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Abstract

Causal Decision Theory (CDT) is a popular choice among practical decision
theorists. While its successes and failings have been extensively studied, a less
investigated topic is how CDT’s choices hinge on the theory of causation used. The
most common interpretation, temporal CDT, understands causation as a description
of processes ordered in physical time. Another emerging view comes from the
graphical framework of Structural Causal Models (SCM), which sees causation in
terms of constraints on sources of variation in a system. We present an adversarial
scheme where a CDT agent facing a Bandit problem can be tricked into sub-
optimal choices, if it follows temporal CDT. We then propose an axiom to ground
the orientation of arrows in the causal graph of a decision problem. In doing so,
we resolve an ambiguity in the theory of SCMs, and underscore the importance
of agent perspectives, which have been largely ignored in the causal inference
literature. We also demonstrate how this structural CDT avoids our adversarial
trap and outperforms temporal CDT in a series of canonical decision problems.

1 Introduction

Normative decision theory seeks to axiomatically ground the behaviour of rational agents. von
Neumann and Morgenstern [1947] and Savage [1954] laid the foundations with representation
theorems for agent preference and utility functions, albeit with notable flaws (see Ahmed [2014, Ch.
2]). Causal Decision Theory (CDT) emerged to address these flaws, roughly stipulating that the
partition of world-states an agent analyzes needs to be causally independent of the agent’s decisions.
Popular expositions include Lewis [1981] and Joyce [1999]. In parallel, Jeffrey [1983] introduced
Evidential Decision Theory (EDT) which sought to generalize the causal requirement using the
notion of the news value of propositions. While important (and criticized), EDT is out of scope of
the current work. CDT is arguably the dominant choice among practitioners such as economists and
statisticians, often implicitly (e.g., Imbens and Rubin [2015]).

Unfortunately, CDT stands accused of failing at a class of problems, notably Newcomblike problems
(Egan [2007], Soares and Fallenstein [2015]), and being open to money-pumps (Oesterheld and
Conitzer [2021]). These failures gain poignancy in the context of AI agents, as design choices
regarding agent identity, memory and beliefs pose new challenges and risks (Conitzer [2019], Russell
and Norvig [2010, Sec. 2.4]). An agent’s decision theory could open it to adversarial attacks or
unintended consequences, while the right theory could promote multi-agent cooperation and moral
behaviour in distributed, autonomous systems (Greene et al. [2016], Conitzer et al. [2017]).

While several fixes have been proposed, a less extensively studied question is the definition of causality
CDT uses. The theory is technically dense, so we isolate the feature of current interest: physical time.
Prominent versions of CDT accept that event A temporally preceding B is sufficient to conclude
A is causally independent of B. For simplicity, we refer to this as temporal causality. Independent
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from decision theory, in the field of statistical causal inference, the framework of Structural Causal
Models (SCM) and causal graphs were developed by the groups of Judea Pearl (Pearl [2009]) and
Peter Spirtes (Spirtes et al. [2000]), where arrows in a causal graph represent chains of causation
from graphical ancestors to descendants. We’ll call this structural causality.

Typically, there is no conflict between temporal and structural causality. The equations in an SCM
represent Nature’s generative process for how the variables are realized. There is, however, an
ambiguity in the formalism: what is the basis for the asymmetry of the arrows in the causal graph?
We propose the exogeneity axiom (Sec. 3.1) to explicitly ground this asymmetry in interventional
constraints rather than temporal ordering. The upshot is that the causal graphs for alleged failure
modes now yield optimal results for a CDT agent. Our analysis also underscores that causal graphs
depend on which agent’s perspective we take, an important topic whose neglect in the causal
inference literature is worrying given the recent runaway popularity of causality in machine learning.
Not using this axiom, and relying on temporal ordering to define causal direction may cause AI agents
to behave sub-optimally. Worse, it opens agents to adversarial attacks of the kind we detail next.

2 Bandits to Calvinist Bandits - an Adversarial Scheme

Figure 1: Causal AI agents who use the temporal notion of causality are vulnerable to adversarial
attacks like the Calvinist Bandit problem

Original Bandit
E[Y |X]

X = 0 1,000,000

X = 1 1,000

Calvinist Bandit
E[Y |X,S]

S = 0 S = 1

X = 0 1,000,000 0

X = 1 1,001,000 1,000

Table 1: (top) Expected payout for
the original Bandit; (bottom) Ex-
pected payout for the adversarially
modified Calvinist Bandit.

Consider a causal AI agent ("agent") operating in the world. At
time τ = t0, it would originally have been offered a Bernoulli
Bandit problem having the payout structure in Table 1 (top).
X ∈ {0, 1} represents the choice of arms, and Y is the Bandit
payout. The numbers are illustrative.

Unknown to the agent, an adversary intercepts the original
offer, and modifies it into a Calvinist Bandit offer as follows:

• At τ = t0 − 1, S ∈ {0, 1} was an indicator variable of
whether a statement about the world state (agent state +
environment) is True.

