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ABSTRACT

Approximate second-order optimization methods have gained attention due to their
low computational and memory overhead. While these methods have the potential
to accelerate neural network training, they often exhibit poorer generalization com-
pared to first-order approaches. To address this limitation, we first analyze existing
second-order methods through the lens of the loss landscape, demonstrating that
their reduced generalization performance is somewhat attributed to the sharpness
of the solutions they converge to. In response, we introduce SASSHA, a novel
approach designed to enhance generalization by explicitly reducing sharpness. In
fact, this sharpness minimization scheme is designed to accommodate lazy and
stable Hessian updates, so as to secure efficiency and robustness besides flatness.
To validate its effectiveness, we conduct a wide range of deep learning exper-
iments including standard vision and language tasks, where SASSHA achieves
competitive performance. Notably, SASSHA demonstrates strong generalization in
noisy data settings and significantly outperforms other methods in these scenarios.
Additionally, we verify the robustness of SASSHA through various ablation studies.

1 INTRODUCTION

—+— SGD

Recently, second-order methods have been gaining interest due a4 |-
to their potential to accelerate the training process (Yao et al., o7 fdapiesson
2021; Liu et al., 2024; Gupta et al., 2018). Through various

techniques for efficient estimation of the second-order deriva-
tives, these approximate second-order methods have achieved
faster training with minimal computation and memory over-
head compared to their first-order counterparts.

However, contrary to their convergence benefits, recent stud- N

ies hint at a potentially harmful effect of second-order opti- ﬁ\

mization on generalization. Wadia et al. (2021) argues that

second-order optimization impairs generalization by whitening  Fjgure 1: Motivating toy example.
the data. Amari et al. (2021) suggests a more nuanced view; SAsSHA converges to flatter min-
while second-order methods generalize worse under typical  jma compared to other approximate
conditions, they generalize more robustly in the presence of la-  second-order optimizers.

bel noise. Similar observations on deteriorated generalization

have also been widely reported for adaptive methods, a closely related class of optimizers that employ
preconditioners (Wilson et al., 2017; Zhou et al., 2020; Zou et al., 2022). Despite these observations,
there has not been much effort to recover the generalization performance of these optimizers.

Improving generalization remains a central challenge in machine learning, prompting extensive
research to better understand underlying factors (Zhang et al., 2017; Neyshabur et al., 2017a). Recent
studies have revealed a strong correlation between the flatness of minima and their generalization
capabilities (Keskar et al., 2017), spurring the development of optimization techniques aimed at
inducing flat minima (Chaudhari et al., 2017; Izmailov et al., 2018; Foret et al., 2021; Orvieto et al.,
2022). This line of inquiry has also inspired analyses that attribute the poor generalization of adaptive
methods to their tendency to converge to sharp minima (Zhou et al., 2020). Consequently, this raises



Under review as a conference paper at ICLR 2025

an important question: to what type of minima do approximate second-order optimizers converge,
and is there potential for improving their generalization performance?

To answer these questions, we first measure the sharpness of different second-order optimizers
under various definitions of sharpness, finding that these methods converge to significantly sharper
minima compared to stochastic gradient descent (SGD). To improve this, we propose SASSHA—
Sharpness-aware Adaptive Second-order optimization with Stable Hessian Approximation—designed
to enhance the generalization of approximate second-order methods efficiently (See Figure 1). Our
approach incorporates techniques to stabilize the training dynamics while reducing the computational
cost of Hessian approximations. We evaluate SASSHA across diverse vision and natural language
tasks, demonstrating that it achieves strong performance relative to existing approximate second-order
methods. Moreover, SASSHA shows superior robustness to label noise compared to other practical
second-order optimizers and sharpness-aware minimization techniques (Foret et al., 2021). Finally,
we conduct a series of ablation studies to provide a comprehensive analysis of our method.

2 RELATED WORKS

Second order optimization for deep learning First-order methods such as Stochastic Gradient
Descent (SGD) are popular optimization methods for deep learning due to their low per-iteration cost
and good generalization (Hardt et al., 2016). However, these methods have two major drawbacks;
slow convergence under ill-conditioned landscapes and high sensitivity to hyper-parameter choices
such as learning rate (Demeniconi & Chawla, 2020). Adaptive methods (Duchi et al., 2011; Hinton
etal., 2012; Kingma & Ba, 2015) propose using empirical Fisher-type preconditioning to alleviate
these issues, though recent studies suggest their insufficiency to do so (Kunstner et al., 2019). This has
led to recent interest in developing efficient second-order methods tailored for large-scale problems
such as Hessian-Free Inexact Newton methods (Martens et al., 2010; Kiros, 2013), stochastic quasi-
Newton methods (Byrd et al., 2016; Gower et al., 2016), Gauss-Newton methods (Schraudolph,
2002; Botev et al., 2017), natural gradient methods (Amari et al., 2000), and Kronecker-factored
approximations (Martens & Grosse, 2015; Goldfarb et al., 2020). However, a further need for a much
scalable second-order optimizer for various large-scale deep learning scenarios has led to much recent
focus on using diagonal scaling methods (Bottou et al., 2018; Yao et al., 2021; Liu et al., 2024).

Sharpness minimization for generalization The relationship between the geometry of the loss
landscape and the generalization ability of neural networks was first discussed in the work of
Hochreiter & Schmidhuber (1994), and the interest in this subject has persisted over time. Expanding
on this foundation, subsequent studies have explored the impact of flat regions on generalization both
empirically and theoretically (Hochreiter & Schmidhuber, 1997; Keskar et al., 2017; Dziugaite &
Roy, 2017; Neyshabur et al., 2017b; Dinh et al., 2017; Jiang et al., 2020). Motivated by this, various
approaches have been proposed to achieve flat minima such as regularizing local entropy (Chaudhari
et al., 2017), averaging model weights (Izmailov et al., 2018), explicitly regularizing sharpness by
solving a min-max problem (Foret et al., 2021), and injecting anti-correlated noise (Orvieto et al.,
2022), to name a few. In particular, the sharpness-aware minimization (SAM) (Foret et al., 2021) has
attracted significant attention for its strong generalization performance across various domains (Chen
et al., 2022; Bahri et al., 2022; Qu et al., 2022) and its robustness to label noise (Baek et al., 2024).
Nevertheless, to our knowledge, the sharpness minimization scheme has not been studied to enable
second-order methods to find flat minima as of yet.

3 PRACTICAL SECOND-ORDER OPTIMIZERS CONVERGE TO SHARP MINIMA

Second-order optimizers have seen rising interest in the deep learning community, and yet, crucial
properties of their optimization process remain largely underexplored compared to their first-order
counterparts. In particular, SGD and its bias towards the minima of low sharpness have been studied
extensively in recent years, which has revealed a strong correlation with its remarkable generalization
performance (Keskar et al., 2017; Ghorbani et al., 2019; Wu et al., 2022; Xie et al., 2020). This raises
the following question: what minima do second-order optimizers prefer, and how do they correlate
with their generalization capability? In this section, we examine through various sharpness metrics
employed in recent studies and analyze their correlation with generalization performance.

To measure sharpness, we introduce four metrics frequently used in the literature: maximum eigen-
value of the Hessian, the trace of Hessian, worst-case sharpness, and average sharpness (Hochreiter
& Schmidhuber, 1997; Jastrzebski et al., 2018; Xie et al., 2020; Du et al., 2022b; Chen et al.,
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Table 1: Sharpness measurements in terms of the maximum eigenvalue \,,q.(H) and the trace
tr(H) of Hessian, worst-case sharpness ¢ Lworst, and average sharpness ¢ L.y, alongside with the
generalization error Ly, — Lyain and the validation accuracy Accy, of the solution found by six
different optimizers on ResNet-32 trained on CIFAR-100. Approximate second-order optimizers
tend to yield minima of high sharpness and worse generalization compared to SGD; SASSHA and
M-SASSHA effectively recover this. We provide more results for other workloads from Table 2 in
Appendix A where we find the same trends.

