
Large Reasoning Models Know How to Think Efficiently

Zeyu Xing 1 Xing Li 2 HuiLing Zhen 2 Xianzhi Yu 2 Mingxuan Yuan 2 Sinno Jialin Pan 1

Abstract
Large Reasoning Models (LRMs) exhibit poten-
tial in problem-solving through extended Chain-
of-Thought (CoT) generation, enhancing robust-
ness and accuracy by iteratively revising user
prompts. However, excessive CoT generation
poses challenges in LLM inference, as prolonged
decoding due to redundant tokens creates compu-
tational bottlenecks. This paper introduces two
training-free self-thinking methods—Pre-judged
Reasoning and Fallback Reasoning—which opti-
mize inference efficiency via dynamic selection
of fast thinking and reasoning strategies based
on LRMs’ intrinsic task complexity classifica-
tion capabilities. Evaluations on the MATH500
and AIME24 dataset demonstrate that Pre-judged
Reasoning reduces token generation by up to
26.6% compared to slow reasoning without com-
promising accuracy. Similarly, Fallback Reason-
ing achieves a reduction of up to 24.0% in gen-
erated tokens, enabling significantly faster task
completion. Both methods substantially reduce
computational overhead while retaining the accu-
racy of LRMs.

1. Introduction
The reasoning capability of Large Reasoning Models
(LRMs) is becoming increasingly important in solving real-
world tasks. However, not all tasks require strict step-by-
step logical reasoning. For some simpler tasks where con-
clusions can be directly drawn, issues such as excessive
reflection and repeated attempts encountered by LRMs can
lead to the generation of a large number of ineffective to-
kens, resulting in wasted computational resources and user
costs. Therefore, effectively assessing the task’s difficulty
and selecting an appropriate approach to reasoning has be-

1Department of Computer Science and Engineering, The Chi-
nese University of Hong Kong, Hong Kong SAR, China 2Huawei
Noah’s Ark Lab, Hong Kong SAR, China. Correspondence to:
Zeyu Xing <zeyuxing@link.cuhk.edu.hk>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

come a critical issue to reduce LRM deployment cost and
user waiting time.

For example, Table 1 compares the performance of
step-by-step reasoning and fast thinking on the GSM8k
dataset (Cobbe et al., 2021). In this case, reasoning pro-
duces nearly identical performance to fast thinking but at
the cost of generating almost four times as many tokens.
This observation necessitates the need of hybrid reason-
ing to automatically switch between slow and fast thinking
based on problem complexity to better trade-off accuracy
and computational cost of LRMs.

Metric Fast Thinking Reasoning
Accuracy 0.94 0.95
#Average Tokens 221 829 (3.75×)

Table 1. Comparison of efficiency and effectiveness of the fast
thinking and reasoning of Qwen3-32B on the GSM8k dataset.

0 1000 2000 3000 4000 5000 6000 7000 8000
Number of Tokens

0

10

20

30

40

50

60

70

80

Fr
eq

ue
nc

y

Reasoning
Fast Think
Reasoning Correct
Fast Think Correct

Figure 1. Distribution of generated token counts and their correct-
ness rates of DeepSeek-R1-Distill-Qwen-14B on MATH-500 with
the fast thinking and reasoning modes. Most responses are short
in both thinking mode. The accuracy decreases noticeably over
generation length in the reasoning mode.

0 1000 2000 3000 4000 5000 6000 7000 8000
Number of Tokens

0

5

10

15

20

25

30

35

40

Fr
eq

ue
nc

y

Reasoning
Fast Think
Reasoning Correct
Fast Think Correct

Figure 2. Distribution of generated token counts and their correct-
ness rates of Qwen3-32B on MATH-500 with the fast thinking
and reasoning modes. The accuracy is stably high over different
complexity, except the ones over the limited token budgets. These
two models have different reasoning patterns.

