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Abstract

Biological brains learn continually from a stream of unlabeled data, while integrat-
ing specialized information from sparsely labeled examples without compromising
their ability to generalize. Meanwhile, machine learning methods are susceptible to
catastrophic forgetting in this natural learning setting, as supervised specialist fine-
tuning degrades performance on the original task. We introduce task-modulated
contrastive learning (TMCL), which takes inspiration from the biophysical ma-
chinery in the neocortex, using predictive coding principles to integrate top-down
information continually and without supervision. We follow the idea that these
principles build a view-invariant representation space, and that this can be im-
plemented using a contrastive loss. Then, whenever labeled samples of a new
class occur, new affine modulations are learned that improve separation of the
new class from all others, without affecting feedforward weights. By co-opting
the view-invariance learning mechanism, we then train feedforward weights to
match the unmodulated representation of a data sample to its modulated counter-
parts. This introduces modulation invariance into the representation space, and, by
also using past modulations, stabilizes it. Our experiments show improvements
in both class-incremental and transfer learning over state-of-the-art unsupervised
approaches, as well as over comparable supervised approaches, using as few as 1%
of available labels. Taken together, our work suggests that top-down modulations
play a crucial role in balancing stability and plasticity.

1 Introduction

Input data streams encountered by animals or humans during development differ markedly from those
commonly used in machine learning. In contemporary machine learning (e.g. foundation models),
data streams typically consist of unlabeled data, augmented with some degree of supervised fine-
tuning in the final training stages [1]. Such an approach is difficult to translate to the continual learning
setting encountered in natural data streams, as the naive introduction of fine-tuning stages often leads
to catastrophic forgetting [2–4]. Meanwhile, animals and humans receive mostly unsupervised inputs,
interspersed with sparse supervised data, which could, for instance, be provided through an external
teacher (e.g. a parent telling their child that the object is called an ‘apple’). Compared to unsupervised
data streams, such sparse supervisory episodes are infrequent. Therefore, the learning dilemma that
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arises is how continual learning algorithms can benefit from sparse supervisory episodes without
negatively affecting representations learned in an unsupervised manner.

Here, we draw inspiration from the circuitry in biological brains to solve this learning dilemma.
We leverage the fact that cortical neurons can – broadly speaking – be subdivided into a proximal,
perisomatic zone, receiving feedforward inputs [5–7], and a distal, apical region, receiving top-
down modulatory inputs [6–11] (Figure 1, left). Through their physical separation, these zones are
functionally distinct [12], and implement different plasticity principles [13, 14]. Learning of the
perisomatic, feedforward connections is believed to follow a form of predictive coding [15, 16] that
is the biological analogue of self-supervised learning such as VICReg [17] or CPC [18]. At the
same time, top-down modulations to distal dendrites provide a contextual, modulatory signal to
the feedforward network [19–26]. We hypothesize that this signal is learned during the supervised
learning episodes. In machine learning, this concept has been explored in the context of parameter-
efficient fine-tuning by training task-specific scaling and/or shifting terms [27–32]. This provides a
straightforward solution to continual learning problems for which the task identity is known during
both training and evaluation (i.e. task-incremental learning [33]), as modulations for new tasks can be
learned without affecting core feedforward weights [34–36]. However, when the task identity is not
known at evaluation (i.e. class-incremental learning), the modulated representations for each task
need to be consolidated in a shared representation space.

To achieve class-incremental learning, we hypothesize, based on the spatial and functional segregation
of distal dendrites, that the top-down signal is not affected by the predictive plasticity of feedforward
weights in the perisomatic region. As such, it leaves a permanent imprint on the network that, through
occasional reactivation, integrates the new percept in the neural representation space, while also
providing a form of functional regularization that limits forgetting. We demonstrate that these effects
are achieved by standard predictive coding principles that proceed over modulated representations. In
our task-modulated contrastive learning (TMCL) algorithm, we use the currently available labeled
examples for each new class to learn modulations that orthogonalize their representations from
all others. These modulations are then frozen and applied to the network during the feedforward
weight learning, using only currently available unlabeled samples, and effectively consolidate the
task-specific knowledge encoded in the modulations into the feedforward weights (Figure 1, middle).
This departs from the conventional pretraining-finetuning paradigm, where naive reintegration of
specialized models into the general one causes catastrophic forgetting [1, 4] (Figure 1, right).

We evaluate the performance of TMCL on the standard class-incremental CIFAR-100 benchmark,
outperforming state-of-the-art purely unsupervised, purely supervised, and hybrid approaches in
label-scarce scenarios. Furthermore, we evaluate its transfer learning capabilities across a diverse set
of downstream tasks, demonstrating its effectiveness in learning generalizable representations that
extend beyond adaptation to CIFAR-100. Finally, we show that our method dynamically navigates
the stability-plasticity dilemma through adaptation of the consolidation term.

2 Related Work

Biological representation learning. Several authors have explored the idea that the cortex learns in
a self-supervised manner [15, 16, 37–40]. Although complementary approaches based on adversarial
samples have also been proposed [37], most theories focus on some form of predictive coding, where
the cortex learns to predict the next inputs given the current neural representation. Mikulasch et al.
[38, 39] take a classic view on this, where a loss function to the next layer reconstructs the input,
while Kermani Nejad et al. [40] theorize that the architecture of the cortical microcircuit is well-suited
for predictive coding. Finally, Illing et al. [15] and Halvagal and Zenke [16] propose local plasticity
rules based on, respectively, CPC [18] and VICReg [17] that, as they argue, in a natural setting could
proceed by comparing neural representations at subsequent time steps. We extend this idea with an
explanation of how top-down modulations could be incorporated into the learning process.

