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Abstract001

Although computational pathology has substan-002
tially advanced the automated analysis of patho-003
logical images, its reliance on visual features004
overlooks the multimodal context that human005
pathologists integrate, thereby constraining di-006
agnostic accuracy. This study explores enhanc-007
ing pathological diagnosis by providing models008
with three types of auxiliary information during009
inference, including clinical history, terminol-010
ogy explanations, and visual in-context exam-011
ples. We fine-tune a vision-language model012
for pathological diagnosis with large-scale pre-013
training and instruction following data. Exper-014
iments across slide-level diagnosis, region of015
interest subtyping, and invasion detection tasks016
demonstrate significant improvements with en-017
riched context. Our findings highlight the po-018
tential of enriching context with auxiliary in-019
formation to bridge the gap between human020
diagnosis and computational pathology.021

1 Introduction022

The progress of artificial intelligence in the field023

of healthcare has revolutionized pathological diag-024

nosis. Large-scale models (Lu et al., 2021a; Tang025

et al., 2023; Lin et al., 2023; Chen et al., 2024a;026

Xu et al., 2024) are enabled to perform automated027

diagnosis with remarkable efficiency, achieving per-028

formance comparable to or even surpassing that of029

human experts.030

Despite these advancements, existing research031

focuses solely on exploiting visual features derived032

from pathological images. However, human diag-033

nostic reasoning extends beyond visual patterns.034

Pathologists integrate clinical history when inter-035

preting slides, including but not limited to patients’036

age, gender, prior diagnosis and biological speci-037

mens. Moreover, the limited availability of patho-038

logical data fundamentally restricts the capabilities039

of vision-language models (VLMs) to identify dis-040

eases, leading to significant performance degrada-041

tion when models encounter novel disease types.042

These two constraints have built an information 043

gap between human diagnosis and computational 044

pathology. Therefore, it is important to enhance the 045

inference phase by augmenting the textual context 046

related to the patient and the disease. Furthermore, 047

inspired by in-context learning, there is potential in 048

integrating image examples during inference. Im- 049

ages can convey subtle details that cannot always 050

be expressed through texts alone, offering richer 051

and multi-dimensional contextual information that 052

could improve diagnostic accuracy. 053

In this study, we evaluate the effect of enrich- 054

ing context with three types of auxiliary informa- 055

tion in the pathological diagnostic tasks. Specifi- 056

cally, we investigate whether integrating clinical 057

history, terminology explanations and visual in- 058

context examples during inference can enhance 059

the performance of VLMs. To validate the hy- 060

pothesis, we conduct a series of experiments on 061

Qwen2-VL (Wang et al., 2024a), which is further 062

optimized for pathological diagnosis through fine- 063

tuning. Notably, our findings provide compelling 064

evidence that incorporating auxiliary information 065

leads to apparent improvements in models’ perfor- 066

mance, highlighting its significance in computa- 067

tional pathology. In summary, our contributions 068

include: 069

1. We introduce a context-enriching strategy dur- 070

ing inference that integrates (i) clinical history, 071

(ii) terminology explanations, and (iii) visual 072

in-context examples into the dialogue with 073

large VLMs. 074

2. We develop a domain-adapted model of 075

Qwen2-VL-7B-Instruct through fine-tuning, 076

which is tailored to address the unique chal- 077

lenges in computational pathology. 078

3. Experiment results validate that our context- 079

enriching method guides VLMs towards more 080

accurate pathological diagnosis. 081
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Figure 1: An overview of our framework. Left: the training data for fine-tuning. Right: integrating three
types of auxiliary information during inference in three diagnosis-related tasks respectively.