Figures 1 and 2 illustrate the frequency distributions of token
generation lengths and their corresponding correctness rates
for DeepSeek-R1-Distill-Qwen-14B and Qwen3-32B, re-
spectively, on the MATH-500 dataset. Both models exhibit a

1

substantially higher mean token count in the reasoning mode
compared to the fast thinking mode. Notably, fast thinking
demonstrates elevated confidence and accuracy for simple
questions requiring concise answers; however, accuracy de-
clines precipitously beyond a token-length threshold, which
correlates with increased problem complexity. Furthermore,
the correctness distributions of the two models in reasoning
mode diverge significantly on the same dataset, reflecting
inherent disparities in their performance and cognitive archi-
tectures. Qwen3-32B generates extended chain-of-thought
(CoT) reasoning across problems of varying difficulty, main-
taining stable accuracy except for highly complex cases. In
contrast, DeepSeek-R1-Distill-Qwen-14B predominantly
produces abbreviated responses and struggles with intricate
problem-solving. As a result, training based hybrid thinking
methods not only alter the LRM capability but also intro-
duce additional fine-tuning cost for each LRM (Jiang et al.,
2025; Huang et al., 2025; Liang et al., 2025; Zhang et al.,
2025). These observations underscore the non-trivial chal-
lenge of designing a generalizable and efficient hybrid
reasoning framework for LRMs that accommodates di-
verse capabilities and cognitive patterns.

Typically, the development of prominent open-source
LRMs, such as Deepseek-R1 (DeepSeek-AI, 2025)and
Qwen3 (Yang et al., 2025), comprises two distinct train-
ing phases. Initially, a foundational LLM is trained using
conventional next-token prediction tasks. Subsequently, this
base model undergoes fine-tuning via reinforcement learn-
ing techniques to enhance its reasoning capabilities. Conse-
quently, LRMs inherently retain the fast thinking capabili-
ties from their underlying LLM architecture and weights that
are not modified significantly (Team et al., 2025; Wu et al.,
2025). LRMs should know how to think efficiently by
themselves, but the integration of contextually appropri-
ate external stimuli remains indispensable. For example,
it is feasible to prompt LRMs to utilize their fast thinking
skills by employing minor adjustments during the generation
phase. A commonly effective method involves the insertion
of an empty <think></think> block within the gener-
ation prompt to disable thinking, which typically suffices to
activate fast-thinking functionality of most LRMs.

In this work, we present two novel training-free methods
for automatic, efficient self-thinking to improve infer-
ence efficiency using the inherent problem complexity
recognition capability of LRMs. The first method, Pre-
judged Reasoning, leverages the self-assessment capability
of the LRM to determine whether a task requires reasoning
or can be solved with fast thinking. The second method, Fall-
back Reasoning, dynamically switches to reasoning when
the token limit for fast thinking is reached, thereby ensuring
efficient computation without compromising on accuracy.
Our experimental results demonstrate that these training-
free methods reduce the number of generated tokens by up

to 26.6%, maintaining high accuracy, offering a promising
opportunity for optimizing LRM inference in real-world
applications.

2. Related Works
Efficient reasoning. Apart from improving token-level
decoding efficiency with improved operators (Dao et al.,
2022), quantization (Xiao et al., 2023a; Liu et al., 2024;
Li et al., 2025), sparsity (Xiao et al., 2023b; Zhang et al.,
2024; Yuan et al., 2025; Sun et al., 2024a), and specula-
tive decoding (Leviathan et al., 2023; Sun et al., 2024b; Li
et al., 2024), there are also recent works on directly reduc-
ing thinking length or LRM thinking cost with long2short
model merging (Team et al., 2025; Wu et al., 2025), thinking
compression (Sun et al., 2024c; Lin et al., 2025), and large-
small model collaboration for speculative thoughts (Pan
et al., 2025; Wang et al., 2025).

Concurrent hybrid reasoning. Qwen3 models offer
prompt-based hybrid reasoning and the option to specify lim-
ited thinking budgets (Yang et al., 2025). In which, Qwen3
models do not switch between fast thinking and reasoning
but require the external user guidance, which introduce ad-
ditional complexity for users. In addition, there are also
many training based methods to perform hybrid thinking of
queries of varying difficulty and types (Jiang et al., 2025;
Huang et al., 2025; Liang et al., 2025; Zhang et al., 2025).
The fine-tuning of LRMs may lead to alterations in model
capabilities or catastrophic forgetting. Existing approaches
that introduce additional small classification modules not
only incur extra training and deployment overheads, but also
require separate training of these modules for LRMs with
different capability levels or even distinct checkpoints.

In contrast, our self-thinking methodology eliminates the
need for explicit training procedures by fully leveraging
the intrinsic problem complexity recognition capacity in-
herent in LRMs. This fundamental characteristic endows
our approach with superior generalization capabilities and
significantly reduces deployment complexity compared to
conventional solutions.

