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Abstract

Although computational pathology has substan-
tially advanced the automated analysis of patho-
logical images, its reliance on visual features
overlooks the multimodal context that human
pathologists integrate, thereby constraining di-
agnostic accuracy. This study explores enhanc-
ing pathological diagnosis by providing models
with three types of auxiliary information during
inference, including clinical history, terminol-
ogy explanations, and visual in-context exam-
ples. We fine-tune a vision-language model
for pathological diagnosis with large-scale pre-
training and instruction following data. Exper-
iments across slide-level diagnosis, region of
interest subtyping, and invasion detection tasks
demonstrate significant improvements with en-
riched context. Our findings highlight the po-
tential of enriching context with auxiliary in-
formation to bridge the gap between human
diagnosis and computational pathology.

1 Introduction

The progress of artificial intelligence in the field
of healthcare has revolutionized pathological diag-
nosis. Large-scale models (Lu et al., 2021a; Tang
et al., 2023; Lin et al., 2023; Chen et al., 2024a;
Xu et al., 2024) are enabled to perform automated
diagnosis with remarkable efficiency, achieving per-
formance comparable to or even surpassing that of
human experts.

Despite these advancements, existing research
focuses solely on exploiting visual features derived
from pathological images. However, human diag-
nostic reasoning extends beyond visual patterns.
Pathologists integrate clinical history when inter-
preting slides, including but not limited to patients’
age, gender, prior diagnosis and biological speci-
mens. Moreover, the limited availability of patho-
logical data fundamentally restricts the capabilities
of vision-language models (VLMs) to identify dis-
eases, leading to significant performance degrada-
tion when models encounter novel disease types.

These two constraints have built an information
gap between human diagnosis and computational
pathology. Therefore, it is important to enhance the
inference phase by augmenting the textual context
related to the patient and the disease. Furthermore,
inspired by in-context learning, there is potential in
integrating image examples during inference. Im-
ages can convey subtle details that cannot always
be expressed through texts alone, offering richer
and multi-dimensional contextual information that
could improve diagnostic accuracy.

In this study, we evaluate the effect of enrich-
ing context with three types of auxiliary informa-
tion in the pathological diagnostic tasks. Specifi-
cally, we investigate whether integrating clinical
history, terminology explanations and visual in-
context examples during inference can enhance
the performance of VLMs. To validate the hy-
pothesis, we conduct a series of experiments on
Qwen2-VL (Wang et al., 2024a), which is further
optimized for pathological diagnosis through fine-
tuning. Notably, our findings provide compelling
evidence that incorporating auxiliary information
leads to apparent improvements in models’ perfor-
mance, highlighting its significance in computa-
tional pathology. In summary, our contributions
include:

1. We introduce a context-enriching strategy dur-
ing inference that integrates (i) clinical history,
(i1) terminology explanations, and (iii) visual
in-context examples into the dialogue with
large VLMs.

2. We develop a domain-adapted model of
Qwen2-VL-7B-Instruct through fine-tuning,
which is tailored to address the unique chal-
lenges in computational pathology.

3. Experiment results validate that our context-
enriching method guides VLMs towards more
accurate pathological diagnosis.
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Figure 1: An overview of our framework. Left: the training data for fine-tuning. Right: integrating three
types of auxiliary information during inference in three diagnosis-related tasks respectively.

2 Related Work

2.1 Pathological VLM

Recent advancements in computational pathology
have facilitated the development of VLMs specially
tailored for pathological image analysis. Early con-
tributions include PLIP (Huang et al., 2023) and
CONCH (Lu et al., 2024a), which establish foun-
dational frameworks in this domain. Building upon
these, PathChat (Lu et al., 2024b) emerges as a
comprehensive vision-language generative assis-
tant for pathology. Subsequently, SlideChat (Chen
et al., 2024b) is introduced as the first VLM target-
ing gigapixel slide image analysis. CPath-Omni
(Sun et al., 2024a) further advances the field by
unifying both patch-level and whole-slide image
analysis.

2.2 Enriching Context

Enriching context during inference is an effective
strategy to adapt models for specialized domains,
which augments the models with auxiliary infor-
mation including task explanations (Recchia, 2021;
Lampinen et al., 2022) and domain knowledge (Jin
et al., 2023; Sural et al., 2024). In the medical field,
Zakka et al. (2024) explores the retrieval of medical
guidelines to generate reliable clinical responses.
Wang et al. (2024b) integrates authoritative medi-
cal textbooks into the language models’ framework
for medical question answering (QA). Neupane
et al. (2024) proposes integrating patients’ medical

records to generate personalized responses using
language models. However, the effect of context
enrichment on the interpretation of pathological
images remains insufficiently explored.