• At τ = t0, agent is offered the Calvinist Bandit problem.
• At τ = t0 + 1, agent is told, it will receive payout according

to Table 1 (bottom). In reality, it will continue to receive
payout according to Table 1 (top).

• At τ = t0−1, S = 1 iff the state of the world is such that the
agent would choose X = 1, if presented with the Calvinist
Bandit problem at τ = t0.

We assume that the agent first encounters the Calvinist Bandit
problem at time τ = t0, and this step contains the all time
needed by the agent to evaluate and choose an arm.

We make three observations. First, the adversary is not actually
changing the original payout structure per arm, just what the
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agent is told. The agent cannot detect the modification, because the payout it receives will be
consistent with the bottom table (only the diagonal cells are ever realized). Second, it is not claimed
that S is actually being observed by anyone. For a sufficiently advanced AI, it might not even be
possible to observe S, only to infer it in retrospect. Third, S is nonetheless well-defined at τ = t0− 1.
Since AI agents make decisions algorithmically based on internal (agent) and external (environment)
states of the world, S = 0 or 1 at τ = t0 − 1. This holds even if the agent decides based on a
pseudo-random number generator. Pseudo-randomness is still an algorithmic process whose eventual
outcome is well-defined (albeit virtually unpredictable to anyone) at τ = t0 − 1.

2.1 Temporal CDT Solution

We use the definition of CDT in Lewis [1981], which says a rational agent must maximize expected
utility (EU) of any option X = x, measured over a valid K−partition. A K−partition is a partitioning
of the state space into the possibilities {K = k1, ...,K = kN}, where the variable K is causally
independent of X . Here, S ∈ {0, 1} forms a valid K−partition, because the variable S is well-
defined and already realized before the choice of X is made (although we don’t know the value).
Temporal precedence is sufficient to conclude causal independence as per temporal causality.

Let us use P (a) in general as shorthand for P (A = a) and P (a1) for P (A = 1) for any variable A.
Now, comparing EUs of our options X = 0, 1:

EU(x0) = P (s1)U(x0, s1) + P (s0)U(x0, s0)

= (1− P (s0))(0) + P (s0)(1, 000, 000)

EU(x1) = P (s1)U(x1, s1) + P (s0)U(x1, s0)

= (1− P (s0))(1, 000) + P (s0)(1, 001, 000)

EU(x1)− EU(x0) = (1− P (s0))(1, 000) + P (s0)(1, 000) > 0

Had the agent just received the original Bandit offer in Table 1 (top), it would obviously have chosen
X = 0. However, the agent’s decision theory now causes it to switch to X = 1 for the Calvinist
Bandit offer, because it evaluates the EU of X = 1 to be higher. Expected payout is only 1, 000.

Next, we analyse the problem through causal graphs and introduce the axiom needed to resolve this.

3 Asymmetry in Structural Causal Models

In this section, we show how the construction of the causal graph for the problem does not rely
on temporal ordering. First, we briefly review the formalism of SCMs. For more detail, refer to
Appendix A. For a full treatment see Bareinboim et al. [2022].

Structural Causal Model (SCM): An SCM, M , is defined as a tuple ⟨V,U, P (u),F⟩ where V
is the set of observable variables being studied, U is the set of "noise" variables exogenous to the
current system, having have a distribution P (u), and F is the set of functions that represent causal
mechanisms determining the values of variables in V.

Causal graphs: Each SCM M induces a graph G where edges are drawn according to the func-
tions in F . Every such G provably obeys the axioms of a Causal Bayesian Network (Markovian
factorization, screening by parents etc. - see Appendix A). These axioms beget other powerful results
like the do-calculus [Pearl, 2009, Sec. 3.4], transportability, counterfactual identification etc.

However, the SCM formalism skirts over one pivotal issue: what is the basis of the asymmetry of
arrows? Pearl and Mackenzie [2018, Ch. 1] ascribe this to a primitive of one variable "listening to"
another for its generation. Bareinboim et al. [2022, Sec. 1.2] attribute this to the "data-generating
process according to which Nature assigns values to the endogenous variables". These descriptions
could well be understood as temporal causality - if one variable physically precedes another, it
is causally independent of the latter. We propose that this formalism is better grounded in agent-
dependent interventional constraints on sources of variation.
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Figure 2: (left) Crowing is causally independent of Sunrise; (right) Sunrise is causally independent of
Crowing. What is the basis for orienting this arrow?

3.1 Exogenous Interventions

do-operator: The SCM literature uses the notation of do(A = a) to represent an (atomic) interven-
tion on a variable A. This action replaces the generative function fA ∈ F in the SCM with a constant
value A← a. Semantically, we are overriding the natural source of variation that determines A and
replacing it with an exogenously fixed source (here, a constant value). Graphically, we cut incoming
arrows into A. Note that this includes imagined interventions like do(Sunrise = Yes) in Figure 3.

Exogeneity assumption: The agent is modeled as being external to the SCM. Even if the SCM
describes the agent’s own attributes, the agent is modeled as capable of studying it "from the outside".
Crucially, any source of variation used for an intervention (such as a constant value) is modeled as
un-caused by variables in the SCM. This principle appears in the literature under the slogans "no
probability for acts" in Spohn [1977] and "deliberation crowds out prediction" in Levi [1990].