3. Method
In this section, we present two innovative training-free ap-
proaches for efficient self-thinking, which harness the in-
trinsic capabilities of LRMs to assess problem complexity
and adaptively switch between fast thinking and reasoning.
These methods enable the dynamic and automatic selection
of reasoning strategies based on the self-assessment of task
complexity.

In contrast to hybrid reasoning paradigms that depend on
fine-tuned Learning and Reasoning Models (LRMs) or aux-

2

iliary smaller models, our methodology directly harnesses
the intrinsic decision-making capabilities of LRMs them-
selves. Within a properly implemented inference system
such as vLLM (Kwon et al., 2023) and SGLang (Zheng
et al., 2024), Key-Value (KV) caching mechanisms from
preliminary pre-judgment and fast thinking phases can be
systematically reused as prefix cache, thereby enhancing
both memory utilization and computational efficiency. This
self-assessment framework aligns with the principle that
LRMs should exhibit accurate self-awareness of their opera-
tional competencies, mitigating estimation biases introduced
by external models.

3.1. Method 1: Pre-judged Reasoning

The principal concept behind Pre-judged Reasoning is to
leverage the self-assessment capability of LRMs to gauge
the difficulty of a given task autonomously. The model’s
intrinsic understanding of its capabilities allows it to make
more accurate judgments about whether a task requires rea-
soning or can be solved efficiently through fast thinking,
compared to external or smaller-scale evaluators.

To operationalize this concept, we initially present the LRM
with a prompt instructing it to quickly evaluate whether the
given task necessitates comprehensive step-by-step reason-
ing (termed slow thinking) or can be effectively resolved
via fast thinking. The LRM is explicitly instructed to pro-
duce a minimal JSON-formatted response containing solely
a boolean flag require_slow_thinking, without ex-
planations or intermediate reasoning. This approach re-
duces computational overhead and streamlines the decision-
making process. Once we receive the JSON response, we
parse it to extract the flag’s boolean value. If true, we in-
voke the reasoning module with an expanded token budget
of tokens_reasoning tokens, suitable for detailed, intricate
reasoning steps. Conversely, if false, the fast thinking
capability is employed with a constrained token budget of
tokens_fast_thinking tokens, optimizing efficiency.

The procedure diagram of the Pre-judged Reasoning method
is presented in figure 3, and the prompts can be found in
Appendix A.1.

3.2. Method 2: Fallback Reasoning

Fallback Reasoning is predicated upon the intuition that the
complexity of a question correlates positively with the num-
ber of output tokens required for its resolution. Specifically,
if an LRM’s fast thinking mechanism exhausts a predefined
modest token budget without completing the response, the
task is likely too complex to handle efficiently through only
fast thinking.

Initially, we instruct the LRM to solve the given question
through fast thinking, strictly limiting the token generation

to tokens_trail tokens. We then monitor whether the LRM’s
response is prematurely terminated due to hitting this token
limit. If the response is successfully completed within the
tokens_trail token budget, the provided answer is accepted
as sufficiently reliable and directly returned as the final
output of self-thinking.

However, if the token limit halts the generation prematurely,
indicating insufficient completion of the task, we subse-
quently engage reasoning. During this phase, we explicitly
provide the model with the incomplete attempt as contextual
reference, expanding the allowed token budget substantially
to tokens_reasoning tokens, thereby accommodating thor-
ough step-by-step reasoning.

The procedure diagram of the Fallback Reasoning method
is summarized in Figure 3, and the prompts can be found in
Appendix A.2.

4. Experimental Results
Our experiments are conducted using the
HuggingFaceH4/MATH-500 dataset (HuggingFaceH4,
2024), a benchmark specifically designed to evaluate the
mathematical reasoning capabilities of large-scale models
and the HuggingFaceH4/aime_2024 dataset (Hugging-
FaceH4, 2025), a dataset consists of 30 problems from the
2024 AIME(American Invitational Mathematics Examina-
tion) I and AIME II. We select two prominent open-source
LRMs for evaluation: DeepSeek-R1-Distill-Qwen-14B(in
FP16) (DeepSeek-AI, 2025), denoted as DeepSeek-R1-14B,
and Qwen3-32B(in INT8 quantization) (Yang et al., 2025).

We utilize Ollama1 as the inference engine for deploying
these LRMs, which provides optimized inference capabili-
ties specifically suited for large-scale language and reason-
ing models. Experiments are executed on a computational
platform comprising 2× NVIDIA RTX 4090 GPUs, each
equipped with 24 GiB of VRAM. The CPU used is an Intel
Core i9-13900, complemented by 128 GiB of RAM.

