
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

SASSHA: SHARPNESS-AWARE ADAPTIVE
SECOND-ORDER OPTIMIZATION WITH
STABLE HESSIAN APPROXIMATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Approximate second-order optimization methods have gained attention due to their
low computational and memory overhead. While these methods have the potential
to accelerate neural network training, they often exhibit poorer generalization com-
pared to first-order approaches. To address this limitation, we first analyze existing
second-order methods through the lens of the loss landscape, demonstrating that
their reduced generalization performance is somewhat attributed to the sharpness
of the solutions they converge to. In response, we introduce SASSHA, a novel
approach designed to enhance generalization by explicitly reducing sharpness. In
fact, this sharpness minimization scheme is designed to accommodate lazy and
stable Hessian updates, so as to secure efficiency and robustness besides flatness.
To validate its effectiveness, we conduct a wide range of deep learning exper-
iments including standard vision and language tasks, where SASSHA achieves
competitive performance. Notably, SASSHA demonstrates strong generalization in
noisy data settings and significantly outperforms other methods in these scenarios.
Additionally, we verify the robustness of SASSHA through various ablation studies.

1 INTRODUCTION
SGD
Sassha
AdaHessian
Sophia-H

Figure 1: Motivating toy example.
SASSHA converges to flatter min-
ima compared to other approximate
second-order optimizers.

Recently, second-order methods have been gaining interest due
to their potential to accelerate the training process (Yao et al.,
2021; Liu et al., 2024; Gupta et al., 2018). Through various
techniques for efficient estimation of the second-order deriva-
tives, these approximate second-order methods have achieved
faster training with minimal computation and memory over-
head compared to their first-order counterparts.

However, contrary to their convergence benefits, recent stud-
ies hint at a potentially harmful effect of second-order opti-
mization on generalization. Wadia et al. (2021) argues that
second-order optimization impairs generalization by whitening
the data. Amari et al. (2021) suggests a more nuanced view;
while second-order methods generalize worse under typical
conditions, they generalize more robustly in the presence of la-
bel noise. Similar observations on deteriorated generalization
have also been widely reported for adaptive methods, a closely related class of optimizers that employ
preconditioners (Wilson et al., 2017; Zhou et al., 2020; Zou et al., 2022). Despite these observations,
there has not been much effort to recover the generalization performance of these optimizers.

Improving generalization remains a central challenge in machine learning, prompting extensive
research to better understand underlying factors (Zhang et al., 2017; Neyshabur et al., 2017a). Recent
studies have revealed a strong correlation between the flatness of minima and their generalization
capabilities (Keskar et al., 2017), spurring the development of optimization techniques aimed at
inducing flat minima (Chaudhari et al., 2017; Izmailov et al., 2018; Foret et al., 2021; Orvieto et al.,
2022). This line of inquiry has also inspired analyses that attribute the poor generalization of adaptive
methods to their tendency to converge to sharp minima (Zhou et al., 2020). Consequently, this raises

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

an important question: to what type of minima do approximate second-order optimizers converge,
and is there potential for improving their generalization performance?

To answer these questions, we first measure the sharpness of different second-order optimizers
under various definitions of sharpness, finding that these methods converge to significantly sharper
minima compared to stochastic gradient descent (SGD). To improve this, we propose SASSHA—
Sharpness-aware Adaptive Second-order optimization with Stable Hessian Approximation—designed
to enhance the generalization of approximate second-order methods efficiently (See Figure 1). Our
approach incorporates techniques to stabilize the training dynamics while reducing the computational
cost of Hessian approximations. We evaluate SASSHA across diverse vision and natural language
tasks, demonstrating that it achieves strong performance relative to existing approximate second-order
methods. Moreover, SASSHA shows superior robustness to label noise compared to other practical
second-order optimizers and sharpness-aware minimization techniques (Foret et al., 2021). Finally,
we conduct a series of ablation studies to provide a comprehensive analysis of our method.

2 RELATED WORKS

Second order optimization for deep learning First-order methods such as Stochastic Gradient
Descent (SGD) are popular optimization methods for deep learning due to their low per-iteration cost
and good generalization (Hardt et al., 2016). However, these methods have two major drawbacks;
slow convergence under ill-conditioned landscapes and high sensitivity to hyper-parameter choices
such as learning rate (Demeniconi & Chawla, 2020). Adaptive methods (Duchi et al., 2011; Hinton
et al., 2012; Kingma & Ba, 2015) propose using empirical Fisher-type preconditioning to alleviate
these issues, though recent studies suggest their insufficiency to do so (Kunstner et al., 2019). This has
led to recent interest in developing efficient second-order methods tailored for large-scale problems
such as Hessian-Free Inexact Newton methods (Martens et al., 2010; Kiros, 2013), stochastic quasi-
Newton methods (Byrd et al., 2016; Gower et al., 2016), Gauss-Newton methods (Schraudolph,
2002; Botev et al., 2017), natural gradient methods (Amari et al., 2000), and Kronecker-factored
approximations (Martens & Grosse, 2015; Goldfarb et al., 2020). However, a further need for a much
scalable second-order optimizer for various large-scale deep learning scenarios has led to much recent
focus on using diagonal scaling methods (Bottou et al., 2018; Yao et al., 2021; Liu et al., 2024).

Sharpness minimization for generalization The relationship between the geometry of the loss
landscape and the generalization ability of neural networks was first discussed in the work of
Hochreiter & Schmidhuber (1994), and the interest in this subject has persisted over time. Expanding
on this foundation, subsequent studies have explored the impact of flat regions on generalization both
empirically and theoretically (Hochreiter & Schmidhuber, 1997; Keskar et al., 2017; Dziugaite &
Roy, 2017; Neyshabur et al., 2017b; Dinh et al., 2017; Jiang et al., 2020). Motivated by this, various
approaches have been proposed to achieve flat minima such as regularizing local entropy (Chaudhari
et al., 2017), averaging model weights (Izmailov et al., 2018), explicitly regularizing sharpness by
solving a min-max problem (Foret et al., 2021), and injecting anti-correlated noise (Orvieto et al.,
2022), to name a few. In particular, the sharpness-aware minimization (SAM) (Foret et al., 2021) has
attracted significant attention for its strong generalization performance across various domains (Chen
et al., 2022; Bahri et al., 2022; Qu et al., 2022) and its robustness to label noise (Baek et al., 2024).
Nevertheless, to our knowledge, the sharpness minimization scheme has not been studied to enable
second-order methods to find flat minima as of yet.

3 PRACTICAL SECOND-ORDER OPTIMIZERS CONVERGE TO SHARP MINIMA

Second-order optimizers have seen rising interest in the deep learning community, and yet, crucial
properties of their optimization process remain largely underexplored compared to their first-order
counterparts. In particular, SGD and its bias towards the minima of low sharpness have been studied
extensively in recent years, which has revealed a strong correlation with its remarkable generalization
performance (Keskar et al., 2017; Ghorbani et al., 2019; Wu et al., 2022; Xie et al., 2020). This raises
the following question: what minima do second-order optimizers prefer, and how do they correlate
with their generalization capability? In this section, we examine through various sharpness metrics
employed in recent studies and analyze their correlation with generalization performance.

To measure sharpness, we introduce four metrics frequently used in the literature: maximum eigen-
value of the Hessian, the trace of Hessian, worst-case sharpness, and average sharpness (Hochreiter
& Schmidhuber, 1997; Jastrzębski et al., 2018; Xie et al., 2020; Du et al., 2022b; Chen et al.,

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Table 1: Sharpness measurements in terms of the maximum eigenvalue λmax(H) and the trace
tr(H) of Hessian, worst-case sharpness δLworst, and average sharpness δLavg alongside with the
generalization error Lval − Ltrain and the validation accuracy Accval of the solution found by six
different optimizers on ResNet-32 trained on CIFAR-100. Approximate second-order optimizers
tend to yield minima of high sharpness and worse generalization compared to SGD; SASSHA and
M-SASSHA effectively recover this. We provide more results for other workloads from Table 2 in
Appendix A where we find the same trends.

Sharpness Generalization

λmax(H) tr(H)×103 δLworst δLavg×10−3 Lval − Ltrain Accval (%)

SGD 265±25 7.29±0.30 0.703±0.132 1.31±1.03 1.027±0.013 69.320±0.19

Sophia-H 22797±10857 68.15±20.19 8.13±3.082 19.19±6.38 1.251±0.020 67.760±0.37

AdaHessian 11992±5779 46.94±17.60 4.119±1.136 12.50±6.08 0.982±0.026 68.060±0.22

Shampoo 436374±9017 6823.34±664.65 73.27±12.506 49307489±56979794 0.508±0.07 64.077±0.46

M-SASSHA 382±65 8.75±0.31 2.391±0.425 2.26±1.66 0.628±0.010 70.93±0.21

SASSHA 107±40 1.87±0.65 0.238±0.088 0.65±0.86 0.425±0.001 72.143±0.16

0.10
0.05

0.00
0.05

0.10
0.10 0.05 0.00 0.05 0.10

0

2

4

6

8

10

2

4

6

8

10

(a) SGD

0.10
0.05

0.00
0.05

0.10
0.10 0.05 0.00 0.05 0.10

0

2

4

6

8

10

2

4

6

8

10

(b) AdaHessian

0.10
0.05

0.00
0.05

0.10
0.10 0.05 0.00 0.05 0.10

0

2

4

6

8

10

2

4

6

8

10

(c) Sophia-H

0.10
0.05

0.00
0.05

0.10
0.10 0.05 0.00 0.05 0.10

0
25
50
75

100
125
150
175
200

50

100

150

200

(d) Shampoo

0.10
0.05

0.00
0.05

0.10
0.10 0.05 0.00 0.05 0.10

0

2

4

6

8

10

2

4

6

8

10

(e) SASSHA

0.10
0.05

0.00
0.05

0.10
0.10 0.05 0.00 0.05 0.10

0

2

4

6

8

10

2

4

6

8

10

(f) M-SASSHA

Figure 2: Loss landscape of minima found by each optimizer on ResNet-32/CIFAR-100 in the
direction of dominant eigenvalues. Second-order optimizers can yield minima of extreme sharpness
compared to SGD, while SASSHA and M-SASSHA reaches much flatter solution.

