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Abstract

Dense retrieval methods have demonstrated001
promising performance in multilingual infor-002
mation retrieval, where queries and documents003
can be in different languages. However, dense004
retrievers typically require a substantial amount005
of paired data, which poses even greater chal-006
lenges in multilingual scenarios. This paper in-007
troduces UMR, an Unsupervised Multilingual008
dense Retriever trained without any paired data.009
Our approach leverages the generative capa-010
bilities of multilingual language models to ac-011
quire pseudo labels for training dense retriev-012
ers. Experimental results on two benchmark013
datasets show that UMR can outperform all su-014
pervised baselines, showcasing the potential of015
training multilingual retrievers without paired016
data, thereby enhancing their practicality.017

1 Introduction018

Multilingual information retrieval (mIR) has at-019

tracted significant research interest as it enables020

unified knowledge access across diverse languages.021

The task involves retrieving relevant documents022

from a multilingual collection given a query, which023

may be in a different language. Traditional sparse024

retrieval methods that rely on lexical matching of-025

ten yield inferior performance (Asai et al., 2021b).026

On the other hand, dense retrieval methods have027

shown promising results in multilingual retrieval by028

capturing semantic relationships between queries029

and documents (Shen et al., 2022; Zhang et al.,030

2022; Ren et al., 2022; Sorokin et al., 2022). Fig-031

ure 1 illustrates the process of multilingual dense032

retrieval.033

Nevertheless, dense retrievers require a large034

amount of paired data, which is costly and time-035

consuming to collect. This challenge is particularly036

pronounced for low-resource languages where the037

availability of resources is limited. Consequently,038

there is a growing demand for more efficient tech-039

niques to build multilingual dense retrievers, such040

ロン・ポールの学部時代の専攻は？[Japanese]

(What did Ron Paul major in during undergraduate?)

Paul went to Gettysburg College, where he was a 

member of the Lambda Chi Alpha fraternity. He 

graduated with a B.S. degree in Biology in 1957.
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Figure 1: Illustration of the multilingual dense retrieval
process. Given a query, the goal is to retrieve relevant
documents in any language. Dense retrieval achieves
this by encoding the query and documents into dense
representations and performing vector similarity search.

as leveraging unsupervised learning and transfer 041

learning, to alleviate the data requirement. 042

The advance of large-scale language model pre- 043

training (Devlin et al., 2019; Conneau et al., 2020) 044

presents a compelling avenue to explore, namely 045

leveraging the multilingual capabilities of pre- 046

trained multilingual language models. In this paper, 047

we propose UMR, an unsupervised approach to 048

multilingual dense retrieval that only relies on mul- 049

tilingual queries without requiring any paired data. 050

Our method leverages the generative capabilities 051

of multilingual language models to obtain pseudo 052

labels by estimating the conditional probability of 053

generating the query given the document. This al- 054

lows for training multilingual dense retrievers in a 055

fully unsupervised manner. 056

To evaluate the effectiveness of our approach, we 057

conduct experiments on XOR-TyDi QA (Asai et al., 058

2021a), a widely used benchmark for multilingual 059

information retrieval. Our results demonstrate that 060

UMR outperforms or performs comparably to ex- 061
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isting supervised baselines on both XOR-Retrieve062