Sharpness Generalization

/\maa:(H) tI(H) x103 5Lw0rsl 6Lavg>< 10-3 Lva] - L&rain Accva] (%)
SGD 265125 7.2940.30 0.703+0.132 1.3141.03 1.02710.013  69.32040.19
Sophia-H 22797 10857 68.15.20.19 8.1343.082 19194638 1.25110.020 67.760+0.37
AdaHessian 11992 5779 46.94+17 60 411941 136 12.50.16.08 0.982.:0.026  68.060-0.22
Shampoo 43637419017  6823.341664.65 73.2T112506 49307489 156079704  0.50810.07  64.077+0.46
M-SASSHA 382165 8.75.10.31 2.391.40.425 2.26.+1.66 0.628.0.010  70.9310.21
SASSHA 107 440 1.8710.65 0.238.0.088 0.65.10.56 0.425:0.001  72.14340.16
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Figure 2: Loss landscape of minima found by each optimizer on ResNet-32/CIFAR-100 in the
direction of dominant eigenvalues. Second-order optimizers can yield minima of extreme sharpness
compared to SGD, while SASSHA and M-SASSHA reaches much flatter solution.

2022). The maximum eigenvalue Ay,.x(H) and the trace tr(H) of the Hessian are often used as
standard mathematical measures for the worst-case and the average curvature computed using the
power iteration method and the Hutchinson trace estimation, respectively. The other two mea-
sures of sharpness are based on the perturbation sensitivity of the loss (L(z* 4 €) — L(x*)), where
the worst-case sharpness (0 Lyors) is computed with the perturbation maximizing the first-order
approximation of the loss function as arg max <, L(z* + €) = pVL(z*)/||VL(z*)|, whereas
the average sharpness (dL,,,) averages the loss difference over Gaussian random perturbation as
E.nr0,1)[L(x* + pz/||z||) — L(x*)]. Here we choose p = 0.1 for the scale of the perturbation.

With these, we measure the sharpness of minima found by three approximate second-order optimizers
designed for deep learning; Sophia-H (Liu et al., 2024), AdaHessian (Yao et al., 2021), and Shampoo
(Gupta et al., 2018), which we compare to SGD along with our methods, SASSHA and M-SASSHA,
on ResNet-32 trained on CIFAR-100. To assess the degree of generalization of these solutions, we
also compute the generalization error in terms of loss (i.e., AL = Ly — Lymin) and the validation
accuracy. All experiments are run over three different seeds. We report the results in Table 1.

We observe that existing second-order optimizers can produce solutions with significantly higher
sharpness compared to SGD, SASSHA, and M-SASSHA across all definitions of sharpness, which
also correlates well with their generalization error. We also visualize the loss landscape of ResNet-32
trained with each optimizer using in the direction of dominant eigenvectors, where we observe sharp
minima for second-order optimizers (see Figure 2).
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4 SASSHA: SHARPNESS-AWARE ADAPTIVE SECOND-ORDER OPTIMIZATION
WITH STABLE HESSIAN APPROXIMATION

In the previous section, we observe that the generalization error of approximate second-order methods

correlates with the sharpness of the solution. Based on this observation, we propose to incorporate

sharpness minimization to improve the generalization of these approximate second-order methods. In
the upcoming sections, we present a detailed explanation of various techniques used in SASSHA.

4.1 SHARPNESS-AWARE SECOND-ORDER OPTIMIZATION

Many studies have pursued to minimize sharpness during the training process (Chaudhari et al.,
2017; Izmailov et al., 2018; Foret et al., 2021; Orvieto et al., 2022). Among them, Foret et al. (2021)
propose taking an explicit formulation, which consists of minimizing the objective f within the whole
neighborhood of p-ball through the following min-max problem:

min max f(x + €), 1

z€ER? He\lzépf( ) M
where we essentially minimize a slightly perturbed objective within each point in the parameter space
to reflect the sharpness of the objective on each position.

Based on this, we construct our sharpness minimization technique for second-order optimization as
follows. We first follow a similar procedure as Foret et al. (2021) by solving for € on the first-order
approximation of the objective, which exactly solves the dual norm problem as follows:

x T o T - Vf(xt)
i = agmax flw) + e Vf(n) = agmaxe V) = oG

We plug this back to yield the following perturbed objective function:
o V() >
IVf(oll2 /)

which shifts the point of the approximately highest function value within the neighborhood to the
current iterate. This essentially penalizes the objective by sharpness; i.e. the more drastic the function
changes within the neighborhood of the current iterate, the stronger the penalization becomes.

@

filw) = f (a: +

With this sharpness-penalized objective, we proceed to make a second-order Taylor approximation:

ZT¢r1 = argmin ft (z¢) + Vft (xt)T (x — ) + (v — xt)Tﬁt (z¢) (x — ), 3)

where H; denotes the Hessian of f;. Using the first-order optimality condition, we derive the basis
update rule for our sharpness-aware second-order optimizer:

Ti41 = T — ﬁt ((L’t)il Vft (l't)

:xt—H(xt+pm>lw<xt+pM)’

where H denotes the Hessian of the original objective function f. Here, instead of directly computing
the exact Hessian which is prohibitively expensive, we employ the diagonal approximation of the
Hessian estimated via Hutchinson’s method (denoted as H) with the exponential moving average,

which is a standard practice in deep learning since it only requires one additional backpropagation
(Yao et al., 2021; Liu et al., 2024).

“

4.2 IMPROVING STABILITY

Avoiding critical points The objective of training deep neural networks is known to be highly
non-convex with saddle points and local maxima (Dauphin et al., 2014; Choromanska et al., 2015).
One problem that arises from naively applying the approach of Section 4.1 to a non-convex objective
is that it can ascend in the directions of negative Hessian eigenvalues towards saddle points or local
maxima, due to the first-order optimality condition being valid only when all stationary points are
minima. While this classical issue of naive second-order optimizers has led to the introduction of
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various techniques such as damping (Levenberg, 1944; Marquardt, 1963), positive semi-definite
approximations (Amari et al., 2000), clipping (Nocedal & Wright, 1999; Liu et al., 2024), cubic
regularization (Nesterov & Polyak, 20006), etc., we follow prior works of Becker et al. (1988); Yao
et al. (2021) to apply the absolute function to adjust the negative entries of the diagonal Hessian to be
positive, i.e.

d
i=1

where H s and e; are the i diagonal entry of the approximate diagonal Hessian and the i standard
basis vector, respectively. Here the basic idea is that inverting the sign of the negative eigenvalues
will turn saddle points into repellers while achieving the same optimal rescaling as Newton’s method
(Nocedal & Wright, 1999; Murray, 2010; Dauphin et al., 2014; Wang et al., 2013), which we directly
apply to our diagonal Hessian approximation. We empirically validate the effectiveness of this
approach via ablation studies in Appendix G.1.