2.3 In-context Learning

Large-scale models have revealed a compelling
learning strategy, in-context learning (ICL). Pi-
oneered by GPT-3 (Brown et al., 2020), this
paradigm enables models to learn from examples
with labels during inference without any gradient
updates. Extensive studies confirm that ICL is no-
tably powerful with multiple benefits (Dong et al.,
2022), including offering an interpretable frame-
work for model interaction (Brown et al., 2020;
Liu et al., 2021; Lu et al., 2021b; Wu et al., 2023),
simulating human decision-making processes by
learning from analogy (Winston, 1980) and reduc-
ing the computational costs for domain-specific
adaptation.

In the field of pathology, ICL is still a novel
approach with limited existing work. Nori et al.
(2023) proposes Medprompt to identify the most
relevant few-shot examples of medical QA pairs.
Ferber et al. (2024) extends this framework to mul-
timodal diagnostic applications in pathology. Liu
et al. (2025) demonstrates the potential of ICL for
improving pathological report generation. Nonethe-
less, prior literature has not yet investigated the
potential of visual examples alone in enhancing the
performance of VLM in pathological diagnosis.



3 Methods

3.1 Fine-tuning VLM

We fine-tune a foundational VLM for pathology-
specific tasks. For parameter-efficient optimization,
we employ a strategy that combines Low-Rank
Adaptation (LoRA) (Hu et al., 2022) with Super-
vised Fine-Tuning (SFT) methodologies.

Our training data can be classified into two parts.
The pretraining data enables the model to develop
abilities of visual-text alignment and image-based
feature exploration through exposure to large-scale
pathological multimodal data. The instruction fol-
lowing data enables the model to handle diverse
downstream applications more effectively, charac-
terized by moderate scale and increased task com-
plexity. The detailed data summarization is listed
in Section 4.

Pretraining Data General-purpose VLMs may
struggle to fully understand pathology-related mul-
timodal data, primarily due to the imbalanced data
in the pathological domain within their training
sets, with pathological images being relatively in-
sufficient compared to the more plentiful textual
data. Therefore, we follow LLaVA (Liu et al.,
2023) and collect a huge amount of image-caption
pairs to align the VLM’s image representation
space with that of pathological text. The pre-
training data consists of over 700 thousand image-
caption pairs from public datasets, websites'? , and
from our private annotations on whole-slide images
(WSIs) from The Cancer Genome Atlas (TCGA)?.

Furthermore, inspired by contrastive learning
in visual training (Khosla et al., 2020; Tian et al.,
2020), we conduct pretraining on similarity assess-
ment tasks to enhance the VLM’s capability of ob-
taining information exclusively from visual input.
Specifically, we construct a 200K-sample dataset
including two tasks. The first task requires the
model to determine whether paired images are se-
mantically equivalent. The second task challenges
the model to identify which of the two reference
images matches the query image better.

Instruction Following Data The instruction fol-
lowing data covers a diverse range of tasks for
downstream applications in computational pathol-
ogy, including slide-level diagnosis, patch-level
subtyping, multiple choice and conversation. These

1 https://hanspopperhepatopathologysociety.org
Zhttps://www.webpathology.com
3https://portal. gdc.cancer.gov

tasks are carefully selected to address different sce-
narios of pathological diagnosis. The slide-level di-
agnosis task involves the recognition and interpreta-
tion of global pathological patterns across WSIs, re-
quiring a comprehensive analysis. The patch-level
subtyping task focuses on the fine-grained mor-
phological characteristics within regions of interest
(Rols), which emphasizes identifying local features.
In addition, the multiple-choice task presents patho-
logical QA and enhances decision-making. Further-
more, the conversation task simulates real-world
communication to foster the model’s capability for
interaction. Diverse data sources are used to curate
the instruction following dataset, which spans pub-
lic classification datasets, pathological case reports,
and our private annotation of TCGA.

3.2 Enriching Context with Multimodal
Auxiliary Information

In traditional pathology, pathologists need to inte-
grate slides with patients’ clinical history to make
more precise diagnoses. In computational pathol-
ogy, however, VLMs require even more. Due to the
imbalanced pathological data of text over images in
VLMs’ domain, terminology explanations are more
readily interpretable by VLMs and facilitate the un-
derstanding of features from pathological images.
Moreover, specific details in pathological images
may be too subtle to be adequately represented
through text alone. Hence, besides incorporating
textual information, learning from visual cues is
also significant for VLMs. As Figure 1 illustrates,
we explore three strategies to enrich VLMs’ con-
text with such auxiliary information, including clin-
ical history, terminology explanations and visual
in-context examples.

Context Enriched by Clinical History

The patient is a 52-year-old female with a history of a right breast

Clinical
History

mass. Lumpectomy and axillary dissection were performed on the
right breast. The lumpectomy specimen measures 7.2 cm in length
and shows a central mass with clear margins. The remaining breast

tissue appears unremarkable.

Here is the whole slide image of this case:

Based on the whole slide image and the clinical history, please
give the most possible diagnosis.

Multimodal
Task Prompt

Figure 2: An example prompt with clinical history.