and XOR-Full. Additionally, we conduct compre-063

hensive ablation studies to analyze the impact of064

different components of our approach. Our ap-065

proach shows great potential for being applied to066

a broad range of multilingual information retrieval067

tasks, where it can reduce reliance on costly paired068

data.069

Our contributions can be summarized in 3-fold:070

• We propose UMR, the first unsupervised071

method for training multilingual dense retriev-072

ers without any paired data.073

• Experimental results on two benchmark074

datasets show that our proposed method per-075

forms comparable to or even outperforms076

strong supervised baselines.077

• The detailed analysis justifies the effectiveness078

of individual components in our UMR.079

2 Related Work080

Dense Retrieval Dense retrieval has garnered081

significant attention for its potential to enable082

retrieval in the semantic space. A prominent083

method in this area is the dense passage retriever084

(DPR) (Karpukhin et al., 2020), which comprises085

a query encoder and a passage encoder. Several086

studies have also explored efficient training ap-087

proaches, such as RocketQA (Qu et al., 2021) and088

alternative architectures for dense retrieval, like089

ColBERT (Khattab and Zaharia, 2020). However,090

the majority of previous work has primarily fo-091

cused on English retrieval, limiting its applicability092

to other languages.093

Multilingual Dense Retrieval Multilingual in-094

formation retrieval has been an active research area095

for several decades. Early work in this field pri-096

marily focused on cross-lingual information re-097

trieval (CLIR), aiming to retrieve relevant docu-098

ments in a different language from the query lan-099

guage (Nasharuddin and Abdullah, 2010). Tradi-100

tional CLIR systems relied on aligning bilingual101

dictionaries or parallel corpora to translate queries102

or documents into a common language for retrieval.103

However, these systems often faced limitations in104

translation quality, vocabulary coverage, and han-105

dling domain-specific expressions (Ballesteros and106

Croft, 1996; Vulić and Moens, 2015; Sharma and107

Mittal, 2016).108

In recent years, dense retrieval has emerged as 109

a promising approach for multilingual information 110

retrieval. Various studies have demonstrated the 111

effectiveness of dense retrieval methods in cross- 112

lingual and multilingual scenarios. Models such as 113

XLM-R (Conneau et al., 2020) and mBERT (De- 114

vlin et al., 2019) have achieved remarkable perfor- 115

mance on diverse natural language processing tasks, 116

including similarity-based retrieval tasks. The suc- 117

cess of these models has spurred researchers to 118

explore their application in multilingual informa- 119

tion retrieval (Jiang et al., 2020). 120

Supervised mIR Most existing multilingual re- 121

trieval models rely on supervised training, where 122

paired data consisting of queries and correspond- 123

ing relevant documents in different languages is 124

required. These methods use popular datasets such 125

as Mr. TyDi (Zhang et al., 2021) and XOR-TYDI 126

QA (Asai et al., 2021a). DR.DECR proposes to 127

leverage the knowledge of an English retriever to 128

improve cross-lingual retrieval (Li et al., 2022). It 129

uses paired data for machine translation to align 130

multilingual representations. Quick proposes to 131

leverage supervised question generation to improve 132

cross-lingual dense retrieval (Ren et al., 2022). 133

However, these methods still rely on question- 134

document pairs and paired translation data. The 135

requirement for paired training data can be a sig- 136

nificant bottleneck for multilingual information 137

retrieval, especially for low-resource languages, 138

where it is challenging to obtain large amounts of 139

data. In contrast, our method does not require any 140

paired data or paired translation data, eliminating 141

the requirement for annotation resources. 142

Unsupervised Dense Retrieval There have been 143

recent efforts to develop unsupervised or weakly 144

supervised approaches to dense retrieval. In- 145

Pars (Bonifacio et al., 2022) and Promptagator (Dai 146

et al., 2022) both propose to generate synthetic 147

queries with LLMs from few-shot examples, which 148

achieved comparable performance to supervised 149

methods in dense retrieval. UPR and ART are the 150

most closely related work to our work (Sachan 151

et al., 2022a,b). ART proposes to train a retriever 152

without paired data with unsupervised reranking 153

by language models. Our method is similar to the 154

framework proposed in ART, while we focus on 155

multilingual scenarios where supervised data is 156

even harder to collect. 157
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ロン・ポールの学部時代の専攻は？[Japanese]

(What did Ron Paul major in during undergraduate?)

高校卒業後はゲティスバーグ大学へ進学。
(After high school, he went to Gettysburg 

College.)

ロン・ポール (ja.wikipedia)

Paul went to Gettysburg College, where he 

was a member of the Lambda Chi Alpha 

fraternity. He graduated with a B.S. degree 

in Biology in 1957.

Ron Paul (en.wikipedia)
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(a) Stage 1: unsupervised multilingual reranking.
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高校卒業後はゲティスバーグ
大学へ進学。
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degree in Biology in 1957.
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(b) Stage 2: knowledge-distilled retriever training.

Figure 2: Illustration of our proposed UMR, unsupervised multilingual dense retrieval.