Alleviating divergence Diagonal Hessian estimations are known to sometimes yield overly large
steps when they underestimate the curvature (Dauphin et al., 2015). While this generally applies to
all approximate second-order optimizers, this instability seems to be more present under sharpness
minimization. We believe this is due to smaller top Hessian eigenvalue \; from sharpness minimiza-
tion (Agarwala & Dauphin, 2023; Shin et al., 2024) yielding smaller estimated diagonal entries on

average:
d d d
1L -] 1 o w(H) 1

E|(-)» Hy|=-=) EH|;= == N< Ay,

P = e =

which pushes them closer to zero yielding numerical instabilities during inversion in tandem with
curvature underestimations, causing increased training failures. To address this issue, we propose

square rooting the Hessian preconditioner, i.e., H |1/ 2. Tts benefit can be understood from two
perspectives. First, the square root can alleviate instability from near-zero diagonal Hessian entries
by selectively increasing the magnitude of the near-zero diagonal Hessian entries in the denominator
(e, h < Vhif 0 < h < 1). Also, it can be interpreted as geometrically interpolating the
preconditioning matrix toward the identity matrix (lim,_,g H® = I), making the optimizer more
akin to unpreconditioned first-order methods (Amari et al., 2021). This adjustment weakens the
dependency of the optimizer on the preconditioner and helps suppress the influence of any pathological
estimations that may occur. We present an empirical analysis of our square-rooted preconditioning in
Section 6.1.

4.3 IMPROVING EFFICIENCY VIA LAZY HESSIAN UPDATE

While the diagonal Hessian estimator introduced in Section 4.1 significantly reduces the Hessian
computations, it still requires at least twice as much backpropagation compared to gradient-based
methods. Here we attempt to further alleviate this by lazily computing the Hessian every k steps:

b {/321)“ + (1= Bo)|H(zi +¢)] 1if t mod k=1
t — .
D4 otherwise

(6)

where D; and (35 are the moving average of the Hessian and its hyperparameter. This reduces the
overhead from additional Hessian computation by 1/k (see Appendix G.3 for detailed cost analysis).
Across all evaluations in Section 5 except for language finetuning, we reuse the Hessian estimate for
k = 10 iterations.

However, extensive Hessian reusing will lead to significant performance degradation since it would
no longer accurately reflect the current curvature (Doikov et al., 2023). Interestingly, SASSHA is
quite resilient against prolonged reusing, keeping its performance relatively high over longer Hessian
reusing compared to other approximate second-order methods. Our investigation reveals that along the
trajectory of SASSHA, the Hessian tends to change less frequently over a given number of iterations
compared to existing alternatives. We hypothesize that the introduction of sharpness minimization
plays an integral role in this phenomenon by biasing the optimization path toward regions with lower
curvature change, allowing the prior Hessian to remain relevant over more extended steps. We provide
a detailed empirical analysis of the lazy Hessian updating in Section 6.2.
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Table 2: Image classification results of various optimization methods in terms of final validation
accuracy (mean=std) across different models on the CIFAR-10, CIFAR-100, and ImageNet. SASSHA
consistently outperforms others in all settings.

CIFARI10 CIFAR100 ImageNet
ResNet-20 ResNet-32 ResNet-32  WRN-28-10  ResNet-50 ViT-s-32
SGD 92.02710.320  92.69310.06 69.32010.19  80.06310.15  75.58110.05 62.90410 36
AdamW 92-040+(J,11 92.420+(]_1;; 68.783+()_22 79.090+(ng;5 75.375A(),(]g 66.459+()_1j
AdaHessian 92'003i0. 17 92.4831(;_ 15 68‘060i(;_22 76.917i()_20 73.640:()_ 16 66.417i[|_2;§
Sophia-H 91.814:007 919851008 067.760037 79.353+1024  72.0641049 62.436+0.36
Shampoo 88.5471()&43 90‘2271()‘24 64.0771()_4@ 74063i 1.28 * *
SASSHA 92983005 94.093.,., 72143, ¢ 83.543. ) o3 76.429. 15 69.195. 3
M-SASSHA  92.363 ., 93.177.,4, 170.930,,, 81.533 ., 76.004.,,, 68.038,, ,
*Omitted due to computation/memory requirements exceeding available resources.
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Figure 3: Image classification results for various optimization methods in terms of validation accuracy
curve across different models on the CIFAR-10, CIFAR-100, and ImageNet. SASSHA consistently
outperforms others in all settings.

4.4 FURTHER EXTENSION AND ANALYSES

We further provide simple extensions and supplementary analyses:

1. M-SASSHA, a simple extension to SASSHA that removes additional gradient computation in
sharpness minimization and achieves computational costs comparable to first-order methods, is
provided in Appendix B.

2. An algorithm table for SASSHA, along with comparisons to other approximate second-order
methods, is provided in Appendix C.

3. A preliminary convergence analysis of SASSHA is provided in Appendix D.

5 EVALUATIONS

In this section, we compare SASSHA against existing approximate second-order optimizers and
demonstrate its superior generalization capabilities. To achieve this, we conduct extensive evaluations
across multiple domains, including vision and natural language tasks, as well as under challenging
conditions such as label noise for image classification. Specifically, we first compare SASSHA to the
following baselines: AdaHessian (Yao et al., 2021), Sophia-H (Liu et al., 2024), AdamW (Loshchilov
& Hutter, 2018), Shampoo Gupta et al. (2018), and SGD. We describe experiment settings in detail in
Appendix E.
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Table 4: Language finetuning results for various optimizers on SqueezeBERT evaluate on the
GLUE benchmark. SASSHA achieves better results than AdamW and AdaHessian and compares
competitively with Sophia-H.

CoLA SST-2 MRPC STS-B QQP MNLI QNLI RTE

M corr. Acc Acc / F1 S/P corr. Fl / Acc mat/m.mat Acc Acc

AdamW 48.63 90.25 86.27/90.21  88.36/88.40 86.63 / 89.96 81.20/82.20 90.13  70.04
AdaHessian 48.36 90.60 86.52/90.43  88.72/89.01 87.41/90.65 81.15/82.10  90.02  71.12
Sophia-H 49.12 9232 86.03/90.19  88.87/89.13 87.70/90.84  81.68/ 82.54  90.26  72.56
SASSHA 47.19 91.51 87.75/91.23 89.29 / 89.66 87.93 / 91.00 81.74 /82.12 89.86  73.29
M-SASSHA 48.84 91.28 89.23/92.22  88.29/88.39 87.91/90.97 81.64/82.09 89.84 72.92

5.1 IMAGE CLASSIFICATION

We evaluate SASSHA in comparison to other optimizers on image classification tasks on CIFAR-10,
CIFAR-100, and ImageNet datasets (Deng et al., 2009). We train various models including ResNet-20,
ResNet-32, ResNet-50 (He et al., 2016), WideResNet-28-10 (WRN-28-10) (Zagoruyko & Komodakis,
2016) and ViT-s-32 (Beyer et al., 2022). We use standard inception-style data augmentations during
training without the use of advanced data augmentation techniques (DeVries & Taylor, 2017) or
regularization methods (Gastaldi, 2017; Yamada et al., 2019) to focus exclusively on the effect of
sharpness minimization. Results are presented in Table 2 and Figure 3. Additionally, we provide the
validation loss curves in Appendix F for further insight.

We find that our method achieves the best validation performance across all settings. Particularly,
SASSHA achieves a 1% to 4% increase in performance compared to best-performing adaptive or
second-order optimizers. Also, M-SASSHA outperforms approximate second-order optimizers by
0.3% to 2% with twice as less computational overheads.