Context Enriched by Terminology Explanations

Analyze the input pathological image to determine the most
likely diagnosis according to the following tissue or abnormality
types : ['Benign', 'Malignant']. The image is sampled from breast.

Multimodal
Task Prompt

Terminology
Explanations

Figure 3: An example prompt with terminology ex-
planations.

3.2.1 Clinical History

Pathological diagnosis relies on multimodal evi-
dence beyond isolated visual patterns. Clinical
history plays a crucial role in pathological diag-
nosis, providing essential context that guides the
interpretation of tissue findings. Pathologists can
formulate a more accurate diagnosis by consider-
ing the patients’ personal information, past medical
conditions, symptoms, operations, and biological
specimens.

To mimic this phenomenon, we adopt a system-
atic approach to integrate patients’ clinical history.
The clinical history is explicitly included in the task
prompt during the inference stage, as illustrated in
Figure 2. VLMs subsequently process this textual
prompt with the pathological image through their
multimodal architecture. In this way, VLMs are
guided to simultaneously concentrate their atten-
tion on the visual patterns and the relevant clini-
cal history, thereby enabling comprehensive cross-
modal analysis.

Before integrating clinical history, data clean-
ing is necessary, since the raw medical records
may contain latent diagnosis leakage. We utilize
GPT-4 to analyze and remove explicit or implicit
references to the final diagnosis while preserving
essential clinical history. Subsequently, the pro-
cessed clinical history undergoes careful validation
by three experienced pathologists, who manually
verify the completeness of sensitive information
removal and assess the semantic integrity of the
remaining content.

3.2.2 Terminology Explanations

A key challenge in applying VLMs for pathological
diagnosis is that these models are typically trained
on limited pathological images, and struggle when

Context Enriched by Visual In-context Examples
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Figure 4: An example prompt with visual in-context
examples. The green and red dots in the top-left cor-
ner indicate different classes of the reference images.

encountering rare or novel diseases. Pathological
texts, however, are relatively plentiful, making it
easier for VLMs to interpret them. In this section,
we augment VLMs with detailed terminology ex-
planations to address this imbalance and strengthen
their domain knowledge. The terminology expla-
nations are the textual descriptions of microscopic
pathological images of certain diseases, which fo-
cus on morphological characteristics that are more
readily interpretable by VLMs. In this way, VLMs
are able to comprehend information from patholog-
ical images more effectively by establishing con-
nections between visual features and their textual
characterizations.

The workflow begins by synthesizing concise
terminology explanations with GPT-4, emphasiz-
ing cell arrangements, staining patterns, and tissue-
level abnormalities. During inference, the terminol-
ogy explanations of each disease are concatenated
to the task prompt and fed into VLMs as a textual
input along with the image. Figure 3 presents an ex-
ample prompt with terminology explanations. By
supplementing the image with descriptive context,
VLMs benefit from a more comprehensive under-
standing of each disease category, thus reducing
class ambiguity.

3.2.3 Visual In-context Examples

While textual knowledge enhances diagnosis, vi-
sual patterns in pathology also serve as critical
evidence. For instance, tumor cells present vary-
ing appearances across different sites, making it
challenging to describe their characteristics solely
through text. As a result, it is necessary to learn
these characteristics directly from images, since
they may contain richer morphological details.
Inspired by in-context learning paradigms, we
extend this concept by leveraging images them-



Table 1: Data for pretraining, including data for
image-caption alignment and similarity assessment.
The data source and size are listed.

\ Data Source Size
PathGen 300,244
Image-caption PathCap 223,169
AL i menlz Quilt-1M 120,796
g Public Websites 12,325
TCGA 35,521
Similarity TCGA 200,000
Assessment

selves as contextual guidance for VLMs. In this
way, the models are encouraged to allocate greater
attention to the visual features of the pathological
images when constructing contextual representa-
tions. This approach promotes more efficient use
of visual patterns for analogical mapping, inductive
learning and knowledge generalization. During in-
ference, VLMs evaluate the similarity between the
query image and the visual references to determine
the class. The classification proceeds by major-
ity voting when multiple reference image pairs are
provided. Specifically, the query image is com-
pared with both members of each pair. The la-
bel of the selected reference contributes one vote,
and the category accumulating the most votes is fi-
nally assigned to the query image. Figure 4 demon-
strates an example prompt with visual in-context
examples. This design aligns with the similarity
assessment tasks during fine-tuning, where VLMs
have developed capabilities to capture latent vi-
sual relationships between image pairs. By prior-
itizing visual examples, the method emphasizes
morphology-driven decision-making.

4 Implementations

We leverage the LLaMA-Factory framework
(Zheng et al., 2024) to fine-tune Qwen2-VL-7B-
Instruct. We perform the fine-tuning with 3 epochs,
which takes about 32 hours on 8 A100 GPUs. The
learning rate is set to le-4, and the batch size is set
to 8. The warm-up ratio is 0.1.