Multilingual Evidence for Fact Checking The158

power of generative models has made it easier159

for misleading information to spread, posing chal-160

lenges in its detection (Shu et al., 2017; Wang,161

2017). Previous fact-checking research has consid-162

ered single-language evidence, often lacking suffi-163

cient cues for verification. Dementieva et al. (2023)164

proposed the use of multilingual evidence as fea-165

tures for fake news detection, resulting in improved166

performance. While our method does not specif-167

ically focus on fact checking, it can be applied168

to assist in finding multilingual evidence, thereby169

enhancing the verification process.170

In this paper, we introduce an unsupervised mul-171

tilingual dense retrieval approach that leverages172

the generative capabilities of multilingual language173

models to obtain pseudo labels for training the174

dense retriever. Our method eliminates the need for175

paired training data, making it particularly suitable176

for low-resource languages.177

3 Our Method: UMR178

The goal of multilingual information retrieval is179

to retrieve relevant documents, denoted as D+,180

from a collection of multilingual documents D =181

d1, · · · , dn. We adopt the widely used dense re-182

trieval architecture, DPR (Karpukhin et al., 2020),183

comprising a query encoder Eq and a document184

encoder Ed. The documents are pre-encoded using185

the document encoder and then indexed. Given a186

query q, the relevance score of a query-document 187

pair is computed as their vector similarity: 188

r(q, di) = Eq(q)
⊤Ed(di) 189

This section introduces our proposed framework 190

UMR for training unsupervised multilingual re- 191

trievers iteratively. The framework consists of two 192

stages: 1) unsupervised multilingual reranking and 193

2) knowledge-distilled retriever training, as illus- 194

trated in Figure 2. 195

3.1 Unsupervised Multilingual Reranking 196

In the first stage, we leverage the generative capa- 197

bilities of multilingual language models to rerank 198

retrieved passages and obtain pseudo labels for 199

training the dense retriever in an unsupervised man- 200

ner. This stage is depicted in Figure 2a. 201

Formally, given a query q in language L, we 202

retrieve the top-k documents d1, · · · , dk from the 203

multilingual document collection using a multilin- 204

gual dense retriever, forming k query-document 205

pairs. We then utilize a pre-trained autoregres- 206

sive multilingual language model (mLM) for unsu- 207

pervised multilingual reranking. For each query- 208

document pair (q, di), the relevance score is reesti- 209

mated as: 210

r̂(q, di) =
1

|q|

|q|∑
j=1

−log p(qj | di, q<j , I), 211

where qj denotes the j-th token of q, |q| denotes the 212

length of q, q<j denotes the first (j − 1) tokens of 213
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q, and I represents an instruction. Note that we are214

only estimating the joint probability as the actual215

query q is given. Therefore, the language model216

does not actually perform generation, so we can di-217

rectly employ pre-trained mLMs, without requiring218

any instruction tuning. In our framework, we em-219

ploy the instruction “Based on the passage, please220

write a question in L” for reranking. This rele-221

vance score can be interpreted as the negative log-222

likelihood of the mLM generating the query q given223

the document di. Intuitively, the more relevant di224

is to q, the more likely the mLM will generate q.225

Thus, we leverage this property to rerank multilin-226

gual passages, even though the mLM is pre-trained227

without any supervision. Notably, while this step228

does not require any paired data, we need a set of229

multilingual queries, which is comparatively easier230

to collect than query-document pairs.231

3.2 Knowledge-Distilled Retriever Training232

Previous work has demonstrated that distilling233

knowledge from a strong reranker can significantly234

enhance the performance of the retriever (Rosa235

et al., 2022; Li et al., 2022). In the second stage,236

we employ the mLM reranker from the first stage237

as the teacher model to improve the performance238

of the e performance of the dense retriever. We239

initialize the student model with the multilingual240

retriever used in the first stage and train it to mimic241

the outputs of the teacher model by minimizing the242

Kullback-Leibler (KL) divergence.243

Specifically, the relevance of a document di to244

a query q predicted by the student model can be245

defined as:246

P (di | q) =
exp(r(q, di))∑

dj∈DB
exp(r(q, dj))

,247

where DB denotes the documents in the current248

batch. Similarly, the relevance predicted by the249

teacher model can be defined as:250

P̂ (di | q) =
exp(r̂(q, di)/τ)∑

dj∈DB
exp(r̂(q, dj)/τ)