5.2 LANGUAGE PRETRAINING

A recent study has demonstrated the potential of approximate second-
order methods on pretraining language models (Liu et al., 2024), a
core task in modern machine learning for constructing large-scale
foundational models. Motivated by this, here we examine how
SASSHA compares with existing optimizers on language model pre-

Table 3: Language pretrain-
ing results. SASSHA achieves
lower perplexity compared to
other second-order methods.

training. Specifically, we train GPT1-mini, a scaled-down variant Optimizer ~ Perplexity |
of GPT1 (Radford et al., 2019) with four attention layers instead of AdamW 175.06
the original twelve, with SASSHA and various baseline optimizers AdaHessian 407.69
on the next word prediction task of Wikitext-2 dataset (Merity et al., Shampoo 1727.75
2022) and compare the final test perplexity (refer to Appendix E for Sophia-H 125.60
detailed experimental settings). The results are presented in Table 3. SASSHA 122.40
Our results show that SASSHA achieves the lowest perplexity among M-SASSHA 125.01

all methods, with M-SASSHA following closely, highlighting im-
proved language modeling capabilities. In addition, unlike Sophia-H, the leading baseline, whose
performance is largely restricted to its intended language domains (Liu et al., 2024), SASSHA also
proves highly effective in image classification (see Table 2).

5.3 LANGUAGE FINETUNING

To comprehensively evaluate SASSHA, we extend our experiments to include eight diverse tasks from
the GLUE benchmark (Wang et al., 2018). We finetune SqueezeBERT (Iandola et al., 2020) on these
tasks and report the final performance on the development set, as presented in Table 4. Our method
achieves higher scores compared to other optimizers across nearly all tasks. Notably, M-SASSHA
exhibited better performance than AdamW (Loshchilov & Hutter, 2018), the standard optimizer for
finetuning language models, on several tasks—even though M-SASSHA has a computational cost
similar to AdamW. Additionally, SASSHA records higher scores than Sophia-H (Liu et al., 2024), an
optimizer specialized for language models, on many tasks.
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Table 5: Robustness to label noise. Here we measure the validation accuracy under various levels of
label noise using ResNet-32 trained on CIFAR-100 and CIFAR-10. SASSHA and M-SASSHA shows
much robust performance under label noise.

CIFAR-100 CIFAR-10

Noise level 20% 40% 60% 20% 40% 60%

SGD 62.18.10.06 55781055 45.531078  89.9140.87 87.26.0.4 82.72.1 59
SAM 65.53 41011 61.20, .7 51.934047 92274, 90.11 1 55 85.79 1 50
Sophia-H 62.3410.47 56.541008  45.3T+027  89.9340.001 87.30+0.51 82.7841.43
AdaHessian  63.06+0.05 58.37+0.13 46.0211.096  90.11:0001  86.8840.004 83.2540.004
Shampoo 58.8510.66 53.821071 42914099 88141029 85151061  81.1610.30
SASSHA 66.78i(),_17 61.97i(]_27 53.98i(}g7 92.49i().1 1 90.29i[}. 11 86'50i0.()b’
M-SASSHA 66‘10i0.26 61.13.10 98 52'45i(l.3'1 91.27 .31 88.85.1 (.31 85.1710.94

5.4 ROBUSTNESS TO LABEL NOISE

We evaluate the robustness of our method against label noise (Natarajan et al., 2013), a common
issue in real-world scenarios where the training data is incorrectly labeled. To this end, we compare
the validation performance of different optimizers on ResNet-32 trained with the CIFAR datasets
under various noise levels. The results, summarized in Table 5, show that SASSHA outperforms other
optimizers across all noise levels with minimal accuracy degradation; at most outperform by 8% in
60% noise ratio compared to SGD.

Interestingly, our method surpasses SAM (Foret et al., 2021), which is known to be one of the most
robust techniques against label noise (Baek et al., 2024). We hypothesize that SASSHA’s superior
robustness stems from the combined benefits of SAM and second-order methods. Specifically, SAM
enhances robustness by applying adversarial perturbations to the weights and giving more importance
to clean data during optimization, making the model more resistant to label noise (Foret et al., 2021;
Baek et al., 2024). Also, recent research indicates that second-order optimizers are robust to label
noise (Amari et al., 2021) due to appropriate preconditioning that reduces the variance caused by label
noise in the population risk. We believe these two complementary mechanisms work synergistically
within SASSHA to enhance its robustness.

6 ABLATIONS

6.1 STABILIZING EFFECT OF SQUARE-ROOT

In this study, we examine the stabilizing effect of the square-root function on SASSHA. Precisely,
we conduct multiple runs of SASSHA without the square-root (No-Sqgrt) over different random
seeds for training ResNet-32 on CIFAR-100, which reveals instances where the training loss diverges.
To gain further insight into this phenomenon, we measure the update size and the preconditioned
step size (i.e., |[pD Y| #, where D is either |H|*/2 or |H| and || - ||  denotes the Frobenius norm)
of each iteration, along with the density of the diagonal precondition entry values D;; at step 100
to 250. Results are presented in Figure 4. We first observe that the training loss diverges precisely
when the update size (Figure 4b), particularly the preconditioned step size (Figure 4c), starts to spike
around step 200, suggesting that the preconditioner reaches some critical condition at this point.
Further investigation into individual preconditioner entries (Figure 4d) reveals that this is likely due
to a progressive increase in near-zero diagonal Hessian entries from the sharpness minimization
penalizing the Hessian eigenvalues, which could have caused instability when the preconditioner is
inverted. With the inclusion of the square-root, we can see that the values within the preconditioner
are less situated near zero, effectively suppressing the risk of large updates thereby stabilizing the
training process.

6.2 ANALYZING LAZY HESSIAN UPDATING

Effect of Hessian update interval £k Here we compare how different approximate second-order
optimizers, specifically SASSHA, AdaHessian, and Sophia-H, perform under different levels of lazy
updating on ResNet-32 trained on CIFAR-100. We vary the update interval k from 1 to 100 and see
how each optimizer performs. As shown in Figure 5a, SASSHA consistently outperforms across all
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Figure 4: Effect of square root on (a) the train loss, (b) the update size, (c) the preconditioned step
size, and (d) the distribution of preconditioner values of SASSHA without the square-root (No—-Sqrt)
and the original SASSHA on ResNet-32/CIFAR-100. The sharpness-minimization alone in No—-Sqgrt
drives diagonal Hessian values towards zero, leading to divergent behaviors. The square-root helps
counteract this effect, thereby stabilizing the training of SASSHA.
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Figure 5: Effect of sharpness minimization on lazy Hessian training for ResNet-32 trained on CIFAR-
100. (a) Ablation of Hessian update interval for SASSHA, SASSHA without sharpness minimization
and square-root (Baseline), AdaHessian, and Sophia-H. SASSHA remains effective even with a
Hessian update interval of 100. (b) the local Hessian sensitivity from Equation (7) and (c) The norm
of the difference of Hessian between every 10 iterations. SASSHA mostly stays within the region
where the Hessian is less sensitive.

update intervals, followed by Sophia-H by a margin of almost 5% accuracy difference. AdaHessian
is the most vulnerable under lazy Hessian update, showing a rapid decline in performance even with
small intervals.

Sharpness minimization can improve lazy Hessian training Why would SASSHA be so robust
under a lazy Hessian update? We first reasonably assume that this is due to the presence of sharpness-
minimization, as it is the primary component differentiating SASSHA from other approximate
second-order optimizers. To verify our hypothesis, we perform the same ablation on the Hessian
update interval on the SASSHA without sharpness minimization (Baseline'), which we report
in Figure 5a. We indeed observe that Baseline doesn’t perform as well as SASSHA under lazy
Hessian training, showing similar performance to AdaHessian.

Furthermore, we hypothesize that sharpness minimization aids the lazy Hessian update by biasing
the optimization path toward the region of low curvature sensitivity. To quantify this, we define
local Hessian sensitivity as the maximum change in Hessian induced from normalized random

perturbations:
~ 5 ~
H <x+p> — H(z)
1612

where z, d, p, and || - || each denotes a point on the optimization path, the Gaussian random
perturbation, the length of the normalized perturbation, and the Frobenius norm, respectively. A
smaller Hessian sensitivity would suggest reduced variability in the loss curvature, leading to greater
relevance of the current Hessian for subsequent optimization steps.