Learning with modulations. The expressivity of learning modulations was initially demonstrated
by Perez et al. [27] to solve visual reasoning problems. Frankle et al. [28] subsequently showed that
a surprisingly high performance can be achieved with ResNets [41] while just training BatchNorm
layers, which — if performed per-task — is equivalent to learning affine modulations. Finally, it was
shown simultaneously in language and vision that fine-tuning through modulations in transformer
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Figure 1: Biologically inspired consolidation of high-level modulations into feedforward weights.
Cortical learning (left) is characterized by the interplay between top-down (orange) and feedforward
(blue) processing, where top-down connections impart high-level information on the feedforward
sensory processing pathway (top). The feedforward pathway, on the other hand, learns to predict
neural representations of future inputs (predictive coding). Notably, top-down and feedforward
information arrives at spatially segregated loci on sensory neurons (bottom), suggesting distinct
roles in shaping the neuronal input-output relation (cf. [19]) as well as distinct plasticity processes
governing weight changes. Translating this view to a machine learning algorithm (middle), we (i)
train modulations to implement high-level object identification tasks as the analogue of top-down
inputs (bottom, solid arrows, but not dashed ones, indicate that gradients backpropagate in the
opposite direction, and underlined parameters are trained), while we (ii) train for view invariance over
modulated representations – and thus also for modulation invariance – as the analogue of predictive
coding (top). As a consequence, high-level information continually permeates into the sensory
processing pathway, which can be contrasted with the traditional machine learning (right) approach
of unsupervised pretraining for view invariance (top) followed by supervised fine-tuning (bottom). In
this case, it is unclear how high-level information can be incorporated into the sensory processing
pathway to improve subsequent learning.

models is particularly powerful, as it reaches the same performance as using all parameters [29, 30,
32].

Modulations are an attractive way to implement task-incremental learning, as task-specific modu-
lations can be learned for each new task without affecting feedforward weights. Masse et al. [34]
propose gating random subsets of neurons, whereas Iyer et al. [36] provide a biological interpretation.
Fine-tuning through modulations [30, 32] can also be considered as a form of continual learning, as
it can be applied in sequence to any new dataset.

Continual representation learning. Traditionally, continual learning has focused on purely super-
vised methods [42–67]. These methods can be categorized into replay-based approaches [42–50],
regularization-based approaches [50–62, 67] and approaches introducing new parameters [63–66].
TMCL can be considered a regularization-based approach, but it also introduces new parameters.
However, these parameters are not used during inference. Recently, purely self-supervised con-
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tinual learning algorithms have been proposed [68–72], where state-of-the-art algorithms [69, 72]
predict past representations from a stored model copy without exemplar replay. Very recently, semi-
supervised continual learning approaches have emerged [73–76], which consolidate by distilling
from expert models [76, 77] or for which the labels are only used for readout learning [74].

We highlight SIESTA [49], CLS-ER [78] and DualNet [73], which are inspired by the complementary
learning systems theory (CLS) [79, 80], the idea that learning occurs at fast (task-learning) and slow
(consolidation) timeframes. However, all these methods interpret CLS to assume sample replay
provided as episodic memory via the hippocampus. Instead, we suggest functional replay of task
modulations (‘How did we solve the task?’), and do not investigate methods with exemplar replay.
Still, we point out similarities to the replay-based DualNet, which introduces a fast supervised network
generating modulations on top of a slow self-supervised network. However, DualNet consolidates
only as new labels arrive. Consolidation in TMCL requires no labels, instead exploiting previously
learned task modulations.

3 Modulation-Invariant Continual Representation Learning

We follow the idea from Iyer et al. [36] that cortical networks learn to interpret novel information
by learning new top-down modulations, and propose that consolidation of these modulations is a
crucial component of learning in biological brains. This motivates our task-modulated contrastive
learning (TMCL) algorithm as the machine learning analogue of this consolidation, tackling continual
representation learning. We consider the parameters of conventional machine learning models
as task-agnostic feedforward weights W. On top of these weights, we introduce per-task affine
transformation parameters as task-specific modulations mt, the analogue of biological top-down
modulations. We denote the modulated network as f(x|W,m) with feedforward weights W and
modulations m, while f(x|W, ∅) represents the unmodulated network (i.e. where the modulations
are identity operations).

In TMCL, the overall objective is to arrive at an unmodulated representation space where all classes
c ∈ C in the dataset D have compact representations clustered around mutually orthogonal class
centers, i.e.

γc⊥γc′ ,∀c, c′ ∈ C, (1)

with γc = Ex∈X(c) [f(x|W, ∅)], where X(c) is the set of samples from class c. Because we assume a
continual learning setting, where we do not have all class samples at our disposal, we do not optimize
for (1) directly. Rather, we achieve this by breaking the optimisation procedure down into two distinct
learning objectives. The first objective (Figure 2, bottom left) is to orthogonalize any given class c
from the others in a modulated representation space, i.e. we learn a modulation mc so that the class
center of class c becomes orthogonal to all other classes in the modulated space:

γc
mc⊥{γc′

mc : c′ ∈ C \ {c}}, (2)

where γc
m denotes the representation of the class center under modulation m, i.e. γc

m =
Ex∈X(c)(f(x|W,m)). The second objective (Figure 2, bottom right) is entirely unsupervised and
trains network weights to become modulation-invariant, so that

γc = γc
mc′∀c′ ∈ C. (3)

It can be seen that a representation space that satisfies both (2) and (3), also satisfies (1).

In our continual setting, which we adapt from Fini et al. [69], training is partitioned into s ∈ 1, . . . , S
sessions, so that (1) can only be achieved approximately. In each session s, we only observe unlabeled
samples x ∈ D(s) ⊂ D belonging to the session-specific partition of classes C(s) ⊂ C. Additionally,
a fraction of labeled samples (x, y) ∈ D(s)

sup ⊂ D(s) is made available to (3). As a consequence,
during each session (Figure 2), we learn objective (2) restricted to D(s)

sup in a first phase, and then learn
objective (3) using unlabeled samples from D(s). We explain the implementation of both phases in
detail below.

Learning modulations that orthogonalize new class representations. Whenever a new class
label is observed, we learn class modulations on top of frozen feedforward weights to implement
objective (2), which improves separation of the new class representations from all others currently
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Figure 2: Sparsely labeled class-incremental representation learning. We implement continual
learning over mostly unlabeled data streams, where only a few labeled samples are provided (top).
To give an intuition of our algorithm (bottom), we consider that after successfully incorporating
the data seen thus far, sufficiently collapsed neural representations exist for the already seen data
classes after session t − 1 (here dog, cat). For a new data class in session t (e.g. whale), such a
collapsed representation may not yet exist. We then learn a new set of modulations to collapse "whale"
representations in the modulated representation space, orthogonalizing them from all other available
labeled examples, thus obtaining an orthogonal subspace for everything that is non-whale. Then,
occasional reactivation of the "whale" modulation in LCL draws unmodulated "whale" representations
towards this collapsed representation (cf. Figure 1, middle), while drawing other samples to the
orthogonal subspace, thus consolidating "whale" into the unmodulated representation space.