4.1. Accuracy and Average Numbers of Tokens
Generated on Two Methods

We use accuracy and average generated token count as the
primary metrics to evaluate the effectiveness of the pro-
posed methods. These metrics allow us to assess the trade-
off between reasoning efficiency and model performance.
In terms of hyperparameters, we set tokens_reasoning to
8192, tokens_fast_thinking to 2048, as most questions can
be resolved by fast thinking within this token budget. Addi-
tionally, we set tokens_trial to 512, which gives the token
limit during the initial trial stage.

Table 2 summarizes the experimental performance compari-

1https://ollama.com/

3

https://ollama.com/

Convert the point
(0,3) in

rectangular
coordinates to

polar
coordinates.

You do not need to give me any
explanation, just give me a json
with the following keys:
require_slow_thinking.
question
<|Assistant|> <think> \n </think>

require_slow
_thinking: True

require_slow
_thinking: False

question
<|Assistant|> <think>

\n

question
<|Assistant|> <think>

\n </think>

The answer is:

How many
positive whole-
number divisors
does 196 have?

Reasoning

Fast Thinking

Question Fast Pre-judgement before Thinking Classification Reasoning or
Fast Thinking Answer

Question

You are a math problem solver. For
the following question, solve it
using your reasoning ability.
Here is the question:
question
<|Assistant|> <think> \n </think>

Trail in Fast Thinking
within tokens_trail Tokens Classification

Generation Stopped
Reason: Length

Generation Stopped
Reason: EOS

question
<|Assistant|> <think>

\n

The answer is: 9

Reasoning

Accept the answer
from trail

Pre-judged
Reasoning

Fallback
Reasoning Fast Thinking

Figure 3. Procedure diagram of the proposed training-free self-thinking approaches Pre-judged Reasoning and Fallback Reasoning, which
harness the intrinsic capabilities of LRMs to self-assess problem complexity for automatic thinking mode switching.

Metrics GSM8K MATH500 AIME24

Deepseek-R1-14B Qwen3-32B Deepseek-R1-14B Qwen3-32B Deepseek-R1-14B Qwen3-32B

Fast Thinking Accuracy / #Tokens 0.722 / 169 0.931 / 147 0.594 / 375 0.610 / 392 0.100 / 1054 0.167 / 1576
Reasoning Accuracy / #Tokens 0.408 / 474 0.933 / 754 0.720 / 1981 0.834 / 3605 0.167 / 6164 0.433 / 7040
Pre-judged Reasoning Accuracy / #Tokens 0.632 / 280 -40.9% 0.933 / 437 -42.0% 0.708 / 1455 -26.6% 0.826 / 3072 -14.8% 0.167 / 5589 -9.33% 0.433 / 7040 0%

Fallback Reasoning Accuracy / #Tokens 0.726 / 166 -65.0% 0.934 / 149 -80.2% 0.710 / 1555 -21.5% 0.804 / 2740 -24.0% 0.233 / 5018 -18.59% 0.400 / 7000 -0.57%

Table 2. Comparison of fast thinking, reasoning, and the proposed self-thinking methods on the MATH500 dataset. For the average
token count of Fallback Reasoning, it includes the combined tokens from both the fast thinking trial stage and the reasoning stage. For
Pre-judged Reasoning, the average token count reflects only the tokens used during the reasoning stage, as the pre-judgment process can
be efficiently integrated during the pre-filling phase by appending an additional head, thereby minimizing computational overhead in a
well-implemented system.

son between fast thinking, reasoning, and the proposed pre-
judged reasoning and fallback reasoning approaches using
Deepseek-R1-14B and Qwen3-32B models on the GSM8K,
MATH500 and AIME24 datasets. Metrics include accuracy,
average token usage, frequency of triggering reasoning, and
cases in which detailed reasoning significantly improves
correctness. Results indicate that on MATH500 dataset,
Pre-judged Reasoning and Fallback Reasoning efficiently
balance accuracy and computational cost by selectively em-
ploying detailed reasoning only for challenging questions.
They can achieve comparable accuracy to pure reasoning,
while significantly generating 14.8% to 26.6% less tokens
on average. An example illustrating the effectiveness of
Pre-judged Reasoning can be found in Section B.