We list data used in the training phase in Ta-
bles 1 and 2. The public datasets of image-caption
pairs include PathGen (Sun et al., 2024b), Path-
Cap (Zhang et al., 2020) and Quilt-1M (Ikezogwo
et al., 2023). Since PathGen also originates from
TCGA, we exclude images that overlap with the
testing data. As for slide-level diagnosis, we split

Table 2: Data for instruction following, including
data for slide-level diagnosis, patch-level subtyping,
multiple choice and conversation. The data source
and size are listed.

Data Source Size
Slide-level TCGA Pan-cancer | 890
Diaenosis TCGA-NSCLC 741
& TCGA-RCC 829
BreakHis 1,148
Chaoyang 4,021
gﬁg’th'lfnvel NCT-CRC-HE 100,000
yping LC25000 17,500
PatchGastricADC22| 143,497
PCam 262,144
Multiple Private
Choice Question Bank Vot
Conversation TCGA 9,485

TCGA-NSCLC and TCGA-RCC into training and
testing sets in a 4:1 ratio, with 741 and 829 training
slides, respectively. For patch-level subtyping, we
utilize BreakHis (Spanhol et al., 2015), Chaoyang
(Zhu et al., 2021), NCT-CRC-HE (Kather et al.,
2018), LC25000 (Borkowski et al., 2019), Patch-
GastricADC22 (Tsuneki and Kanavati, 2022) and
PCam (Veeling et al., 2018), and divide them into
training and testing sets according to the official
guidance. All data used in this study strictly adhere
to the relevant licenses.

In our data preprocessing pipeline, we filter the
initial datasets by excluding 80% of the PCam sam-
ples and 50% of the Quilt-1M samples, primarily
due to concerns regarding image quality and anno-
tation reliability.

During the training and inference phases, all the
WSIs are converted to thumbnails to fit the context
window limitations of Qwen2-VL.

5 Experiments

Our study evaluates three diagnosis-related tasks
that incorporate the three aforementioned types of
auxiliary information, respectively. The experimen-
tal framework comprises 1) slide-level diagnosis
utilizing clinical history, 2) Rol subtyping with ter-
minology explanations, and 3) invasion detection
employing image-based in-context learning. Each
of the three types of auxiliary information serves
a critical role within its corresponding task. For
slide-level diagnosis, a comprehensive clinical his-
tory helps resolve diagnostic ambiguities inherent



Table 3: Slide-level Diagnosis results(%). w/ H denotes that the model integrates clinical history during

inference.
Model NSCLC RCC Pan-cancer
Acc F1 Acc F1 Acc F1
Qwen-7B 49.76 4353 5484 38.84 10.84 1.56
w/H +4.35 +2.45 +1.61 +3.53 +37.50 +43.66
Qwen-72B  48.79 32.00 55.38 38.84 6.40 1.48
w/H +14.01 +31.11 +2.15 +5.75 +59.08 +63.01
Ours-7B 73.91 73.88 69.89 67.75 15.71 9.49
w/H +1.45 +1.50 +2.15 +1.53 +68.47 +70.74

in large-scale tissue evaluation. Rol subtyping fo-
cuses on detailed morphological patterns, where
disease-specific terminology explanations provide
more targeted guidance than general patient data.
In invasion detection, lymphovascular invasion pat-
terns vary across tissue sites, and visual examples
enable comparative pattern recognition critical for
identifying boundaries.

We implement these experiments using three
models, including the baseline Qwen2-VL-
TB-Instruct (Qwen-7B), Qwen2-VL-72B-Instruct
(Qwen-72B), and our fine-tuned Qwen2-VL-7B-
Instruct (Ours-7B).

5.1 Slide-level Diagnosis

Datasets To investigate the impact of clinical his-
tory on slide-level diagnosis, we follow Lu et al.
(2024a) and conduct evaluations on two classi-
cal slide-level subtyping datasets, TCGA-NSCLC
(NSCLC) and TCGA-RCC (RCC), with the test
sets containing 207 and 186 WSIs, respectively.
An additional class-balanced dataset comprising
904 WSIs of 32 cancer types is constructed from
TCGA to comprehensively evaluate the perfor-
mance of pan-cancer diagnosis (Pan-cancer). The
test datasets are ensured to be excluded from the
training data.

Evaluation Metrics We employ two complemen-
tary evaluation metrics, Accuracy (Acc) and F1
score, to assess model performance. Acc provides
an intuitive measure of overall diagnostic correct-
ness. The F1 score is simultaneously adopted to
measure the performance comprehensively by con-
sidering both precision and recall.