)

max
SN (0,1)

F

'We also remove the square root, as its purpose of stabilization is relevant only in the context of employing
sharpness minimization.
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To check the sanity of Equation (7), we see if this aligns with a more direct measure of lazy
updatability: the Hessian difference between current Hessian and previous Hessian computed &
iteration earlier:

1H () = H(ze) |- ®)

An optimizer with a higher Hessian difference would mean that prior Hessian would easily be
outdated, making lazy updating harder to execute. We measure these two metrics with p = 0.1 and
k = 10 and report the results in Figure 5b and 5Sc.

Our results show that SASSHA keeps both of these metrics relatively low throughout most of the
training process, while Baseline yields higher Hessian differences. This low Hessian sensitivity
significantly improves the reusability of Hessian information compared to AdaHessian, which
supports our assumption. However, Sophia, despite its relatively robust lazy Hessian performance,
shows a high value of Hessian differences indicative of lower reusability. Interestingly, this difference
becomes much smaller when Sophia’s per-coordinate Hessian clipping technique is applied to it. This
supports the claim by Liu et al. (2024) that clipping, like SASSHA, is also a powerful technique that
helps with lazy Hessian updates.

6.3 COMPARISON WITH SAM

Thus far, our primary focus has centered on validating Table 6: SASSHA vs. SAM. SASSHA
the effectiveness of SASSHA in the context of approxi- achieves better performance than SAM
mate second-order optimization. While this remains the even when SAM is allocated more data
principal objective of our study, here we additionally com- budgets or longer training time.

pare SASSHA with SAM to highlight its potential bene-

fits. Specifically, we evaluate two versions of SAM with Epoch Time (s) Accuracy (%)
SGD and AdamW respectively as its base optimizers, and oo b 180 220852 65403100
compare them with SASSHA for training ViT-s-32 on Im-  gap,,.0 180 234374 68.706.0 1
ageNet. The results are provided in Table 6. First, we find
that SASSHA performs on par with or better than SAM,
even when SAM is given more data budgets or wall-clock training time. This is potentially due to
the benefit of the second-order scheme in SASSHA that accelerates the optimization process. Also,
we observe that SAM shows a performance discrepancy between different base optimizers. Notably,
one needs to select which base optimizer to use when employing SAM unlike SASSHA. Additional
comparisons on other models and datasets are presented in Appendix G.2.

SASSHA 90 123,948  69.195. 3

6.4 ADDITIONAL ABLATIONS

We provide more ablation results including the effect of the absolute function and a comprehensive
cost analysis of SASSHA and M-SASSHA in Appendix G.2.

7 CONCLUSION

In this work, we have addressed the poor generalization issue of approximate second-order methods
by proposing SASSHA, which explicitly minimizes sharpness within approximate second-order opti-
mization, achieving competitive performance for various standard deep learning tasks. Nonetheless,
there are many remaining possibilities for further improvements which may include, but are not
limited to, evaluating on a more extreme scale and other data distributions in different domains, and
developing theoretical properties such as convergence rate and implicit bias, all to more rigorously
confirm the value of SASSHA. Seeing it as an exciting opportunity, we are planning to investigate
further in future work.

REPRODUCIBILITY

We made extensive efforts to ensure that our experimental results are reproducible, including providing
comprehensive descriptions of all experimental configurations and hyperparameters (Appendix E),
details of the hardware used during training and evaluation (Appendix H), as well as the use of, and
providing links to, publicly available datasets and source codes for various algorithms used in our
experiments. After publication, we also plan to release our source code, which will include algorithm

10
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implementations, hyperparameter settings, dependencies, and hardware configurations necessary for
reproduction.
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A SHARPNESS MEASURES FOR OTHER SETTINGS

Table 7: The maximum Hessian eigenvalue A4, (H ), trace of Hessian tr(H ), worst-case sharpness
0 Lyorst, average sharpness 0 Ly, generalization error in terms of loss AL and accuracy Aacc of the
solution found by seven different optimizers on CIFAR-10/100. Second-order optimizers tend to yield
minima of high sharpness and worse generalization compared to SGD; SASSHA and M-SASSHA
effectively recover this.

Sharpness Generalization
Amaz (H) tr(H)x103 0 Lorst 0Lavgx10-3 AL(Lyy — Liain) AccCyyl
CIFAR-10
SGD 1071437 1.38.0.01 0.840.10 304 0.690.+0.39 0.2710.007 92.027 10 32
SAM 584008 0.73£0.04 0.17140.038 0.461 (.24 0.119.6.002 92.8470.07
Sophia-H 36061303 31.24 15 608 6.12041 634 18.11 44 0.28 10,009 91.814 .07
ResNet20 ~ AdaHessian 23048159932 189.48 1940 55 4.538 11 634 198.66 1 966 0.199.4.023 92.003 10,17
Shampoo 6470664419964 3899.5+ 1525 166.3-+458.0 2177189+ 1628003 0.203+0.017 88.54710.807
M-SAsSSHA 129,47 1.58.40.08 1.551 10684 1.025.0.36 0.112.9.008 92.363.+0.23
SASSHA 78.45.09 0.86+0.03 0.18410.053 0.3880.704 0.11719.003 92.983.10.05
SGD 56j:r) 10 0'80:“ 04 0560j:l' 219 0196:(] 146 0~299:(J 002 92693:(] 06
SAM 4545 67 0.58.10.02 0.107+0.005 0.753.0.351 0.128.0.001 93.893.0.13
Sophia-H 716719755 18.8245 50 9.399 15 983 7.915. 3 307 0.418..007 91.985 .08
ResNet32  AdaHessian 174611018 17.064 10,24 4.599¢ 74 5.518.13 603 0.253+0.006 92.483 .15
Shampoo 717553193129 4523 1629 7 162.14 1230 10532252246 0.269+0.005 90.227 10 238
M-SASSHA 283110 3.9610.10 2.986.41 133 1.300+0.969 0.0810.001 93.177+0.30
SASSHA 474188 0.59£0.02 0.136.+0.019 0.714.0.090 0.11240.001 94.09310.24
CIFAR-100

SGD 26525 7.29.0.30 0.7030.132 1314103 1.02710.013 69.32040.19
SAM 123,11 2.6310.09 0.26610.025 —0.619.0 594 0.51210.016 71.99310.20
Sophia-H 22797 110857 68.15190.19 8.13.43.082 19.19.6.38 1.25140.020 67.760+0.37
ResNet32  AdaHessian 1199215779 46.94 11760 411941 136 12.50+6.08 0.9821.026 68.060-0.22
Shampoo 436374 19017 6823.34 156465 7327110506 49307489 56979794 0.508.0.07 64.077 £0.46

M-SASSHA 38265 8.75.10.31 2.391.40.425 2.2611.66 0.628.0.010 70.93.10.21

SASSHA 107140 1.87+0.65 0.238.10.088 0.6510.86 0.425.0.001 72.14310.16

SGD 181117 0.6610.04 1.984 1) 506 —0.007 10,028 0.82040.005 80.063 10 15

SAM 9-+0.866 0.2320.01 0.841.40.084 0.024 10,011 0.648.0.006 82.560+0.15

Sophia-H 34193240 13.5715 30 5.073.410.268 0.06710.054 0.864+0.003 79.35310.24

WRN28-10  AdaHessian 3511940056 13953110005 6.74511 030 19.727 407 w6 1.005-0. 005 76.917 0.2
Shampoo 102129160722 1459.09.709 42 4831172 98.5581123.082 1.16810.072 74.063 11 279

M-SASSHA 22571048 30.40+4.78 4.59940.003 0.301+0.047 0.729-0.01 81.533-0.27

SASSHA 844315 2.0350.11 4.54040.122 0.007-0.120 0.603+0.002 83.5430.08

B M-SASSHA: EFFICIENT PERTURBATION

Having explored techniques to reduce the computational cost of second-order methods, here we con-
sider employing techniques to alleviate the additional gradient computation in sharpness-minimization.
Prior works have suggested different ways to reduce this computational overhead including infrequent
computations (Liu et al., 2022), use of sparse perturbations (Mi et al., 2022), or computing with
selective weight and data (Du et al., 2022a). In particular, we employ the approaches of Becker et al.
(2024), which uses the normalized negative momentum as the perturbation:

me—1

~ U lmealle”

*
€

©)
which entirely eliminates the need for additional gradient computation with similar generalization
improvement as the original SAM. We call this low-computation alternative as M-SASSHA and
evaluate this alongside SASSHA in Section 5, which shows much similar performance at the cost of
first-order methods like SGD or Adam.