On the harder AIME24 dataset, the results indicate that
both Pre-judged and Fallback Reasoning significantly im-
prove accuracy over standard slow reasoning while reducing
average token usage for Deepseek-R1-14B, demonstrating
enhanced efficiency on challenging questions. Specificaly,
Fallback Reasoning improves accuracy by 6.6% and think-
ing efficiency by 18.59% simultaneously. However, for
Qwen3-32B, the substantial relative performance gap be-
tween reasoning and fast thinking necessitates step-by-step
slow reasoning in all tasks, limiting efficiency gains from au-
tomatic thinking mode switching. In such case, our method
reliably defaults to slow reasoning to preserve complex
problem-solving performance of LRMs, adhering to ex-
pected behavior given the higher priority of accuracy.

On the easier GSM8k dataset, Fast Thinking outperforms
Reasoning for Deepseek-R1-14B, this may be due to the
distillation process of the model. However, Fallback Rea-
soning still preserves comparable performance to the higher
one, while shortening the sequence length comparable to
Fast Thinking. For Qwen3-32B, Pre-judged Reasoning and
Fallback Reasoning both preserve the performance as Rea-
soning, while improving the efficiency by 42.0% and 80.2%
respectively.

A more detailed table showing the frequency that the rea-
soning is triggered can be found in appendix C.

5. Conclusion
This paper introduces two innovative training-free self-
thinking methods, Pre-judged Reasoning and Fallback Rea-
soning, which improve the computational efficiency of
Large Reasoning Models (LRMs) by adaptively choosing
the most suitable reasoning strategy. By leveraging the in-
herent capabilities of LRMs to assess problem complexity,
these methods ensure that tasks requiring detailed reasoning
are handled with appropriate computational resources, while
simpler tasks benefit from faster inference. Experimental
results on the MATH500, AIME24 and GSM8K datasets
show that both methods achieve noticeable reduction in
generated token numbers while maintaining high accuracy,
offering an effective solution to optimize LRM performance
and resource usage in complex problem-solving scenarios.

4

References
Cobbe, K., Kosaraju, V., Bavarian, M., Chen, M., Jun, H.,

Kaiser, L., Plappert, M., Tworek, J., Hilton, J., Nakano,
R., Hesse, C., and Schulman, J. Training verifiers to solve
math word problems. arXiv preprint arXiv:2110.14168,
2021.

Dao, T., Fu, D., Ermon, S., Rudra, A., and Ré, C. Flashat-
tention: Fast and memory-efficient exact attention with
io-awareness. Advances in Neural Information Process-
ing Systems, 35:16344–16359, 2022.

DeepSeek-AI. Deepseek-r1: Incentivizing reasoning ca-
pability in llms via reinforcement learning, 2025. URL
https://arxiv.org/abs/2501.12948.

Huang, X., Vangani, T. K., Liu, Z., Zou, B., and Aw,
A. T. Adacot: Rethinking cross-lingual factual rea-
soning through adaptive chain-of-thought, 2025. URL
https://arxiv.org/abs/2501.16154.

HuggingFaceH4. Huggingfaceh4/math-500 · datasets at hug-
ging face, Nov 2024. URL https://huggingface.
co/datasets/HuggingFaceH4/MATH-500.

HuggingFaceH4. Huggingfaceh4/aime_2024 ·
datasets at hugging face, Jan 2025. URL
https://huggingface.co/datasets/
HuggingFaceH4/aime_2024.

Jiang, L., Wu, X., Huang, S., Dong, Q., Chi, Z., Dong,
L., Zhang, X., Lv, T., Cui, L., and Wei, F. Think only
when you need with large hybrid-reasoning models. arXiv
preprint arXiv:2505.14631, 2025.

Kwon, W., Li, Z., Zhuang, S., Sheng, Y., Zheng, L., Yu,
C. H., Gonzalez, J., Zhang, H., and Stoica, I. Efficient
memory management for large language model serving
with pagedattention. In Proceedings of the 29th Sym-
posium on Operating Systems Principles, pp. 611–626,
2023.

Leviathan, Y., Kalman, M., and Matias, Y. Fast inference
from transformers via speculative decoding, 2023. URL
https://arxiv.org/abs/2211.17192.

Li, X., Xing, Z., Li, Y., Qu, L., Zhen, H.-L., Liu, W., Yao, Y.,
Pan, S. J., and Yuan, M. Kvtuner: Sensitivity-aware layer-
wise mixed precision kv cache quantization for efficient
and nearly lossless llm inference, 2025. URL https:
//arxiv.org/abs/2502.04420.