2022). The maximum eigenvalue λmax(H) and the trace tr(H) of the Hessian are often used as
standard mathematical measures for the worst-case and the average curvature computed using the
power iteration method and the Hutchinson trace estimation, respectively. The other two mea-
sures of sharpness are based on the perturbation sensitivity of the loss (L(x⋆ + ϵ)− L(x⋆)), where
the worst-case sharpness (δLworst) is computed with the perturbation maximizing the first-order
approximation of the loss function as argmax∥ϵ∥≤ρ L(x

⋆ + ϵ) = ρ∇L(x⋆)/∥∇L(x⋆)∥, whereas
the average sharpness (δLavg) averages the loss difference over Gaussian random perturbation as
Ez∼N (0,1)[L(x

⋆ + ρz/∥z∥)− L(x⋆)]. Here we choose ρ = 0.1 for the scale of the perturbation.

With these, we measure the sharpness of minima found by three approximate second-order optimizers
designed for deep learning; Sophia-H (Liu et al., 2024), AdaHessian (Yao et al., 2021), and Shampoo
(Gupta et al., 2018), which we compare to SGD along with our methods, SASSHA and M-SASSHA,
on ResNet-32 trained on CIFAR-100. To assess the degree of generalization of these solutions, we
also compute the generalization error in terms of loss (i.e., ∆L = Lval − Ltrain) and the validation
accuracy. All experiments are run over three different seeds. We report the results in Table 1.

We observe that existing second-order optimizers can produce solutions with significantly higher
sharpness compared to SGD, SASSHA, and M-SASSHA across all definitions of sharpness, which
also correlates well with their generalization error. We also visualize the loss landscape of ResNet-32
trained with each optimizer using in the direction of dominant eigenvectors, where we observe sharp
minima for second-order optimizers (see Figure 2).

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

4 SASSHA: SHARPNESS-AWARE ADAPTIVE SECOND-ORDER OPTIMIZATION
WITH STABLE HESSIAN APPROXIMATION

In the previous section, we observe that the generalization error of approximate second-order methods
correlates with the sharpness of the solution. Based on this observation, we propose to incorporate
sharpness minimization to improve the generalization of these approximate second-order methods. In
the upcoming sections, we present a detailed explanation of various techniques used in SASSHA.

4.1 SHARPNESS-AWARE SECOND-ORDER OPTIMIZATION

Many studies have pursued to minimize sharpness during the training process (Chaudhari et al.,
2017; Izmailov et al., 2018; Foret et al., 2021; Orvieto et al., 2022). Among them, Foret et al. (2021)
propose taking an explicit formulation, which consists of minimizing the objective f within the whole
neighborhood of ρ-ball through the following min-max problem:

min
x∈Rd

max
∥ϵ∥2≤ρ

f(x+ ϵ), (1)

where we essentially minimize a slightly perturbed objective within each point in the parameter space
to reflect the sharpness of the objective on each position.

Based on this, we construct our sharpness minimization technique for second-order optimization as
follows. We first follow a similar procedure as Foret et al. (2021) by solving for ϵ on the first-order
approximation of the objective, which exactly solves the dual norm problem as follows:

ϵ⋆t = argmax
∥ϵ∥2≤ρ

f(xt) + ϵ⊤∇f(xt) = argmax
∥ϵ∥2≤ρ

ϵ⊤∇f(xt) = ρ
∇f(xt)

∥∇f(xt)∥2
. (2)

We plug this back to yield the following perturbed objective function:

f̃t(x) := f

(
x+ ρ

∇f(xt)

∥∇f(xt)∥2

)
,

which shifts the point of the approximately highest function value within the neighborhood to the
current iterate. This essentially penalizes the objective by sharpness; i.e. the more drastic the function
changes within the neighborhood of the current iterate, the stronger the penalization becomes.

With this sharpness-penalized objective, we proceed to make a second-order Taylor approximation:

xt+1 = argmin
x

f̃t (xt) +∇f̃t (xt)
⊤
(x− xt) + (x− xt)

⊤H̃t (xt) (x− xt), (3)

where H̃t denotes the Hessian of f̃t. Using the first-order optimality condition, we derive the basis
update rule for our sharpness-aware second-order optimizer:

xt+1 = xt − H̃t (xt)
−1 ∇f̃t (xt)

= xt −H

(
xt + ρ

∇f(xt)

∥∇f(xt)∥2

)−1

∇f

(
xt + ρ

∇f(xt)

∥∇f(xt)∥2

)
, (4)

where H denotes the Hessian of the original objective function f . Here, instead of directly computing
the exact Hessian which is prohibitively expensive, we employ the diagonal approximation of the
Hessian estimated via Hutchinson’s method (denoted as Ĥ) with the exponential moving average,
which is a standard practice in deep learning since it only requires one additional backpropagation
(Yao et al., 2021; Liu et al., 2024).

4.2 IMPROVING STABILITY

Avoiding critical points The objective of training deep neural networks is known to be highly
non-convex with saddle points and local maxima (Dauphin et al., 2014; Choromanska et al., 2015).
One problem that arises from naively applying the approach of Section 4.1 to a non-convex objective
is that it can ascend in the directions of negative Hessian eigenvalues towards saddle points or local
maxima, due to the first-order optimality condition being valid only when all stationary points are
minima. While this classical issue of naive second-order optimizers has led to the introduction of

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

various techniques such as damping (Levenberg, 1944; Marquardt, 1963), positive semi-definite
approximations (Amari et al., 2000), clipping (Nocedal & Wright, 1999; Liu et al., 2024), cubic
regularization (Nesterov & Polyak, 2006), etc., we follow prior works of Becker et al. (1988); Yao
et al. (2021) to apply the absolute function to adjust the negative entries of the diagonal Hessian to be
positive, i.e.

|Ĥ| :=
d∑

i=1

|Ĥii|eie⊤i (5)

where Ĥii and ei are the ith diagonal entry of the approximate diagonal Hessian and the ith standard
basis vector, respectively. Here the basic idea is that inverting the sign of the negative eigenvalues
will turn saddle points into repellers while achieving the same optimal rescaling as Newton’s method
(Nocedal & Wright, 1999; Murray, 2010; Dauphin et al., 2014; Wang et al., 2013), which we directly
apply to our diagonal Hessian approximation. We empirically validate the effectiveness of this
approach via ablation studies in Appendix G.1.

Alleviating divergence Diagonal Hessian estimations are known to sometimes yield overly large
steps when they underestimate the curvature (Dauphin et al., 2015). While this generally applies to
all approximate second-order optimizers, this instability seems to be more present under sharpness
minimization. We believe this is due to smaller top Hessian eigenvalue λ1 from sharpness minimiza-
tion (Agarwala & Dauphin, 2023; Shin et al., 2024) yielding smaller estimated diagonal entries on
average:

E

[
1

d

d∑
i=1

Ĥii

]
=

1

d

d∑
i=1

E[Ĥ]ii =
tr(H)

d
=

1

d

d∑
i=1

λi ≤ λ1,

which pushes them closer to zero yielding numerical instabilities during inversion in tandem with
curvature underestimations, causing increased training failures. To address this issue, we propose
square rooting the Hessian preconditioner, i.e., |Ĥ|1/2. Its benefit can be understood from two
perspectives. First, the square root can alleviate instability from near-zero diagonal Hessian entries
by selectively increasing the magnitude of the near-zero diagonal Hessian entries in the denominator
(i.e., h <

√
h if 0 < h < 1). Also, it can be interpreted as geometrically interpolating the

preconditioning matrix toward the identity matrix (limα→0 H
α = I), making the optimizer more

akin to unpreconditioned first-order methods (Amari et al., 2021). This adjustment weakens the
dependency of the optimizer on the preconditioner and helps suppress the influence of any pathological
estimations that may occur. We present an empirical analysis of our square-rooted preconditioning in
Section 6.1.

4.3 IMPROVING EFFICIENCY VIA LAZY HESSIAN UPDATE

While the diagonal Hessian estimator introduced in Section 4.1 significantly reduces the Hessian
computations, it still requires at least twice as much backpropagation compared to gradient-based
methods. Here we attempt to further alleviate this by lazily computing the Hessian every k steps:

Dt =

{
β2Dt−1 + (1− β2)|Ĥ(xt + ϵ⋆t)| if t mod k = 1

Dt−1 otherwise
, (6)

where Dt and β2 are the moving average of the Hessian and its hyperparameter. This reduces the
overhead from additional Hessian computation by 1/k (see Appendix G.3 for detailed cost analysis).
Across all evaluations in Section 5 except for language finetuning, we reuse the Hessian estimate for
k = 10 iterations.

However, extensive Hessian reusing will lead to significant performance degradation since it would
no longer accurately reflect the current curvature (Doikov et al., 2023). Interestingly, SASSHA is
quite resilient against prolonged reusing, keeping its performance relatively high over longer Hessian
reusing compared to other approximate second-order methods. Our investigation reveals that along the
trajectory of SASSHA, the Hessian tends to change less frequently over a given number of iterations
compared to existing alternatives. We hypothesize that the introduction of sharpness minimization
plays an integral role in this phenomenon by biasing the optimization path toward regions with lower
curvature change, allowing the prior Hessian to remain relevant over more extended steps. We provide
a detailed empirical analysis of the lazy Hessian updating in Section 6.2.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Table 2: Image classification results of various optimization methods in terms of final validation
accuracy (mean±std) across different models on the CIFAR-10, CIFAR-100, and ImageNet. SASSHA
consistently outperforms others in all settings.

CIFAR10 CIFAR100 ImageNet

ResNet-20 ResNet-32 ResNet-32 WRN-28-10 ResNet-50 ViT-s-32

SGD 92.027±0.32 92.693±0.06 69.320±0.19 80.063±0.15 75.581±0.05 62.904±0.36

AdamW 92.040±0.11 92.420±0.13 68.783±0.22 79.090±0.35 75.375±0.08 66.459±0.15

AdaHessian 92.003±0.17 92.483±0.15 68.060±0.22 76.917±0.26 73.640±0.16 66.417±0.23

Sophia-H 91.814±0.27 91.985±0.08 67.760±0.37 79.353±0.24 72.064±0.49 62.436±0.36

Shampoo 88.547±0.83 90.227±0.24 64.077±0.46 74.063±1.28 ∗ ∗
SASSHA 92.983±0.05 94.093±0.24 72.143±0.16 83.543±0.08 76.429±0.18 69.195±0.30

M-SASSHA 92.363±0.23 93.177±0.30 70.930±0.21 81.533±0.27 76.004±0.04 68.038±0.14

*Omitted due to computation/memory requirements exceeding available resources.