C ALGORITHM COMPARISON

In this section, we compare our algorithm with other adaptive and second-order optimizers designed
for deep learning to better illustrate our contributions within concurrent literature. We present a
detailed comparison of each optimizer in Table 8.

Adam (Kingma & Ba, 2015) is an adaptive optimizer popular among practitioners, which uses
gradient momentum and the moving average of gradient second moment as a preconditioner inspired
by Adagrad (Duchi et al., 2011) and RMSProp (Tieleman & Hinton, COURSERA: Neural networks
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Table 8: Comparison of different optimization algorithms in terms of gradient moment m,, diagonal
preconditioner Dy, and other operations U (z) unique to each optimizer. Here g, H ¢ are the stochastic
gradient and the Hessian estimation respectively, and 31, 82 denotes the hyperparameters for gradient
and preconditioner moment.

Typ1 = 3 — n,U(D; 'my)

me Dy U(2)

SGD with momentum Bimy—1 4+ (1= B1)g: I z
Stochastic Newton gt Hy(zy) z

Adam (Kingma & Ba, 2015) Brmi—1+ (1 = B1)ge \/32’%4 + (1 — B2) diag(gegy ) be(z)
AdamW (Loshchilov & Hutter, 2018) " " 4+ At
AdaHessian (Yao et al., 2021) " \/ﬁzvtfl +(1—p2) ﬁﬁs)(xt)2 be(z)
Sophia-H (Liu et al., 2024) " Bovi—1 + (1 — B2) ﬁgc) (x¢) every k steps clip(z)
SASSHA (Ours) Brmy—1 + (1 — B1) ge(a + €) \/3217,,,1 + (1 — o) [Hi(xt + €7)| every k steps  be(z)

* be(+): bias correction

for machine learning). This is closely related to second-order methods as they can be viewed as using
a diagonal approximation of the Fisher information matrix with square root for more conservative
adaptation to the geometry of the data. AdamW (Loshchilov & Hutter, 2018) propose to improve this
by decoupling the weight decay from the Adam update for better generalization, which becomes a
widely employed regularization strategy for second-order methods.

AdaHessian (Yao et al., 2021) is one of the ini-
tial attempts among recent efforts to design ef-
ficient second-order optimization for deep learn-
ing. As the name suggests, it draws many tech-  1: Input: Initial parameter x¢, learning rate {7, },
niques from adaptive methods such as moving moving average parameters 31, 32, Hessian
averages of second moments with bias correc- update interval k, weight decay parameter A
tions, and diagonal approximation to precon- Setm_; =0,D_; =0

ditioning. However, they also propose using fort =0to 7T do

techniques such as Hutchinson diagonal esti- if SASSHA then

mators (Hutchinson, 1989; Roosta-Khorasani gt = Vfa(xy)

& Ascher, 2014) and spatial averaging on the er = pgi/||lgell2

Hessian (Iflt(s)), which consists of averaging else if M-SASSHA then

the diagonal element within a filter of a con- e = pmi—1/[lme—1]l2
volution layer for filter-wise gradient scaling. 9 gt = Vis(@: + €)

Sophia (Liu et al., 2024) is a stochastic second- 10: Mt = Bim—1 + (1 — B1)3:
order optimizer specifically designed for lan- 11: ;= my /(1 — B7)

guage model pretraining. Its primary feature is 12:  if t mod k = 0 then

the use of the clipping mechanism clip(z) = 13: Hy = H(x: + €) .
max{min{z, p}, —p} with a predefined thresh- 14: Dy = 2Dy_1 + (1 — 52)|Hy|
old p to control the negative impact of inaccu- 15: D, = /D, /(1 — 55)

rate Hessian estimations. Additionally, a hard 16: else

adjustment is applied to each Hessian entry, sub- 17: D, =D; 4

stituting negative and very small values with a 18:

constant ¢, such as I?t(c) = max{ﬁt, €} to pre-
vent convergence to saddle points and mitigate numerical instability. They also proposed using the
Gauss-Newton-Bartlett diagonal estimator alongside the Hutchinson estimator. To further attain
efficiency, they showed moderate robustness to lazy Hessian updates and proposed to update every
10 iterations of optimization, much longer compared to AdaHessian.

Algorithm 1 SASSHA and M-SASSHA

AN A S

——1_
Tt4+1 = Tt — T]tDt me — 77t)\-73t

Our proposed method SASSHA adds additional perturbation €} before computing the gradient and
Hessian to penalize sharpness during the training process, which has not been explored in the literature.
We find this sharpness minimization scheme also seems to aid lazy Hessian updates. This, however,
can cause instability in the preconditioning, which we alleviate using square roots.
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D CONVERGENCE ANALYSIS OF SASSHA

In this section, to ensure the completeness of our work, we provide preliminary convergence analysis
results. Based on the well-established analyses of Li et al. (2023); Khanh et al. (2024), we further
investigate the complexities arising from preconditioned perturbed gradients.

Assumption D.1. The function f : R? — R is convex, [B-smooth, and bounded from below, i.e.,
f* = inf, f(z) > —oo. Additionally, the gradient V f(x) is non-zero for a finite number of
iterations, i.e., Vf(z;) # O forallt € {1,2,...,n}.

Assumption D.2. Step sizes 7; and perturbation radii p; are assumed to satisfy the following
conditions:

o0 o0 o0
D om=o0, > ni<oo, > pim < oo
t=1 t=1 t=1

Remark D.3. The following notations will be used throughout

1. g; := V f(x;) denotes the gradient of f at iteration ¢.

2. The intermediate points and the difference between the gradients are defined as

9t
Tppg = Te + ptm’ Gevy = VI (@p1), 0= iy — gr-

3. For u,v € R4, operations such as /v, |v| an % as well as the symbols < and >, are
applied element-wise.

Remark D.4. The update rule for the iterates is given by
Yo
/1 diag(V2f (1)) + e

where diag extracts the diagonal elements of a matrix as a vector, or constructs a diagonal matrix
from a vector, and ¢ is a damping constant. Define h; as

Tyl = Ty — © G+ 1, (10)

B, — Nt
VI diag(V2 (24 )] + ¢

then the following hold

1. From the convexity and 3-smoothness of £, the diagonal elements of V2 f(x) are bounded
within the interval [0, /3], i.e.,

0< [V24(@)] sy = e V3 @i < B,

where e; is the i-th standard basis vector in R¥.