Li, Y., Wei, F., Zhang, C., and Zhang, H. Eagle: Speculative
sampling requires rethinking feature uncertainty. arXiv
preprint arXiv:2401.15077, 2024.

Liang, G., Zhong, L., Yang, Z., and Quan, X. Thinkswitcher:
When to think hard, when to think fast, 2025. URL
https://arxiv.org/abs/2505.14183.

Lin, W., Li, X., Yang, Z., Fu, X., Zhen, H.-L., Wang, Y.,
Yu, X., Liu, W., Li, X., and Yuan, M. Trimr: Verifier-
based training-free thinking compression for efficient
test-time scaling, 2025. URL https://arxiv.org/
abs/2505.17155.

Liu, Z., Yuan, J., Jin, H., Zhong, S., Xu, Z., Braverman,
V., Chen, B., and Hu, X. Kivi: A tuning-free asym-
metric 2bit quantization for kv cache. arXiv preprint
arXiv:2402.02750, 2024.

Pan, R., Dai, Y., Zhang, Z., Oliaro, G., Jia, Z., and Ne-
travali, R. Specreason: Fast and accurate inference-
time compute via speculative reasoning. arXiv preprint
arXiv:2504.07891, 2025.

Sun, H., Chang, L.-W., Bao, W., Zheng, S., Zheng, N., Liu,
X., Dong, H., Chi, Y., and Chen, B. Shadowkv: Kv
cache in shadows for high-throughput long-context llm
inference. arXiv preprint arXiv:2410.21465, 2024a.

Sun, H., Chen, Z., Yang, X., Tian, Y., and Chen, B. Tri-
force: Lossless acceleration of long sequence generation
with hierarchical speculative decoding. arXiv preprint
arXiv:2404.11912, 2024b.

Sun, H., Haider, M., Zhang, R., Yang, H., Qiu, J., Yin,
M., Wang, M., Bartlett, P., and Zanette, A. Fast best-
of-n decoding via speculative rejection. arXiv preprint
arXiv:2410.20290, 2024c.

Team, K., Du, A., Gao, B., Xing, B., Jiang, C., Chen, C.,
Li, C., Xiao, C., Du, C., Liao, C., et al. Kimi k1. 5:
Scaling reinforcement learning with llms, 2025. URL
https://arxiv. org/abs/2501.12599, 2025.

Wang, J., Li, J., Wu, L., and Zhang, M. Efficient reasoning
for llms through speculative chain-of-thought. arXiv
preprint arXiv:2504.19095, 2025.

Wu, H., Yao, Y., Liu, S., Liu, Z., Fu, X., Han, X., Li, X.,
Zhen, H.-L., Zhong, T., and Yuan, M. Unlocking efficient
long-to-short llm reasoning with model merging, 2025.
URL https://arxiv.org/abs/2503.20641.

Xiao, G., Lin, J., Seznec, M., Wu, H., Demouth, J., and Han,
S. Smoothquant: Accurate and efficient post-training
quantization for large language models. In International
Conference on Machine Learning, pp. 38087–38099.
PMLR, 2023a.

Xiao, G., Tian, Y., Chen, B., Han, S., and Lewis, M. Ef-
ficient streaming language models with attention sinks.
arXiv preprint arXiv:2309.17453, 2023b.

5

https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2501.16154
https://huggingface.co/datasets/HuggingFaceH4/MATH-500
https://huggingface.co/datasets/HuggingFaceH4/MATH-500
https://huggingface.co/datasets/HuggingFaceH4/aime_2024
https://huggingface.co/datasets/HuggingFaceH4/aime_2024
https://arxiv.org/abs/2211.17192
https://arxiv.org/abs/2502.04420
https://arxiv.org/abs/2502.04420
https://arxiv.org/abs/2505.14183
https://arxiv.org/abs/2505.17155
https://arxiv.org/abs/2505.17155
https://arxiv.org/abs/2503.20641

Yang, A., Li, A., Yang, B., Zhang, B., Hui, B., Zheng, B.,
Yu, B., Gao, C., Huang, C., Lv, C., Zheng, C., Liu, D.,
Zhou, F., Huang, F., Hu, F., Ge, H., Wei, H., Lin, H., Tang,
J., Yang, J., Tu, J., Zhang, J., Yang, J., Yang, J., Zhou,
J., Zhou, J., Lin, J., Dang, K., Bao, K., Yang, K., Yu, L.,
Deng, L., Li, M., Xue, M., Li, M., Zhang, P., Wang, P.,
Zhu, Q., Men, R., Gao, R., Liu, S., Luo, S., Li, T., Tang,
T., Yin, W., Ren, X., Wang, X., Zhang, X., Ren, X., Fan,
Y., Su, Y., Zhang, Y., Zhang, Y., Wan, Y., Liu, Y., Wang,
Z., Cui, Z., Zhang, Z., Zhou, Z., and Qiu, Z. Qwen3
technical report. arXiv preprint arXiv:2505.09388, 2025.