As a consequence, we propose that the SCM be regarded as an agent-specific object, and not a
universal one. This is because the sources of variation available for enacting a do( ) intervention may
have different constraints for different agents. We propose the below axiom to operationalize this.

Exogeneity axiom: In the causal graph for an agent’s SCM, for each observable node V ∈ V,
there exists a source of variation I such that (i) I is available to the agent (possibly hypothetically),
(ii) I can be used by the agent to exogenously intervene and fix the value of V as do(V = I), and
(iii) I is statistically independent of the graphical non-descendants of V .

Figure 3: Exogeneity axiom is satisfied only in Figure 2 (right). Any source of variation (e.g. a coin
toss) used to do(Sunrise=Yes) will be highly correlated with Crowing. Therefore, Crowing cannot be
a non-descendant of Sunrise. Notice, no mention of physical time!

The intuition here is that if an agent views itself as exogenously intervening on a node, it needs
to be able to override any effect of the node’s graphical ancestors. In practice, this is achieved by
methods like Fisherian randomized controlled trials [Fisher, 1935], or simply using a coin-toss to fix
the node value in an experiment. If the agent can access no real/hypothetical source of variation, even
a coin-toss, that is independent of a node’s graphical ancestors, then the SCM is not valid for that
particular agent because a do( ) intervention is not well-defined.

Similar observations appear strongly in Woodward [2003, Sec 3.1] and obliquely in Meek and
Glymour [1994]. Our contribution is first to highlight that this interventional constraint can itself be
used as the basis for orienting edges in the graph, without relying on temporal ordering to break
symmetry. Second, we importantly highlight the agent-centricity of this axiom. A source of variation
might satisfy the exogeneity axiom for one agent but not for another, resulting in different SCMs and
causal graphs for the same problem, depending on which agent’s perspective we take.
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4 Drawing the Causal Graph for a Calvinist Bandit

In this section, we apply the exogeneity axiom in Sec. 3.1 to systematically construct the correct
causal graph for the Calvinist Bandit problem in Section 2. The problem has 3 variables: (i) agent’s
choice of Bandit arm, X , (ii) agent’s predisposition, indicated by S, and (iii) the Bandit payout, Y .

Hopefully, it is clear why there is a path X → ...→ Y and a path S → ...→ Y . Exogenously fixing
Payout as do(Y = y) does not affect the distribution of Arm choice or Predisposition, whereas the
actions do(X = x) or do(S = s) would constrain Y . This gives us the possible graphs in Figure 4.

Figure 4: Possible causal graphs for the Calvinist Bandit problem. X: choice of Bandit arm, S: agent
predisposition, Y : Bandit payout

Next, we use d-separation to reject options (a), (d) and (e). For details, see Pearl [2009, Sec. 1.2.3].
In option (a), we see (X ⊥ S). In option (d), we see(Y ⊥ X|S). In option (e), we see (Y ⊥ S|X).
These statements contradict the problem set-up. This leaves options (b) and (c).

Suppose the agent models an intervention do(X = x). Since X is a binary choice, any source of
variation used for this intervention can be parameterized as a Bernoulli variable (say, a coin-toss),
with bias p. p ∈ {0, 1} means the agent decides to pick either arm, while p ∈ (0, 1) means the agent
decides to randomize. Following the exogeneity axiom, we ask if the coin-toss is independent of
the graphical ancestors of X . If the agent chooses p = 0 (or 1), it does so in a world where S = 0
(or 1). If it chooses p ∈ (0, 1), the realized outcome is 1 only in a world where S = 1. Since the
coin-toss is not independent of S, S cannot be an ancestor of X , and only option (b) works from
the perspective of the agent.

Figure 5: From the perspective of the agent in the Calvinist Bandit problem, only option (b) satisfies
the exogeneity axiom.

From the perspective of a neutral observer of this problem, the arrow is flipped. If an observer chooses
a Bernoulli parameter p for the imaginary intervention do(X = x), this choice in no way constrains
S. But if the observer wants to model do(S = s), the agent choice X will be highly correlated with
the parameter p that determines S. So X cannot be an ancestor of S and only option (c) works from
the perspective of an observer.

We have thus achieved a valid description of the Calvinist Bandit problem with the causal graphs in
Figure 5 and 6, without recourse to temporal ordering. In fact, the arrow X → S in option (b) runs
counter to physical time! In so doing, it directly contradicts temporal arrow-orientation principles
such as Pearl [2009, Def. 2.7.4].
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Figure 6: From the perspective of a neutral observer of the Calvinist Bandit problem, only option (c)
satisfies the exogeneity axiom.

4.1 Structural CDT Solution

We use the definition of CDT in Pearl [2009, Sec. 4.1.1], which says an agent should maximize
expected utility (EU) over different choices of interventions do(X = x) in the correct SCM for the
problem. Since the agent is the decision-maker, only option (b) in Figure 4 is valid.