available. We assume that explicit class labels for these other classes are not available, therefore, the
conventional machine learning approach of all-vs-all classification is not applicable. Instead, we learn
one-vs-rest class modulations, only using currently available samples as negatives (Figure 2, bottom
left). Note that if negative samples were to collapse to a single representation, (2) and (3) could
not hold simultaneously and therefore (1) could not be achieved either. For this reason, we apply a
variation of the orthogonal projection loss (OPL) [81] instead of binary cross-entropy (BCE) [82].
We define sm(u,v) = sim(f(u|W,m), f(v|W,m)) as the cosine similarity between samples u
and v under modulation m, i.e. sim(u,v) = uTv

∥u∥∥v∥ . Then, given a batch X(c) of c-class examples

and a batch X(¬c) of non-c examples, we define

L(c)
OPL :=

∑
p,p′∈X(c)

(1− sm(p,p′)) +
∑

p∈X(c)

n∈X(¬c)

|sm(p,n)| . (4)
collapse orthogonalization

m(c) is then found as minm L(c)
OPL. The second term draws the cosine similarities between class c and

non-class c representations to zero, leading to an orthogonalization of class c representations from all
others, therefore approximating objective (2).

Consolidation of modulations into a view- and modulation-invariant representation space. To
implement objective (3), we co-opt self-supervised contrastive learning, which is considered a biolog-
ical analogue of predictive learning principles of the feedforward connections [15, 16]. Contrastive
learning objectives train for view-invariance (VI), as they attract representations of views of the same
source sample under different view augmentations to each other, while repelling representations of
other samples [17, 18, 83–92]. These view augmentations α, forming representations colloquially
referred to as ‘positives’, are sampled randomly from a set of augmentations A (i.e. α ∼ A), which
includes combinations of e.g. random crops, color jitter and horizontal flips. We note that modifying
the set of positives, while using the same contrastive learning objective, results in different invariances
being learned. We generalize the contrastive loss LCL({z1, . . . , zK}) as a generic learning rule
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operating on a set of K positives z1, . . . , zK . Then, we formalize the view-invariant loss as

VI := LCL({φVI(αk(x)|W, ∅) | k = 1, . . . ,K, αk ∼ A}), (5)

where φVI = hVI ◦ f and hVI(·) is an MLP used exclusively for the view-invariant objective.

To consolidate the orthogonalizing modulations into the unmodulated representation space, we
propose to employ differently modulated views of the source sample as positives, hence constructing
a modulation-invariant representation space (Figure 1, top center). Concretely, we uniformly sample
m2, . . . ,mV ∼ M(s) from the set of trained modulations at session s. We formalize the modulation-
invariant loss, which implements objective (3), as

MI := LCL

(
{pMI(φMI(α1(x)|W, ∅))}

∪
{

sg(φMI(αk(x)|W,mk))
∣∣∣ k = 2, . . . ,K, αk ∼ A, mk ∼ M(s)

})
,

(6)

where sg(·) denotes a stop-gradient, φMI = hMI ◦ f , and pMI(·), hMI(·) are MLPs used exclusively
for the modulation-invariant objective. Therefore, a compact representation of each new class is
consolidated in the unmodulated representation space. During the consolidation phase of TMCL, the
combination of VI and MI is optimized jointly.

Mapping prior work to the canonical contrastive loss and comparing to TMCL. Notably, in
supervised contrastive learning (SupCon), samples of the same class are used as positives [93], thus
implementing invariance to features not predictive of class identity. SupCon is a straightforward
method to additionally leverage the few available labels in semi-supervised continual learning setups.
However, in contrast to our MI objective, SupCon only separates classes for which labels are available
in the current session, while MI implicitly separates current samples from past class centers.

State-of-the-art unsupervised continual representation learning algorithms such as CaSSLe [69]
and PNR [72] train the network representations to be invariant to the model state (state invariance
or SI), by using as positives one representation obtained from the current network state and one
representation obtained from a stored, past network state. In TMCL, because the modulations for any
given class are not updated after the initial learning, they effectively constitute an imprint of neural
activities that separates that class from all others. Therefore, training the unmodulated representations
to maintain similarity with this imprint also stabilizes continual learning, and can be understood as a
form of SI that does not require storing the full network state twice (cf. Table A1, right).

4 Experiments

Experimental protocol. We adopt a standard class-incremental continual learning protocol on
both CIFAR-100 and ImageNet-100, dividing the dataset into five sessions, each containing 20
disjoint classes. We additionally introduce a supervised cross-entropy (CE) baseline with a projection
head [94], which has been reported to outperform self-supervised methods. For each session, we train
the model for 100 orthogonalization epochs, where we train modulations for the new classes, and 200
consolidation epochs. We further start the first session with a pretraining phase of 250 epochs, where
the feedforward weights are updated via VI, or analogously with SupCon and CE for the respective
supervised methods. For all loss terms except CaSSLe and PNR, we use K = 4 positives. The
backbone f is a modified ConViT architecture [95] as introduced in DyTox [65]. We emphasize that
this architecture is equivalent to ResNet-18 in both memory and compute (Table A1, b). We evaluate
the representations via linear probing of the last four layers of f as suggested by Caron et al. [88].
Further details are provided in supplementary materials A.

Semi-supervised continual representation learning. In Table 1, we present the all-vs-all linear
readout accuracies on the CIFAR-100 and ImageNet-100 datasets after class-incremental learning.
As previously reported [94], continual supervised learning outperforms self-supervised learning
if all labels are observable, while purely supervised methods significantly degrade with only 10%
of labels or fewer. Clearly, a combination of both supervision and self-supervision proves most
performant in this setup, as VI+ SupCon significantly outperforms the state-of-the-art unsupervised
algorithm (VI + SI (PNR)). While state invariance is helpful, most of the improvement stems
from the additional supervision (VI + SupCon). In the fully labeled scenario, VI + MI improves
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Table 1: Semi-supervised continual representation learning. Final linear readout accuracy (all-vs-
all) on class-incremental ImageNet-100 and CIFAR-100 with 5 sessions (averaged over three and
four seeds respectively, ± denotes the standard deviation).