0 50 100 150
Epoch

84

86

88

90

92

94

Ac
cu

ra
cy

 (%
)

CIFAR-10 / ResNet-20
Sassha
M-Sassha
SGDM
AdaHessian
AdamW
Sophia-H
Shampoo

0 50 100 150
Epoch

84

86

88

90

92

94
Ac

cu
ra

cy
 (%

)
CIFAR-10 / ResNet-32
Sassha
M-Sassha
SGDM
AdaHessian
AdamW
Sophia-H
Shampoo

0 50 100 150
Epoch

40

45

50

55

60

65

70

Ac
cu

ra
cy

 (%
)

CIFAR-100 / ResNet-32

Sassha
M-Sassha
SGDM
AdaHessian
AdamW
Sophia-H
Shampoo

0 50 100 150 200
Epoch

50

60

70

80

Ac
cu

ra
cy

 (%
)

CIFAR-100 / WRN-28-10

Sassha
M-Sassha
SGDM
AdaHessian
AdamW
Sophia-H
Shampoo

0 20 40 60 80
Epoch

50

55

60

65

70

75

Ac
cu

ra
cy

 (%
)

ImageNet / ResNet-50

Sassha
M-Sassha
SGDM
AdamW
AdaHessian
Sophia-H

0 20 40 60 80
Epoch

50

55

60

65

70

Ac
cu

ra
cy

 (%
)

ImageNet / ViT-s-32
Sassha
M-Sassha
SGDM
AdamW
AdaHessian
Sophia-H

Figure 3: Image classification results for various optimization methods in terms of validation accuracy
curve across different models on the CIFAR-10, CIFAR-100, and ImageNet. SASSHA consistently
outperforms others in all settings.

4.4 FURTHER EXTENSION AND ANALYSES

We further provide simple extensions and supplementary analyses:

1. M-SASSHA, a simple extension to SASSHA that removes additional gradient computation in
sharpness minimization and achieves computational costs comparable to first-order methods, is
provided in Appendix B.

2. An algorithm table for SASSHA, along with comparisons to other approximate second-order
methods, is provided in Appendix C.

3. A preliminary convergence analysis of SASSHA is provided in Appendix D.

5 EVALUATIONS

In this section, we compare SASSHA against existing approximate second-order optimizers and
demonstrate its superior generalization capabilities. To achieve this, we conduct extensive evaluations
across multiple domains, including vision and natural language tasks, as well as under challenging
conditions such as label noise for image classification. Specifically, we first compare SASSHA to the
following baselines: AdaHessian (Yao et al., 2021), Sophia-H (Liu et al., 2024), AdamW (Loshchilov
& Hutter, 2018), Shampoo Gupta et al. (2018), and SGD. We describe experiment settings in detail in
Appendix E.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Table 4: Language finetuning results for various optimizers on SqueezeBERT evaluate on the
GLUE benchmark. SASSHA achieves better results than AdamW and AdaHessian and compares
competitively with Sophia-H.

CoLA SST-2 MRPC STS-B QQP MNLI QNLI RTE
M corr. Acc Acc / F1 S/P corr. F1 / Acc mat/m.mat Acc Acc

AdamW 48.63 90.25 86.27 / 90.21 88.36 / 88.40 86.63 / 89.96 81.20 / 82.20 90.13 70.04
AdaHessian 48.36 90.60 86.52 / 90.43 88.72 / 89.01 87.41 / 90.65 81.15 / 82.10 90.02 71.12
Sophia-H 49.12 92.32 86.03 / 90.19 88.87 / 89.13 87.70 / 90.84 81.68 / 82.54 90.26 72.56

SASSHA 47.19 91.51 87.75 / 91.23 89.29 / 89.66 87.93 / 91.00 81.74 / 82.12 89.86 73.29
M-SASSHA 48.84 91.28 89.23 / 92.22 88.29 / 88.39 87.91 / 90.97 81.64 / 82.09 89.84 72.92

5.1 IMAGE CLASSIFICATION

We evaluate SASSHA in comparison to other optimizers on image classification tasks on CIFAR-10,
CIFAR-100, and ImageNet datasets (Deng et al., 2009). We train various models including ResNet-20,
ResNet-32, ResNet-50 (He et al., 2016), WideResNet-28-10 (WRN-28-10) (Zagoruyko & Komodakis,
2016) and ViT-s-32 (Beyer et al., 2022). We use standard inception-style data augmentations during
training without the use of advanced data augmentation techniques (DeVries & Taylor, 2017) or
regularization methods (Gastaldi, 2017; Yamada et al., 2019) to focus exclusively on the effect of
sharpness minimization. Results are presented in Table 2 and Figure 3. Additionally, we provide the
validation loss curves in Appendix F for further insight.

We find that our method achieves the best validation performance across all settings. Particularly,
SASSHA achieves a 1% to 4% increase in performance compared to best-performing adaptive or
second-order optimizers. Also, M-SASSHA outperforms approximate second-order optimizers by
0.3% to 2% with twice as less computational overheads.

5.2 LANGUAGE PRETRAINING

Table 3: Language pretrain-
ing results. SASSHA achieves
lower perplexity compared to
other second-order methods.

Optimizer Perplexity ↓
AdamW 175.06
AdaHessian 407.69
Shampoo 1727.75
Sophia-H 125.60

SASSHA 122.40
M-SASSHA 125.01

A recent study has demonstrated the potential of approximate second-
order methods on pretraining language models (Liu et al., 2024), a
core task in modern machine learning for constructing large-scale
foundational models. Motivated by this, here we examine how
SASSHA compares with existing optimizers on language model pre-
training. Specifically, we train GPT1-mini, a scaled-down variant
of GPT1 (Radford et al., 2019) with four attention layers instead of
the original twelve, with SASSHA and various baseline optimizers
on the next word prediction task of Wikitext-2 dataset (Merity et al.,
2022) and compare the final test perplexity (refer to Appendix E for
detailed experimental settings). The results are presented in Table 3.
Our results show that SASSHA achieves the lowest perplexity among
all methods, with M-SASSHA following closely, highlighting im-
proved language modeling capabilities. In addition, unlike Sophia-H, the leading baseline, whose
performance is largely restricted to its intended language domains (Liu et al., 2024), SASSHA also
proves highly effective in image classification (see Table 2).

5.3 LANGUAGE FINETUNING

To comprehensively evaluate SASSHA, we extend our experiments to include eight diverse tasks from
the GLUE benchmark (Wang et al., 2018). We finetune SqueezeBERT (Iandola et al., 2020) on these
tasks and report the final performance on the development set, as presented in Table 4. Our method
achieves higher scores compared to other optimizers across nearly all tasks. Notably, M-SASSHA
exhibited better performance than AdamW (Loshchilov & Hutter, 2018), the standard optimizer for
finetuning language models, on several tasks—even though M-SASSHA has a computational cost
similar to AdamW. Additionally, SASSHA records higher scores than Sophia-H (Liu et al., 2024), an
optimizer specialized for language models, on many tasks.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 5: Robustness to label noise. Here we measure the validation accuracy under various levels of
label noise using ResNet-32 trained on CIFAR-100 and CIFAR-10. SASSHA and M-SASSHA shows
much robust performance under label noise.

CIFAR-100 CIFAR-10

Noise level 20% 40% 60% 20% 40% 60%

SGD 62.18±0.06 55.78±0.55 45.53±0.78 89.91±0.87 87.26±0.4 82.72±1.59

SAM 65.53±0.11 61.20±0.17 51.93±0.47 92.27±0.14 90.11±0.25 85.79±0.30
Sophia-H 62.34±0.47 56.54±0.28 45.37±0.27 89.93±0.001 87.30±0.51 82.78±1.43

AdaHessian 63.06±0.25 58.37±0.13 46.02±1.96 90.11±0.001 86.88±0.004 83.25±0.004

Shampoo 58.85±0.66 53.82±0.71 42.91±0.99 88.14±0.29 85.15±0.61 81.16±0.30

SASSHA 66.78±0.47 61.97±0.27 53.98±0.57 92.49±0.11 90.29±0.11 86.50±0.08

M-SASSHA 66.10±0.26 61.13±0.28 52.45±0.34 91.27±0.31 88.85±0.31 85.17±0.24

5.4 ROBUSTNESS TO LABEL NOISE

We evaluate the robustness of our method against label noise (Natarajan et al., 2013), a common
issue in real-world scenarios where the training data is incorrectly labeled. To this end, we compare
the validation performance of different optimizers on ResNet-32 trained with the CIFAR datasets
under various noise levels. The results, summarized in Table 5, show that SASSHA outperforms other
optimizers across all noise levels with minimal accuracy degradation; at most outperform by 8% in
60% noise ratio compared to SGD.

Interestingly, our method surpasses SAM (Foret et al., 2021), which is known to be one of the most
robust techniques against label noise (Baek et al., 2024). We hypothesize that SASSHA’s superior
robustness stems from the combined benefits of SAM and second-order methods. Specifically, SAM
enhances robustness by applying adversarial perturbations to the weights and giving more importance
to clean data during optimization, making the model more resistant to label noise (Foret et al., 2021;
Baek et al., 2024). Also, recent research indicates that second-order optimizers are robust to label
noise (Amari et al., 2021) due to appropriate preconditioning that reduces the variance caused by label
noise in the population risk. We believe these two complementary mechanisms work synergistically
within SASSHA to enhance its robustness.

6 ABLATIONS

6.1 STABILIZING EFFECT OF SQUARE-ROOT

In this study, we examine the stabilizing effect of the square-root function on SASSHA. Precisely,
we conduct multiple runs of SASSHA without the square-root (No-Sqrt) over different random
seeds for training ResNet-32 on CIFAR-100, which reveals instances where the training loss diverges.
To gain further insight into this phenomenon, we measure the update size and the preconditioned
step size (i.e., ∥ηD−1∥F , where D is either |Ĥ|1/2 or |Ĥ| and ∥ · ∥F denotes the Frobenius norm)
of each iteration, along with the density of the diagonal precondition entry values Dii at step 100
to 250. Results are presented in Figure 4. We first observe that the training loss diverges precisely
when the update size (Figure 4b), particularly the preconditioned step size (Figure 4c), starts to spike
around step 200, suggesting that the preconditioner reaches some critical condition at this point.
Further investigation into individual preconditioner entries (Figure 4d) reveals that this is likely due
to a progressive increase in near-zero diagonal Hessian entries from the sharpness minimization
penalizing the Hessian eigenvalues, which could have caused instability when the preconditioner is
inverted. With the inclusion of the square-root, we can see that the values within the preconditioner
are less situated near zero, effectively suppressing the risk of large updates thereby stabilizing the
training process.