2 Related Work082

2.1 Pathological VLM083

Recent advancements in computational pathology084

have facilitated the development of VLMs specially085

tailored for pathological image analysis. Early con-086

tributions include PLIP (Huang et al., 2023) and087

CONCH (Lu et al., 2024a), which establish foun-088

dational frameworks in this domain. Building upon089

these, PathChat (Lu et al., 2024b) emerges as a090

comprehensive vision-language generative assis-091

tant for pathology. Subsequently, SlideChat (Chen092

et al., 2024b) is introduced as the first VLM target-093

ing gigapixel slide image analysis. CPath-Omni094

(Sun et al., 2024a) further advances the field by095

unifying both patch-level and whole-slide image096

analysis.097

2.2 Enriching Context098

Enriching context during inference is an effective099

strategy to adapt models for specialized domains,100

which augments the models with auxiliary infor-101

mation including task explanations (Recchia, 2021;102

Lampinen et al., 2022) and domain knowledge (Jin103

et al., 2023; Sural et al., 2024). In the medical field,104

Zakka et al. (2024) explores the retrieval of medical105

guidelines to generate reliable clinical responses.106

Wang et al. (2024b) integrates authoritative medi-107

cal textbooks into the language models’ framework108

for medical question answering (QA). Neupane109

et al. (2024) proposes integrating patients’ medical110

records to generate personalized responses using 111

language models. However, the effect of context 112

enrichment on the interpretation of pathological 113

images remains insufficiently explored. 114

2.3 In-context Learning 115

Large-scale models have revealed a compelling 116

learning strategy, in-context learning (ICL). Pi- 117

oneered by GPT-3 (Brown et al., 2020), this 118

paradigm enables models to learn from examples 119

with labels during inference without any gradient 120

updates. Extensive studies confirm that ICL is no- 121

tably powerful with multiple benefits (Dong et al., 122

2022), including offering an interpretable frame- 123

work for model interaction (Brown et al., 2020; 124

Liu et al., 2021; Lu et al., 2021b; Wu et al., 2023), 125

simulating human decision-making processes by 126

learning from analogy (Winston, 1980) and reduc- 127

ing the computational costs for domain-specific 128

adaptation. 129

In the field of pathology, ICL is still a novel 130

approach with limited existing work. Nori et al. 131

(2023) proposes Medprompt to identify the most 132

relevant few-shot examples of medical QA pairs. 133

Ferber et al. (2024) extends this framework to mul- 134

timodal diagnostic applications in pathology. Liu 135

et al. (2025) demonstrates the potential of ICL for 136

improving pathological report generation. Nonethe- 137

less, prior literature has not yet investigated the 138

potential of visual examples alone in enhancing the 139

performance of VLM in pathological diagnosis. 140
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3 Methods141

3.1 Fine-tuning VLM142

We fine-tune a foundational VLM for pathology-143

specific tasks. For parameter-efficient optimization,144

we employ a strategy that combines Low-Rank145

Adaptation (LoRA) (Hu et al., 2022) with Super-146

vised Fine-Tuning (SFT) methodologies.147

Our training data can be classified into two parts.148

The pretraining data enables the model to develop149

abilities of visual-text alignment and image-based150

feature exploration through exposure to large-scale151

pathological multimodal data. The instruction fol-152

lowing data enables the model to handle diverse153

downstream applications more effectively, charac-154

terized by moderate scale and increased task com-155

plexity. The detailed data summarization is listed156

in Section 4.157

Pretraining Data General-purpose VLMs may158

struggle to fully understand pathology-related mul-159

timodal data, primarily due to the imbalanced data160

in the pathological domain within their training161

sets, with pathological images being relatively in-162

sufficient compared to the more plentiful textual163

data. Therefore, we follow LLaVA (Liu et al.,164

2023) and collect a huge amount of image-caption165

pairs to align the VLM’s image representation166

space with that of pathological text. The pre-167

training data consists of over 700 thousand image-168

caption pairs from public datasets, websites12 , and169

from our private annotations on whole-slide images170

(WSIs) from The Cancer Genome Atlas (TCGA)3.171

Furthermore, inspired by contrastive learning172

in visual training (Khosla et al., 2020; Tian et al.,173

2020), we conduct pretraining on similarity assess-174

ment tasks to enhance the VLM’s capability of ob-175

taining information exclusively from visual input.176

Specifically, we construct a 200K-sample dataset177

including two tasks. The first task requires the178

model to determine whether paired images are se-179

mantically equivalent. The second task challenges180

the model to identify which of the two reference181

images matches the query image better.182

Instruction Following Data The instruction fol-183

lowing data covers a diverse range of tasks for184

downstream applications in computational pathol-185

ogy, including slide-level diagnosis, patch-level186

subtyping, multiple choice and conversation. These187

1https://hanspopperhepatopathologysociety.org
2https://www.webpathology.com
3https://portal.gdc.cancer.gov

tasks are carefully selected to address different sce- 188

narios of pathological diagnosis. The slide-level di- 189

agnosis task involves the recognition and interpreta- 190

tion of global pathological patterns across WSIs, re- 191

quiring a comprehensive analysis. The patch-level 192

subtyping task focuses on the fine-grained mor- 193

phological characteristics within regions of interest 194

(RoIs), which emphasizes identifying local features. 195

In addition, the multiple-choice task presents patho- 196

logical QA and enhances decision-making. Further- 197

more, the conversation task simulates real-world 198

communication to foster the model’s capability for 199

interaction. Diverse data sources are used to curate 200

the instruction following dataset, which spans pub- 201

lic classification datasets, pathological case reports, 202

and our private annotation of TCGA. 203

3.2 Enriching Context with Multimodal 204

Auxiliary Information 205

In traditional pathology, pathologists need to inte- 206

grate slides with patients’ clinical history to make 207

more precise diagnoses. In computational pathol- 208

ogy, however, VLMs require even more. Due to the 209

imbalanced pathological data of text over images in 210

VLMs’ domain, terminology explanations are more 211

readily interpretable by VLMs and facilitate the un- 212

derstanding of features from pathological images. 213

Moreover, specific details in pathological images 214

may be too subtle to be adequately represented 215

through text alone. Hence, besides incorporating 216

textual information, learning from visual cues is 217

also significant for VLMs. As Figure 1 illustrates, 218

we explore three strategies to enrich VLMs’ con- 219

text with such auxiliary information, including clin- 220

ical history, terminology explanations and visual 221

in-context examples. 222

Context Enriched by Clinical History

The patient is a 52-year-old female with a history of a right breast 
mass. Lumpectomy and axillary dissection were performed on the 
right breast. The lumpectomy specimen measures 7.2 cm in length 
and shows a central mass with clear margins. The remaining breast 
tissue appears unremarkable. 