2. The term h; is bounded as

<<

VB+e T e

Remark D.5. For the matrix representation

1. Denoting H; := diag(h;), the matrix bounds for H; are given by
Nt

VB +e

r=H <"1 (11)
€

where [ is the identity matrix.
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2. Using the matrix notation H;, the update for the iterates is expressed as
Ti41 = T — Htgt+%-
Remark D.6. From the 5-smoothness of f, d; is bounded by

V()
IVF()ll
Lemma D.7 (Descent Lemma). Under Assumption D.I and Assumption D.2, for given [ and e, there
exists a T € N such that for ¥Vt > T, ny satisfies n, < min { For such t > T, the
following inequality holds

f(@er1) < flae) —

10:]] < Bllze + pri=— — el = Bps. (12)

T )

"t 2, 2

Proof. We begin by applying the S-smoothness of f,
f(@er1) < f(@e) + (g1, Te1 — @) + §|\$t+1 —z)?
= [0~ (o Halo +60) + 2 | Hular + )

1
< flx) — g, Hige + =g, Hge + 5THt5t +5 ||Ht(gt +6))?

200
< Flo — (1= 30 —lg H2+7—H5t|\2+@”—tngﬁatn
1
< fl@) == 2a>\r+ Joel? + SN+ 8 gl + )
1
= @) = m((1 = 52) = = AT ol + w5+ BT I8

The second inequality follows from Young’s inequality, the third inequality is obtained from Equa-
tion (11), and the last inequality is simplified using the property |la + b||* < 2|[a]|* + 2|b]|*. By
setting o = %, we get

VB +e

Since n; | 0, 3T € N such that n; < min{ﬁ\;@re), ﬁ}, this gives 2 (
and + % < 1 , which implies

< fx) —

2 1 3
= =G (s )~ Bl + i + 6Tl

1 ) _ ne >
VB+e e = 2(f+e)

un 2, 2
— + =|0
srp eIl + e

O

Theorem D.8. Under Assumption D.1 and Assumption D.2, given any initial point o € R?, let {x;}
be generated by Equation (10). Then, it holds that lim inf;_, || g¢|| = 0.

Proof. From Lemma D.7 and Equation (12), we have the bound
Fesn) < fw) = ||2+%H5t|\2

< flze) -

By rearranging the terms, we obtain the following

lgell> < F(a) = f (o) + 2 807

"
12+ L B%p2.

Nt
2(v/B+e)
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For any M > T, we have

1 M ) M BQ M ,
3 gl = 2 U0 = e 3
5 M

= fler) ~ fena) + =3 ot

t=T
B~
< flar) = inf fl@) +— > pim-
t=T

As M — oo, the series Y ;o m:|lg:]|* converges. Now, assume for contradiction that
liminf; ,o ||g¢]] # 0. This means there exists some £ > 0 and N > T such that ||g|| > &
for all t > N. Consequently, we have

o0 oo
00 > Y mllgel* > €Y = o0,
t=N t=N

which is a contradiction. Therefore, lim inf;_, » ||g:|| = 0. O

E EXPERIMENT SETTING

Here, we describe our experiment settings in detail.

CIFAR We trained ResNet models on the CIFAR datasets for 160 epochs and Wide-ResNet28-10
for 200 epochs. We employed only standard inception-style data augmentations, such as random
cropping and horizontal flipping, without any additional regularization techniques or data augmenta-
tions. The loss function used was cross-entropy. We utilized a multi-step decay learning rate schedule.
Specifically, for ResNet20 and ResNet32, the learning rate was decayed by a factor of 0.1 at epochs
60 and 120. For Wide-ResNet28-10, the learning rate was decayed by a factor of 0.2 at epochs 80
and 160. The hyperparameters for exponential moving average were set to 81 = 0.9 and S = 0.999.
A batch size of 256 was used in all experiments. The hyperparameter search space for different
optimizers is detailed in Table 9.

Optimizer SASSHA M-SASSHA AdaHessian Sophia-H AdamW / SGD shampoo

Learning Rate {0.3‘0.15} {0.310,15‘0.1.0.0330.015,0,0140,001} {10-?;0-'5}D-fg-}o’%;o}ifo-‘gff;i;_gg{-uiggg}
Weight Decay {2e-3‘ le-3, 5e-4, le-4, 5¢-5, le-5, Se-6, 1e-6}

Perturbation radius p {0.15, 0.2, 0.25} {0.1‘ 0.2,0.3,0.6, 0.8}

Clipping-threshold - - - {3;3-0”1'%%%-85;530”&}

Damping - - - - - 1c-{2‘3.4.6.8}

Hessian Update Interval k 10 10 1 1 - 1

learning rate schedule Multi-step decay

Table 9: Hyperparameter search space for CIFAR on ResNet

ImageNet We trained ResNet50 and ViT-S/32 models on the ImageNet dataset for 90 epochs. Con-
sistent with our CIFAR training settings, we utilized only standard inception-style data augmentations
and employed the cross-entropy loss function. When training ResNet50, we used a multi-step decay
learning rate schedule, reducing the learning rate by a factor of 0.1 at epochs 30 and 60. However,
for the AdaHessian, training was not possible with a multi-step decay schedule; therefore, following
(Yao et al., 2021), we adopted a plateau decay schedule. For training the Vision Transformer model,
following (Chen et al., 2022), we employed a cosine learning rate schedule with an 8-epoch warm-up
phase. The /51 and 2 were set to 0.9 and 0.999 respectively. We used a batch size of 256 for
ResNet50 and a batch size of 1024 for ViT. The hyperparameter search spaces for each optimizer
used during training on the ImageNet dataset are detailed in Table 10.
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Optimizer SASSHA M-SASSHA AdaHessian Sophia-H AdamW / SGD
Learning Rate {0‘3‘, 0‘15} {0.3, 0‘15} {0.34 0.15} {0‘14 0.01, 0.001}

Weight Decay {2e-3. le-3,5e-4, le-4, 5e-5, le-S}

Perturbation radius p {0.1,0.15, 0.2, 0.25} {0.1, 0.2,0.4, o.s}

Clipping-threshold . - - {oAl, 0.05,0.01, 0.005,0.001, 0.0005, 00001}

Hessian Update Interval & 10 10 1 1

Table 10: Hyperparameter search space for ImageNet

Language pretraining Following the training settings introduced in (Gomes et al., 2024), we
conducted experiments on a mini GPT-1 model using the Wikitext-2 dataset. This scaled-down
version of GPT-1 instead of the original twelve, maintaining essential modeling capabilities while
reducing computational demands. We trained the model with three optimizers: SASSHA, M-SASSHA,
and Sophia-H. The hyperparameter tuning spaces for these optimizers are summarized in Table 11.
For other optimizers not listed in the table, we directly reported the results from (Gomes et al., 2024).

Optimizer SASSHA / M-SASSHA Sophia-H

Learning Rate {0,15. 0.075,0.015,0.0075, 0,0015} {le-Z. 5e-3, le-3, Se-4, le-4, Se-5, 1e-5}
Weight Decay le-{1,2,4,6,8}

Perturbation radius p 2.5e-{1,2,3,4}

Clipping-threshold - {le—LSe—Z, le-2,5¢-3, 1e-3, Se-4, 1e—4}
Hessian Update Interval k 10 1

Epochs 50

Table 11: Hyperparameter search space for Language pretraining

Language Finetuning In our experiments, we utilized a pretrained SqueezeBERT model from
the HuggingFace Hub (Wolf et al., 2020) instead of pretraining the model from scratch as initially
proposed by Iandola et al. (2020). For fine-tuning, we set the batch size to 16, the maximum sequence
length to 512, and disabled dropout by setting the dropout rate to zero. The number of fine-tuning
epochs varied according to the specific GLUE task: 5 epochs for MNLI, QQP, QNLI, and SST-2; 10
epochs for STS-B, MRPC, and RTE; and 20 epochs for CoLA. The detailed hyperparameter search
spaces are presented in Table 12.