EU(x0) = P (s1|do(x0))U(x0, s1) + P (s0|do(x0))U(x0, s0)

= (0)(0) + (1)(1, 000, 000)

EU(x1) = P (s1|do(x1))U(x1, s1) + P (s0|do(x1))U(x1, s0)

= (1)(1, 000) + P (0)(1, 001, 000)

EU(x1)− EU(x0) = 1, 000− 1, 000, 000 < 0

If the agent follows structural CDT, it makes no difference whether it receives the original Bandit
offer or the adversarially modified Calvinist Bandit offer. It still evaluates the EU of X = 0 to be
higher, and it is not tricked into changing its choice. Expected payout is 1, 000, 000.

5 Application in Decision Problems

In Table 2 we show how using structural CDT, following the exogeneity axiom in Sec. 3.1, resolves
several infamous failure modes of temporal CDT. Detailed workings of problems and how the causal
graphs are induced can be found in Appendix B, due to space constraints.

It might be objected that "backward" arrows in time violate our conventional understanding of
causation. This so-called "backward" causation has long been accepted as possible in statistical-
interventional accounts of causality (see Pearl [2009, Sec. 2.8] and Cartwright [1979, Sec. I.3.d]).
In Appendix C, we offer some intuition pumps, viz. behaviorism and dummy variable interpretations.

Problem Causal Graph Temporal
CDT

Structural
CDT

Newcomb’s
Problem
(noisy)

Two-box One-box*
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Prisoner’s
Dilemma
(noisy)

Defect Cooperate*

Psycho Button Push Don’t
Push*

Money Pump
for (Temporal)
Causalists

Buy Don’t Buy*

Table 2: Recommendations of temporal and structural CDT on various canonical problems. Optimal
recommendations are marked with *

6 Related Work

Agency-centric causality: This topic is perhaps the most adjacent. Dummett [1954] and Dummett
[1964] were pioneering attempts to reconcile intentional agency with the flow of time. Many
supporters of this approach view agency as a way to reconcile CDT with EDT (see Price and Liu
[2018], Price [2005]). Among causalists, Spohn [2012] and Spohn [1977] made similar proposals for
Newcomblike problems, but relying on a decision graph formalism with slightly different axioms.
Spohn is under-appreciated, and a key influence for the current work. This important topic of agent
perspectives is surprisingly ignored in the causal inference/SCM literature. We view our work as
bringing it to the fore, given the meteoric rise of causal inference in AI and machine learning.

Other decision theories: A glaring omission is how structural CDT compares with EDT and
more recent contenders such as Functional Decision Theory, or FDT [Yudkowsky and Soares, 2018].
This needs more attention than possible here. Briefly, we believe structural CDT offers more tools
than EDT to real-world decision makers. Even sophisticated EDT versions that adopt the "tickle-
defense" [Eells, 2016] cannot easily handle unobservable confounders, or use large observational
data-sets to predict outcomes under interventions and distribution shifts. FDT does make very similar
recommendations to structural CDT, but diverges on some problems involving pre-commitment
(which may prove quite significant).

7 Conclusion

We presented an adversarial scheme designed to trick a causal agent into sub-optimal choices if
it follows temporal CDT. We analyzed this through the lens of Structural Causal Models (SCM),
proposed the exogeneity axiom to ground the orientation of arrows in causal graphs, and demonstrated
how the SCM for a decision problem depends on which agent’s perspective we take. Finally, we
showed how following structural CDT avoids our adversarial scheme, and also resolves many
canonical failure modes of temporal CDT.
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A Structural Causal Models

A Structural Causal Model (SCM) is a framework for describing causal relations between variables
and the generative process by which observational and experimental joint distributions of variables
arise (see Pearl [2009] and Bareinboim et al. [2022] for full treatment).

Structural Causal Model (SCM): An SCM M is defined as a tuple ⟨V,U, P (u),F⟩ where

• V is the set of endogenous variables in the system being studied
• U is the set of variables which are exogenous to the system and which provide the sources

of variation that generate distributions
• P (u) is the distribution of the variables in U

• F is the set of structural functions by which the values of endogenous variables are deter-
mined. Each Vi ∈ V is realized by a function Vi ← fi(Pai, Ui) that takes as input one
or more exogenous variable Ui ∈ U, and possibly some other endogenous variables Pai
(called parents of Vi)1

Causal Graph: Each M induces a causal graph G which can be constructed by adding

i. a directed edge from Vi to Vj if Vi appears as an argument in fj , and
ii. a bidirected edge between Vi and Vj if any exogenous variable in fi is correlated with any

exogenous variable in fj .

We do (i) and (ii) for each pair Vi, Vj ∈ V. By convention, we don’t explicitly represent exogenous
variables in the causal graph except when useful for illustration. We also adopt standard graph
terminology such as Pai (graphical parents of Vi), Ani (ancestors of Vi), Dei (descendants of Vi)
and NDei (non-descendants of Vi).

Example 1 - Consider a system where we observe X and Y which are generated by adding the results
of 3 fair coin tosses (H = 1). Here, U = {U1, U2, U3} corresponds to the exogenous source of
variation, the coin tosses. V = {X,Y } corresponds to the endogenous variables we observe in the
system, with their generative functions fX and fY . The SCM and causal graph are in Figure 7.