Here is the whole slide image of this case:

Based on the whole slide image and the clinical history, please 
give the most possible diagnosis.
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Figure 2: An example prompt with clinical history.
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Context Enriched by Terminology Explanations

Analyze the input pathological image           to determine the most 
likely diagnosis according to the following tissue or abnormality 
types : ['Benign', 'Malignant']. The image is sampled from breast. 

Here are the terminology explanations of each type.
Benign: Benign conditions might exhibit apocrine metaplasia, 
where cells have abundant granular eosinophilic cytoplasm and 
are arranged in a cohesive, non-invasive pattern.
Malignant: Malignant breast tissue typically exhibits cellular 
atypia, characterized by variations in cell size and shape, and 
nuclear pleomorphism where nuclei appear irregular and 
enlarged.
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Figure 3: An example prompt with terminology ex-
planations.

3.2.1 Clinical History223

Pathological diagnosis relies on multimodal evi-224

dence beyond isolated visual patterns. Clinical225

history plays a crucial role in pathological diag-226

nosis, providing essential context that guides the227

interpretation of tissue findings. Pathologists can228

formulate a more accurate diagnosis by consider-229

ing the patients’ personal information, past medical230

conditions, symptoms, operations, and biological231

specimens.232

To mimic this phenomenon, we adopt a system-233

atic approach to integrate patients’ clinical history.234

The clinical history is explicitly included in the task235

prompt during the inference stage, as illustrated in236

Figure 2. VLMs subsequently process this textual237

prompt with the pathological image through their238

multimodal architecture. In this way, VLMs are239

guided to simultaneously concentrate their atten-240

tion on the visual patterns and the relevant clini-241

cal history, thereby enabling comprehensive cross-242

modal analysis.243

Before integrating clinical history, data clean-244

ing is necessary, since the raw medical records245

may contain latent diagnosis leakage. We utilize246

GPT-4 to analyze and remove explicit or implicit247

references to the final diagnosis while preserving248

essential clinical history. Subsequently, the pro-249

cessed clinical history undergoes careful validation250

by three experienced pathologists, who manually251

verify the completeness of sensitive information252

removal and assess the semantic integrity of the253

remaining content.254

3.2.2 Terminology Explanations255

A key challenge in applying VLMs for pathological256

diagnosis is that these models are typically trained257

on limited pathological images, and struggle when258

Context Enriched by Visual In-context Examples

Based on the pathological image         , please answer the question: 
Is there any evidence of angiolymphatic invasion?

Determine whether         or          is more similar to         , 
based on their content.
Compare         and         with         , and identify which image 
is more similar to         .
Evaluate         and         against         , and determine which 
one bears more resemblance to        .
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Figure 4: An example prompt with visual in-context
examples. The green and red dots in the top-left cor-
ner indicate different classes of the reference images.

encountering rare or novel diseases. Pathological 259

texts, however, are relatively plentiful, making it 260

easier for VLMs to interpret them. In this section, 261

we augment VLMs with detailed terminology ex- 262

planations to address this imbalance and strengthen 263

their domain knowledge. The terminology expla- 264

nations are the textual descriptions of microscopic 265

pathological images of certain diseases, which fo- 266

cus on morphological characteristics that are more 267

readily interpretable by VLMs. In this way, VLMs 268

are able to comprehend information from patholog- 269

ical images more effectively by establishing con- 270

nections between visual features and their textual 271

characterizations. 272

The workflow begins by synthesizing concise 273

terminology explanations with GPT-4, emphasiz- 274

ing cell arrangements, staining patterns, and tissue- 275

level abnormalities. During inference, the terminol- 276

ogy explanations of each disease are concatenated 277

to the task prompt and fed into VLMs as a textual 278

input along with the image. Figure 3 presents an ex- 279

ample prompt with terminology explanations. By 280

supplementing the image with descriptive context, 281

VLMs benefit from a more comprehensive under- 282

standing of each disease category, thus reducing 283

class ambiguity. 284

3.2.3 Visual In-context Examples 285

While textual knowledge enhances diagnosis, vi- 286

sual patterns in pathology also serve as critical 287

evidence. For instance, tumor cells present vary- 288

ing appearances across different sites, making it 289

challenging to describe their characteristics solely 290

through text. As a result, it is necessary to learn 291

these characteristics directly from images, since 292

they may contain richer morphological details. 293

Inspired by in-context learning paradigms, we 294

extend this concept by leveraging images them- 295
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Table 1: Data for pretraining, including data for
image-caption alignment and similarity assessment.
The data source and size are listed.