6.2 ANALYZING LAZY HESSIAN UPDATING

Effect of Hessian update interval k Here we compare how different approximate second-order
optimizers, specifically SASSHA, AdaHessian, and Sophia-H, perform under different levels of lazy
updating on ResNet-32 trained on CIFAR-100. We vary the update interval k from 1 to 100 and see
how each optimizer performs. As shown in Figure 5a, SASSHA consistently outperforms across all

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

0 100 200 300
Step

100

105

1010

1015

1020

Lo
ss

Sassha
No-Sqrt

(a) Train loss

0 100 200 300
Step

10 1

103

107

1011

1015

||
D

1 g
||

Sassha
No-Sqrt

(b) Update size

0 100 200 300
Step

102

106

1010

1014

||
D

1 ||

Sassha
No-Sqrt

(c) Preconditioned step size

0.00 0.05 0.10 0.15
Preconditioner diagonal value

Sassha
No-Sqrt

100
150
200
250

(d) Precond. distribution

Figure 4: Effect of square root on (a) the train loss, (b) the update size, (c) the preconditioned step
size, and (d) the distribution of preconditioner values of SASSHA without the square-root (No-Sqrt)
and the original SASSHA on ResNet-32/CIFAR-100. The sharpness-minimization alone in No-Sqrt
drives diagonal Hessian values towards zero, leading to divergent behaviors. The square-root helps
counteract this effect, thereby stabilizing the training of SASSHA.

60
65
70
75

1 25 50 75 1000

20

Sassha
AdaHessian
Sophia-H
Baseline

H update interval

Ac
cu

ra
cy

(%
)

(a) Lazy Hessian update

0 50 100 160
Epoch

101

102

103

104

M
ax

||H
(x

+
|

| 2
)

H
(x

)||
F Sassha

AdaHessian
Sophia-H (w/o clip)
Sophia-H (w/ clip)
Baseline

(b) Local Ĥ sensitivity

0 1 2 3
Step (×104)

10 1

101

103

||H
(x

t)
H

(x
t

10
)||

F

Sassha
AdaHessian
Sophia-H (w/o clip)
Sophia-H (w/ clip)
Baseline

(c) Ĥ change between updates

Figure 5: Effect of sharpness minimization on lazy Hessian training for ResNet-32 trained on CIFAR-
100. (a) Ablation of Hessian update interval for SASSHA, SASSHA without sharpness minimization
and square-root (Baseline), AdaHessian, and Sophia-H. SASSHA remains effective even with a
Hessian update interval of 100. (b) the local Hessian sensitivity from Equation (7) and (c) The norm
of the difference of Hessian between every 10 iterations. SASSHA mostly stays within the region
where the Hessian is less sensitive.

update intervals, followed by Sophia-H by a margin of almost 5% accuracy difference. AdaHessian
is the most vulnerable under lazy Hessian update, showing a rapid decline in performance even with
small intervals.

Sharpness minimization can improve lazy Hessian training Why would SASSHA be so robust
under a lazy Hessian update? We first reasonably assume that this is due to the presence of sharpness-
minimization, as it is the primary component differentiating SASSHA from other approximate
second-order optimizers. To verify our hypothesis, we perform the same ablation on the Hessian
update interval on the SASSHA without sharpness minimization (Baseline1), which we report
in Figure 5a. We indeed observe that Baseline doesn’t perform as well as SASSHA under lazy
Hessian training, showing similar performance to AdaHessian.

Furthermore, we hypothesize that sharpness minimization aids the lazy Hessian update by biasing
the optimization path toward the region of low curvature sensitivity. To quantify this, we define
local Hessian sensitivity as the maximum change in Hessian induced from normalized random
perturbations:

max
δ∼N (0,1)

∥∥∥∥Ĥ (
x+ ρ

δ

∥δ∥2

)
− Ĥ(x)

∥∥∥∥
F

(7)

where x, δ, ρ, and ∥ · ∥F each denotes a point on the optimization path, the Gaussian random
perturbation, the length of the normalized perturbation, and the Frobenius norm, respectively. A
smaller Hessian sensitivity would suggest reduced variability in the loss curvature, leading to greater
relevance of the current Hessian for subsequent optimization steps.

1We also remove the square root, as its purpose of stabilization is relevant only in the context of employing
sharpness minimization.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

To check the sanity of Equation (7), we see if this aligns with a more direct measure of lazy
updatability: the Hessian difference between current Hessian and previous Hessian computed k
iteration earlier:

∥Ĥ(xt)− Ĥ(xt−k)∥F . (8)

An optimizer with a higher Hessian difference would mean that prior Hessian would easily be
outdated, making lazy updating harder to execute. We measure these two metrics with ρ = 0.1 and
k = 10 and report the results in Figure 5b and 5c.

Our results show that SASSHA keeps both of these metrics relatively low throughout most of the
training process, while Baseline yields higher Hessian differences. This low Hessian sensitivity
significantly improves the reusability of Hessian information compared to AdaHessian, which
supports our assumption. However, Sophia, despite its relatively robust lazy Hessian performance,
shows a high value of Hessian differences indicative of lower reusability. Interestingly, this difference
becomes much smaller when Sophia’s per-coordinate Hessian clipping technique is applied to it. This
supports the claim by Liu et al. (2024) that clipping, like SASSHA, is also a powerful technique that
helps with lazy Hessian updates.

6.3 COMPARISON WITH SAM

Table 6: SASSHA vs. SAM. SASSHA
achieves better performance than SAM
even when SAM is allocated more data
budgets or longer training time.

Epoch Time (s) Accuracy (%)

SAM SGD 180 220,852 65.403±0.63

SAM AdamW 180 234,374 68.706±0.16

SASSHA 90 123,948 69.195±0.30

Thus far, our primary focus has centered on validating
the effectiveness of SASSHA in the context of approxi-
mate second-order optimization. While this remains the
principal objective of our study, here we additionally com-
pare SASSHA with SAM to highlight its potential bene-
fits. Specifically, we evaluate two versions of SAM with
SGD and AdamW respectively as its base optimizers, and
compare them with SASSHA for training ViT-s-32 on Im-
ageNet. The results are provided in Table 6. First, we find
that SASSHA performs on par with or better than SAM,
even when SAM is given more data budgets or wall-clock training time. This is potentially due to
the benefit of the second-order scheme in SASSHA that accelerates the optimization process. Also,
we observe that SAM shows a performance discrepancy between different base optimizers. Notably,
one needs to select which base optimizer to use when employing SAM unlike SASSHA. Additional
comparisons on other models and datasets are presented in Appendix G.2.

6.4 ADDITIONAL ABLATIONS

We provide more ablation results including the effect of the absolute function and a comprehensive
cost analysis of SASSHA and M-SASSHA in Appendix G.2.

7 CONCLUSION

In this work, we have addressed the poor generalization issue of approximate second-order methods
by proposing SASSHA, which explicitly minimizes sharpness within approximate second-order opti-
mization, achieving competitive performance for various standard deep learning tasks. Nonetheless,
there are many remaining possibilities for further improvements which may include, but are not
limited to, evaluating on a more extreme scale and other data distributions in different domains, and
developing theoretical properties such as convergence rate and implicit bias, all to more rigorously
confirm the value of SASSHA. Seeing it as an exciting opportunity, we are planning to investigate
further in future work.

REPRODUCIBILITY

We made extensive efforts to ensure that our experimental results are reproducible, including providing
comprehensive descriptions of all experimental configurations and hyperparameters (Appendix E),
details of the hardware used during training and evaluation (Appendix H), as well as the use of, and
providing links to, publicly available datasets and source codes for various algorithms used in our
experiments. After publication, we also plan to release our source code, which will include algorithm

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

implementations, hyperparameter settings, dependencies, and hardware configurations necessary for
reproduction.

REFERENCES

Atish Agarwala and Yann Dauphin. Sam operates far from home: eigenvalue regularization as a
dynamical phenomenon. 2023.

Shun-ichi Amari, Hyeyoung Park, and Kenji Fukumizu. Adaptive method of realizing natural gradient
learning for multilayer perceptrons. Neural computation, 2000.

Shun-ichi Amari, Jimmy Ba, Roger Baker Grosse, Xuechen Li, Atsushi Nitanda, Taiji Suzuki, Denny
Wu, and Ji Xu. When does preconditioning help or hurt generalization? ICLR, 2021.

Christina Baek, J Zico Kolter, and Aditi Raghunathan. Why is SAM robust to label noise? ICLR,
2024.

Dara Bahri, Hossein Mobahi, and Yi Tay. Sharpness-aware minimization improves language model
generalization. ACL, 2022.

Marlon Becker, Frederick Altrock, and Benjamin Risse. Momentum-sam: Sharpness aware mini-
mization without computational overhead. arXiv, 2024.

Sue Becker, Yann Le Cun, et al. Improving the convergence of back-propagation learning with
second order methods. CMSS, 1988.

Lucas Beyer, Xiaohua Zhai, and Alexander Kolesnikov. Better plain vit baselines for imagenet-1k.
arXiv preprint arXiv:2205.01580, 2022.

Aleksandar Botev, Hippolyt Ritter, and David Barber. Practical gauss-newton optimisation for deep
learning. ICML, 2017.

Léon Bottou, Frank E. Curtis, and Jorge Nocedal. Optimization methods for large-scale machine
learning. SIAM Review, 60(2):223–311, 2018.

Richard H Byrd, Samantha L Hansen, Jorge Nocedal, and Yoram Singer. A stochastic quasi-newton
method for large-scale optimization. SIAM Journal on Optimization, 2016.

Pratik Chaudhari, Anna Choromanska, Stefano Soatto, Yann LeCun, Carlo Baldassi, Christian Borgs,
Jennifer Chayes, Levent Sagun, and Riccardo Zecchina. Entropy-SGD: Biasing gradient descent
into wide valleys. ICLR, 2017.

Xiangning Chen, Cho-Jui Hsieh, and Boqing Gong. When vision transformers outperform resnets
without pre-training or strong data augmentations. ICLR, 2022.

Anna Choromanska, Mikael Henaff, Michael Mathieu, Gérard Ben Arous, and Yann LeCun. The
loss surfaces of multilayer networks. PMLR, 2015.

Yann Dauphin, Harm De Vries, and Yoshua Bengio. Equilibrated adaptive learning rates for non-
convex optimization. NeurIPS, 2015.

Yann N Dauphin, Razvan Pascanu, Caglar Gulcehre, Kyunghyun Cho, Surya Ganguli, and Yoshua
Bengio. Identifying and attacking the saddle point problem in high-dimensional non-convex
optimization. NeurIPS, 2014.

Carlotta Demeniconi and Nitesh Chawla. Second-order optimization for non-convex machine learning:
an empirical study. Society for Industrial and Applied Mathematics, 2020.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
hierarchical image database. 2009.

Terrance DeVries and Graham W Taylor. Improved regularization of convolutional neural networks
with cutout. arXiv preprint arXiv:1708.04552, 2017.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Laurent Dinh, Razvan Pascanu, Samy Bengio, and Yoshua Bengio. Sharp minima can generalize for
deep nets. ICML, 2017.