Optimizer SASSHA / M-SASSHA Sophia-H AdaHessian AdamW
Learning Rate le-{1,2,3} le-{1,2,3,4,5} le-{1,2,3,4,5} 1e-{1,2,3,4,5}
Weight Decay {16-4,56—5.16-5156-6, 16-6} le-{4,5,6,7,8} le-{4,5,6,7,8} 1le-{4,5,6,7,8}
Perturbation radius p 2.5¢-{1,2,3,4}

Clipping-threshold - {Sangananses |

Hessian Update Interval k 1 1 1

Table 12: Hyperparameter search space for language finetuning

Label noise To evaluate the robustness of ResNet32 under varying levels of label noise, we
conducted a comprehensive grid search on the CIFAR datasets. We trained the model using a multi-
step decay learning rate schedule while introducing label noise at rates of 20%, 40%, and 60%. The
specific hyperparameters explored during these experiments are detailed in in Table 13.
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Optimizer SASSHA

M-SASSHA

Sophia-H

AdaHessian SAM AdamW

Learning Rate

{0.3., 0.15,0.1,0.05,0.015, 0.01, 0.001}

Weight Decay

{5e-4, Se-5, le-5, Se-6, 1e-6}

Perturbation radius p {01, 0.15,0.2, 0.25} {0.1, 0.2,0.3,0.6, oAs}

{0.05 0.1,0.15,0.2, 025}

Clipping-threshold

Hessian Update Interval k& 10

10

Table 13: Hyperparameter search space for label noise experiments

F VALIDATION LOSS CURVE FOR VISION TASK

CIFAR-10 / ResNet-20

1.0 1.0 CIFAR-10 / ResNet-32 3.0 CIFAR-100 / ResNet-32
' —— Sassha ' I —— Sassha ' I —— Sassha
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Figure 6: Validation loss curve of SASSHA, M-SASSHA, SGD, AdaHessian, AdamW, and Sophia-H
on various image classification models and tasks. SASSHA outperforms all first-order and second-

order baseline optimizers.

The experimental results demonstrate the better generalization capability of SASSHA over the related
optimizers. Across all datasets and model architectures, our method consistently achieves the lowest
validation loss, indicative of its enhanced ability to generalize from training to validation data
effectively. This robust performance underscores SASSHA’s potential as a leading optimization
method for various deep learning applications, particularly in the domain of image classification.
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G ADDITIONAL ABLATION

G.1 ABLATION OF THE ABSOLUTE FUNCTION

We observe how the absolute function influences
the training process to avoid convergence to a
critical solution that could result in sub-optimal
performance. We train ResNet-32 on CIFAR-
100 using SASSHA without the absolute function
(No-Abs) and compare the resulting training
loss to that of the original SASSHA. We also plot
the Hessian eigenspectrum of the found solution
via the Lanczos algorithm (Yao et al., 2020) to de-
termine whether the found solution corresponds
to a minimum or a saddle point. The results are
illustrated in Figure 7. We can see that without
the absolute function, the training loss converges
to a sub-optimal solution, where the prevalent
negative values in the diagonal Hessian distribu-
tion indicate it as a saddle point. This shows the

> Sassha Sassha
4 — No-Abs 100 —— No-Abs
03 21072
0 @
S oy
-5 Q1074
1| 1079

-10 0

Eigenvalue

50 100 10

Epoch

150

(a) Train loss (b) Hess. eigenspectrum

Figure 7: Effect of the absolute function on the
training loss and the Hessian eigenspectrum of the
found solution of SASSHA on ResNet-32/CIFAR-
10. Without the absolute function, SASSHA con-
verges to sub-optimal saddle point.

necessity of the absolute function for preventing convergence to these critical regions.

G.2 ADDITIONAL RESULTS FOR SASSHA VS SAM

Table 14: We conducted a comparative analysis of SASSHA and SAM across various datasets and
models. The results indicate that SASSHA achieves a comparable level of validation accuracy in a

shorter amount of time compared to SAM.

Epoch Time (s) Accuracy (%)
CIFAR10/RN20
SAM sGp 160 956 92.847 1007
SAM Adamw 160 988 92.767 10,29
SASSHA 120 936 92.873 .05
CIFAR10/RN32
SAM sGp 160 1,466 93.89310.13
SAM Adamw 160 1,473 93.45010 .24
SASSHA 120 1,440 93.810. 15
SASSHA 160 1,920 94.093 . 54
CIFAR100/RN32
SAM sGp 160 1,471 71.993 1020
SAM Adamw 160 1,472 71.153 1037
SASSHA 120 1,447 71.920_ 4,
SASSHA 160 1,930 72143 16
CIFAR100/WRN-28-10
SAM sGp 200 23,692 83.03610.13
SAM Adamw 200 23,820 82.8800.31
SASSHA 150 21,309 83.167 .. 15
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G.3 COST ANALYSIS

Table 15: Wall clock time (s) per epoch and the number of backward passes (BP) required for various
optimizers, with the lazy Hessian interval k of SASSHA set to 10. Both SASSHA, and M-SASSHA are
significantly faster than other approximate second-order optimizers. Notably, M-SASSHA consistently
demonstrates better speed than SAM across all settings.

o | wesp | CIFARI10 | CIFAR100 | ImageNet

Optlrmzer (the‘!y%éticul) -

| | ResNet20 | ResNet32 | ResNet32 | WRN28-10 | ResNet50 | ViT-small
AdamW 1BP 3.35 5.03 5 59.29 1356.36 976.56
SAM 2 BP 5.97 9.16 9.19 118.46 3003.00 1302.08
Sophia-H 2 BP 21.20 33.90 33.87 295.31 12512.50 2152.19
AdaHessian 2 BP 20.10 33.75 31.64 296.63 | 12262.25 2077.07
SASSHA 2.1 BP 7.80 12.00 12.06 142.06 3503.50 1377.20
M-SASSHA 1.1 BP 5.70 8.91 8.89 84.12 2497.50 1065.40

Here we discuss the theoretical computation cost of SASSHA and M-SASSHA in terms of backpropa-
gation query. The average backpropagation cost (i.e., total BP / number of iterations) of SASSHA
is (2 + 1/k) BP. For the lazy Hessian interval £ = 10 used in our evaluations, this corresponds to
2.1 BP. The calculation is as follows: when performing a total of 7" iterations, the total cost includes
T BP for gradient calculation, T BP for sharpness minimization, and T'/k BP for diagonal Hessian
approximation performed once every k iterations. This results in a total of (2 + 1/k)T BP, yielding
an average of (2 + 1/k) BP per iteration. Compared with SAM, SASSHA requires only 5% more
BP on average. M-SASSHA significantly reduces the cost, only requiring 10% BP compared to
Adam/SGD. To measure these resource consumption in practice, we report the wall-clock time of
various optimizers in Table 15 which shows that both SASSHA, and M-SASSHA are significantly faster
than other approximate second-order optimizers. Notably, M-SASSHA consistently demonstrates
better speed than SAM across all settings.

H COMPUTING RESOURCES

The computations for this research were performed on a GPU cluster featuring nodes equipped with
the following GPU resources:

* NVIDIA GeForce RTX 3090 GPUs, each with 24 GB of memory.
* NVIDIA A100 GPUs, each with 80 GB of memory.
* NVIDIA RTX A6000 GPUs, each with 48 GB of memory
The software stack used includes a Linux operating system, Slurm for resource management, and

essential libraries such as CUDA and cuDNN. This setup provided the necessary computational power
and efficiency to perform the extensive simulations and data processing required for this research.
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