Figure 7: SCM and corresponding causal graph for example 1.

1We use upper-case to denote a random variable and lower-case to denote its realized value. P (x) is therefore
shorthand for P (X = x) where x ∈ Domain(X). Further, x0 is shorthand for (X = 0)
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Example 2 - Consider a system where we observe X and Y . X is generated by adding the outcome
of rolling Die1 and Die2. Y is generated by adding X to the outcomes of rolling Die2 and Die3. The
SCM and causal graph are in Figure 8.

Figure 8: SCM and corresponding causal graph for example 2.

Causal Bayesian Network (CBN): It can be shown than each causal graph G obeys the axioms of
a CBN. For details, refer to Bareinboim et al. [2022, Def. 12,16]. For simplicity, we list below the
3 axioms for a Markovian graph (Def. 12, ibid). The Semi-Markovian axioms (Def. 16, ibid) are
generalizations:

i. Markovian factorization of the joint-distribution of endogenous variables,

P (V|do(x)) =
∏

Vi∈V

P (vi|pai, do(x))

ii. Screened-off by parents. For all Vi ∈ V, where Vi ̸∈ X and X ̸∈ Pai,

P (vi|pai, do(x)) = P (vi|pai)
iii. Parent-see is parent-do. For all Vi ∈ V, where Vi ̸∈ X,

P (vi|do(x), do(pai)) = P (vi|do(x), pai)

These 3 axioms induce other powerful results like do-calculus, counterfactual identification, statistical
transportability across domains etc. They also subsume the Causal Markov Condition (see Spirtes
et al. [2000, Sec. 3.4]). Notice, no mention of physical time!

A.1 Interventions

We need to clarify two things:

1. How we define the direction of the functions in F (e.g. if Y ← X + U , why can’t we write
X ← Y − U?)

2. What we mean by the do() notation.

The answer to both lies (partly) in the concept of interventions. Let’s answer (2) first.

do−operator: Conducting an exogenous (atomic) intervention on a variable Vi ∈ V, formally
represented by the do−operator, is modelled by replacing the corresponding structural function
fi ∈ F with a constant value. For instance, in example 1 in Figure 7, the operation do(x1) is
shorthand for replacing the equation fX() in the SCM with X ← 1, such that it always takes the
value of 1. Semantically, we are overriding the "natural" or "default" sources of variation that usually
determine X , and replacing it with an exogenous source of variation (here, a fixed value 1).2

Example 3 - Consider a scenario where a busy student is deciding whether she should attend a
study group. Her "autopilot" tendency when she is not consciously deliberating, perhaps in previous
semesters, is influenced by her peer group and how motivated she feels. Her mid-term performance is
influenced by her motivation, her involvement in the study group, and how difficult the exam was.
The SCM and causal graph(s) are in Figure 9.

2We don’t need such interventions to always be possible. The SCM formalism is valid for purely hypothetical
experiments like "intervening" and changing the reproduction number of a disease, or making the moon disappear.
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Figure 9: SCM and corresponding causal graph for example 3.

The SCM M for example 3 describes the student’s "default" mode of decision making. However,
suppose she decides to always attend study group if a fair coin lands Heads, and this semester it did.
This is modeled by an exogenous intervention do(x1), overriding the effects of peer-pressure and
motivation, and the student just attending the study group. The SCM now becomes Mdo(x1) where
the structural equation fX is replaced by a constant 1. The corresponding graph G now becomes
Gdo(x1), with incoming arrows into X deleted.

This student can optimize over three choices: i) do(x0) - don’t attend the study group, ii) do(x1)
- attend the study group, and iii) don’t deliberate - let autopilot behaviour decide. The last choice
corresponds to the "natural" or "default" mode of operation in the system (also called the null
intervention), whereas the first 2 choices are exogenous interventions into the system. This clarifies
an important point in the theory of SCMs:

Exogeneity assumption (elaborated). The agent is modeled as being external to the SCM. In a
mechanistic system like a factory line, the agent can obviously remove herself physically and evaluate
whether and how to intervene. However, even if the SCM describes the agent’s own decisions, or
other attributes, the agent is still modeled as capable of studying the system "from the outside".
Crucially, any source of variation used for an intervention (such as a constant value) is modeled as
un-caused by variables in the SCM.

This modelling assumption roughly corresponds to human intuition about the freedom to make any
choice in a non-coercive situation. Even if one does not believe in classical free will, the very fact of
a decision problem requires an agent to deliberate as if it had agency.3 Fortunately, the disciplines of
experiment design and causal inference use various proxies (such as randomized controlled trials) to
mimic exogeneity.

This principle gives us an axiom to answer question (1) at the start of the section.