Method
CIFAR-100/5 ImageNet-100/5

100% 10% 1% 100% 10% 1%

Supervised methods
SupCon 58.4±0.7 47.7±0.9 39.1±1.4 64.0±0.7 48.7±1.2 33.6±0.5

CE 60.1±0.5 50.7±0.3 41.6±0.5 66.0±0.4 50.1±1.2 35.2±0.2

Self-supervised methods
VI 59.3±0.2 59.7±0.3

. . . integrating class labels (semi-supervised)
+ CE 60.6±0.6 59.5±0.3 59.8±0.2 64.5±0.7 61.4±0.9 60.3±0.5

+ SupCon 62.2±0.2 59.6±0.4 59.3±0.2 66.6±0.4 61.4±0.6 60.2±0.3

+ MI (TMCL) 60.7±0.4 61.1±0.3 60.7±0.3 64.5±0.3 63.5±0.4 62.0±0.2

. . . introducing state invariance (and class labels)
+ SI (PNR) 60.2±0.2 59.6±1.0

+ CE 61.2±0.3 60.3±0.6 60.1±0.3 64.5±0.5 60.3±0.8 59.4±0.9

+ SupCon 62.7±0.2 60.7±0.3 60.1±0.3 67.0±0.2 60.2±0.3 58.5±0.4

+ MI 60.9±0.2 60.7±0.2 60.9±0.2 63.8±0.9 62.7±0.6 61.7±0.4

Table 2: Transfer learning. Final all-vs-all kNN accuracy on diverse downstream tasks after five
incremental CIFAR-100 sessions (averaged over four seeds, ± denotes the standard deviation).

Method Aircraft CIFAR-10 CUBirds DTD EuroSAT GTSRB STL-10 SVHN VGGFlower

1%
C

IF
A

R
la

be
ls SupCon 8.3±1.1 52.0±2.0 3.3±0.3 15.5±0.6 64.1±3.3 38.5±3.5 44.9±1.4 46.6±2.1 18.9±2.0

+ SI (CaSSLe) 11.6±3.1 51.9±1.3 3.4±0.3 16.3±1.4 66.4±4.3 38.3±4.9 44.8±1.8 46.3±1.1 21.9±5.3

VI 27.5±0.7 77.0±0.3 10.0±0.2 27.6±0.8 86.0±0.4 67.8±0.2 65.4±0.5 48.3±0.4 58.5±0.6

+ SupCon 27.4±0.6 77.3±0.3 9.8±0.2 27.9±0.5 85.8±0.1 68.2±1.3 64.9±0.6 49.8±0.4 58.4±0.6

+ MI (TMCL) 28.0±0.5 78.0±0.3 10.7±0.2 29.4±0.8 87.1±0.2 68.2±0.9 66.3±0.3 49.0±0.7 61.7±0.5

+ SI (PNR) 28.5±0.5 78.3±0.1 11.1±0.1 28.6±0.7 87.0±0.2 69.4±0.4 67.0±0.4 49.1±0.8 64.7±0.5

+ SupCon 29.1±0.2 78.3±0.2 10.5±0.4 28.2±0.4 87.0±0.5 70.2±0.2 66.8±0.3 49.9±0.6 64.4±0.3

+ MI 29.9±0.8 79.0±0.2 11.8±0.3 29.5±0.3 87.5±0.2 69.8±0.9 67.6±0.3 49.7±0.7 66.2±0.4

10
0%

C
.l

. CE [94] 29.0±0.6 78.4±0.5 10.0±0.1 28.5±0.8 83.4±0.4 64.0±0.4 66.2±0.5 53.2±0.6 58.2±0.8

VI 27.5±0.7 77.0±0.3 10.0±0.2 27.6±0.8 86.0±0.4 67.8±0.2 65.4±0.5 48.3±0.4 58.5±0.6

+ SupCon 28.1±0.7 79.1±0.3 10.4±0.5 28.9±0.7 86.6±0.1 68.6±0.6 66.8±0.2 49.8±0.8 58.2±0.4

+ MI 28.9±0.3 78.2±0.2 10.7±0.2 29.2±0.2 87.0±0.1 71.0±0.8 66.7±0.3 50.7±0.6 62.8±0.5

over VI + SI, yet underperforms VI + SupCon. This changes as we move towards label-sparse
scenarios, where MI consistently outperforms SupCon. Interestingly, MI is not orthogonal to SI, as
their combination results in the strongest performances in label-sparse scenarios.

Representational quality for transfer learning. In Table 2, we report k-nearest neighbors (kNN)
performance of different tasks on top of the CIFAR-100 continually pretrained models, without any
further fine-tuning or training. First, on those models that only observe 1% of the training labels (or no
labels at all, i.e. VI, VI + SI), we demonstrate that modulation invariance improves representational
quality beyond solely adapting to CIFAR-100 classes, as performances across almost all probed
datasets improve. Here, MI is not orthogonal to SI, and the combination of VI+SI+MI results in the
most transferable representations. Furthermore, amongst methods exploiting CIFAR-100 labels, MI
outperforms SupCon, supporting the hypothesis that direct supervision results in representations that
are ‘greedily’ invariant to features which are not relevant for the current task. Strikingly, this cannot
be solely attributed to the sparse supervision setup; conducting the same study on models trained
with 100% labels, we observe that MI outperforms SupCon, except for CIFAR-10 and STL-10, which
are semantically similar to CIFAR-100. Furthermore, semi-supervised VI+ MI outperforms fully
supervised CE on most tasks, further underlining the lack of generalization of class-based invariance
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Figure 3: Controlling the stability-plasticity
trade-off. Accuracy on CIFAR-100 test sam-
ples associated with C(s), measuring forward and
backward transfer (averaged over four seeds).
Color scale indicates the strength of MI.

Table 4: Backwards and forwards transfer per-
formances, using 1% of labels for SupCon and
MI (averaged over four seeds, ± denotes the stan-
dard deviation).

Methods BT FT
SupCon -18.5±0.4 -27.7±0.4

+ SI (CaSSLe) -18.1±0.2 -27.4±0.4

VI -1.7±0.4 -6.5±0.4

+ MI -0.3±0.2 -3.7±0.4

+ SupCon -1.9±0.1 -5.9±0.3

+ SI (CaSSLe) 1.0±0.1 -4.4±0.4

+ MI 1.3±0.2 -3.0±0.3

+ SupCon 1.0±0.1 -3.7±0.1

learning. In contrast to the CIFAR-100 results (Table 1), we observe that as more labels are provided
to MI, representational transfer quality improves for most tasks.

Table 3: Label noise. Final linear readout
accuracy on continual CIFAR-100, replacing
a fraction of labels with random labels. (aver-
aged over four seeds, ± denotes the standard
deviation).