,251

where τ is the temperature parameter for control-252

ling the sharpness of the distribution. Finally, the253

loss function is the KL divergence between two254

distributions:255

L =
1

|B|
∑
q∈B

KL(P̂ (d | q)∥P (d | q)),256

where |B| denotes the size of the batch. Note that257

we do not convert rankings into hard labels as done258

in previous work, where only the top-ranked pas- 259

sage is labeled as positive and the rest are treated as 260

hard negatives. The prior approach disregards the 261

fine-grained scores of the negatively labeled doc- 262

uments, potentially leading to suboptimal knowl- 263

edge transfer. Instead, we use KL loss to enable 264

the retriever to learn the predicted distribution of 265

the reranker, which we observed improves retrieval 266

performance. 267

In the retriever training process, in-batch nega- 268

tive examples play a critical role in dense retrieval 269

performance, enabling larger batch sizes while re- 270

maining efficient (Karpukhin et al., 2020). We 271

incorporate this technique in our knowledge dis- 272

tillation process by considering documents from 273

other queries in the same batch as in-batch nega- 274

tives. The scores of the in-batch negatives are set to 275

a very small number, effectively zeroing their prob- 276

ability after the softmax operation. Specifically, 277

with a batch size of b and n documents per query, 278

each query has n associated reranking scores and 279

n× (b− 1) negative documents. 280

3.3 Iterative Training 281

To prevent overfitting on the same top-k passages 282

and optimize the retriever’s performance, we intro- 283

duce an iterative training approach. In each itera- 284

tion, we use the trained retriever to build an index, 285

retrieve the top-k documents, and perform unsu- 286

pervised multilingual reranking. We then fine-tune 287

the trained retriever using knowledge-distilled re- 288

triever training. The fine-tuned retriever becomes 289

the retriever for the next iteration. This iterative 290

training allows for refreshing the retrieval index 291

in each iteration, avoiding training solely on the 292

same documents. Notably, in the first iteration 293

where no trained retriever is available, we employ 294

the unsupervised pretrained multilingual retriever, 295

mContriever (Izacard et al., 2021). 296

4 Experiments 297

Our proposed framework, UMR, can be applied 298

to various multilingual information retrieval tasks, 299

such as cross-lingual passage retrieval and multi- 300

lingual open-domain question-answering. We eval- 301

uate our approach on XOR-TYDI QA (Asai et al., 302

2021a), a popular benchmark for multilingual infor- 303

mation retrieval. We also conduct ablation studies 304

to analyze the impact of different components of 305

our approach. 306
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4.1 Datasets307