Exogeneity axiom (paraphrased). When modeling an exogenous intervention on a node X , the
source of variation used to determine X is independent of NDeX (the set of non-descendants of X
in the causal graph).4

This axiom allows us to break the symmetry in structural functions without relying on temporal
ordering! Recall example 3 in Figure 9. Should the edge orientation be X → Y or X ← Y ? Here’s
how we know: if we model an exogenous intervention do(x), the interventional source of variation
is not independent of Y . Imagine we use a biased coin to decide whether to join the study group in
weeks 1-6. The distribution of Y (mid-term grades) will be highly correlated with the bias of the
coin. But if we rig mid-term grades using a biased coin, the coin toss will remain independent of
study-group attendance, X . So the edge is X → Y .

3Pearl does not believe in classical free will, himself (Pearl and Mackenzie [2018]).
4Similar axioms appear in Woodward [2003, Sec. 3.1], and in Meek and Glymour [1994].
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B Evaluating Temporal and Structural CDT on Decision Problems

B.1 Newcomb’s Problem (Noisy)

Problem: An AI agent sees a transparent box labeled “A” that contains $1,000, and an opaque box
labeled “B” that contains either $1,000,000 or $0. A reliable adversary, who is believed to predict
agent decisions correctly 80% of the time, claims to have placed $1,000,000 in box B iff she predicted
that the agent would leave box A behind and did not randomize its decision. The predictor has
already made her prediction and left. Box B is now empty or full. Should the agent take both boxes
(“two-boxing”), or only box B, leaving the transparent box containing $1,000 behind (“one-boxing”).
See Nozick [1969].

Variables: This problem involves

X ∈ {0, 1}: indicator of whether the agent chooses "two-boxing"

S ∈ {0, 1}: indicator of whether the adversary predicts agent will "two-box"

Y : payout

Temporal CDT: chooses X = 1 (non-optimal)

U(x) =
∑
s

P (s)U(x, s) , since S temporally precedes X (K-partition)

U(x0) = P (s1)U(x0, s1) + P (s0)U(x0, s0)

= (1− P (s0))(0) + P (s0)(1, 000, 000)

U(x1) = P (s1)U(x1, s1) + P (s0)U(x1, s0)

= (1− P (s0))(1, 000) + P (s0)(1, 001, 000)

U(x1)− U(x0) = (1− P (s0))(1, 000) + P (s0)(1, 000)

> 0

Structural CDT: chooses X = 0 (optimal)

In the causal graph for this problem in Figure 10, the arrow cannot be oriented S → X . Recall the
exogeneity axiom in Section A.1. If the value of X is fixed by an exogenous intervention do(x), we
still have that X ̸⊥ S because S is constrained to match X with 80% accuracy. This means S must
be a graphical descendant of X .

The generative process for 80% adversary accuracy can be represented by S taking the value of X ,
but being flipped 20% of the time (XOR function with a Bernoulli noise).

Figure 10: SCM and causal graph for problem in B.1
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U(x) =
∑
s

P (s|do(x))E[Y |do(x), s]

U(x0) = P (s0|do(x0))E[Y |do(x0), s0] + P (s1|do(x0))E[Y |do(x0), s1]

= (0.8)(1, 000, 000) + (0.2)(0)

U(x1) = P (s0|do(x1))E[Y |do(x1), s0] + P (s1|do(x1))E[Y |do(x1), s1]

= (0.2)(1, 001, 000) + (0.8)(1, 000)

B.2 Prisoner’s Dilemma (noisy)

Problem: An AI agent and an identical, but autonomous, copy must both choose to either “cooper-
ate” or “defect.” They make this choice in isolation from each other. If both cooperate, they each
receive $1,000,000. If both defect, they each receive $1,000. If one cooperates and the other defects,
the defector gets $1,001,000 and the cooperator gets nothing. The agent believes that the two of
them always reason the same way 80% of the time, using the same considerations to come to their
conclusions.

Variables: This problem involves

X ∈ {0, 1}: indicator of whether the agent chooses to "defect"

S ∈ {0, 1}: indicator of whether the adversary chooses to "defect"

Y : payout

Temporal CDT: chooses X = 1 (non-optimal)

U(x) =
∑
s

P (s)U(x, s) , since S temporally precedes X (K-partition)

U(x0) = P (s1)U(x0, s1) + P (s0)U(x0, s0)

= (1− P (s0))(0) + P (s0)(1, 000, 000)

U(x1) = P (s1)U(x1, s1) + P (s0)U(x1, s0)

= (1− P (s0))(1, 000) + P (s0)(1, 001, 000)

U(x1)− U(x0) = (1− P (s0))(1, 000) + P (s0)(1, 000)

> 0

Structural CDT: chooses X = 0 (optimal)

As in the previous example, the edge cannot be oriented P → X in the causal graph in Figure
11. If the value of X is fixed by an exogenous intervention do(x), we still have that (X ̸⊥ P, S).
So P and S must be a graphical descendants of X . To see why, note that if P, S were graphical
non-descendants of X , then we would have P (p, s|do(x)) = P (p, s) by Rule 3 of do-calculus, which
does not respect the constraint in the problem. Refer to Sec. A.1 for explanation.

The constraint of X and S being similar 80% of the time can be represented in the SCM by P
(and therefore S) taking the value of X , but being flipped by random noise 20% of the time (XOR
function).