Method Label noise

30% 50% 90% 99%
Fully supervised methods

CE 57.3±0.2 54.4±0.2 8.2±1.2 6.4±2.2

SupCon 58.0±0.4 56.3±0.3 48.6±1.0 47.0±0.6

Self-supervised baseline
VI 59.3±0.2

. . . integrating (noisy) labels

+ CE 59.2±0.6 59.2±0.2 58.3±0.4 58.1±0.5

+ SupCon 60.6±0.3 60.0±0.2 58.6±0.5 58.7±0.3

+ MI (TMCL) 60.4±0.4 60.3±0.1 60.0±0.5 59.4±0.4

Robustness to noisy labels. Erroneous labels are
commonly encountered in natural learning environ-
ments. While in that case, misclassification of sam-
ples would be expected, the quality of the repre-
sentations should not deteriorate. However, intro-
ducing label noise severely degrades performance
in fully supervised methods (Table 3, red cells de-
noting performance inferior to the self-supervised
baseline), and naive integration via CE also signif-
icantly underperforms the self-supervised baseline.
While VI+ SupCon only degrades with as much as
90% label noise, TMCL is robust to label noise up to
99% and does not underperform the self-supervised
baseline. We hypothesize that this robustness arises
because in TMCL, the erroneous labels do not di-
rectly affect weight learning. Rather, they lead to
nonsensical modulations, which represent a noise
contribution to which the contrastive learning machinery learns to become invariant.

The strength of MI controls the stability-plasticity trade-off. We first investigate how different
methods perform before and after observing task samples. Therefore, we introduce backwards
and forward transfer metrics that measure the difference in task performance pre- and post-session
compared to a model that is trained solely on that particular task using VI (definitions provided in the
supplementary material). We observe that MI strongly improves both backwards and forward transfer
compared to pure VI, while SupCon only provides mediocre improvements in forward transfer and
even degrades backwards transfer (Table 4). Introducing a model state invariance term significantly
enhances backward transfer, demonstrating positive knowledge transfer from previously learned tasks.
Remarkably, the combination of MI and SI on average achieves performance within 3 percentage
points of the task-specific baseline model, demonstrating significant forward transfer. To further
investigate the effect of MI, we vary its strength λMI ∈ [0, 1] in the combination VI + λMIMI. In
Figure 3, for each session s, we observe the accuracy of test samples associated with classes from
C(s) during the course of training. We observe that increasing λMI enhances both forward transfer
(left of the gray region) and backward transfer (right of the gray region), albeit at the expense of
current task performance (gray region).
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Table 5: Ablations.

(a) Ablating the role of orthogonalizing modulations.
Linear readout accuracy on continual CIFAR-100 and
ImageNet-100 observing all labels (average, ± denotes
the standard deviation).

Method CIFAR-100 ImageNet-100
VI + MI (TMCL) 60.7±0.4 63.5±0.4

untrained mods. 60.1±0.5 60.6±1.5

random mods. 59.7±0.5 60.9±0.7

OPL → BCE 59.5±0.5 63.8±0.6

w/o MI 59.3±0.2 59.7±0.3

(b) Ablating the role of architectural choices. Linear
readout accuracy on continual CIFAR-100 (averaged
over four seeds, ± denotes the standard deviation).

Method CIFAR-100
VI + MI (TMCL) 60.7±0.4

w/o pred. 55.1±0.1

w/o stop-grad 60.3±0.3

w/o pred. & stop-grad 60.3±0.1

Table 6: Results on ResNet-18. Reporting
linear evaluation performances on continual
CIFAR-100 (averaged over four seeds, ± de-
notes the standard deviation).

Method Labeled frac.
100% 10%

VI 53.4±0.1

+ MI (TMCL) 58.1±0.1 56.7±1.1

+ SupCon 54.5±0.2 54.6±0.5

+ SI (PNR) 59.9±0.3

+ SI (CaSSLe)a 60.1±0.4

+ SI (PNR)a 60.3±0.4

+ ERb [61] 54.6
+ DERb [48] 55.3
+ LUMPb [96] 57.8
+ Less-Forgetb [51] 56.4
+ PODb [56] 55.9

CLS-ER [78] 56.7±0.2 49.8±0.2

a adapted from Cha et al. [72]
b adapted from Fini et al. [69]

Orthogonalized modulations improve class-
separation. We hypothesized in Section 3 that
BCE is suboptimal, since negatives are collapsed
towards a single vector. As we replace the orthogonal
projection loss with binary cross-entropy, we observe
degraded performance on CIFAR-100 (Table 5b).
On ImageNet-100, performance is similar, which
we attribute to the fact that the BCE training does
not fully converge to an antiparallel configuration:
On CIFAR-100, the average minimum BCE loss
over all classes is 0.005±0.039, while on ImageNet,
it is 0.053±0.035. Interestingly, while untrained
modulations (i.e. frozen after normal initialization)
as well as random modulations (i.e. redrawn each
time) degrade performance further, they still provide
a moderate improvement over pure VI. This suggests
that predicting representations based on a slightly
perturbed model state already provides a regulatory
effect. We further measure the class-distance
normalized variance (CDNV, appendix E) of
representations [97], which is the ratio between
intra-class variance and class-mean distances. A
lower CDNV thus indicates a combination of higher
intra-class collapse and/or higher distances between
classes. We observe that modulation invariance
improves class-separation as the CDNV significantly decreases once training enters the consolidation
stage, but only in combination with orthogonalizing modulations (Figure 4). Moreover, the effect is
still clearly visible while using 1% labels.

Architectural ablations. The predictor network appears to be essential for MI, but only if a stop-
gradient is imposed upon the modulated branches (Table 5b). Removing the stop-gradient while
keeping the modulations frozen results in a moderate performance degradation, regardless of the
presence of a predictor. Still, the stop-gradient is useful from both a computational perspective –
reducing memory footprint and gradient computations – and from a biological perspective, as the
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predictor with stop-gradient could be implemented by a hypothesized cortical predictive coding
pathway [40].