Nikita Doikov, El Mahdi Chayti, and Martin Jaggi. Second-order optimization with lazy hessians.
ICML, 2023.

Jiawei Du, Hanshu Yan, Jiashi Feng, Joey Tianyi Zhou, Liangli Zhen, Rick Siow Mong Goh, and
Vincent Tan. Efficient sharpness-aware minimization for improved training of neural networks.
ICLR, 2022a.

Jiawei Du, Daquan Zhou, Jiashi Feng, Vincent Tan, and Joey Tianyi Zhou. Sharpness-aware training
for free. NeurIPS, 2022b.

John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning and
stochastic optimization. JMLR, 2011.

Gintare Karolina Dziugaite and Daniel M. Roy. Computing nonvacuous generalization bounds for
deep (stochastic) neural networks with many more parameters than training data. In Proceedings
of the 33rd Annual Conference on Uncertainty in Artificial Intelligence (UAI), 2017.

Pierre Foret, Ariel Kleiner, Hossein Mobahi, and Behnam Neyshabur. Sharpness-aware minimization
for efficiently improving generalization. ICLR, 2021.

Xavier Gastaldi. Shake-shake regularization. arXiv preprint arXiv:1705.07485, 2017.

Behrooz Ghorbani, Shankar Krishnan, and Ying Xiao. An investigation into neural net optimization
via hessian eigenvalue density. ICML, 2019.

Donald Goldfarb, Yi Ren, and Achraf Bahamou. Practical quasi-newton methods for training deep
neural networks. NeurIPS, 2020.

Damien Martins Gomes, Yanlei Zhang, Eugene Belilovsky, Guy Wolf, and Mahdi S Hos-
seini. Adafisher: Adaptive second order optimization via fisher information. arXiv preprint
arXiv:2405.16397, 2024.

Robert Gower, Donald Goldfarb, and Peter Richtárik. Stochastic block bfgs: Squeezing more
curvature out of data. ICML, 2016.

Vineet Gupta, Tomer Koren, and Yoram Singer. Shampoo: Preconditioned stochastic tensor optimiza-
tion. In ICLR, 2018.

Moritz Hardt, Ben Recht, and Yoram Singer. Train faster, generalize better: Stability of stochastic
gradient descent. ICML, 2016.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. CVPR, 2016.

Geoffrey Hinton, Nitish Srivastava, and Kevin Swersky. Neural networks for machine learning
lecture 6a overview of mini-batch gradient descent. Coursera Lecture slides https://class. coursera.
org/neuralnets-2012-001/lecture, 2012.

Sepp Hochreiter and Jürgen Schmidhuber. Simplifying neural nets by discovering flat minima.
NeurIPS, 1994.

Sepp Hochreiter and Jürgen Schmidhuber. Flat minima. Neural Computation, 1997.

M.F. Hutchinson. A stochastic estimator of the trace of the influence matrix for laplacian smoothing
splines. Communications in Statistics - Simulation and Computation, 18(3):1059–1076, 1989.

Forrest Iandola, Albert Shaw, Ravi Krishna, and Kurt Keutzer. Squeezebert: What can computer
vision teach nlp about efficient neural networks? SustaiNLP: Workshop on Simple and Efficient
Natural Language Processing, 2020.

Pavel Izmailov, Dmitrii Podoprikhin, Timur Garipov, Dmitry Vetrov, and Andrew Gordon Wilson.
Averaging weights leads to wider optima and better generalization. UAI, 2018.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Stanisław Jastrzębski, Zachary Kenton, Nicolas Ballas, Asja Fischer, Yoshua Bengio, and Amos
Storkey. On the relation between the sharpest directions of dnn loss and the sgd step length. ICLR,
2018.

Yiding Jiang, Behnam Neyshabur, Hossein Mobahi, Dilip Krishnan, and Samy Bengio. Fantastic
generalization measures and where to find them. ICLR, 2020.

Nitish Shirish Keskar, Dheevatsa Mudigere, Jorge Nocedal, Mikhail Smelyanskiy, and Ping Tak Peter
Tang. On large-batch training for deep learning: Generalization gap and sharp minima. ICLR,
2017.

Pham Duy Khanh, Hoang-Chau Luong, Boris S. Mordukhovich, and Dat Ba Tran. Fundamental
convergence analysis of sharpness-aware minimization. arXiv, 2024.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. ICLR, 2015.

Ryan Kiros. Training neural networks with stochastic hessian-free optimization. arXiv preprint
arXiv:1301.3641, 2013.

Frederik Kunstner, Philipp Hennig, and Lukas Balles. Limitations of the empirical fisher approxima-
tion for natural gradient descent. NeurIPS, 32, 2019.

Kenneth Levenberg. A method for the solution of certain non-linear problems in least squares. QAM,
1944.

Haochuan Li, Alexander Rakhlin, and Ali Jadbabaie. Convergence of adam under relaxed assumptions.
NeurIPS, 2023.

Hong Liu, Zhiyuan Li, David Hall, Percy Liang, and Tengyu Ma. Sophia: A scalable stochastic
second-order optimizer for language model pre-training. ICLR, 2024.

Yong Liu, Siqi Mai, Xiangning Chen, Cho-Jui Hsieh, and Yang You. Towards efficient and scalable
sharpness-aware minimization. CVPR, 2022.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. ICLR, 2018.

Donald W Marquardt. An algorithm for least-squares estimation of nonlinear parameters. SIAM,
1963.

James Martens and Roger Grosse. Optimizing neural networks with kronecker-factored approximate
curvature. ICML, 2015.

James Martens et al. Deep learning via hessian-free optimization. ICML, 2010.

Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture
models. ICLR, 2022.

Peng Mi, Li Shen, Tianhe Ren, Yiyi Zhou, Xiaoshuai Sun, Rongrong Ji, and Dacheng Tao. Make
sharpness-aware minimization stronger: A sparsified perturbation approach. NeurIPS, 2022.

Walter Murray. Newton-type methods. 2010.

Nagarajan Natarajan, Inderjit S Dhillon, Pradeep K Ravikumar, and Ambuj Tewari. Learning with
noisy labels. NeurIPS, 2013.

Yurii Nesterov and Boris T Polyak. Cubic regularization of newton method and its global performance.
Math. prog., 2006.

Behnam Neyshabur, Srinadh Bhojanapalli, David Mcallester, and Nati Srebro. Exploring generaliza-
tion in deep learning. NIPS, 2017a.

Behnam Neyshabur, Srinadh Bhojanapalli, David Mcallester, and Nati Srebro. Exploring generaliza-
tion in deep learning. NeurIPS, 2017b.

Jorge Nocedal and Stephen J Wright. Numerical optimization. Springer, 1999.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Antonio Orvieto, Hans Kersting, Frank Proske, Francis Bach, and Aurelien Lucchi. Anticorrelated
noise injection for improved generalization. ICML, 2022.

Zhe Qu, Xingyu Li, Rui Duan, Yao Liu, Bo Tang, and Zhuo Lu. Generalized federated learning via
sharpness aware minimization. ICML, 2022.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
models are unsupervised multitask learners. OpenAI blog, 2019.

Farbod Roosta-Khorasani and Uri Ascher. Improved bounds on sample size for implicit matrix trace
estimators. FoCM, 2014.

Nicol N Schraudolph. Fast curvature matrix-vector products for second-order gradient descent.
Neural computation, 2002.

Sungbin Shin, Dongyeop Lee, Maksym Andriushchenko, and Namhoon Lee. Critical influence of
overparameterization on sharpness-aware minimization. arXiv, 2024.

Tijmen Tieleman and Geoffery Hinton. Lecture 6.5 - rmsprop: Divide the gradient bya running
average of its recent magnitude. COURSERA: Neural networks for machine learning.

Neha Wadia, Daniel Duckworth, Samuel S Schoenholz, Ethan Dyer, and Jascha Sohl-Dickstein.
Whitening and second order optimization both make information in the dataset unusable during
training, and can reduce or prevent generalization. ICML, 2021.

Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R Bowman. Glue:
A multi-task benchmark and analysis platform for natural language understanding. ICLR, 2018.

Wen Jun Wang, Ju Bo Zhu, and Xiao Jun Duan. Eigenvalue decomposition based modified newton
algorithm. AMM, 2013.

Ashia C Wilson, Rebecca Roelofs, Mitchell Stern, Nati Srebro, and Benjamin Recht. The marginal
value of adaptive gradient methods in machine learning. NeurIPS, 2017.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi,
Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, Joe Davison, Sam Shleifer, Patrick von
Platen, Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao, Sylvain Gugger, Mariama
Drame, Quentin Lhoest, and Alexander M. Rush. Huggingface’s transformers: State-of-the-art
natural language processing. arXiv, 2020.

Lei Wu, Mingze Wang, and Weijie Su. The alignment property of sgd noise and how it helps select
flat minima: A stability analysis. NeurIPS, 2022.

Zeke Xie, Issei Sato, and Masashi Sugiyama. A diffusion theory for deep learning dynamics:
Stochastic gradient descent exponentially favors flat minima. ICLR, 2020.

Yoshihiro Yamada, Masakazu Iwamura, Takuya Akiba, and Koichi Kise. Shakedrop regularization
for deep residual learning. IEEE Access, 2019.

Zhewei Yao, Amir Gholami, Kurt Keutzer, and Michael W Mahoney. Pyhessian: Neural networks
through the lens of the hessian. 2020.

Zhewei Yao, Amir Gholami, Sheng Shen, Kurt Keutzer, and Michael W Mahoney. Adahessian: An
adaptive second order optimizer for machine learning. AAAI, 2021.

Sergey Zagoruyko and Nikos Komodakis. Wide residual networks. BMVC, 2016.

Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals. Understanding
deep learning requires rethinking generalization. ICLR, 2017.

Pan Zhou, Jiashi Feng, Chao Ma, Caiming Xiong, Steven Chu Hong Hoi, et al. Towards theoretically
understanding why sgd generalizes better than adam in deep learning. NeurIPS, 2020.

Difan Zou, Yuan Cao, Yuanzhi Li, and Quanquan Gu. Understanding the generalization of adam in
learning neural networks with proper regularization. ICLR, 2022.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

A SHARPNESS MEASURES FOR OTHER SETTINGS

Table 7: The maximum Hessian eigenvalue λmax(H), trace of Hessian tr(H), worst-case sharpness
δLworst, average sharpness δLworst, generalization error in terms of loss ∆L and accuracy ∆acc of the
solution found by seven different optimizers on CIFAR-10/100. Second-order optimizers tend to yield
minima of high sharpness and worse generalization compared to SGD; SASSHA and M-SASSHA
effectively recover this.