XOR-TYDI QA (Asai et al., 2021a) is a multi-308

lingual open QA dataset consisting of 7 typologi-309

cally diverse languages, Arabic, Bengali, Finnish,310

Japanese, Korean, Russian, and Telugu. The ques-311

tions are originally from TYDI QA (Clark et al.,312

2020) and posed by native speakers in a naturally313

information-seeking scenario. There are two sub-314

tasks in XOR-TYDI QA:315

• XOR-Retrieve requires a system to retrieve316

English passages given a query in language317

L other than English. The evaluation metrics318

used are R@2kt and R@5kt, which measure319

the recall by computing the fraction of the320

questions for which the minimal answer is321

contained in the top {2000, 5000} tokens re-322

trieved.323

• XOR-Full requires a system to retrieve ei-324

ther English documents or documents in the325

query language L in order to generate an an-326

swer in L. The answers are annotated by 1)327

extracting spans from Wikipedia in the same328

language as the question (in-language) or 2)329

translating English spans extracted from En-330

glish Wikipedia to the target language (cross-331

lingual). The evaluation metrics used are F1,332

EM, and BLEU. Note that since UMR is only333

responsible for retrieving relevant documents,334

we use the reader model from CORA to gener-335

ate an answer given the retrieved documents.336

For the multilingual passage collection, we di-337

rectly use the preprocessed passage collection338

released by CORA (Asai et al., 2021b), which339

consists of February 2019 Wikipedia dumps340

of 13 diverse languages from all XOR-TYDI341

QA languages. The collection has 44 million342

passages.343

4.2 Baseline Systems344

• BM25 retrieves passages from the target lan-345

guage only. We use a BM25-based lexical346

retriever implemented in CORA (Asai et al.,347

2021b), which uses the implementation from348

Pyserini (Lin et al., 2021). The retrieved pas-349

sages are fed to a multilingual QA model to350

extract final answers.351

• MT+DPR first translates the question into En-352

glish and retrieves English documents with353

DPR (Karpukhin et al., 2020), which is a354

monolingual retriever.355

• mGenQ generates multilingual questions 356

with mT01, a multilingual instruction-tuned 357

language model. The generated questions are 358

used to train a multilingual retriever. We gen- 359

erate the same amount of questions as the 360

training set of XOR-Retrieve for each lan- 361

guage. 362

• mDPR(Asai et al., 2021a) is a supervised 363

multilingual retriever based on the popular 364

DPR model. It is initialized from mBERT and 365

trained on the training set of XOR-Retrieve 366

and NaturalQuestions (Kwiatkowski et al., 367

2019). 368

• CORA (Asai et al., 2021b) consists of mDPR 369

and mGEN, which follows the retrieve-and- 370

generate recipe. The models are trained on the 371

training set of XOR-Full with iterative data 372

mining. 373

• Sentri+mFiD (Sorokin et al., 2022) is the 374

state-of-the-art system of XOR-Full, which 375

utilizes multilingual translations of the train- 376

ing set and self-training. 377

hyperparameters

max sequence length 256
batch size 16
gradient accumulation steps 1
# docs per question 16
train epochs 10
learning rate 2e-5
optimizer AdamW
temperature τ 0.1

Table 1: Hyperparameters used in the knowledge distil-
lation stage.

4.3 Implementation Details 378

For the reranking stage, we retrieve top-100 docu- 379

ments with the trained retriever. All top-100 doc- 380

uments are reranked by the language modeling- 381

adapted variant of mt5-xl, which has 3 billion pa- 382

rameters (Xue et al., 2021). Note that it is neither 383

fine-tuned on supervised data nor instruction-tuned. 384

For the knowledge distillation stage, we use 385

mContriever as the initial retriever (Izacard et al., 386

2021). In order to reduce memory consumption, 387

1TyDi QA is part of mT0’s training data, which gives this
baseline a slight advantage.
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Model R@2kt R@5kt
Ar Bn Fi Ja Ko Ru Te Avg Ar Bn Fi Ja Ko Ru Te Avg

Supervised
mDPR 41.2 43.9 50.3 29.1 34.5 35.3 37.2 38.8 50.4 57.7 58.9 37.3 42.8 44.0 44.9 48.0
MT+DPR 48.3 54.4 56.7 41.8 39.4 39.6 18.7 42.7 52.5 63.2 65.9 52.1 46.5 47.3 22.7 50.0

Unupervised
UMR 36.7 33.6 51.6 33.2 38.3 37.2 35.8 38.1 45.0 48.8 61.9 43.4 47.3 46.9 44.4 48.2

Table 2: Performance on XOR-Retrieve test set (%).

Model Target Language F1 Macro Average
Ar Bn Fi Ja Ko Ru Te F1 EM BLEU

Supervised
MT + DPR 7.6 5.9 16.2 9.0 5.3 5.5 0.8 7.2 3.3 6.3
CORA 59.8 40.4 42.2 44.5 27.1 45.9 44.7 43.5 33.5 31.1
Sentri + mFiD - - - - - - - 46.2 39.0 33.7

Unsupervised
BM25 31.1 21.9 21.4 12.4 12.1 17.7 – – – –
UMR + CORA Reader 59.8 41.0 41.4 44.3 30.4 46.4 50.9 44.9 34.7 32.5

Table 3: Performance on XOR-Full test set (%).