Yuan, J., Gao, H., Dai, D., Luo, J., Zhao, L., Zhang, Z.,
Xie, Z., Wei, Y. X., Wang, L., Xiao, Z., Wang, Y., Ruan,
C., Zhang, M., Liang, W., and Zeng, W. Native sparse
attention: Hardware-aligned and natively trainable sparse
attention, 2025. URL https://arxiv.org/abs/
2502.11089.

Zhang, X., Ruan, J., Ma, X., Zhu, Y., Zhao, H., Li, H., Chen,
J., Zeng, K., and Cai, X. When to continue thinking:
Adaptive thinking mode switching for efficient reason-
ing, 2025. URL https://arxiv.org/abs/2505.
15400.

Zhang, Z., Sheng, Y., Zhou, T., Chen, T., Zheng, L., Cai,
R., Song, Z., Tian, Y., Ré, C., Barrett, C., et al. H2o:
Heavy-hitter oracle for efficient generative inference of
large language models. Advances in Neural Information
Processing Systems, 36, 2024.

Zheng, L., Yin, L., Xie, Z., Sun, C., Huang, J., Yu, C. H.,
Cao, S., Kozyrakis, C., Stoica, I., Gonzalez, J. E., Bar-
rett, C., and Sheng, Y. Sglang: Efficient execution
of structured language model programs, 2024. URL
https://arxiv.org/abs/2312.07104.

6

https://arxiv.org/abs/2502.11089
https://arxiv.org/abs/2502.11089
https://arxiv.org/abs/2505.15400
https://arxiv.org/abs/2505.15400
https://arxiv.org/abs/2312.07104

A. Appendix: Prompts for Pre-judged reasoning and Fallback Reasoning
A.1. Prompt for Pre-judged Reasoning

Table 3 presents the prompt for Pre-judged Reasoning, specifically designed for DeepSeek-R1-14B. For Qwen3-32b, the
prompt is similar, with the only modification being the replacement of the special tokens.

Variable Name Prompt Template
Prompt for Pre-judge <|User|> You are a math problem solver.

For the following question, determine if it requires slow thinking
or can be solved quickly.
You do not need to give me any explanation, just give me a json
with the following keys: require_slow_thinking.
For example: {"require_slow_thinking": true}
Here is the question:
question
<|Assistant|> <think> \n </think>

Prompt for Fast Thinking <|User|> You are a math problem solver.
You are a math problem solver. For the following question, solve
it using your direct answering ability.
Here is the question:
question
<|Assistant|> <think> \n </think>

Prompt for Reasoning <|User|> You are a math problem solver.
You are a math problem solver. For the following question, solve
it using your reasoning ability.
Here is the question:
question
<|Assistant|> <think>

Table 3. Pre-judge Reasoning Prompts used for DeepSeek-R1-14B

A.2. Prompt for Fallback Reasoning

Table 4 presents the prompt for Fallback Reasoning, specifically designed for DeepSeek-R1-14B. For Qwen3-32b, the
prompt is similar, with the only modification being the replacement of the special tokens.

Variable Name Prompt Template
Prompt for Fast Thinking <|User|> You are a math problem solver.

You are a math problem solver. For the following question, solve
it using your direct answering ability.
Here is the question:
question
<|Assistant|> <think> \n </think>

Prompt for Reasoning <|User|> You are a math problem solver.
You are a math problem solver. For the following question, solve
it using your reasoning ability.
Here is the question:
question
Here is an example from your previous trial, note that the answer
may not be correct, it is just provied for your reference:
output of fast thinking
<|Assistant|> <think>

Table 4. Fallback Reasoning Prompts used for DeepSeek-R1-14B

B. An Example of Pre-judged Reasoning
Table 5 provides an example of Pre-judged Reasoning applied to the MATH-500 dataset, using DeepSeek-R1-14B. In this
example, the Pre-judgement process correctly identifies the need for slow thinking (reasoning) to solve the problem. We
then compared the results of direct thinking and reasoning. As shown, the direct reasoning approach made a computational
error, leading to an incorrect answer, while the reasoning approach provided the correct solution. This example demonstrates
that LRMs are capable of accurately assessing the need for reasoning intervention based on their own capabilities and the
complexity of the task, further validating the effectiveness of Pre-judged Reasoning.