Sharpness Generalization

λmax(H) tr(H)×103 δLworst δLavg×10−3 ∆L(Lval − Ltrain) Accval

CIFAR-10

ResNet20

SGD 107±4.37 1.38±0.01 0.840±0.304 0.690±0.39 0.27±0.007 92.027±0.32

SAM 58±2.98 0.73±0.04 0.171±0.038 0.461±0.24 0.119±0.002 92.847±0.07

Sophia-H 3606±303 31.24±2.628 6.120±1.634 18.11±1 0.28±0.009 91.814±0.27

AdaHessian 23048±29932 189.48±240.55 4.538±1.634 198.66±266 0.199±0.023 92.003±0.17

Shampoo 647066±419964 3899.5±1825 166.3±48.0 2177189±1628993 0.203±0.017 88.547±0.827

M-SASSHA 129±17 1.58±0.08 1.551±0.684 1.025±0.36 0.112±0.008 92.363±0.23

SASSHA 78±5.09 0.86±0.03 0.184±0.053 0.388±0.704 0.117±0.003 92.983±0.05

ResNet32

SGD 56±5.10 0.80±0.04 0.560±0.219 0.196±0.146 0.299±0.002 92.693±0.06

SAM 45±2.67 0.58±0.02 0.107±0.005 0.753±0.351 0.128±0.001 93.893±0.13

Sophia-H 7167±2755 18.82±5.50 9.399±2.283 7.915±3.397 0.418±0.007 91.985±0.08

AdaHessian 1746±1018 17.06±10.24 4.599±1.71 5.518±3.623 0.253±0.006 92.483±0.15

Shampoo 717553±93129 4523±629.7 162.1±123.2 105322±82246 0.269±0.005 90.227±0.238

M-SASSHA 283±10 3.96±0.10 2.986±1.133 1.300±0.969 0.081±0.001 93.177±0.30

SASSHA 47±1.88 0.59±0.02 0.136±0.019 0.714±0.090 0.112±0.001 94.093±0.24

CIFAR-100

ResNet32

SGD 265±25 7.29±0.30 0.703±0.132 1.31±1.03 1.027±0.013 69.320±0.19

SAM 123±11 2.63±0.09 0.266±0.025 −0.619±0.594 0.512±0.016 71.993±0.20

Sophia-H 22797±10857 68.15±20.19 8.13±3.082 19.19±6.38 1.251±0.020 67.760±0.37

AdaHessian 11992±5779 46.94±17.60 4.119±1.136 12.50±6.08 0.982±0.026 68.060±0.22

Shampoo 436374±9017 6823.34±664.65 73.27±12.506 49307489±56979794 0.508±0.07 64.077±0.46

M-SASSHA 382±65 8.75±0.31 2.391±0.425 2.26±1.66 0.628±0.010 70.93±0.21

SASSHA 107±40 1.87±0.65 0.238±0.088 0.65±0.86 0.425±0.001 72.143±0.16

WRN28-10

SGD 18±1.17 0.66±0.04 1.984±0.506 −0.007±0.028 0.820±0.005 80.063±0.15

SAM 9±0.866 0.23±0.01 0.841±0.084 0.024±0.041 0.648±0.006 82.560±0.13

Sophia-H 3419±3240 13.57±3.30 5.073±0.268 0.067±0.054 0.864±0.003 79.353±0.24

AdaHessian 35119±46936 139.53±190.98 6.745±1.932 19.727±27.866 1.005±0.008 76.917±0.26

Shampoo 102129±60722 1459.09±709.42 483±172 98.558±123.082 1.168±0.072 74.063±1.279

M-SASSHA 2257±248 30.40±4.78 4.599±0.003 0.301±0.047 0.729±0.01 81.533±0.27

SASSHA 84±3.15 2.03±0.11 4.540±0.122 0.007±0.129 0.603±0.002 83.543±0.08

B M-SASSHA: EFFICIENT PERTURBATION

Having explored techniques to reduce the computational cost of second-order methods, here we con-
sider employing techniques to alleviate the additional gradient computation in sharpness-minimization.
Prior works have suggested different ways to reduce this computational overhead including infrequent
computations (Liu et al., 2022), use of sparse perturbations (Mi et al., 2022), or computing with
selective weight and data (Du et al., 2022a). In particular, we employ the approaches of Becker et al.
(2024), which uses the normalized negative momentum as the perturbation:

ϵ⋆t = ρ
mt−1

∥mt−1∥2
, (9)

which entirely eliminates the need for additional gradient computation with similar generalization
improvement as the original SAM. We call this low-computation alternative as M-SASSHA and
evaluate this alongside SASSHA in Section 5, which shows much similar performance at the cost of
first-order methods like SGD or Adam.

C ALGORITHM COMPARISON

In this section, we compare our algorithm with other adaptive and second-order optimizers designed
for deep learning to better illustrate our contributions within concurrent literature. We present a
detailed comparison of each optimizer in Table 8.

Adam (Kingma & Ba, 2015) is an adaptive optimizer popular among practitioners, which uses
gradient momentum and the moving average of gradient second moment as a preconditioner inspired
by Adagrad (Duchi et al., 2011) and RMSProp (Tieleman & Hinton, COURSERA: Neural networks

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Table 8: Comparison of different optimization algorithms in terms of gradient moment mt, diagonal
preconditioner Dt, and other operations U(z) unique to each optimizer. Here gt, Ĥt are the stochastic
gradient and the Hessian estimation respectively, and β1, β2 denotes the hyperparameters for gradient
and preconditioner moment.

xt+1 = xt − ηtU(D−1
t mt)

mt Dt U(z)

SGD with momentum β1mt−1 + (1− β1)gt I z

Stochastic Newton gt Ht(xt) z

Adam (Kingma & Ba, 2015) β1mt−1 + (1− β1)gt

√
β2vt−1 + (1− β2) diag(gtg

⊤
t) bc(z)

AdamW (Loshchilov & Hutter, 2018) " " z+ λt

AdaHessian (Yao et al., 2021) "
√

β2vt−1 + (1− β2) Ĥ
(s)
t (xt)

2 bc(z)

Sophia-H (Liu et al., 2024) " β2vt−1 + (1− β2) Ĥ
(c)
t (xt) every k steps clip(z)

SASSHA (Ours) β1mt−1 + (1− β1) gt(xt + ϵ⋆t)

√
β2vt−1 + (1− β2) |Ĥt(xt + ϵ⋆t)| every k steps bc(z)

* bc(·): bias correction

for machine learning). This is closely related to second-order methods as they can be viewed as using
a diagonal approximation of the Fisher information matrix with square root for more conservative
adaptation to the geometry of the data. AdamW (Loshchilov & Hutter, 2018) propose to improve this
by decoupling the weight decay from the Adam update for better generalization, which becomes a
widely employed regularization strategy for second-order methods.

Algorithm 1 SASSHA and M-SASSHA

1: Input: Initial parameter x0, learning rate {ηt},
moving average parameters β1, β2, Hessian
update interval k, weight decay parameter λ

2: Set m−1 = 0, D−1 = 0
3: for t = 0 to T do
4: if SASSHA then
5: gt = ∇fB(xt)
6: ϵ⋆t = ρgt/∥gt∥2
7: else if M-SASSHA then
8: ϵ⋆t = ρmt−1/∥mt−1∥2
9: g̃t = ∇fB(xt + ϵ⋆t)

10: mt = β1mt−1 + (1− β1)g̃t
11: mt = mt/(1− βt

1)
12: if tmod k = 0 then
13: H̃t = Ĥ(xt + ϵ⋆t)

14: Dt = β2Dt−1 + (1− β2)|H̃t|
15: Dt =

√
Dt/(1− βt

2)
16: else
17: Dt = Dt−1

18: xt+1 = xt − ηtD
−1

t mt − ηtλxt

AdaHessian (Yao et al., 2021) is one of the ini-
tial attempts among recent efforts to design ef-
ficient second-order optimization for deep learn-
ing. As the name suggests, it draws many tech-
niques from adaptive methods such as moving
averages of second moments with bias correc-
tions, and diagonal approximation to precon-
ditioning. However, they also propose using
techniques such as Hutchinson diagonal esti-
mators (Hutchinson, 1989; Roosta-Khorasani
& Ascher, 2014) and spatial averaging on the
Hessian (Ĥ(s)

t), which consists of averaging
the diagonal element within a filter of a con-
volution layer for filter-wise gradient scaling.
Sophia (Liu et al., 2024) is a stochastic second-
order optimizer specifically designed for lan-
guage model pretraining. Its primary feature is
the use of the clipping mechanism clip(z) =
max{min{z, ρ},−ρ} with a predefined thresh-
old ρ to control the negative impact of inaccu-
rate Hessian estimations. Additionally, a hard
adjustment is applied to each Hessian entry, sub-
stituting negative and very small values with a
constant ϵ, such as Ĥ(c)

t = max{ĥt, ϵ} to pre-
vent convergence to saddle points and mitigate numerical instability. They also proposed using the
Gauss-Newton-Bartlett diagonal estimator alongside the Hutchinson estimator. To further attain
efficiency, they showed moderate robustness to lazy Hessian updates and proposed to update every
10 iterations of optimization, much longer compared to AdaHessian.

Our proposed method SASSHA adds additional perturbation ϵ⋆t before computing the gradient and
Hessian to penalize sharpness during the training process, which has not been explored in the literature.
We find this sharpness minimization scheme also seems to aid lazy Hessian updates. This, however,
can cause instability in the preconditioning, which we alleviate using square roots.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

D CONVERGENCE ANALYSIS OF SASSHA

In this section, to ensure the completeness of our work, we provide preliminary convergence analysis
results. Based on the well-established analyses of Li et al. (2023); Khanh et al. (2024), we further
investigate the complexities arising from preconditioned perturbed gradients.

Assumption D.1. The function f : Rd → R is convex, β-smooth, and bounded from below, i.e.,
f∗ := infx f(x) > −∞. Additionally, the gradient ∇f(xt) is non-zero for a finite number of
iterations, i.e., ∇f(xt) ̸= 0 for all t ∈ {1, 2, . . . , n}.

Assumption D.2. Step sizes ηt and perturbation radii ρt are assumed to satisfy the following
conditions:

∞∑
t=1

ηt = ∞,

∞∑
t=1

η2t < ∞,

∞∑
t=1

ρ2tηt < ∞.

Remark D.3. The following notations will be used throughout

1. gt := ∇f(xt) denotes the gradient of f at iteration t.

2. The intermediate points and the difference between the gradients are defined as

xt+ 1
2
:= xt + ρt

gt
∥gt∥

, gt+ 1
2
:= ∇f(xt+ 1

2
), δt := gt+ 1

2
− gt.