we employ the gradient cache technique (Gao et al.,388

2021). All experiments are conducted on 4xN-389

VIDIA V100 GPUs. Detailed hyperparameters for390

training retrievers are shown in Table 1. We run391

two iterations of iterative training.392

4.4 Main Results393

4.4.1 XOR-Retrieve394

The experimental results on the test set of XOR-395

Retrieve are shown in Table 2. Compared to the396

supervised baseline mDPR, our proposed UMR397

achieves comparable or even slightly better perfor-398

mance (48.0% vs. 48.2%) despite not using any399

paired data. This demonstrates the effectiveness400

of utilizing mLM for generative pseudo labeling,401

providing supervision of similar quality compared402

to human annotation. The results for each lan-403

guage show that UMR underperforms mDPR sig-404

nificantly in Arabic (Ar) and Bengali (Bn) while405

achieving comparable or superior performance in406

other languages.407

4.4.2 XOR-Full408

The experimental results on the test set of XOR-409

Full are shown in Table 3. Our proposed UMR410

outperforms the strong supervised baseline CORA411

and only slightly underperforms the state-of-the-art412

system Sentri+mFiD. This result further demon-413

strates the effectiveness of our proposed method,414

R@2kt R@5kt

mDPR 40.50 50.20
mGenQ 29.08 38.67

mContriever 25.50 35.06
+ rerank 34.24 41.88

UMR (iter=1) 41.23 51.50
UMR (iter=2) 41.68 51.94

+ rerank 42.34 52.36

Table 4: Performance of unsupervised multilingual
reranking on XOR-Retrieve dev set (%). We conduct
analyses on the dev set as the test set is not publicly
available.

which requires neither paired data nor query transla- 415

tions. The performance could be further improved 416

by combining UMR with mFiD, which was shown 417

to be very crucial to the state-of-the-art perfor- 418

mance of Sentri (Sorokin et al., 2022). Results 419

for each language show that UMR outperforms 420

CORA significantly in Telugu while achieving sim- 421

ilar performance in other languages. 422

5 Analysis and Discussion 423

In this section, we conduct analytical experiments 424

on the dev set of XOR-Retrieve and XOR-Full 425

since the test sets are not publicly available. 426
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R@2kt R@5kt

UMR (iter=1) 41.23 51.50
- in-batch negative 39.56 49.41

Table 5: Performance on XOR-Retrieve dev set with or
without using in-batch negatives (%).

Temperature R@2kt R@5kt

1 29.58 38.82
0.1 37.38 46.70
0.04 37.12 46.55
0.02 38.43 46.45

Table 6: Performance on XOR-Retrieve dev set when
varying the value of temperature (%).

5.1 Unsupervised Multilingual Reranking427

We conduct an analysis to validate the effective-428

ness of the unsupervised multilingual reranking429

stage. As shown in Table 4, reranking improves the430

unsupervised retriever mContriever significantly,431

improving the result from 25.50 to 34.24 in terms432

of R@2kt. This demonstrates that our unsuper-433

vised multilingual reranking is effective in rerank-434

ing the results of the first-stage retriever. We also435

observe that the performance of UMR converges436

after two iterations. This could be explained by the437

result of reranking UMR (iter=2), where reranking438

only achieves a slight improvement. Given this439

result, we believe that the performance of UMR440

is bounded by the reranker. Future work could441

explore using more powerful or instruction-tuned442

LLM and developing superior reranking methods.443

5.2 Question Generation444

Previous work has shown that training a multilin-445

gual question generator for generating multilingual446

questions can improve the performance of mul-447

tilingual retrieval (Ren et al., 2022). We aim to448

examine whether this method is feasible in an unsu-449

pervised scenario. We perform multilingual ques-450

tion generation via prompting an instruction-tuned451

multilingual LLM, mT0 (Muennighoff et al., 2022).452

With randomly sampled passages, we generate the453

same amount of questions as the training set of454

XOR-Retrieve for each language. These question-455

passage pairs are then used to train a multilingual456

retriever, mGenQ. The performance of mGenQ is457

reported in Table 4. mGenQ underperforms mDPR458

and UMR significantly, demonstrating the diffi-459

Batch size R@2kt R@5kt

4 36.45 46.02
8 38.94 49.38
16 40.07 50.30
32 40.41 50.48

Table 7: Performance on XOR-Retrieve dev set when
varying the value of batch size (%).