7

Variable Name Prompt Template
Question What is the sum of the digits in the terminating decimal

representation of the fraction 4321
57·28 ?

Canonical Answer 14

Pre-judgement Output {"require_slow_thinking": true}

Fast thinking Output To find the sum of the digits in the terminating decimal
representation of the fraction 4321

57·28 , follow these steps:

First, recognize that 57 ·28 can be rewritten to have a common base for
both factors:
57 · 28 = 27 · (2 · 5)7 = 27 · 107
So, the fraction becomes:
4321

27·107
To convert the fraction into a decimal, adjust it so that the
denominator is a power of 10:
4321

27·107 = 4321÷27

107

Calculate 27 = 128, so:
4321
128

= 33.6875

Now, place this result over 107 to form the decimal:
33.6875

107
= 0.0000336875

Identify all the digits in the decimal representation and sum them
up:
0 + 0 + 0 + 0 + 0 + 3 + 3 + 6 + 8 + 7 + 5 = 29
The sum of the digits is 29 .

Reasoning Output First, I need to simplify the fraction 4321
57×28

.

I notice that 57 and 27 can be paired to form 107, which is a power of
ten. This will help in converting the fraction into a decimal.
So, I rewrite the denominator as 107 × 2, since 28 = 27 × 2.
Next, I simplify the fraction by dividing both the numerator and the
denominator by 57 to get 4321

2
.

Performing the division, 4321÷ 2 = 2160.5.
Now, I convert this decimal into its terminating form: 2160.50000000.
Finally, I sum all the digits in this decimal representation:
2 + 1 + 6 + 0 + 5 + 0 + 0 + 0 + 0 + 0 = 14.

Table 5. Pre-judged Reasoning Example from DeepSeek-R1-14B

C. Frequency of Reasoning Triggered
Table 6 extends Table 2 with rows Reasoning Improvement Cases, Reasoning Triggered and Reasoning Beneficial.

Metrics GSM8K MATH500 AIME24

Deepseek-R1-14B Qwen3-32B Deepseek-R1-14B Qwen3-32B Deepseek-R1-14B Qwen3-32B

Fast Thinking Accuracy / #Tokens 0.722 / 169 0.931 / 147 0.594 / 375 0.610 / 392 0.100 / 1054 0.167 / 1576
Reasoning Accuracy / #Tokens 0.408 / 474 0.933 / 754 0.720 / 1981 0.834 / 3605 0.167 / 6164 0.433 / 7040
Pre-judged Reasoning Accuracy / #Tokens 0.632 / 280 -40.9% 0.933 / 437 -42.0% 0.708 / 1455 -26.6% 0.826 / 3072 -14.8% 0.167 / 5589 -9.33% 0.433 / 7040 0%

Fallback Reasoning Accuracy / #Tokens 0.726 / 166 -65.0% 0.934 / 149 -80.2% 0.710 / 1555 -21.5% 0.804 / 2740 -24.0% 0.233 / 5018 -18.59% 0.400 / 7000 -0.57%

Reasoning Improvement Cases 36 38 63 112 2 8

Pre-judged Reasoning

Reasoning Triggered 412 431 234 347 26 30
Reasoning Beneficial 36 21 26 30 2 8

Fallback Reasoning

Reasoning Triggered 9 3 174 218 27 30
Reasoning Beneficial 1 2 58 99 2 8

Table 6. The Reasoning Triggered row indicates when reasoning is activated. The Reasoning Beneficial row represents cases where our
method yields the correct answer, while Fast Thinking does not.

8

	Introduction
	Related Works
	Method
	Method 1: Pre-judged Reasoning
	Method 2: Fallback Reasoning

	Experimental Results
	Accuracy and Average Numbers of Tokens Generated on Two Methods

	Conclusion
	Appendix: Prompts for Pre-judged reasoning and Fallback Reasoning
	Prompt for Pre-judged Reasoning
	Prompt for Fallback Reasoning

	An Example of Pre-judged Reasoning
	Frequency of Reasoning Triggered

