We e was s C.8	s for validation, and 1000 nodes for t for validation, and 24% for testing. eported results are the average of 10 for accuracy and standard deviation. MODEL INITIALIZATION model parameters were initialized using EARLY STOPPING mployed early stopping with a patient topped if the validation loss did not in CODE AVAILABILITY	testing. T runs with g Xavier ce of 30 nprove f acted for	For Reddit, n different r uniform ini epochs, mo or 30 conse	we used 66 andom initia tialization. nitoring the cutive epoch	% of no lization validatic

2 hours

used for

ning, 500 r training,

report the

Training

Algorithm 2 provides detailed pseudocode for our hierarchical contrastive learning procedure.

	$(\mathcal{E},\mathbf{X}),$ GNN en					
	on Generate aug					
$f_{\theta}(\tilde{G}_1), \mathbf{H}_2 =$	$f_{\theta}(\tilde{G}_2)$ Project	embeddi	ngs $\mathbf{Z}_1 = g$	$g_{\phi}(\mathbf{H}_1), \mathbf{Z}_2$	$= g_{\phi}(\mathbf{H}_2)$) Compute node
loss \mathcal{L}_{node} using	g Eq. (5) Comp	ute subg	raph-level l	oss $\mathcal{L}_{subgraph}$	using Eq.	(7) Compute
	h using Eq. (9) C t descent on \mathcal{L}_{tot}		$101a1 1088 L_1$	$total = \alpha \mathcal{L}_{nod}$	$e + \rho \mathcal{L}_{subg}$	$g_{raph} + \gamma \mathcal{L}_{graph}$
		ai				
C.10 ADDITION	AL BASELINES					
In addition to the l following recent sel				xt, we also	compared	our method w
• BGRL ?:]	Bootstrapped Gr	aph Late	nts			
• CCA-SSG	?: Canonical C	orrelation	n Analysis f	for Self-Supe	ervised Gr	aph Learning
• GraphMA	E ?: Graph Mas	ked Auto	encoders			
Table 8 shows the p	performance com	nparison	with these a	additional ba	selines.	
Table 8: 1	Node classificatio	on accura	acy (%) con	nparison wit	h addition	al baselines
	Method	Cora	Citeseer	PubMed	Reddit	_
	BGRL	84.7	72.9	80.2	95.3	
	CCA-SSG GraphMAE	84.0 85.3	73.1 73.5	80.5 80.3	95.2 95.6	
	GIAPHINIAE	05.5	13.5	00.2	9.1.0	
C.11 Extended	Ours	86.2	74.6	81.5	96.1	-
	ABLATION ST	UDY		81.5	96.1	- our model.
C.11 EXTENDED Table 9 presents an	• ABLATION ST	UDY on study,	including a	81.5	96.1	- Four model.
	• ABLATION ST	UDY on study, xtended	including a	81.5 additional va	96.1	- ^C our model.
	D ABLATION ST extended ablatic Table 9: E Model Vari Full Model	UDY on study, xtended	including a ablation stu	81.5 additional va dy on Cora o Accura 8	96.1 riations of dataset acy (%) 5.2	- 'our model.
	O ABLATION ST extended ablatic Table 9: E Model Vari Full Model Without No	UDY on study, xtended iant de-Level	including a ablation stu Contrast	81.5 additional va dy on Cora o Accura 86 83	96.1 riations of dataset acy (%) 5.2 3.5	- Four model.
	O ABLATION ST extended ablatic Table 9: E Model Vari Full Model Without No Without Sul	UDY on study, xtended iant de-Level bgraph-L	including a ablation stu Contrast evel Contra	81.5 additional va dy on Cora o Accura 86 83 ast 84	96.1 riations of dataset acy (%) 5.2 3.5 4.1	- [°] our model.
	O ABLATION ST extended ablatic Table 9: E Model Vari Full Model Without No	UDY on study, xtended iant de-Level bgraph-L aph-Leve	including a ablation stu Contrast evel Contrast l Contrast	81.5 additional va dy on Cora o Accura 86 83 84 84 84 84 84 84 84 84 84 84 84 84 84	96.1 riations of dataset acy (%) 5.2 3.5	- `our model.