culty of applying question generation to a multilin- 460

gual scenario where there is no training data. We 461

manually examine the generated questions and find 462

that roughly half of the questions are either nonsen- 463

sical or not in the desired language. Future work 464

could explore effective methods for unsupervised 465

or few-shot multilingual question generation. 466

5.3 In-batch Negative 467

We conduct an ablation study to validate the effec- 468

tiveness of the in-batch negative examples. The 469

results are shown in Table 5. Removing in-batch 470

negatives results in a slight degradation in perfor- 471

mance, which is less pronounced compared to su- 472

pervised dense retrieval methods. This could be 473

explained by the fact that we include multiple doc- 474

uments per question with fine-grained scores for 475

training, which already includes distinguishing be- 476

tween relevant documents and hard negatives. 477

5.4 Effect of Hyperparameters 478

Dense retrievers are known to be sensitive to hy- 479

perparameters, e.g., batch size. In this analysis, we 480

examine how different hyperparameters affect the 481

performance of UMR. 482

5.4.1 Batch Size 483

Training dense retrievers requires a larger batch 484

size. The results of varying batch sizes are shown 485

in Table 7. When the batch size is under 16, we 486

observe significant degradation in performance. 487

Hence, in our experiments, we set the batch size 488

to 16. Note that in our training framework, each 489

question is associated with multiple documents. 490

Therefore, with a batch size of 16 and 16 docu- 491

ments per question, each question is paired with 492

256 documents in a batch. 493

5.4.2 Temperature 494

The results of varying temperature values are 495

shown in Table 6. We observe that UMR is highly 496

sensitive to the value of temperature. When the tem- 497

perature is set to 1, the performance is degraded 498
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English Answers Only Target Language Answers All
Top-1 Top-5 Top-20 Top-1 Top-5 Top-20 Top-1 Top-5 Top-20

Supervised
CORA 10.8 26.9 41.8 37.0 55.0 64.9 27.1 45.7 58.1

Unsupervised
mContriever 3.2 7.7 13.3 18.9 40.1 56.4 14.5 31.2 45.4
mContriever+rerank 4.4 9.4 15.1 29.1 50.1 61.5 20.5 37.5 49.1
UMR (iter=1) 5.2 10.8 18.1 27.7 48.6 64.6 20.2 37.6 52.1
UMR (iter=2) 4.7 11.4 17.9 26.2 49.2 64.6 19.1 38.5 52.1

Table 8: Retrieval performance on XOR-Full dev set (%).

significantly. We hypothesize that the range of the499

negative log-likelihood of the reranker is the root500

cause of this phenomenon since higher temperature501

results in flat distribution, making it harder for the502

retriever to learn meaningful knowledge.503

5.5 Retrieval Performance on XOR-Full504

In order to evaluate the multilingual retrieval per-505

formance where the language of the relevant doc-506

uments is not known apriori, we examine the re-507

trieval performance on XOR-Full. Since there is508

no official evaluation of the retrieval performance,509

we take the answers from the dev set, where some510

of the questions have English answers. We split511

the questions into two categories: 1) questions with512

annotated English answers and 2) questions with513

only answers in the target language. We evaluate514

the retrieval performance by checking whether any515

of the answers are present in the top-k retrieved516

documents. The results are shown in Table 8.517

We observe that despite outperforming CORA518

in downstream question-answering performance,519

UMR underperforms CORA significantly in terms520

of retrieval performance. This underperformance521

is especially pronounced in Top-1 recall, which522

aligns with the observation from ART (Sachan523

et al., 2022b). We hypothesize that while unsu-524

pervised reranking via estimating conditional prob-525

ability can provide good supervision, it cannot dis-526

tinguish the most relevant documents very well.527

We also note that since the reader model takes top-528

20 passages to generate the answer, Top-20 recall529

should be a better indicator for the downstream530

QA performance. This could explain why UMR531

achieves better QA performance while performing532

slightly worse in retrieval performance. In addition,533

this evaluation only considers the surface form of534

the answers, which might fail to capture the differ-535

ence in surface forms.536

6 Conclusion 537

In this paper, we propose UMR, the first unsu- 538

pervised method for training multilingual dense 539

retrievers without any paired data. The proposed 540

framework consists of two stages with iterative 541

training. Experimental results on XOR-Retrieve 542

and XOR-Full show that our proposed method per- 543

forms comparable to or even outperforms strong 544

supervised baselines. Finally, detailed analyses 545

justify the effectiveness of individual components 546

in our proposed UMR. We also identify that the 547

performance of UMR might be bounded by the 548

reranking performance of mLM. Hence, future 549

work could explore better unsupervised reranking 550

methods with large language models. 551

Limitations 552

While this paper demonstrates the promising per- 553

formance of our fully unsupervised method for mul- 554

tilingual retrieval, it is important to acknowledge 555

its limitations. 556

First, our approach assumes that the employed 557

multilingual pre-trained language model already 558

understands the languages present in our evalu- 559

ated datasets. Consequently, the model’s ability to 560

estimate relevance for reranking in the first stage 561

(unsupervised multilingual reranking) relies on this 562

assumption. However, for low-resource languages 563

that are not adequately covered by the language 564

model, our proposed approach may struggle to 565

achieve satisfactory performance due to inaccurate 566

estimations. To address this limitation, we plan to 567

conduct experiments on unseen languages in fu- 568

ture work and explore alternative approaches, such 569

as language adaptation techniques, to enhance the 570

generalizability across diverse and even previously 571

unseen languages. 572

It is crucial to address these limitations to ensure 573
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the applicability and effectiveness of our method574