Data Source Size
PathGen 300,244
PathCap 223,169
Quilt-1M 120,796
Public Websites 12,325

Image-caption
Alignment

TCGA 35,521
Similarity
Assessment

TCGA 200,000

selves as contextual guidance for VLMs. In this296

way, the models are encouraged to allocate greater297

attention to the visual features of the pathological298

images when constructing contextual representa-299

tions. This approach promotes more efficient use300

of visual patterns for analogical mapping, inductive301

learning and knowledge generalization. During in-302

ference, VLMs evaluate the similarity between the303

query image and the visual references to determine304

the class. The classification proceeds by major-305

ity voting when multiple reference image pairs are306

provided. Specifically, the query image is com-307

pared with both members of each pair. The la-308

bel of the selected reference contributes one vote,309

and the category accumulating the most votes is fi-310

nally assigned to the query image. Figure 4 demon-311

strates an example prompt with visual in-context312

examples. This design aligns with the similarity313

assessment tasks during fine-tuning, where VLMs314

have developed capabilities to capture latent vi-315

sual relationships between image pairs. By prior-316

itizing visual examples, the method emphasizes317

morphology-driven decision-making.318

4 Implementations319

We leverage the LLaMA-Factory framework320

(Zheng et al., 2024) to fine-tune Qwen2-VL-7B-321

Instruct. We perform the fine-tuning with 3 epochs,322

which takes about 32 hours on 8 A100 GPUs. The323

learning rate is set to 1e-4, and the batch size is set324

to 8. The warm-up ratio is 0.1.325

We list data used in the training phase in Ta-326

bles 1 and 2. The public datasets of image-caption327

pairs include PathGen (Sun et al., 2024b), Path-328

Cap (Zhang et al., 2020) and Quilt-1M (Ikezogwo329

et al., 2023). Since PathGen also originates from330

TCGA, we exclude images that overlap with the331

testing data. As for slide-level diagnosis, we split332

Table 2: Data for instruction following, including
data for slide-level diagnosis, patch-level subtyping,
multiple choice and conversation. The data source
and size are listed.

Data Source Size
TCGA Pan-cancer 890
TCGA-NSCLC 741

Slide-level
Diagnosis

TCGA-RCC 829
BreakHis 1,148
Chaoyang 4,021
NCT-CRC-HE 100,000
LC25000 17,500
PatchGastricADC22 143,497

Patch-level
Subtyping

PCam 262,144
Multiple
Choice

Private
Question Bank

7,347

Conversation TCGA 9,485

TCGA-NSCLC and TCGA-RCC into training and 333

testing sets in a 4:1 ratio, with 741 and 829 training 334

slides, respectively. For patch-level subtyping, we 335

utilize BreakHis (Spanhol et al., 2015), Chaoyang 336

(Zhu et al., 2021), NCT-CRC-HE (Kather et al., 337

2018), LC25000 (Borkowski et al., 2019), Patch- 338

GastricADC22 (Tsuneki and Kanavati, 2022) and 339

PCam (Veeling et al., 2018), and divide them into 340

training and testing sets according to the official 341

guidance. All data used in this study strictly adhere 342

to the relevant licenses. 343

In our data preprocessing pipeline, we filter the 344

initial datasets by excluding 80% of the PCam sam- 345

ples and 50% of the Quilt-1M samples, primarily 346

due to concerns regarding image quality and anno- 347

tation reliability. 348

During the training and inference phases, all the 349

WSIs are converted to thumbnails to fit the context 350

window limitations of Qwen2-VL. 351

5 Experiments 352

Our study evaluates three diagnosis-related tasks 353

that incorporate the three aforementioned types of 354

auxiliary information, respectively. The experimen- 355

tal framework comprises 1) slide-level diagnosis 356

utilizing clinical history, 2) RoI subtyping with ter- 357

minology explanations, and 3) invasion detection 358

employing image-based in-context learning. Each 359

of the three types of auxiliary information serves 360

a critical role within its corresponding task. For 361

slide-level diagnosis, a comprehensive clinical his- 362

tory helps resolve diagnostic ambiguities inherent 363
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Table 3: Slide-level Diagnosis results(%). w/ H denotes that the model integrates clinical history during
inference.

Model
NSCLC RCC Pan-cancer

Acc F1 Acc F1 Acc F1

Qwen-7B 49.76 43.53 54.84 38.84 10.84 1.56
w/ H +4.35 +2.45 +1.61 +3.53 +37.50 +43.66

Qwen-72B 48.79 32.00 55.38 38.84 6.40 1.48
w/ H +14.01 +31.11 +2.15 +5.75 +59.08 +63.01

Ours-7B 73.91 73.88 69.89 67.75 15.71 9.49
w/ H +1.45 +1.50 +2.15 +1.53 +68.47 +70.74