ResNet architecture. As we replace ConViT with ResNet-18 (Table 6), we observe that SI
significantly improves performance over standard VI, underlining the susceptibility of ResNets to
forgetting compared to ViT-based architectures [98]. Introducing MI also significantly improves
performance over VI as well as other label-integrating methods (SupCon, CLS-ER), but slightly
underperforms SI. We hypothesize that the ability to directly modulate spatial relationships in ViTs
lends more expressivity to the modulations in these models. Furthermore, the reliance of ResNet
architectures on BatchNorms hinders stable training of different modulations, as it requires freezing
the batch statistics. This is observable especially in the high standard deviation in accuracy of TMCL
given 10% labels. As the underlying data statistics change with each session, the BatchNorms will
adapt accordingly, and we hypothesize that this interferes with previously learned modulations. This
is not the case for LayerNorm — as used by transformer architectures – which normalizes across
features and does not depend on stored normalization statistics.

5 Limitations

Our work focuses on developing an understanding of algorithms that leverage the cortical circuitry,
which is characterized by top-down and bottom-up information streams [99], to learn in naturalistic
scenarios. Our analysis demonstrates this on a standard CIFAR-100 class-incremental setup, but
omits data- and domain-incrementality. TMCL relies on static modulations, resulting in memory
requirements that scale with the number of classes. For 100 classes, this amounts to around 4.1M
parameters, while CaSSLe and PNR store a copy of the network (10.7M, Table A1b). Still, alternatives
such as pruning simple classes or, better yet, a network that generates such modulations, should be
explored. Finally, we observe that representational quality on the trained dataset (CIFAR-100) only
moderately improves as more labels are presented, underperforming SupCon in the fully labeled
regime. Still, given the improved transfer performance of TMCL, we hypothesize that this is indeed
biologically plausible as the unmodulated network is not primed to solve CIFAR-100 specifically, but
rather driven towards generalizable representations. Top-down priming could be implemented via a
separate set of task-specific modulations, as has been explored in previous work [34–36].

6 Discussion

In this work, we have proposed a novel, brain-inspired algorithm for continual learning. It has been
proposed that modulations provide a powerful framework for task-incremental learning, as they allow
a general feature detector to learn new tasks by adapting modulations only [34, 36]. We extend
this framework to class-incremental learning, and show that modulations can be consolidated into a
shared representation space, sharpening percepts from data classes observed asynchronously. This
consolidation co-opts the general machinery for view invariance learning, which in the brain is thought
to be available anyway for predictive coding [15, 16]. Furthermore, there appear to be measurable
parallels between our algorithm and cortical learning, as large-scale brain imaging indicates that
representations of new stimuli orthogonalize from all others throughout learning, and unsupervised
pretraining affects task learning [100]. Elucidating the drivers of this orthogonalization will provide
further insight into how the brain leverages its biophysical machinery to achieve continual learning.

As we have shown that training for modulation invariance imparts task-specific information on the
unmodulated network, one tantalizing possibility is that the effective learning objectives for networks,
or parts of networks, could be tuned by incorporating sets of modulations that solve specific tasks.
In a mixed language-vision approach [27], this could afford a fine-grained control over the eventual
representation learning beyond what is currently possible with e.g. multi-task datasets [101]. In
neurobiology, this represents a new view on intra-cortical and thalamocortical interactions. As
cortical regions are targeted by modulations originating from distinct sets of brain areas with specific
roles [102], the precise configuration of modulatory afferents could provide an understanding of
the effective area-specific learning objectives. In turn, as these connectivity patterns are driven by
genetically determined cues, this theory may afford insight into the distinct roles of genetics and
plasticity in developing functional brains [103].
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NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We claim TMCL is effective in learning representations, improving over pure
self-supervised approaches with sparse supervision. We underline this claim mainly by
showing improvements on the main task (CIFAR-100, Table 1) and most importantly as we
evaluate our representations on different tasks (Table 2) in Section 4.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss the main limitations in Section 5.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [NA]
Justification: We focus on the biological correlates in this work, there are not theoretical
results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: All implementation details required to re-implement our methods – as well
as pseudo-code – are contained in the supplementary material. We use publicly available
datasets and standard benchmarks from literature.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We use publicly available standard datasets and submit our code. Once
submitted, we will publish our code to GitHub.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: All training and test details are included in the supplementary materials.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: All results are obtained over four different pseudo-random number generator
seeds and we provide the standard deviation.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Training infrastructure, approximate execution time and memory usage are
reported in the supplementary materials.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The authors acknowledge and have ensured that the conducted research
conforms to the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: This paper describes a continual learning method, highlighting potential
biological correlates and therefore does not pose any striking societal impacts beyond the
ones posed by fundamental machine learning and neuroscientific research.
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Guidelines:
• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: We do not release any data or models.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We provide proper acknowledgements for the datasets, libraries and figure
assets used in the supplementary materials.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: The paper does not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: LLMs have solely been used to speed up manual implementations of the
methods by per-line autocompletion. Functionally, all parts have been implemented by the
authors.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Implementation Details

Table A1: Methodological differences.

(a) Learning protocol. Number of epochs are
given per session.

Ours [69, 72]

nviews 4 2
Pretraining epochs 250 (CIFAR-100), 200 (ImageNet-100) -
Consolidation epochs 200 500
Orthogonalization epochs 100 -

(b) Architectures. Architecture numbers assuming 32× 32
image inputs and 100 classes.

ConViT (DyTox) [65, 95] ResNet-18 [41]

Parameters 10.7M 11.2M
+ modulations 4.1M -

FLOPS 1.4G 1.4G

For all CIFAR-100 experiments, we use the same class split as in CaSSLe, i.e. the same across all
seeds. For the ImageNet-100 as well as the 10 session experiments (Section F), we use different class
splits per seed.

For ConViT experiments, we use the AdamW optimizer [105] with a batch size of 256 and feedfor-
ward weight decay of 0.0001 for all experiments, using a per-session cosine learning rate decay with
10 warmup epochs. ConViT experiments are trained with a feedforward learning rate of 0.001 and a
modulation learning rate of 0.01. The ResNet experiments are trained with a feedforward learning
rate of 1.0 and a modulation learning rate of 0.3 using the LARS optimizer (η = 0.02). The Barlow
Twins losses are scaled down by a factor of 0.1 for ConViT experiments, and by 0.025 for ResNet
experiments. We pick the redundancy-reduction weighting factor λBT = 0.005 for all experiments.

The ConViT backbone has 5 ‘local’ self-attention blocks, replacing the self-attention layers with
gated-positional self-attention layers, followed by a ‘global‘ self-attention block with standard self-
attention. We use 12 attention heads and a model dimension of 384. All images are resized to input
size 32 and we use a patch size of 4. The ResNet backbone conforms to the original ResNet-18,
except that the first convolution layer has a kernel size of 3 and padding 2, the first MaxPool is
removed, and we remove the final MLP layers.