across a wide range of languages, especially those575

with limited resources.576
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Ivan Vulić and Marie-Francine Moens. 2015. Monolin- 755
gual and cross-lingual information retrieval models 756
based on (bilingual) word embeddings. In Proceed- 757
ings of the 38th international ACM SIGIR conference 758
on research and development in information retrieval, 759
pages 363–372. 760

William Yang Wang. 2017. “liar, liar pants on fire”: 761
A new benchmark dataset for fake news detection. 762
In Proceedings of the 55th Annual Meeting of the 763
Association for Computational Linguistics (Volume 764
2: Short Papers), pages 422–426. 765

Linting Xue, Noah Constant, Adam Roberts, Mihir Kale, 766
Rami Al-Rfou, Aditya Siddhant, Aditya Barua, and 767
Colin Raffel. 2021. mT5: A massively multilingual 768
pre-trained text-to-text transformer. In Proceedings 769
of the 2021 Conference of the North American Chap- 770
ter of the Association for Computational Linguistics: 771
Human Language Technologies, pages 483–498, On- 772
line. Association for Computational Linguistics. 773

Xinyu Zhang, Xueguang Ma, Peng Shi, and Jimmy Lin. 774
2021. Mr. TyDi: A multi-lingual benchmark for 775
dense retrieval. In Proceedings of the 1st Workshop 776
on Multilingual Representation Learning, pages 127– 777
137, Punta Cana, Dominican Republic. Association 778
for Computational Linguistics. 779

Xinyu Zhang, Kelechi Ogueji, Xueguang Ma, and 780
Jimmy Lin. 2022. Towards best practices for training 781
multilingual dense retrieval models. arXiv preprint 782
arXiv:2204.02363. 783

10

https://doi.org/10.18653/v1/2021.naacl-main.466
https://doi.org/10.18653/v1/2021.naacl-main.466
https://doi.org/10.18653/v1/2021.naacl-main.466
https://doi.org/10.18653/v1/2021.naacl-main.466
https://doi.org/10.18653/v1/2021.naacl-main.466
https://aclanthology.org/2022.emnlp-main.203
https://aclanthology.org/2022.emnlp-main.203
https://aclanthology.org/2022.emnlp-main.203
https://aclanthology.org/2022.emnlp-main.249
https://aclanthology.org/2022.emnlp-main.249
https://aclanthology.org/2022.emnlp-main.249
https://aclanthology.org/2022.emnlp-main.730
https://aclanthology.org/2022.emnlp-main.730
https://aclanthology.org/2022.emnlp-main.730
https://aclanthology.org/2022.emnlp-main.730
https://aclanthology.org/2022.emnlp-main.730
https://doi.org/10.18653/v1/2022.naacl-main.30
https://doi.org/10.18653/v1/2022.naacl-main.30
https://doi.org/10.18653/v1/2022.naacl-main.30
https://doi.org/10.18653/v1/2021.naacl-main.41
https://doi.org/10.18653/v1/2021.naacl-main.41
https://doi.org/10.18653/v1/2021.naacl-main.41
https://doi.org/10.18653/v1/2021.mrl-1.12
https://doi.org/10.18653/v1/2021.mrl-1.12
https://doi.org/10.18653/v1/2021.mrl-1.12

	Introduction
	Related Work
	Our Method: UMR
	Unsupervised Multilingual Reranking
	Knowledge-Distilled Retriever Training
	Iterative Training

	Experiments
	Datasets
	Baseline Systems
	Implementation Details
	Main Results
	XOR-Retrieve
	XOR-Full


	Analysis and Discussion
	Unsupervised Multilingual Reranking
	Question Generation
	In-batch Negative
	Effect of Hyperparameters
	Batch Size
	Temperature

	Retrieval Performance on XOR-Full

	Conclusion