Results In Table 3, we present the effect of in-
tegrating clinical history. It can be found that sys-
tematically integrating such auxiliary information

[0 with solely visual input
B with solely clinical history
B with both visual input and clinical history

Acc

NSCLC RCC

Pan-cancer

Dataset

Figure 5: The performances of our fine-tuned model
in slide-level diagnosis with solely visual input, with
solely clinical history, and with both visual input and
clinical history.

leads to notable performance improvements across
all datasets. The most substantial improvement
is observed on the Pan-cancer dataset, where our
fine-tuned model achieves a 68.47% improvement
in accuracy. This significant improvement can be
attributed mainly to the inclusion of the anatomical
site information in the clinical history, which en-
ables the scope reduction of differential diagnosis.
Conversely, slide-level subtyping tasks show rela-
tively modest gains, with accuracy improvements
of 1.45% on the NSCLC dataset and 2.15% on the
RCC dataset. This is mainly because the subtle
distinctions in tumor morphology primarily depend
more on WSI microstructural pattern recognition
than on background clues. Additionally, the Acc
and F1 score on Pan-cancer are higher than those
on NSCLC and RCC, which also confirms the in-
herent complexity of tumor-subtyping.

To further study the roles of different modalities,
we evaluate our fine-tuned model’s performance
with visual input, clinical history, and both infor-



Table 4: Rol Subtyping results (%). w/ E denotes that the model integrates terminology explanations during

inference.
Model BreakHis Chaoyang NCT-CRC-HE LC25000
bAcc wF1 bAcc wF1 bAcc wF1 bAcc wFl1
Qwen-7B 50.13 52.08 3524 34.21 9.51 8.76 20.00 6.85
w/E +0.78 +3.02 +3.31 +3.03 +2.88 +6.92 +0.26 +0.76
Qwen-72B  48.56 51.50 2990 29.11 21.92 14.85 18.26 17.22
w/E +144 +1.68 +596 +4.69 +17.39 +16.99 +1.82 +1.28
Ours-7B 84.00 83.13 70.95 77.86 89.29 90.29 98.98 98.97
w/E +5.86 +7.36 -0.58 +0.22 +0.95 +1.16 +0.02 +0.01

mation. From the results shown in Figure 5, we can
see that multimodal integration of pathological im-
ages with clinical history consistently outperforms
unimodal approaches, establishing the necessity of
combining visual features with textual context.

5.2 Rol Subtyping

Datasets For the task of Rol subtyping, we use
the test dataset of BreakHis, Chaoyang, NCT-CRC-
HE, and LC25000, which were excluded from the
fine-tuning stage.

Evaluation Metrics To address class imbalance,
we apply balanced accuracy (bAcc) and weighted
F1 (wF1) score as the evaluation metrics.

Results Table 4 demonstrates a notable improve-
ment in performance tied to terminology expla-
nation supplementation. The most pronounced
improvements are observed in the Chaoyang and
NCT-CRC-HE datasets for the baseline Qwen-VL
models. This enhancement primarily stems from
the insufficient prior domain knowledge of Qwen-
VL in these pathological subtypes. In contrast,
our fine-tuned model achieves substantially higher
baseline performance, which confirms that domain
adaptation contributes to robust feature comprehen-
sion. Nevertheless, terminology explanations still
yield non-trivial additional gains on two of the four
datasets, highlighting their effectiveness even in
optimized models.

In summary, these findings indicate that integrat-
ing terminology explanations is an efficient way to
inject prior knowledge. Models can recognize dis-
criminative features more effectively by supplying
terminology explanations that outline each disease
category with morphological descriptions. These
added cues compensate for the original knowledge

gap and allow the model to generalize more reliably
across unseen cases.

5.3 Invasion Detection

Datasets The development of invasion detec-
tion remains challenging due to the lack of pub-
licly available datasets. We establish a private
dataset comprising 596 samples from the Pan-
cancer dataset to address the issue. The dataset
contains 376 negative cases (absence of invasion)
and 220 positive cases (confirmed invasion pres-
ence), with all samples undergoing rigorous anno-
tation by three experienced pathologists.

Table 5: Invasion Detection results (%). w/ n-shots
denotes that the model integrates » pairs of visual
in-context examples during inference. The best per-
formance in each column is bold.

Invasion Detection

Model

Acc F1 Recall
Qwen-7B 62.08 9.56 591
Qwen-72B 59.39 58.12 76.36
Ours-7B 77.18 57.50 41.82
Ours-7B w/ 1-shot 81.86 71.23 7091
Ours-7B w/ 5-shot  87.25 81.82 77.73
Ours-7B w/ 10-shot  89.09 84.19 78.64

Evaluation Metrics In addition to the Acc and
F1 score, we further incorporate Recall as a crit-
ical evaluation metric for the invasion detection
task. Recall directly quantifies models’ ability to
detect true invasion cases, which constitutes the pri-
mary objective in actual applications. We omit the
Precision metrics due to space limitations and the
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Figure 6: Comparison of model performance (Acc, F1 score, and Recall) in invasion detection regarding

different numbers of shots.

prioritization of recall over precision in this task.

Results Table 5 demonstrates our experiment
results in invasion detection. Notably, parame-
ter scaling in the baseline Qwen-VL architecture
fails to yield consistent performance improvements.
This phenomenon also highlights the necessity of
domain-specific fine-tuning, which significantly en-
hances the capabilities of the model (+47.94% F1
score versus the baseline model).