The code for our experiments is available at https://github.com/tran-khoa/tmcl.

Modulations. The gain and bias modulations are applied to the query, key, value and output
projections of all multi-head attention modules, and to both layers of the feedforward MLPs that
follow the attention modules. Additionally, we modulate the positional prior of the ConViT-specific
gated-positional self-attention (GPSA) layers, i.e. we modulate the operation vh T

pos rij (cf. Equation 7
from d’Ascoli et al. [95]). Gain and bias modulations are initialized from a Gaussian distribution,
respectively from N (1, 0.02) and N (0, 0.02). We impose weight decay on the modulations with
decreasing strength for deeper layers,

weight-decay(l) := 0.4− 0.36(cos(π · l/L)) + 1)/2 (7)

for modulations of the l-th ViT layer (out of L = 6 layers). Only random horizontal flips are used as
augmentations for the modulations.

Orthogonalization We virtually constrain the number of batches to the actual number of samples
divided by the batch size. Let Ct be the set of classes available at session t. For each batch, we sample
uniformly (with replacement) c ∼ Ct. Let Xc be the set of training samples of class c and X¬c be all
other samples available at session t. Then, with probability 0.5, each class is sampled uniformly from
Xc, or class X¬c otherwise.

P (xt = x) = 0.5 · P (x ∼ Uniform(Xc)) + 0.5 · P (x ∼ Uniform(X¬c)). (8)

Consolidation The projector h is a three-layer MLP (dimensions 2028, 2048, 2048) with ReLU
activation and BatchNorm in the hidden layers. The predictor p for MI, CaSSLe and PNR is a
two-layer MLP (dimensions 2048, 2048) with ReLU activation and BatchNorm in the input layer.
All projectors and predictors are reset at the end of each session.

For SupCon, we use a two-layer MLP (dimensions 2048, 128) with ReLU activation and BatchNorm
in the input layer, and we use a temperature of 0.1 in the softmax.

As augmentations, we use
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RandomResizedCrop(
size=(32),
scale=(0.08, 1.0),
ratio=(3.0 / 4.0, 4.0 / 3.0),
resample=Resample.BICUBIC,

),
ColorJitter(

brightness=0.4,
contrast=0.4,
saturation=0.2,
hue=0.1,
p=0.8,

),
RandomGrayscale(p=0.2),
RandomHorizontalFlip(p=0.5),
RandomSolarize(p=0.2, thresholds=0.0, additions=0.0),

although Solarize is only applied for even views (v mod 2 = 0).

Linear probing and k-nearest neighbors For linear probing, we follow standard methodology
for self-supervised learning with vision transformers [106], i.e. we train a linear classifier on top of
the [CLS] tokens from the four last layers on all training samples, regardless of the labels available
during continual representation learning. For ResNets, we use the output of the last layer. We train
for 100 epochs using stochastic gradient descent with momentum (batch size 1024, base learning rate
0.1 with cosine decay). We do not use any augmentations except for random horizontal flips. For
k-nearest neighbors (kNN), we obtain the representations of the last layer of the backbone instead.
No augmentations are used. The prediction is obtained by considering k = 20 nearest neighbors,
weighted by distance with temperature t = 0.07.

Compute We run our experiments on the JUWELS-Booster [114] and JURECA [104] clusters at
Forschungszentrum Jülich. For both systems, we use a single NVIDIA A100 GPU per experiment.
We observe empirically that SupCon based methods have the highest GPU memory consumption
(22 GB), while modulation invariance methods use 17 GB. View and state invariance require 14 GB
of GPU memory. Augmentations are run on GPU and the datasets do not require image decoding,
therefore CPU and RAM requirements are negligible. All runs take up to 10 hours to finish on the
five session scenario.

B Forward and Backward Transfer

B.1 Metrics

Let task i be the classification problem on the classes from session i. We then define At,i as the
evaluation accuracy of task i at the end of training session t. We evaluate this accuracy in the
task-agnostic setting, i.e. the classifier (linear or kNN) is unaware that the input data is limited to the
task under consideration. In our FT and BT metrics, Âi is the task-agnostic kNN evaluation accuracy
of task i on a model trained from scratch using Barlow Twins on data from task i. Then, we define:

Backward Transfer

BT =
1

T − 1

T−1∑
i=1

1

T − i

T∑
t=i+1

(At,i − Âi) (9)

Forward Transfer

FT =
1

T − 1

T∑
i=2

1

i− 1

i−1∑
t=1

(At,i − Âi) (10)
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Figure A1: Forward and backward transfer of different methods. Accuracies on class-incremental
CIFAR-100 (5 sessions) given either 1% of labels or completely unsupervised (averaged over four
seeds).

B.2 Forward and Backward Transfer of Different Methods

Previously, we investigated the stability-plasticity trade-off as we modify the strength of the modula-
tion invariance term (Figure 3). We further demonstrate in the sparsely labeled learning scenario (1%
labels), that modulation invariance also provides improved forward and backward transfer compared
to SupCon, while SupCon surprisingly shows lower plasticity than VI (Figure A1). The introduction
of state invariance shows further improvements, as the combination of SI and MI on top of VI yields
the highest forward and backward transfer on most tasks except for the first task.

C Python-style Pseudocode for TMCL

# f(xs, t): forward pass of backbone with inputs xs and modulations t
# C_1, ..., C_t: list of classes of session 1, ..., t
def orthogonalization(xs, ys): # sparse labeled samples at session t

for step in range(orthog_steps):
c = random.sample(C_t, k=1)
positives = random.sample(xs[ys == c], k=batch_size // 2)
negatives = random.sample(xs[ys != c], k=batch_size // 2)

pos_f, neg_f = f(positives, t=c), f(negatives, t=c)
loss = opl_loss(pos_f, neg_f)
loss.backward()
update(f.modulations[c])

def consolidation(xs, is_pretrain=False): # unlabeled samples at session t
for step in range(cons_steps):

batch = random.sample(xs, k=batch_size)
views = [aug(batch) for _ in range(num_views)]