U(x) =
∑
s

P (s|do(x))E[Y |do(x), s]

U(x0) = P (s0|do(x0))E[Y |do(x0), s0] + P (s1|do(x0))E[Y |do(x0), s1]

= (0.8)(1, 000, 000) + (0.2)(0)

U(x1) = P (s0|do(x1))E[Y |do(x1), s0] + P (s1|do(x1))E[Y |do(x1), s1]

= (0.2)(1, 001, 000) + (0.8)(1, 000)
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Figure 11: SCM and causal graph for problem in B.2

B.3 Psycho Button

Problem: An AI Agent can choose to push a button or not. Pushing the button will cause all
psychopathic individuals in the world to be terminated (an outcome valued at $10). Doing nothing
causes nothing. However, if the agent pushes the button, it is 99% likely that it is itself a psychopathic
entity (since only a psychopathic AI would do such a thing), and 99% likely it is not psychopathic if
it doesn’t push the button. The agent is 95% confident it is not psychopathic. The agent values its
own survival at $100. See Egan [2007].

Variables: This problem involves

X ∈ {0, 1}: indicator of whether the agent chooses to push the button

S ∈ {0, 1}: indicator of whether the agent is psychopathic

Y : payout

Temporal CDT: chooses X = 1 (non-optimal)

U(x) =
∑
s

P (s)U(x, s) , since S temporally precedes X (K-partition)

U(x0) = P (s1)U(x0, s1) + P (s0)U(x0, s0)

= (1− P (s0))(0) + P (s0)(0)

U(x1) = P (s1)U(x1, s1) + P (s0)U(x1, s0)

= (1− P (s0))(−90) + P (s0)(10)

U(x1)− U(x0) = (0.05)(−90) + (0.95)(10)

> 0

Structural CDT: chooses X = 0 (optimal)

This is tricky. The graphical constraints are dependent on interpretation of the problem. One question
we could ask to orient edges in the causal graph is the following: is the agent always 99% likely to be
a psychopath when the button is pushed (even, say, as the result of a fixed exogenous intervention
do(x1))? We assume from the problem statement that the answer is yes. This orients the edge from
X → S. If the edge was oriented X ← S, then P (s0|do(x1)) would need to be equal to P (s0)
(Rule 3 of do-calculus), which we know is 0.95, leading to a contradiction. Refer to Sec. A.1 for
explanation.

It can easily be verified that the SCM in Figure 12 satisfies the constraints in the problem:

i. P (s0) = P (s0|x1)P (x1) + P (s0|x0)P (x0) = 0.01(0.0408) + 0.99(1− 0.0408) = 0.95

ii. P (s1|x1) = P (s1|do(x1)) = 0.99

The agent noise UX may be interpreted as the "natural" or "default" tendency of the agent when not
explicitly deliberating on its choices.
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Figure 12: SCM and causal graph for problem in B.3

Given this, structural CDT optimises as follows:

U(x) =
∑
s

P (s|do(x))E[Y |do(x), s]

U(x0) = P (s0|do(x0))E[Y |do(x0), s0] + P (s1|do(x0))E[Y |do(x0), s1]

= (0.99)(0) + (0.01)(0) = 0

U(x1) = P (s0|do(x1))E[Y |do(x1), s0] + P (s1|do(x1))E[Y |do(x1), s1]

= (0.01)(10) + (0.99)(−90) = −89

B.4 Money Pump for (Temporal) Causalists

Problem: Two boxes, B1 and B2, are on offer. A (risk-neutral) AI agent may purchase one or none
of the boxes but not both. Each of the two boxes costs $1. Yesterday, the seller put $3 in each box
that she predicted the agent not to acquire. Both the seller and the agent believe the seller’s prediction
to be accurate with probability 0.75. See Oesterheld and Conitzer [2021].

Variables: This problem involves

X ∈ {0, 1, 2}: indicator of whether the agent chooses to buy 0 Boxes, Box B1, or Box B2

S ∈ {0, 1, 2}: adversary’s prediction of whether agent will buy 0 Boxes, Box B1, or Box B2

Y : payout

Temporal CDT: chooses X = 1 or X = 2 (non-optimal)

U(x) =
∑
s

P (s)U(x, s) , since S temporally precedes X (K-partition)

U(x0) = P (s0)U(x0, s0) + P (s1)U(x0, s1) + P (s2)U(x0, s2)

= 0

U(x1) = P (s0)U(x1, s0) + P (s1)U(x1, s1) + P (s2)U(x1, s2)

= P (s0)(3− 1) + P (s1)(−1) + P (s2)(3− 1)

= 2P (s0)− P (s1) + 2P (s2)

U(x2) = P (s0)U(x2, s0) + P (s1)U(x2, s1) + P (s2)U(x2, s2)

= P (s0)(3− 1) + P (s1)(3− 1) + P (s2)(−1)
= 2P (s0) + 2P (s1)− P (s2)

Possibility (i): U(x1) ≤ U(x0)

2P (s0)− P (s1) + 2P (s2) ≤ 0

P (s1) ≥ 2(P (s0) + P (s2))
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Possibility (ii): U(x2) ≤ U(x0)

2P (s0) + 2P (s1)− P (s2) ≤ 0

P (s2) ≥ 2(P (s0) + P (s1))

If both (i) and (ii) were true, adding these two equations would give

P (s1) + P (s2) ≥ 4P (s0) + 2P (s1) + 2P (s2)

4P (s0) + P (s1) + P (s2) ≤ 0

Which is not true. So Possibilities (i) and (ii) cannot simultaneously be true.