Furthermore, our fine-tuned model exhibits adap-
tive behavior when processing visual in-context
examples. Under zero-shot conditions, the model
achieves 77.18% accuracy but demonstrates limited
recall of 41.82%, which suggests a conservative
classification strategy where predictions are made
only for high-confidence cases, resulting in missed
positive samples. Introducing one-shot visual ex-
amples triggers a strategic adaptation. Recall in-
creases substantially to 70.91%, indicating that vi-
sual contextual guidance enables more active iden-
tification of positive cases. With extended context
(5/10-shot configurations), the performance further
improves, achieving 87.25% and 89.09% accu-
racy while maintaining high recall rates (77.73%
and 78.64%). This progression suggests that the
increased visual contextual information enhances
task comprehension and strengthens the model’s
ability to generalize features from positive samples.
To illustrate this point more concretely, a case study
is included in Appendix A.3.

Besides, Figure 6 demonstrates that when base-
line Qwen2-VL models are provided with visual
in-context examples, their gains are far more muted
than those observed for our fine-tuned model (even
ineffective). For the Qwen2-VL-7B-Instruct model,

applying image-based in-context learning signifi-
cantly improves the recall and F1 score compared
to zero-shot scenarios. However, this performance
gain remains stagnant as the number of shots in-
creases, indicating the model’s limited capacity
in learning visual features from pathological im-
ages through incremental examples. Similarly, the
Qwen2-VL-72B-Instruct model exhibits negligible
improvement or even slight degradation in recall
and F1 score with few-shot demonstrations, fur-
ther confirming the observed limitations in visual
feature summarization. Importantly, both the base-
line and our fine-tuned Qwen-VL model display
gain saturation when exceeding a threshold of shot
numbers.

6 Conclusion

This study establishes a paradigm for advancing
computational pathology with multimodal auxiliary
information. By systematically incorporating clini-
cal history, terminology explanations and visual in-
context examples, we propose a context-enriched
framework that addresses the inherent limitations
of conventional VLMs in pathological diagnosis.
Our experiments across slide-level diagnosis, Rol
subtyping and invasion detection validate the ef-
fectiveness of this approach. The findings indicate
that bridging the expertise gap between human ex-
perts and artificial systems is not a purely architec-
tural problem but a contextual one. By providing
VLMs with auxiliary information, we can move a
step closer to trustworthy computational pathology.
Future work will address automatic retrieval of rel-
evant auxiliary information and validation within
clinical practice.



Limitations

There are two main limitations in our work. First,
we conduct fine-tuning on a general-purpose VLM
for developing pathology-specific applications,
rather than pursuing an alternative approach follow-
ing LLaVA. The latter approach aligns the visual
and textual embedding space of domain-optimized
image encoders and large language models, which
leverages the powerful feature extraction capabil-
ities of pretrained transformers for pathological
diagnosis. We do not try this approach because
we do not have enough high-quality pathological
image-caption pairs and QA datasets. As a refer-
ence, PathChat utilizes 1.18 million image-caption
pairs and over 450 thousand instructions, and they
don’t release these training data publicly. While
our general-purpose VLM-based approach benefits
from pretrained cross-modal representations, the
model has inherent limitations in the interpretation
of pathological images.

Secondly, we conduct the evaluation exclusively
on standardized benchmark datasets without real-
world clinical validation. While the benchmark
datasets could provide a more quantitative compar-
ison, they may not fully capture the complexity,
variability, and noise in real-world clinical environ-
ments.
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A Appendix

A.1 Terminology Explanations in Rol
Subtyping

Table 6 lists the terminology explanations used in
Rol Subtyping.

A.2 Data Samples of the Fine-tuning Data

Table 7 lists the data samples of the fine-tuning
data.

A.3 Case Study

Slide-level Diagnosis Figure 7 presents our fine-
tuned model’s responses to a case from the Pan-
cancer dataset. As shown, the model mistakenly
interprets the slide as thyroid carcinoma at the be-
ginning. By integrating clinical history, the model
can form a more accurate diagnosis.
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Rol Subtyping Figure 8 shows our fine-tuned
model’s responses to a case from the BreakHis
dataset. With the incorporation of terminology
explanations, the model corrects its answer and
successfully identifies the malignant breast cancer.

Invasion Detection Figure 9 demonstrates the
effect of visual in-context examples in invasion de-
tection. Although our fine-tuned model is provided
with 1-shot visual in-context examples, it still fails
to detect the invasion, which is consistent with the
limited recall observed in our experimental results.
By integrating 5-shot visual in-context examples,
the model is able to identify the invasion. This case
highlights the effectiveness of visual in-context ex-
amples for enhancing task comprehension.
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Table 6: The terminology explanations used in Rol subtyping.