# view invariance
# h_vi: view-inv. projector
vi_projs = [h_vi(f(v, t=None)) for v in views]
vi_loss = contrastive_loss(*vi_projs) # Multi-view Barlow Twins

if is_pretrain:
vi_loss.backward()
update(f.feedforward_weights)
continue

# if enabled: model state invariance
# f_past: frozen backbone from prev. session
# h_vi_past: frozen view-inv. projector from prev. session
# p_si: state-inv. predictor
with torch.no_grad():

si_projs_past = [h_vi_past(f_past(v, t=None))]
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si_preds_curr = p_si(vi_projs)
si_loss = mean(

distill_loss(curr, past) # CaSSLe/PNR loss function
for curr, past in zip(si_preds_curr, i_projs_past)

)

# modulation invariance
# h_mi: mod-inv. projector
# p_mi: mod-inv. predictor
mi_tasks = [[None] * batch_size] # unmodulated first view
mi_tasks += [random.sample(C_1 + ... + C_t, k=batch_size) for _ in views[1:]]
mi_projs = [h_mi(f(v, t=t)) for v, t in zip(views, mi_tasks)]
mi_pred = p_mi(mi_projs[0])
mi_loss = contrastive_loss(mi_pred, *mi_projs[1:]) # Multi-view Barlow Twins

loss = vi_loss + si_loss + mi_loss
loss.backward()
update(f.feedforward_weights)

def train(sessions):
for session_idx, (xs_unlabeled, xs_labeled, ys_labeled) in sessions:

if session_idx == 0:
consolidation(xs_unlabeled, is_pretrain=True)

orthogonalization(xs_labeled, ys_labeled)
consolidation(xs_unlabeled)

D Implicit Orthogonalization via Modulation Invariance

This section seeks to walk through the intuition behind the implicit orthogonalization via modulation
invariance. To do so, we assume a non-incremental fashion with four classes A,B,C,D. For
conceptual clarity, we focus the explanation here on the class centers of these respective classes.

In the orthogonalization phase of TMCL, we train modulations mA to achieve
A|mA

⊥{B|mA
, C|mA

, D|mA
}, mB to achieve B|mB

⊥{A|mB
, C|mB

, D|mB
}, mC to achieve

C|mC
⊥{A|mC

, B|mC
, D|mC

}, and mD to achieve D|mD
⊥{A|mD

, B|mD
, C|mD

}. Here, A|mA

denotes the representational vector of the class center of class A under modulation mA, and similar
for all others.

In the consolidation phase, our goal is to arrive at a representation space where A|∅⊥B|∅∧A|∅⊥C|∅∧
A|∅⊥D|∅∧B|∅⊥C|∅∧B|∅⊥D|∅∧C|∅⊥D|∅ (where A|∅, B|∅, C|∅ and D|∅ denote the class centers of
A,B,C,D in the unmodulated network). It can be seen that this will be the case, if we simultaneously
achieve the orthogonality relations of point 1 and A|∅ = A|mA

= A|mB
= A|mC

= A|mD
(where

A|mA,B,C,D
denotes the class center of class A respectively under modulations mA, mB , mC , and

mD) and similar for classes B, C, D. The contrastive objective maximizes similarity between a
given data sample without modulation and under modulations mA, mB , mC , and mD, and therefore
implicitly drives the network to a state for which A|∅ = A|mA

= A|mB
= A|mC

= A|mD
and

similar for B,C,D.

We note that achieving the full orthogonality relation A|∅⊥B|∅∧A|∅⊥C|∅∧A|∅⊥D|∅∧B|∅⊥C|∅∧
B|∅⊥D|∅ ∧ C|∅⊥D|∅ would likely require iterating steps 1 and 2. However, we did not seek such
an iterating implementation, as we focused on the continual learning setting where we identified
modulation learning (step 1) with a single phase of fast learning that occurs whenever a new class is
observed, and step 2 with a slower consolidation phase. Under these conditions, the full orthogonality
relation cannot be expected to be achieved rigorously, but as is demonstrated by our CDNV results,
our TMCL algorithm still leads to a representation space where the clustering of the individual classes
is improved.
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E Class-Distance Normalized Variance

The class-distance normalized variance (CDNV) is defined as

CDNV :=
1

|C|2 − |C|
∑

c,c′∈C
c̸=c′

intra-class collapse︷ ︸︸ ︷
Var(Z(c)) + Var(Z(c′))

2
∥∥∥µ(Z(c))− µ(Z(c′))

∥∥∥︸ ︷︷ ︸
inter-class distance

, (11)

where Z(c) = [z
(c)
1 , . . . , z

(c)
N ] ∈ RN×D is a batch of backbone representations (i.e. z

(c)
i =

f(x
(c)
i |W, ∅)) of all class-c samples in the CIFAR-100 test split, and C is the set of CIFAR-100

classes (lower is better).

F Split-CIFAR-100 with 10 sessions

We demonstrate that TMCL is also effective in the scenario of sparsely supervised continual learning
with 10 sessions, i.e. 10 classes per session (Table A2).

Table A2: Semi-supervised continual representation learning. Final all-vs-all accuracy on class-
incremental CIFAR-100 (10 sessions) given either 1% of labels or completely unsupervised, averaged
over four seeds (± denotes the standard deviation).

Method kNN linear

SupCon + SI (PNR) 34.7±0.6 20.9±1.4

CE 39.2±0.8 28.2±0.9

VI 55.5±0.5 50.3±0.4

+ MI (TMCL) 57.7±0.2 52.2±0.3

+ SupCon 55.1±0.3 49.9±0.4

+ SI (PNR) 57.4±0.5 54.0±0.9

+ SupCon 57.5±0.2 54.0±0.6

+ CE 57.4±0.3 54.2±0.8

+ MI 58.7±0.3 54.6±0.5

G Datasets

Our analysis focuses on the CIFAR-100 dataset [116] and the ImageNet-100 dataset [110]. For the
transfer learning experiments, we perform kNN evaluation on Aircraft [117], CIFAR-10 [116],
CUBirds [121], DTD [108], EuroSAT [112], GTSRB [113], STL-10 [109], SVHN [118], and
VGGFlower [119].

H Further acknowledgements

We implement our methods based on PyTorch [107] with the Lightning framework [111]. For the
augmentations on CIFAR-100, we used kornia [120]. Backbone implementations are adapted from
the timm library [122]. Data loading and augmentations for the ImageNet-100 experiments are
implemented via NVIDIA DALI (https://github.com/NVIDIA/DALI). For the figures, we relied
on icons designed by OpenMoji (License: CC BY-SA 4.0).
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