This means either U(x1) > U(x0), or U(x2) > U(x0), or both.

Structural CDT: chooses X = 0 (optimal)

As in previous examples, orienting the edge between X and S in Figure 13 does not depend on
temporal ordering. Rather, we ask about the constraints on interventional probability distributions. If
we were to fix the value of X (say through a constant exogenous intervention do(x)), the problem
set-up still requires that S ̸⊥ X because it needs to match X for 75% of the time. This means S
cannot be a graphical non-descendant of X , and the edge must be X → S. Refer to Sec. A.1 for
explanation.

Figure 13: SCM and causal graph for problem in B.4

It can be easily verified that the SCM and causal graph in Figure 13 satisfy the constraints in the
problem. Distributing the probability of a "wrong" prediction as (12.5%,12.5%) is for illustration.

P (S = x|x) = P (S = x|do(x)) = 0.75

Given this, structural CDT optimises as follows:

U(x) =
∑
s

P (s|do(x))E[Y |do(x), s]

U(x0) = P (s0|do(x0))E[Y |do(x0), s0] + P (s1|do(x0))E[Y |do(x0), s1] + P (s2|do(x0))E[Y |do(x0), s2]

= 0

U(x1) = P (s0|do(x1))E[Y |do(x1), s0] + P (s1|do(x1))E[Y |do(x1), s1] + P (s2|do(x1))E[Y |do(x1), s2]

= (0.125)(2) + (0.75)(−1) + (0.125)(2) = −0.25
U(x2) = P (s0|do(x2))E[Y |do(x2), s0] + P (s1|do(x2))E[Y |do(x2), s1] + P (s2|do(x2))E[Y |do(x2), s2]

= (0.125)(2) + (0.125)(2) + (0.75)(−1) = −0.25

17



C Intuition Pumps for "Backward" Causation

It might be objected that edges in the causal graphs that go backward in time conflict with our
conventional understanding of causality. However, this notion of "backward" causation has long been
accepted as a possibility in statistical-interventional approaches to causality.

Here is influential philosopher of science Nancy Cartwright in Causal Laws and Effective Strategies
(Cartwright [1979]):

[The causal principle of] CC makes no mention of time. The properties may be time
indexed - taking aspirins at t causes relief at t+∆t but the ordering of the indices
plays no part in the condition. Time ordering is often introduced in statistical
analyses of causation to guarantee the requisite assymetries...This problem [of
symmetric definitions of causation] does not arise for [the principle of] CC because
the set of alternative causal factors for E will be different from the set of alternative
causal factors for C. I take it to be an advantage that my account leaves open
the question of backward causation...If there were a case in which a later factor
increased the factor of an earlier one in all test situations, it might well be best to
count it as a cause.

Here also is computer scientist Judea Pearl on whether his structural theory of causation is necessarily
temporal (Pearl [2009, Sec. 2.8]):

In human discourse, causal explanations satisfy two expectations: temporal and
statistical. The temporal aspect is represented by the understanding that a cause
should precede its effect. The statistical aspect expects a complete causal explana-
tion to screen off its various effects...It is possible to make the statistical time in
the (X,Y ) representation run contrary to the physical time...This suggests that the
consistent agreement between physical and statistical times is a by-product of the
human choice of linguistic primitives and not a feature of physical reality...Whether
[evolution] or some other force has shaped our choice of language remains to be
investigated...,which makes the statistical–temporal agreement that much more
interesting.

As we have seen in the Calvinist Bandit problem, it may sometimes be less intuitive to insist on
temporal ordering. Below are some possible intuition pumps for making so-called "backward"
causation more intuitive:

1. Behaviourism: In the Psycho Button problem B.3, while psychopathy may be understood
as a latent predisposition that drives reasoning, it is not unreasonable to define a psychopath
as an agent who would do a certain action. I.e., we might call a human a psychopath because
they would commit certain deeds under some conditions - the action causes the psychopathic
status. Behaviourist understandings of probability go back at least to Ramsey’s famous
framing of an agent’s personal likelihood of an event in terms of how an agent would act, or
bet, on those odds (Ramsey [1926]). An agent’s subjective probability of an event is 50%
because they bet as if it was.

2. Dummy variable: In machine learning applications such as computer vision, causal graphs
might appear non-intuitive. In reality, the location of a photograph determines the species of
animal pictured. But the graph might be Animal→ Background, because selecting photos
of cows/camels might yield only pictures with a farm/desert background. Here, Background
serves as a dummy variable for Location, which temporally precedes Animal. Given Animal
and Background, the image is "screened off" from Location. See Mao et al. [2022] for
examples of causal graphs in computer vision.
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