Dataset

Terminology Explanations

BreakHis

Benign: Benign conditions might exhibit apocrine metaplasia, where cells have abundant granular
eosinophilic cytoplasm and are arranged in a cohesive, non-invasive pattern.

Malignant: Malignant breast tissue typically exhibits cellular atypia, characterized by variations
in cell size and shape, and nuclear pleomorphism where nuclei appear irregular and enlarged.

Chaoyang

Normal: Normal colon tissue shows a balance of epithelial cells making up the crypts and
absorptive cells, with an orderly appearance devoid of dysplasia or atypical architecture. The
muscularis mucosae are typically seen at the base, underlying the crypts.

Adenocarcinoma: Colonic adenocarcinoma presents with crowded, back-to-back glands that
often show significant nuclear atypia, loss of mucin production, and occasionally areas of
necrosis.

Adenoma: Adenomas in the colon typically feature glandular structures that are closely packed
together. The cells within these glandular formations often exhibit nuclear atypia, with elongated,
hyperchromatic nuclei that are stratified.

Serrated: In the context of the colon, serrated tissue abnormalities present a jagged or serrated
pattern along the glands. These formations can be further divided into hyperplastic polyps, sessile
serrated lesions, and traditional serrated adenomas based on their microscopic appearance.

NCT-CRC-HE

Adipose (ADI): Adipose tissue in colorectal cancer and normal tissue typically appears as clusters
of empty-looking cells with clear cytoplasm and thin, peripheral nuclei, due to the dissolution of
lipid content during processing.

Background (BACK): In histological images from colorectal cancer (CRC) and normal tissue,
the background can include areas of smooth muscle, normal epithelial cells, and immune cell
infiltrates.

Debris (DEB): DEB in CRC and normal tissue often appears as amorphous, eosinophilic material
scattered within the tissue sections. It can include remnants of necrotic cells, tissue fragments,
and extracellular material.

Lymphocytes (LYM): In the context of colorectal cancer and normal tissue, LYM can often be
seen infiltrating the tumor microenvironment. Visually, they are characterized by their small size
and round, dark nuclei with a scant cytoplasm.

Mucus (MUC): In normal colorectal tissue, MUC is typically secreted by goblet cells within the
epithelial lining of the colon and rectum. These cells have a characteristic appearance with a
distended, mucin-filled cytoplasm and a small, compressed nucleus at the base of the cell.

Smooth Muscle (MUS): In both CRC and normal tissue, MUS appears as elongated, spindle-
shaped cells with centrally located nuclei. The cells are often arranged in parallel bundles or
sheets and may show a characteristic wavy pattern.

Normal Colon Mucosa (NORM): The lamina propria in normal colon mucosa is sparse and
contains a relatively low density of inflammatory cells. This tissue section exhibits a smooth
regular surface with intact epithelial cells, featuring a consistent arrangement without significant
distortion.

Cancer-associated Stroma (STR): Stromal areas in CRC may include inflammatory cell infiltrates,
which can be observed as clusters of immune cells interspersed within the fibrous tissue.

Colorectal Adenocarcinoma Epithelium (TUM): TUM often exhibits aberrant glandular archi-
tecture with prominent nucleoli and hyperchromatic cells. There is usually a disruption in the
normal glandular arrangement, with glands appearing haphazardly distributed.

LC25000

Lung adenocarcinomas: Lung adenocarcinomas typically present as irregularly shaped glands
and acinar structures, often exhibiting mucin production. The cells can be columnar or cuboidal
and usually have prominent nucleoli.

Benign colonic tissues: Benign colonic tissues are characterized by the presence of well-
organized, tubular glands lined by uniform columnar epithelial cells with basally located nuclei.

Colon adenocarcinomas: In colon adenocarcinomas, the gland formations are frequently distorted
and crowded, with back-to-back glands and a cribriform pattern. The cells within these glands
often display atypical nuclei and mitotic figures.

Lung squamous cell carcinomas: In lung squamous cell carcinomas, the tissue typically shows ir-
regular, infiltrative growth patterns with stratified squamous cells that may exhibit keratinization.

Benign lung tissues: The stroma in benign lung tissues appears normal, with no evidence of
fibrosis, desmoplasia, or inflammatory infiltrate. The interstitial spaces are clear, and the overall
tissue architecture maintains its standard form without masses or lesions.
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Table 7: Data samples of the fine-tuning data.

Data Samples

Image-caption Alignment

Question: Tell me what is shown in this pathological
image . Summarize your findings in simple sen-
tences or key words.

Answer: Histopathological examination (hematoxylin
and eosin) of the sino-atrial node shows interstitial fi-
brosis and eosinophilic inflammatory infiltrate at 40x
magnification.

Similarity Assessment

Question: Compare the given Image A | |and Image B
, and decide whether these two represent the same
region.

Answer: No.

Question: Determine whether Image A [&5 or Image
B [ is more similar to Image C [Z], based on their
content.

Answer: Image B.