3. For u, v ∈ Rd, operations such as
√
v, |v| and v

u , as well as the symbols ⪯ and ⪰, are
applied element-wise.

Remark D.4. The update rule for the iterates is given by

xt+1 = xt −
ηt√

|diag(∇2f(xt+ 1
2
))|+ ϵ

⊙ gt+ 1
2
, (10)

where diag extracts the diagonal elements of a matrix as a vector, or constructs a diagonal matrix
from a vector, and ϵ is a damping constant. Define ht as

ht =
ηt√

|diag(∇2f(xt+ 1
2
))|+ ϵ

,

then the following hold

1. From the convexity and β-smoothness of f , the diagonal elements of ∇2f(x) are bounded
within the interval [0, β], i.e.,

0 ≤
[
∇2f(x)

]
(i,i)

= e⊤i ∇2f(x)ei ≤ β,

where ei is the i-th standard basis vector in Rd.

2. The term ht is bounded as
ηt√
β + ϵ

⪯ ht ⪯
ηt
ϵ
.

Remark D.5. For the matrix representation

1. Denoting Ht := diag(ht), the matrix bounds for Ht are given by
ηt√
β + ϵ

I ⪯ Ht ⪯
ηt
ϵ
I, (11)

where I is the identity matrix.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

2. Using the matrix notation Ht, the update for the iterates is expressed as

xt+1 = xt −Htgt+ 1
2
.

Remark D.6. From the β-smoothness of f , δt is bounded by

∥δt∥ ≤ β∥xt + ρt
∇f(xt)

∥∇f(xt)∥
− xt∥ = βρt. (12)

Lemma D.7 (Descent Lemma). Under Assumption D.1 and Assumption D.2, for given β and ϵ, there
exists a T ∈ N such that for ∀t ≥ T , ηt satisfies ηt ≤ min

{
ϵ2

6β(
√
β+ϵ)

, ϵ
4β

}
. For such t ≥ T , the

following inequality holds

f(xt+1) ≤ f(xt)−
ηt

2(
√
β + ϵ)

∥gt∥2 +
ηt
ϵ
∥δt∥2. (13)

Proof. We begin by applying the β-smoothness of f ,

f(xt+1) ≤ f(xt) + ⟨gt, xt+1 − xt⟩+
β

2
∥xt+1 − xt∥2

= f (xt)− ⟨gt, Ht(gt + δt)⟩+
β

2
∥Ht(gt + δt)∥2

≤ f (xt)− g⊤t Htgt +
1

2α
g⊤t Htgt +

α

2
δ⊤t Htδt +

β

2
∥Ht(gt + δt)∥2

≤ f (xt)− (1− 1

2α
)

ηt√
β + ϵ

∥gt∥2 +
α

2

ηt
ϵ
∥δt∥2 +

β

2

η2t
ϵ2

∥gt + δt∥2

≤ f (xt)− (1− 1

2α
)

ηt√
β + ϵ

∥gt∥2 +
α

2

ηt
ϵ
∥δt∥2 + β

η2t
ϵ2

(
∥∥gt∥2 + ∥δt

∥∥2)
= f (xt)− ηt((1−

1

2α
)

1√
β + ϵ

− β
ηt
ϵ2
)∥gt∥2 + ηt(

α

2ϵ
+ β

ηt
ϵ2
)∥δt∥2.

The second inequality follows from Young’s inequality, the third inequality is obtained from Equa-
tion (11), and the last inequality is simplified using the property ∥a + b∥2 ≤ 2∥a∥2 + 2∥b∥2. By
setting α = 3

2 , we get

= f (xt)− ηt(
2

3

(
1√
β + ϵ

)
− β

ηt
ϵ2
)∥gt∥2 + ηt(

3

4ϵ
+ β

ηt
ϵ2
)∥δt∥2.

Since ηt ↓ 0, ∃T ∈ N such that ηt ≤ min{ ϵ2

6β(
√
β+ϵ)

, ϵ
4β }, this gives 2

3

(
1√
β+ϵ

)
− β ηt

ϵ2 ≥ 1
2(

√
β+ϵ)

and 3
4ϵ + β ηt

ϵ2 ≤ 1
ϵ , which implies

≤ f (xt)−
ηt

2(
√
β + ϵ)

∥gt∥2 +
ηt
ϵ
∥δt∥2

Theorem D.8. Under Assumption D.1 and Assumption D.2, given any initial point x0 ∈ Rd, let {xt}
be generated by Equation (10). Then, it holds that lim inft→∞ ∥gt∥ = 0.

Proof. From Lemma D.7 and Equation (12), we have the bound

f(xt+1) ≤ f(xt)−
ηt

2(
√
β + ϵ)

∥gt∥2 +
ηt
ϵ
∥δt∥2

≤ f(xt)−
ηt

2(
√
β + ϵ)

∥gt∥2 +
ηt
ϵ
β2ρ2t .

By rearranging the terms, we obtain the following
ηt

2(
√
β + ϵ)

∥gt∥2 ≤ f(xt)− f(xt+1) +
ηt
ϵ
β2ρ2t .

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

For any M > T , we have

1

2(
√
β + ϵ)

M∑
t=T

ηt∥gt∥2 ≤
M∑
t=T

(f(xt)− f(xt+1)) +
β2

ϵ

M∑
t=T

ρ2tηt

= f(xT)− f(xM+1) +
β2

ϵ

M∑
t=T

ρ2tηt

≤ f(xT)− inf
t∈N

f(xt) +
β2

ϵ

M∑
t=T

ρ2tηt.

As M → ∞, the series
∑∞

t=T ηt∥gt∥2 converges. Now, assume for contradiction that
lim inft→∞ ∥gt∥ ≠ 0. This means there exists some ξ > 0 and N ≥ T such that ∥gt∥ ≥ ξ
for all t ≥ N . Consequently, we have

∞ >

∞∑
t=N

ηt∥gt∥2 ≥ ξ2
∞∑

t=N

ηt = ∞,

which is a contradiction. Therefore, lim inft→∞ ∥gt∥ = 0.

E EXPERIMENT SETTING

Here, we describe our experiment settings in detail.

CIFAR We trained ResNet models on the CIFAR datasets for 160 epochs and Wide-ResNet28-10
for 200 epochs. We employed only standard inception-style data augmentations, such as random
cropping and horizontal flipping, without any additional regularization techniques or data augmenta-
tions. The loss function used was cross-entropy. We utilized a multi-step decay learning rate schedule.
Specifically, for ResNet20 and ResNet32, the learning rate was decayed by a factor of 0.1 at epochs
60 and 120. For Wide-ResNet28-10, the learning rate was decayed by a factor of 0.2 at epochs 80
and 160. The hyperparameters for exponential moving average were set to β1 = 0.9 and β2 = 0.999.
A batch size of 256 was used in all experiments. The hyperparameter search space for different
optimizers is detailed in Table 9.

Optimizer SASSHA M-SASSHA AdaHessian Sophia-H AdamW / SGD shampoo

Learning Rate
{
0.3, 0.15

} {
0.3, 0.15, 0.1, 0.03, 0.015, 0.01, 0.001

} {
1.5,1.4,1.3,1.2,1.1,1,0.9,0.8,0.7,0.6,
0.5,0.4,0.3,0.2,0.1,0.01,0.04,0.004

}
Weight Decay

{
2e-3, 1e-3, 5e-4, 1e-4, 5e-5, 1e-5, 5e-6, 1e-6

}
Perturbation radius ρ

{
0.15, 0.2, 0.25

} {
0.1, 0.2, 0.3, 0.6, 0.8

}
- - - -

Clipping-threshold - - -
{

0.1,0.05,0.01,0.005,
0.001,0.0005,0.0001

}
- -

Damping - - - - - 1e-
{
2, 3, 4, 6, 8

}
Hessian Update Interval k 10 10 1 1 - 1

learning rate schedule Multi-step decay

Table 9: Hyperparameter search space for CIFAR on ResNet

ImageNet We trained ResNet50 and ViT-S/32 models on the ImageNet dataset for 90 epochs. Con-
sistent with our CIFAR training settings, we utilized only standard inception-style data augmentations
and employed the cross-entropy loss function. When training ResNet50, we used a multi-step decay
learning rate schedule, reducing the learning rate by a factor of 0.1 at epochs 30 and 60. However,
for the AdaHessian, training was not possible with a multi-step decay schedule; therefore, following
(Yao et al., 2021), we adopted a plateau decay schedule. For training the Vision Transformer model,
following (Chen et al., 2022), we employed a cosine learning rate schedule with an 8-epoch warm-up
phase. The β1 and β2 were set to 0.9 and 0.999 respectively. We used a batch size of 256 for
ResNet50 and a batch size of 1024 for ViT. The hyperparameter search spaces for each optimizer
used during training on the ImageNet dataset are detailed in Table 10.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Optimizer SASSHA M-SASSHA AdaHessian Sophia-H AdamW / SGD

Learning Rate
{
0.3, 0.15

} {
0.3, 0.15

} {
0.3, 0.15

} {
0.1, 0.01, 0.001

}
Weight Decay

{
2e-3, 1e-3, 5e-4, 1e-4, 5e-5, 1e-5

}
Perturbation radius ρ

{
0.1, 0.15, 0.2, 0.25

} {
0.1, 0.2, 0.4, 0.8

}
- - -

Clipping-threshold - - -
{
0.1, 0.05, 0.01, 0.005, 0.001, 0.0005, 0.0001

}
-

Hessian Update Interval k 10 10 1 1 -

Table 10: Hyperparameter search space for ImageNet

Language pretraining Following the training settings introduced in (Gomes et al., 2024), we
conducted experiments on a mini GPT-1 model using the Wikitext-2 dataset. This scaled-down
version of GPT-1 instead of the original twelve, maintaining essential modeling capabilities while
reducing computational demands. We trained the model with three optimizers: SASSHA, M-SASSHA,
and Sophia-H. The hyperparameter tuning spaces for these optimizers are summarized in Table 11.
For other optimizers not listed in the table, we directly reported the results from (Gomes et al., 2024).