	O ABLATION ST extended ablatic Table 9: E Model Vari Full Model Without No Without Sul Without Gra Only Node- Only Subgra	UDY on study, xtended iant de-Level bgraph-L aph-Leve Level Co aph-Leve	including a ablation stu Contrast evel Contrast ontrast el Contrast el Contrast	81.5 additional va dy on Cora o Accura 80 83 84 84 84 84 84 84 84 84 85 85 85 85 85 85 85 85 85 85 85 85 85	96.1 riations of dataset acy (%) 5.2 3.5 4.1 4.7 2.8 1.9	- 'our model.
	O ABLATION ST extended ablatic Table 9: E Model Vari Full Model Without No Without Sul Without Gra Only Node- Only Subgra	UDY on study, xtended iant de-Level bgraph-L aph-Leve Level Co aph-Leve caph-Level	including a ablation stu Contrast evel Contrast ontrast el Contrast el Contrast contrast	81.5 additional va dy on Cora o Accura 80 83 1st 84 82 83 84 84 82 83 84 84 84 84 84 84 84 84 84 84 84 84 84	96.1 riations of dataset acy (%) 5.2 3.5 4.1 4.7 2.8 1.9).5	- Four model.
	O ABLATION ST extended ablatic Table 9: E Model Vari Full Model Without No Without Sul Without Gra Only Node- Only Subgra Only Graph Without Ad	UDY on study, xtended iant de-Level bgraph-L aph-Leve Level Co aph-Leve Caph-Level Caph-Level C aph-Level C	including a ablation stu Contrast evel Contrast ontrast el Contrast el Contrast contrast	81.5 additional va dy on Cora of Accura 80 83 84 84 84 84 84 84 84 84 84 84	96.1 riations of dataset acy (%) 5.2 3.5 4.1 4.7 2.8 1.9).5 4.9	- `our model.
	ABLATION ST extended ablatic Table 9: E Model Vari Full Model Without No Without Sul Without Gra Only Node- Only Subgr Only Graph Without Ad Single-Laye	UDY on study, xtended iant de-Level bgraph-L aph-Leve Level Cc aph-Leve -Level C aph-Leve caph-Leve aph-Leve caph-Leve captive A	including a ablation stu Contrast evel Contrast contrast contrast contrast contrast ugmentation	81.5 additional va dy on Cora of Accura 80 83 84 84 84 84 84 84 84 84 84 84	96.1 riations of dataset acy (%) 5.2 3.5 4.1 4.7 2.8 1.9 0.5 4.9 3.7	- 'our model.
	O ABLATION ST extended ablatic Table 9: E Model Vari Full Model Without No Without Sul Without Gra Only Node- Only Subgra Only Graph Without Ad	UDY on study, xtended iant de-Level bgraph-L aph-Leve Level Cc aph-Leve -Level C aph-Leve caph-Leve aph-Leve caph-Leve captive A	including a ablation stu Contrast evel Contrast contrast contrast contrast contrast ugmentation	81.5 additional va dy on Cora of Accura 80 83 84 84 84 84 84 84 84 84 84 84	96.1 riations of dataset acy (%) 5.2 3.5 4.1 4.7 2.8 1.9).5 4.9	- Four model.
	ABLATION ST extended ablatic Table 9: E Model Vari Full Model Without No Without Sul Without Gra Only Node- Only Subgr Only Graph Without Ad Single-Laye	UDY on study, xtended iant de-Level bgraph-L aph-Leve Level Cc aph-Leve -Level C aph-Leve caph-Leve aph-Leve caph-Leve captive A	including a ablation stu Contrast evel Contrast contrast contrast contrast contrast ugmentation	81.5 additional va dy on Cora of Accura 80 83 84 84 84 84 84 84 84 84 84 84	96.1 riations of dataset acy (%) 5.2 3.5 4.1 4.7 2.8 1.9 0.5 4.9 3.7	- `our model.
	ABLATION ST extended ablatic Table 9: E Model Vari Full Model Without No Without Sul Without Gra Only Node- Only Subgr Only Graph Without Ad Single-Laye	UDY on study, xtended iant de-Level bgraph-L aph-Leve Level Cc aph-Leve -Level C aph-Leve caph-Leve aph-Leve caph-Leve captive A	including a ablation stu Contrast evel Contrast contrast contrast contrast contrast ugmentation	81.5 additional va dy on Cora of Accura 80 83 84 84 84 84 84 84 84 84 84 84	96.1 riations of dataset acy (%) 5.2 3.5 4.1 4.7 2.8 1.9 0.5 4.9 3.7	- 'our model.