in large-scale tissue evaluation. RoI subtyping fo-364

cuses on detailed morphological patterns, where365

disease-specific terminology explanations provide366

more targeted guidance than general patient data.367

In invasion detection, lymphovascular invasion pat-368

terns vary across tissue sites, and visual examples369

enable comparative pattern recognition critical for370

identifying boundaries.371

We implement these experiments using three372

models, including the baseline Qwen2-VL-373

7B-Instruct (Qwen-7B), Qwen2-VL-72B-Instruct374

(Qwen-72B), and our fine-tuned Qwen2-VL-7B-375

Instruct (Ours-7B).376

5.1 Slide-level Diagnosis377

Datasets To investigate the impact of clinical his-378

tory on slide-level diagnosis, we follow Lu et al.379

(2024a) and conduct evaluations on two classi-380

cal slide-level subtyping datasets, TCGA-NSCLC381

(NSCLC) and TCGA-RCC (RCC), with the test382

sets containing 207 and 186 WSIs, respectively.383

An additional class-balanced dataset comprising384

904 WSIs of 32 cancer types is constructed from385

TCGA to comprehensively evaluate the perfor-386

mance of pan-cancer diagnosis (Pan-cancer). The387

test datasets are ensured to be excluded from the388

training data.389

Evaluation Metrics We employ two complemen-390

tary evaluation metrics, Accuracy (Acc) and F1391

score, to assess model performance. Acc provides392

an intuitive measure of overall diagnostic correct-393

ness. The F1 score is simultaneously adopted to394

measure the performance comprehensively by con-395

sidering both precision and recall.396

Results In Table 3, we present the effect of in-397

tegrating clinical history. It can be found that sys-398

tematically integrating such auxiliary information399

Figure 5: The performances of our fine-tuned model
in slide-level diagnosis with solely visual input, with
solely clinical history, and with both visual input and
clinical history.

leads to notable performance improvements across 400

all datasets. The most substantial improvement 401

is observed on the Pan-cancer dataset, where our 402

fine-tuned model achieves a 68.47% improvement 403

in accuracy. This significant improvement can be 404

attributed mainly to the inclusion of the anatomical 405

site information in the clinical history, which en- 406

ables the scope reduction of differential diagnosis. 407

Conversely, slide-level subtyping tasks show rela- 408

tively modest gains, with accuracy improvements 409

of 1.45% on the NSCLC dataset and 2.15% on the 410

RCC dataset. This is mainly because the subtle 411

distinctions in tumor morphology primarily depend 412

more on WSI microstructural pattern recognition 413

than on background clues. Additionally, the Acc 414

and F1 score on Pan-cancer are higher than those 415

on NSCLC and RCC, which also confirms the in- 416

herent complexity of tumor-subtyping. 417

To further study the roles of different modalities, 418

we evaluate our fine-tuned model’s performance 419

with visual input, clinical history, and both infor- 420
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Table 4: RoI Subtyping results (%). w/ E denotes that the model integrates terminology explanations during
inference.

Model
BreakHis Chaoyang NCT-CRC-HE LC25000

bAcc wF1 bAcc wF1 bAcc wF1 bAcc wF1

Qwen-7B 50.13 52.08 35.24 34.21 9.51 8.76 20.00 6.85
w/ E +0.78 +3.02 +3.31 +3.03 +2.88 +6.92 +0.26 +0.76

Qwen-72B 48.56 51.50 29.90 29.11 21.92 14.85 18.26 17.22
w/ E +1.44 +1.68 +5.96 +4.69 +17.39 +16.99 +1.82 +1.28

Ours-7B 84.00 83.13 70.95 77.86 89.29 90.29 98.98 98.97
w/ E +5.86 +7.36 -0.58 +0.22 +0.95 +1.16 +0.02 +0.01

mation. From the results shown in Figure 5, we can421

see that multimodal integration of pathological im-422

ages with clinical history consistently outperforms423

unimodal approaches, establishing the necessity of424

combining visual features with textual context.425

5.2 RoI Subtyping426

Datasets For the task of RoI subtyping, we use427

the test dataset of BreakHis, Chaoyang, NCT-CRC-428

HE, and LC25000, which were excluded from the429

fine-tuning stage.430

Evaluation Metrics To address class imbalance,431

we apply balanced accuracy (bAcc) and weighted432

F1 (wF1) score as the evaluation metrics.433

Results Table 4 demonstrates a notable improve-434

ment in performance tied to terminology expla-435

nation supplementation. The most pronounced436

improvements are observed in the Chaoyang and437

NCT-CRC-HE datasets for the baseline Qwen-VL438

models. This enhancement primarily stems from439

the insufficient prior domain knowledge of Qwen-440

VL in these pathological subtypes. In contrast,441

our fine-tuned model achieves substantially higher442

baseline performance, which confirms that domain443

adaptation contributes to robust feature comprehen-444

sion. Nevertheless, terminology explanations still445

yield non-trivial additional gains on two of the four446

datasets, highlighting their effectiveness even in447

optimized models.448

In summary, these findings indicate that integrat-449

ing terminology explanations is an efficient way to450

inject prior knowledge. Models can recognize dis-451

criminative features more effectively by supplying452

terminology explanations that outline each disease453

category with morphological descriptions. These454

added cues compensate for the original knowledge455

gap and allow the model to generalize more reliably 456

across unseen cases. 457

5.3 Invasion Detection 458

Datasets The development of invasion detec- 459

tion remains challenging due to the lack of pub- 460

licly available datasets. We establish a private 461

dataset comprising 596 samples from the Pan- 462

cancer dataset to address the issue. The dataset 463

contains 376 negative cases (absence of invasion) 464

and 220 positive cases (confirmed invasion pres- 465

ence), with all samples undergoing rigorous anno- 466

tation by three experienced pathologists. 467

Table 5: Invasion Detection results (%). w/ 𝑛-shots
denotes that the model integrates 𝑛 pairs of visual
in-context examples during inference. The best per-
formance in each column is bold.