Optimizer SASSHA / M-SASSHA Sophia-H

Learning Rate
{
0.15, 0.075, 0.015, 0.0075, 0.0015

} {
1e-2, 5e-3, 1e-3, 5e-4, 1e-4, 5e-5, 1e-5

}
Weight Decay 1e-{1, 2, 4, 6, 8}

Perturbation radius ρ 2.5e-{1, 2, 3, 4} -

Clipping-threshold -
{

1e-1, 5e-2, 1e-2, 5e-3, 1e-3, 5e-4, 1e-4
}

Hessian Update Interval k 10 1

Epochs 50

Table 11: Hyperparameter search space for Language pretraining

Language Finetuning In our experiments, we utilized a pretrained SqueezeBERT model from
the HuggingFace Hub (Wolf et al., 2020) instead of pretraining the model from scratch as initially
proposed by Iandola et al. (2020). For fine-tuning, we set the batch size to 16, the maximum sequence
length to 512, and disabled dropout by setting the dropout rate to zero. The number of fine-tuning
epochs varied according to the specific GLUE task: 5 epochs for MNLI, QQP, QNLI, and SST-2; 10
epochs for STS-B, MRPC, and RTE; and 20 epochs for CoLA. The detailed hyperparameter search
spaces are presented in Table 12.

Optimizer SASSHA / M-SASSHA Sophia-H AdaHessian AdamW

Learning Rate 1e-{1, 2, 3} 1e-{1, 2, 3, 4, 5} 1e-{1, 2, 3, 4, 5} 1e-{1, 2, 3, 4, 5}

Weight Decay
{

1e-4, 5e-5, 1e-5, 5e-6, 1e-6
}

1e-{4, 5, 6, 7, 8} 1e-{4, 5, 6, 7, 8} 1e-{4, 5, 6, 7, 8}

Perturbation radius ρ 2.5e-{1, 2, 3, 4} - - -

Clipping-threshold -
{

0.1,0.05,0.01,0.005,
0.001,0.0005,0.0001

}
- -

Hessian Update Interval k 1 1 1 -

Table 12: Hyperparameter search space for language finetuning

Label noise To evaluate the robustness of ResNet32 under varying levels of label noise, we
conducted a comprehensive grid search on the CIFAR datasets. We trained the model using a multi-
step decay learning rate schedule while introducing label noise at rates of 20%, 40%, and 60%. The
specific hyperparameters explored during these experiments are detailed in in Table 13.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Optimizer SASSHA M-SASSHA Sophia-H AdaHessian SAM AdamW

Learning Rate
{
0.3, 0.15, 0.1, 0.05, 0.015, 0.01, 0.001

}
Weight Decay

{
5e-4, 5e-5, 1e-5, 5e-6, 1e-6

}
Perturbation radius ρ

{
0.1, 0.15, 0.2, 0.25

} {
0.1, 0.2, 0.3, 0.6, 0.8

}
- -

{
0.05, 0.1, 0.15, 0.2, 0.25

}
-

Clipping-threshold - -
{

0.1,0.05,0.01,0.005,
0.001,0.0005,0.0001

}
- - -

Hessian Update Interval k 10 10 1 1 - -

Table 13: Hyperparameter search space for label noise experiments

F VALIDATION LOSS CURVE FOR VISION TASK

0 50 100 150
Epoch

0.2

0.4

0.6

0.8

1.0

Lo
ss

CIFAR-10 / ResNet-20
Sassha
M-Sassha
SGDM
AdaHessian
AdamW
Sophia-H
Shampoo

0 50 100 150
Epoch

0.2

0.4

0.6

0.8

1.0

Lo
ss

CIFAR-10 / ResNet-32
Sassha
M-Sassha
SGDM
AdaHessian
AdamW
Sophia-H
Shampoo

0 50 100 150
Epoch

1.0

1.5

2.0

2.5

3.0

Lo
ss

CIFAR-100 / ResNet-32
Sassha
M-Sassha
SGDM
AdaHessian
AdamW
Sophia-H
Shampoo

0 50 100 150 200
Epoch

0.5

1.0

1.5

2.0

2.5

Lo
ss

CIFAR-100 / WRN-28-10
Sassha
M-Sassha
SGDM
AdaHessian
AdamW
Sophia-H
Shampoo

0 20 40 60 80
Epoch

1.0

1.5

2.0

2.5

3.0

Lo
ss

ImageNet / ResNet-50
Sassha
M-Sassha
SGDM
AdamW
AdaHessian
Sophia-H

0 20 40 60 80
Epoch

1.5

2.0

2.5

3.0
Lo

ss
ImageNet / ViT-s-32

Sassha
M-Sassha
SGDM
AdamW
AdaHessian
Sophia-H

Figure 6: Validation loss curve of SASSHA, M-SASSHA, SGD, AdaHessian, AdamW, and Sophia-H
on various image classification models and tasks. SASSHA outperforms all first-order and second-
order baseline optimizers.

The experimental results demonstrate the better generalization capability of SASSHA over the related
optimizers. Across all datasets and model architectures, our method consistently achieves the lowest
validation loss, indicative of its enhanced ability to generalize from training to validation data
effectively. This robust performance underscores SASSHA’s potential as a leading optimization
method for various deep learning applications, particularly in the domain of image classification.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

G ADDITIONAL ABLATION

G.1 ABLATION OF THE ABSOLUTE FUNCTION

0 50 100 150
Epoch

1

2

3

4

5

Lo
ss

Sassha
No-Abs

(a) Train loss

10 0 10
Eigenvalue

10 6

10 4

10 2

100

De
ns

ity

Sassha
No-Abs

(b) Hess. eigenspectrum

Figure 7: Effect of the absolute function on the
training loss and the Hessian eigenspectrum of the
found solution of SASSHA on ResNet-32/CIFAR-
10. Without the absolute function, SASSHA con-
verges to sub-optimal saddle point.

We observe how the absolute function influences
the training process to avoid convergence to a
critical solution that could result in sub-optimal
performance. We train ResNet-32 on CIFAR-
100 using SASSHA without the absolute function
(No-Abs) and compare the resulting training
loss to that of the original SASSHA. We also plot
the Hessian eigenspectrum of the found solution
via the Lanczos algorithm (Yao et al., 2020) to de-
termine whether the found solution corresponds
to a minimum or a saddle point. The results are
illustrated in Figure 7. We can see that without
the absolute function, the training loss converges
to a sub-optimal solution, where the prevalent
negative values in the diagonal Hessian distribu-
tion indicate it as a saddle point. This shows the
necessity of the absolute function for preventing convergence to these critical regions.

G.2 ADDITIONAL RESULTS FOR SASSHA VS SAM

Table 14: We conducted a comparative analysis of SASSHA and SAM across various datasets and
models. The results indicate that SASSHA achieves a comparable level of validation accuracy in a
shorter amount of time compared to SAM.

Epoch Time (s) Accuracy (%)

CIFAR10/RN20

SAM SGD 160 956 92.847±0.07

SAM AdamW 160 988 92.767±0.29

SASSHA 120 936 92.873±0.05

CIFAR10/RN32

SAM SGD 160 1,466 93.893±0.13

SAM AdamW 160 1,473 93.450±0.24

SASSHA 120 1,440 93.810±0.12

SASSHA 160 1,920 94.093±0.24

CIFAR100/RN32

SAM SGD 160 1,471 71.993±0.20

SAM AdamW 160 1,472 71.153±0.37

SASSHA 120 1,447 71.920±0.30

SASSHA 160 1,930 72.143±0.16

CIFAR100/WRN-28-10

SAM SGD 200 23,692 83.036±0.13

SAM AdamW 200 23,820 82.880±0.31

SASSHA 150 21,309 83.167±0.15

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

G.3 COST ANALYSIS

Table 15: Wall clock time (s) per epoch and the number of backward passes (BP) required for various
optimizers, with the lazy Hessian interval k of SASSHA set to 10. Both SASSHA, and M-SASSHA are
significantly faster than other approximate second-order optimizers. Notably, M-SASSHA consistently
demonstrates better speed than SAM across all settings.

Optimizer Avg. BP
(theoretical)

CIFAR10 CIFAR100 ImageNet

ResNet20 ResNet32 ResNet32 WRN28-10 ResNet50 ViT-small

AdamW 1 BP 3.35 5.03 5 59.29 1356.36 976.56
SAM 2 BP 5.97 9.16 9.19 118.46 3003.00 1302.08
Sophia-H 2 BP 21.20 33.90 33.87 295.31 12512.50 2152.19
AdaHessian 2 BP 20.10 33.75 31.64 296.63 12262.25 2077.07

SASSHA 2.1 BP 7.80 12.00 12.06 142.06 3503.50 1377.20
M-SASSHA 1.1 BP 5.70 8.91 8.89 84.12 2497.50 1065.40

Here we discuss the theoretical computation cost of SASSHA and M-SASSHA in terms of backpropa-
gation query. The average backpropagation cost (i.e., total BP / number of iterations) of SASSHA
is (2 + 1/k) BP. For the lazy Hessian interval k = 10 used in our evaluations, this corresponds to
2.1 BP. The calculation is as follows: when performing a total of T iterations, the total cost includes
T BP for gradient calculation, T BP for sharpness minimization, and T/k BP for diagonal Hessian
approximation performed once every k iterations. This results in a total of (2 + 1/k)T BP, yielding
an average of (2 + 1/k) BP per iteration. Compared with SAM, SASSHA requires only 5% more
BP on average. M-SASSHA significantly reduces the cost, only requiring 10% BP compared to
Adam/SGD. To measure these resource consumption in practice, we report the wall-clock time of
various optimizers in Table 15 which shows that both SASSHA, and M-SASSHA are significantly faster
than other approximate second-order optimizers. Notably, M-SASSHA consistently demonstrates
better speed than SAM across all settings.

H COMPUTING RESOURCES

The computations for this research were performed on a GPU cluster featuring nodes equipped with
the following GPU resources:

• NVIDIA GeForce RTX 3090 GPUs, each with 24 GB of memory.
• NVIDIA A100 GPUs, each with 80 GB of memory.
• NVIDIA RTX A6000 GPUs, each with 48 GB of memory

The software stack used includes a Linux operating system, Slurm for resource management, and
essential libraries such as CUDA and cuDNN. This setup provided the necessary computational power
and efficiency to perform the extensive simulations and data processing required for this research.

23

	Introduction
	Related works
	Practical second-order optimizers converge to sharp minima
	Sassha: Sharpness-aware Adaptive Second-order optimization with Stable Hessian Approximation
	Sharpness-aware second-order optimization
	Improving stability
	Improving efficiency via lazy Hessian update
	Further extension and analyses

	Evaluations
	Image classification
	Language pretraining
	Language finetuning
	Robustness to label noise

	Ablations
	Stabilizing effect of square-root
	Analyzing lazy Hessian updating
	Comparison with SAM
	Additional ablations

	Conclusion
	Sharpness measures for other settings
	M-Sassha: Efficient perturbation
	Algorithm comparison
	Convergence analysis of Sassha
	Experiment setting
	Validation loss curve for vision task
	Additional ablation
	Ablation of the absolute function
	Additional results for Sassha vs SAM
	Cost analysis

	Computing resources