Slide-level Diagnosis

Question: Based on the whole slide image,
please give the most possible diagnosis. “»
Answer: Lung adenocarcinoma. :

Patch-level Subtyping

Question: Analyze the input pathological image |-
to determine the most likely diagnosis according to
the following tissue or abnormality types: ['Benign’,
’Malignant’].

Answer: Malignant.

Multiple Choice

Question: What is your diagnosis based on the image
& »

A. Tubular adenoma with high grade dysplasia;

B. Tubular adenoma with invasive adenocarcinoma;

C. Tubular adenoma with invasive adenocarcinoma with
associated mucin production;

D. Tubular adenoma with pseudoinvasion.

Answer: D. Tubular adenoma with pseudoinvasion.

Conversation

Question1: Based on the whole slide image,
please give the most possible diagnosis.
Answerl: Papillary thyroid carcinoma.
Question2: This is a crop [f from the slide. Please
answer the question based on previous analysis and
the crop. Is there evidence of papillary variants in the
image?

Answer2: Yes, there is clear evidence.
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Original Diagnosis

Sto
S §
.E &  Hereis the whole slide
EE image of this case:
=g
Based on the whole slide image, please give the most possible
diagnosis.
Vo . .
o 2  Thyroid carcinoma.
33
E 0]
&

(a) The original diagnosis.

Context Enriched by Clinical History

The patient is a 52-year-old female with a history of a right
breast mass. Lumpectomy and axillary dissection were

Clinical
History

performed on the right breast. The lumpectomy specimen
measures 7.2 cm in length and shows a central mass with clear
margins. The remaining breast tissue appears unremarkable.

Here 1s the whole slide
image of this case:

Based on the whole slide image and the clinical history, please
give the most possible diagnosis.

Breast invasive carcinoma.

Model's  Multimodal
Response Task Prompt

(b) The enhanced diagnosis by enriching context with clinical history.

Figure 7: Case illustration of enriching context in slide-level diagnosis. The ground truth is breast invasive
carcinoma.
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Original Diagnosis

. _
-§ g— Analyze the input pathological image to determine the
£ Q‘Lf most likely diagnosis according to the following tissue or
L; x abnormality types : ['Benign', 'Malignant']. The image is sampled
= S from breast.

o .

o 2 Benign

33

=3y

o

(a) The original diagnosis.

Context Enriched by Terminology Explanations

-§ g— Analyze the input pathological image to determine the

E 2  most likely diagnosis according to the following tissue or

tj i abnormality types : ['Benign', 'Malignant']. The image is sampled
= '_8 from breast.

Here are the terminology explanations of each type.
Benign: Benign conditions might exhibit apocrine
metaplasia, where cells have abundant granular
eosinophilic cytoplasm and are arranged in a cohesive,
non-invasive pattern.

Malignant: Malignant breast tissue typically exhibits
cellular atypia, characterized by variations in cell size
and shape, and nuclear pleomorphism where nuclei
appear irregular and enlarged.

Terminology
Explanations

Malignant.

Model's
Response

(b) The enhanced diagnosis by enriching context with terminology explanations.

Figure 8: Case illustration of enriching context in Rol subtyping. The ground truth is malignant.
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Original Diagnosis

s B L — .
3 g' Based on the pathological image fﬁ , please answer the question: Is
ES Qch there any evidence of lymphovascular invasion?
oy
53
o
=
o . . . .
o 2 No, there is no evidence of lymphovascular invasion.
L
=3
o

(a) The original diagnosis.
Context Enriched by Visual In-context Examples
(1-shot)

Determine ether Image A %13”@ or Image B is more similar to
&' |, based on their content.

Visual
S In-context
Examples

Model'
Response

Image B. (®)

(b) The wrong diagnosis despite the integration of 1-shot visual in-context examples.

Context Enriched by Visual In-context Examples
(5-shot)

Determine whether Image A 1‘}%@ or Image B is more similar to

Image C{@¥ |, based on their content.

Compare Image A “f‘(;i“fi; and Image B 1}45:

Visual
In-context
Examples

with Image C Ey

identify which image is more similar to Image C.

Evaluate Image A F<s# and Image B - against Image C [&8
determine which one bears more resemblance to Image C.
Determine whether Image A 23 or Image B® | - is more similar to
Image C 1" |, based on their content. ‘
Compare Image A and Image B /% 4 wi & | and
identify which image is more similar to Image C.

,and

Image B. (@)
Image B. (®)
Image A. (®)
Image A. (@)
Image A. (@)
(® ® ® ® @ The final diagnosis is existence of invasion. )

Model's
Response

(c) The enhanced diagnosis by enriching context with 5-shot visual in-context examples.

Figure 9: Case illustration of enriching context in invasion detection. The ground truth is that there is
evidence of invasion. The green dot indicates the existence of an invasion, while the red dot indicates the
absence. The content within the parentheses is provided solely for clarity and does not represent the model’s
output.
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