Model
Invasion Detection

Acc F1 Recall

Qwen-7B 62.08 9.56 5.91
Qwen-72B 59.39 58.12 76.36

Ours-7B 77.18 57.50 41.82

Ours-7B w/ 1-shot 81.86 71.23 70.91
Ours-7B w/ 5-shot 87.25 81.82 77.73
Ours-7B w/ 10-shot 89.09 84.19 78.64

Evaluation Metrics In addition to the Acc and 468

F1 score, we further incorporate Recall as a crit- 469

ical evaluation metric for the invasion detection 470

task. Recall directly quantifies models’ ability to 471

detect true invasion cases, which constitutes the pri- 472

mary objective in actual applications. We omit the 473

Precision metrics due to space limitations and the 474
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Figure 6: Comparison of model performance (Acc, F1 score, and Recall) in invasion detection regarding
different numbers of shots.

prioritization of recall over precision in this task.475

Results Table 5 demonstrates our experiment476

results in invasion detection. Notably, parame-477

ter scaling in the baseline Qwen-VL architecture478

fails to yield consistent performance improvements.479

This phenomenon also highlights the necessity of480

domain-specific fine-tuning, which significantly en-481

hances the capabilities of the model (+47.94% F1482

score versus the baseline model).483

Furthermore, our fine-tuned model exhibits adap-484

tive behavior when processing visual in-context485

examples. Under zero-shot conditions, the model486

achieves 77.18% accuracy but demonstrates limited487

recall of 41.82%, which suggests a conservative488

classification strategy where predictions are made489

only for high-confidence cases, resulting in missed490

positive samples. Introducing one-shot visual ex-491

amples triggers a strategic adaptation. Recall in-492

creases substantially to 70.91%, indicating that vi-493

sual contextual guidance enables more active iden-494

tification of positive cases. With extended context495

(5/10-shot configurations), the performance further496

improves, achieving 87.25% and 89.09% accu-497

racy while maintaining high recall rates (77.73%498

and 78.64%). This progression suggests that the499

increased visual contextual information enhances500

task comprehension and strengthens the model’s501

ability to generalize features from positive samples.502

To illustrate this point more concretely, a case study503

is included in Appendix A.3.504

Besides, Figure 6 demonstrates that when base-505

line Qwen2-VL models are provided with visual506

in-context examples, their gains are far more muted507

than those observed for our fine-tuned model (even508

ineffective). For the Qwen2-VL-7B-Instruct model,509

applying image-based in-context learning signifi- 510

cantly improves the recall and F1 score compared 511

to zero-shot scenarios. However, this performance 512

gain remains stagnant as the number of shots in- 513

creases, indicating the model’s limited capacity 514

in learning visual features from pathological im- 515

ages through incremental examples. Similarly, the 516

Qwen2-VL-72B-Instruct model exhibits negligible 517

improvement or even slight degradation in recall 518

and F1 score with few-shot demonstrations, fur- 519

ther confirming the observed limitations in visual 520

feature summarization. Importantly, both the base- 521

line and our fine-tuned Qwen-VL model display 522

gain saturation when exceeding a threshold of shot 523

numbers. 524

6 Conclusion 525

This study establishes a paradigm for advancing 526

computational pathology with multimodal auxiliary 527

information. By systematically incorporating clini- 528

cal history, terminology explanations and visual in- 529

context examples, we propose a context-enriched 530

framework that addresses the inherent limitations 531

of conventional VLMs in pathological diagnosis. 532

Our experiments across slide-level diagnosis, RoI 533

subtyping and invasion detection validate the ef- 534

fectiveness of this approach. The findings indicate 535

that bridging the expertise gap between human ex- 536

perts and artificial systems is not a purely architec- 537

tural problem but a contextual one. By providing 538

VLMs with auxiliary information, we can move a 539

step closer to trustworthy computational pathology. 540

Future work will address automatic retrieval of rel- 541

evant auxiliary information and validation within 542

clinical practice. 543
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Limitations544