	ABLATION ST extended ablatic Table 9: E Model Vari Full Model Without No Without Sul Without Gra Only Node- Only Subgr Only Graph Without Ad Single-Laye	UDY on study, xtended iant de-Level bgraph-L aph-Leve Level Cc aph-Leve -Level C aph-Leve caph-Leve aph-Leve caph-Leve captive A	including a ablation stu Contrast evel Contrast contrast contrast contrast contrast ugmentation	81.5 additional va dy on Cora of Accura 80 83 84 84 84 84 84 84 84 84 84 84	96.1 riations of dataset acy (%) 5.2 3.5 4.1 4.7 2.8 1.9 0.5 4.9 3.7	- 'our model.
	ABLATION ST extended ablatic Table 9: E Model Vari Full Model Without No Without Sul Without Gra Only Node- Only Subgr Only Graph Without Ad Single-Laye	UDY on study, xtended iant de-Level bgraph-L aph-Leve Level Cc aph-Leve -Level C aph-Leve caph-Leve aph-Leve caph-Leve captive A	including a ablation stu Contrast evel Contrast contrast contrast contrast contrast ugmentation	81.5 additional va dy on Cora of Accura 80 83 84 84 84 84 84 84 84 84 84 84	96.1 riations of dataset acy (%) 5.2 3.5 4.1 4.7 2.8 1.9 0.5 4.9 3.7	- 'our model.
	ABLATION ST extended ablatic Table 9: E Model Vari Full Model Without No Without Sul Without Gra Only Node- Only Subgr Only Graph Without Ad Single-Laye	UDY on study, xtended iant de-Level bgraph-L aph-Leve Level Cc aph-Leve -Level C aph-Leve caph-Leve aph-Leve caph-Leve captive A	including a ablation stu Contrast evel Contrast contrast contrast contrast contrast ugmentation	81.5 additional va dy on Cora of Accura 80 83 84 84 84 84 84 84 84 84 84 84	96.1 riations of dataset acy (%) 5.2 3.5 4.1 4.7 2.8 1.9 0.5 4.9 3.7	- 'our model.
	ABLATION ST extended ablatic Table 9: E Model Vari Full Model Without No Without Sul Without Gra Only Node- Only Subgr Only Graph Without Ad Single-Laye	UDY on study, xtended iant de-Level bgraph-L aph-Leve Level Cc aph-Leve -Level C aph-Leve caph-Leve aph-Leve caph-Leve captive A	including a ablation stu Contrast evel Contrast contrast contrast contrast contrast ugmentation	81.5 additional va dy on Cora of Accura 80 83 84 84 84 84 84 84 84 84 84 84	96.1 riations of dataset acy (%) 5.2 3.5 4.1 4.7 2.8 1.9 0.5 4.9 3.7	- [°] our model.

756 D BASELINES

758 Supervised Methods

- GCN Kipf & Welling (2017): A graph convolutional network that performs semisupervised learning using spectral graph convolutions.
- GAT Veličković et al. (2018): A graph attention network that leverages attention mechanisms to weigh the importance of neighboring nodes.
- **GraphSAGE** Hamilton et al. (2017): An inductive framework that generates node embeddings by sampling and aggregating features from a node's local neighborhood.

767 Self-Supervised Methods768

- **DGI** Veličković et al. (2019): Deep Graph Infomax maximizes mutual information between node embeddings and a global summary of the graph.
- **GRACE** Zhu et al. (2020): Graph Contrastive Representation Learning employs contrastive learning with graph data augmentations.
- **MVGRL** Hassani et al. (2020): Multi-View Graph Representation Learning contrasts representations from different graph diffusion matrices.
- **GraphCL** You et al. (2020): Graph Contrastive Learning uses various graph augmentations to learn graph-level representations via contrastive learning.

These baselines are chosen because they represent the state-of-the-art in both supervised and self-supervised graph representation learning, and they cover a range of strategies for leveraging structural information in graphs.