There are two main limitations in our work. First,545

we conduct fine-tuning on a general-purpose VLM546

for developing pathology-specific applications,547

rather than pursuing an alternative approach follow-548

ing LLaVA. The latter approach aligns the visual549

and textual embedding space of domain-optimized550

image encoders and large language models, which551

leverages the powerful feature extraction capabil-552

ities of pretrained transformers for pathological553

diagnosis. We do not try this approach because554

we do not have enough high-quality pathological555

image-caption pairs and QA datasets. As a refer-556

ence, PathChat utilizes 1.18 million image-caption557

pairs and over 450 thousand instructions, and they558

don’t release these training data publicly. While559

our general-purpose VLM-based approach benefits560

from pretrained cross-modal representations, the561

model has inherent limitations in the interpretation562

of pathological images.563

Secondly, we conduct the evaluation exclusively564

on standardized benchmark datasets without real-565

world clinical validation. While the benchmark566

datasets could provide a more quantitative compar-567

ison, they may not fully capture the complexity,568

variability, and noise in real-world clinical environ-569

ments.570
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A Appendix793

A.1 Terminology Explanations in RoI794

Subtyping795

Table 6 lists the terminology explanations used in796

RoI Subtyping.797

A.2 Data Samples of the Fine-tuning Data798

Table 7 lists the data samples of the fine-tuning799

data.800

A.3 Case Study801

Slide-level Diagnosis Figure 7 presents our fine-802

tuned model’s responses to a case from the Pan-803

cancer dataset. As shown, the model mistakenly804

interprets the slide as thyroid carcinoma at the be-805

ginning. By integrating clinical history, the model806

can form a more accurate diagnosis.807

RoI Subtyping Figure 8 shows our fine-tuned 808

model’s responses to a case from the BreakHis 809

dataset. With the incorporation of terminology 810

explanations, the model corrects its answer and 811

successfully identifies the malignant breast cancer. 812

813

Invasion Detection Figure 9 demonstrates the 814

effect of visual in-context examples in invasion de- 815

tection. Although our fine-tuned model is provided 816

with 1-shot visual in-context examples, it still fails 817

to detect the invasion, which is consistent with the 818

limited recall observed in our experimental results. 819

By integrating 5-shot visual in-context examples, 820

the model is able to identify the invasion. This case 821

highlights the effectiveness of visual in-context ex- 822

amples for enhancing task comprehension. 823
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Table 6: The terminology explanations used in RoI subtyping.

Dataset Terminology Explanations

Benign: Benign conditions might exhibit apocrine metaplasia, where cells have abundant granular
eosinophilic cytoplasm and are arranged in a cohesive, non-invasive pattern.

BreakHis
Malignant: Malignant breast tissue typically exhibits cellular atypia, characterized by variations
in cell size and shape, and nuclear pleomorphism where nuclei appear irregular and enlarged.

Normal: Normal colon tissue shows a balance of epithelial cells making up the crypts and
absorptive cells, with an orderly appearance devoid of dysplasia or atypical architecture. The
muscularis mucosae are typically seen at the base, underlying the crypts.

Adenocarcinoma: Colonic adenocarcinoma presents with crowded, back-to-back glands that
often show significant nuclear atypia, loss of mucin production, and occasionally areas of
necrosis.

Adenoma: Adenomas in the colon typically feature glandular structures that are closely packed
together. The cells within these glandular formations often exhibit nuclear atypia, with elongated,
hyperchromatic nuclei that are stratified.

Chaoyang

Serrated: In the context of the colon, serrated tissue abnormalities present a jagged or serrated
pattern along the glands. These formations can be further divided into hyperplastic polyps, sessile
serrated lesions, and traditional serrated adenomas based on their microscopic appearance.

Adipose (ADI): Adipose tissue in colorectal cancer and normal tissue typically appears as clusters
of empty-looking cells with clear cytoplasm and thin, peripheral nuclei, due to the dissolution of
lipid content during processing.

Background (BACK): In histological images from colorectal cancer (CRC) and normal tissue,
the background can include areas of smooth muscle, normal epithelial cells, and immune cell
infiltrates.

Debris (DEB): DEB in CRC and normal tissue often appears as amorphous, eosinophilic material
scattered within the tissue sections. It can include remnants of necrotic cells, tissue fragments,
and extracellular material.

Lymphocytes (LYM): In the context of colorectal cancer and normal tissue, LYM can often be
seen infiltrating the tumor microenvironment. Visually, they are characterized by their small size
and round, dark nuclei with a scant cytoplasm.

Mucus (MUC): In normal colorectal tissue, MUC is typically secreted by goblet cells within the
epithelial lining of the colon and rectum. These cells have a characteristic appearance with a
distended, mucin-filled cytoplasm and a small, compressed nucleus at the base of the cell.

Smooth Muscle (MUS): In both CRC and normal tissue, MUS appears as elongated, spindle-
shaped cells with centrally located nuclei. The cells are often arranged in parallel bundles or
sheets and may show a characteristic wavy pattern.

Normal Colon Mucosa (NORM): The lamina propria in normal colon mucosa is sparse and
contains a relatively low density of inflammatory cells. This tissue section exhibits a smooth
regular surface with intact epithelial cells, featuring a consistent arrangement without significant
distortion.

Cancer-associated Stroma (STR): Stromal areas in CRC may include inflammatory cell infiltrates,
which can be observed as clusters of immune cells interspersed within the fibrous tissue.

NCT-CRC-HE

Colorectal Adenocarcinoma Epithelium (TUM): TUM often exhibits aberrant glandular archi-
tecture with prominent nucleoli and hyperchromatic cells. There is usually a disruption in the
normal glandular arrangement, with glands appearing haphazardly distributed.

Lung adenocarcinomas: Lung adenocarcinomas typically present as irregularly shaped glands
and acinar structures, often exhibiting mucin production. The cells can be columnar or cuboidal
and usually have prominent nucleoli.

Benign colonic tissues: Benign colonic tissues are characterized by the presence of well-
organized, tubular glands lined by uniform columnar epithelial cells with basally located nuclei.

Colon adenocarcinomas: In colon adenocarcinomas, the gland formations are frequently distorted
and crowded, with back-to-back glands and a cribriform pattern. The cells within these glands
often display atypical nuclei and mitotic figures.

Lung squamous cell carcinomas: In lung squamous cell carcinomas, the tissue typically shows ir-
regular, infiltrative growth patterns with stratified squamous cells that may exhibit keratinization.

LC25000

Benign lung tissues: The stroma in benign lung tissues appears normal, with no evidence of
fibrosis, desmoplasia, or inflammatory infiltrate. The interstitial spaces are clear, and the overall
tissue architecture maintains its standard form without masses or lesions.
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Table 7: Data samples of the fine-tuning data.

Data Samples

Image-caption Alignment

Question: Tell me what is shown in this pathological
image . Summarize your findings in simple sen-
tences or key words.
Answer: Histopathological examination (hematoxylin
and eosin) of the sino-atrial node shows interstitial fi-
brosis and eosinophilic inflammatory infiltrate at 40x
magnification.
Question: Compare the given Image A and Image B

, and decide whether these two represent the same
region.
Answer: No.Similarity Assessment Question: Determine whether Image A or Image
B is more similar to Image C , based on their
content.
Answer: Image B.

Slide-level Diagnosis
Question: Based on the whole slide image,
please give the most possible diagnosis.
Answer: Lung adenocarcinoma.

Patch-level Subtyping

Question: Analyze the input pathological image
to determine the most likely diagnosis according to
the following tissue or abnormality types: [’Benign’,
’Malignant’].
Answer: Malignant.

Multiple Choice

Question: What is your diagnosis based on the image
?

A. Tubular adenoma with high grade dysplasia;
B. Tubular adenoma with invasive adenocarcinoma;
C. Tubular adenoma with invasive adenocarcinoma with
associated mucin production;
D. Tubular adenoma with pseudoinvasion.
Answer: D. Tubular adenoma with pseudoinvasion.

Conversation

Question1: Based on the whole slide image,
please give the most possible diagnosis.
Answer1: Papillary thyroid carcinoma.
Question2: This is a crop from the slide. Please
answer the question based on previous analysis and
the crop. Is there evidence of papillary variants in the
image?
Answer2: Yes, there is clear evidence.
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Original Diagnosis

Here is the whole slide 
image of this case:

Based on the whole slide image, please give the most possible 
diagnosis.
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Thyroid carcinoma.
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(a) The original diagnosis.

Context Enriched by Clinical History

The patient is a 52-year-old female with a history of a right 
breast mass. Lumpectomy and axillary dissection were 
performed on the right breast. The lumpectomy specimen 
measures 7.2 cm in length and shows a central mass with clear 
margins. The remaining breast tissue appears unremarkable. 

Here is the whole slide 
image of this case:

Based on the whole slide image and the clinical history, please 
give the most possible diagnosis.
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Breast invasive carcinoma.
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(b) The enhanced diagnosis by enriching context with clinical history.

Figure 7: Case illustration of enriching context in slide-level diagnosis. The ground truth is breast invasive
carcinoma.
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Original Diagnosis

Analyze the input pathological image          to determine the 
most likely diagnosis according to the following tissue or 
abnormality types : ['Benign', 'Malignant']. The image is sampled 
from breast. M

ul
ti

m
od

al
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m
pt

M
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se Benign.

(a) The original diagnosis.

Context Enriched by Terminology Explanations

Analyze the input pathological image          to determine the 
most likely diagnosis according to the following tissue or 
abnormality types : ['Benign', 'Malignant']. The image is sampled 
from breast. 

Here are the terminology explanations of each type.
Benign: Benign conditions might exhibit apocrine 
metaplasia, where cells have abundant granular 
eosinophilic cytoplasm and are arranged in a cohesive, 
non-invasive pattern.
Malignant: Malignant breast tissue typically exhibits 
cellular atypia, characterized by variations in cell size 
and shape, and nuclear pleomorphism where nuclei 
appear irregular and enlarged.
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se Malignant.

(b) The enhanced diagnosis by enriching context with terminology explanations.

Figure 8: Case illustration of enriching context in RoI subtyping. The ground truth is malignant.
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Original Diagnosis

Based on the pathological image         , please answer the question: Is 
there any evidence of lymphovascular invasion?

M
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se No, there is no evidence of lymphovascular invasion.

(a) The original diagnosis.

Context Enriched by Visual In-context Examples 
(1-shot)

Determine whether Image A         or Image B         is more similar to 
Image C         , based on their content.Vi

su
al

 
In

-c
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te
xt

 
Ex

am
pl

es
M

od
el

’s 
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sp
on

se Image B. (  )

(b) The wrong diagnosis despite the integration of 1-shot visual in-context examples.

Context Enriched by Visual In-context Examples 
(5-shot)

Determine whether Image A         or Image B         is more similar to 
Image C         , based on their content.
Compare Image A         and Image B          with Image C         , and 
identify which image is more similar to Image C.
Evaluate Image A          and Image B         against Image C         , and 
determine which one bears more resemblance to Image C.
Determine whether Image A         or Image B         is more similar to 
Image C         , based on their content.
Compare Image A         and Image B          with Image C         , and 
identify which image is more similar to Image C.

M
od

el
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se Image B. (  )

Image B. (  )
Image A. (  )
Image A. (  )
Image A. (  )
(                    The final diagnosis is existence of invasion. )
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(c) The enhanced diagnosis by enriching context with 5-shot visual in-context examples.

Figure 9: Case illustration of enriching context in invasion detection. The ground truth is that there is
evidence of invasion. The green dot indicates the existence of an invasion, while the red dot indicates the
absence. The content within the parentheses is provided solely for clarity and does not represent the model’s
output.
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