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Abstract

While large language models (LLMs) have001
rapidly improved performance on a broad num-002
ber of tasks, they still fall often fall short on003
reasoning tasks. Wang et al. (2023) propose004
self-consistency, finding that sampling multi-005
ple rationales before taking a majority vote sta-006
bly improves performance across a wide va-007
riety of closed-answer reasoning tasks. Stan-008
dard self-consistency aggregates the numerical009
outputs of these rationales; our work instead010
incorporates the content of the rationales to011
identify consensus responses, re-weighting so-012
lutions based on patterns found in their vector013
embeddings of sequence outputs. Doing so em-014
phasizes consistent reasoning paths, promoting015
semantically consistent reasoning to improve016
accuracy on common benchmarks.017

1 Introduction018

In recent years, the development of large lan-019

guage models has witnessed remarkable strides,020

with significant advancements in their accuracy021

and expressive capabilities. (Brown et al., 2020;022

Sarker, 2021; Naveed et al., 2023; Bubeck et al.,023

2023) Despite these achievements, models still per-024

form suboptimally in domains such as mathematic,025

commonsense, and complex algorithmic reason-026

ing. (Hendrycks et al., 2021) While enlarging pa-027

rameter sizes can enhance performance on specific028

benchmarks, it shouldn’t be solely relied upon as029

the primary method for improvement. (Srivastava030

et al., 2023). To address this shortcoming, vari-031

ous advanced techniques such as chain of thought032

prompting have been developed to further increase033

reasoning capabilities and was further enhanced by034

the introduction of self-consistency, which demon-035

strate that baselines can be pushed forward by in-036

creasing the number of samples generated.037

We build on the framework of self-consistency,038

that samples and ensembles multiple model re-039

sponses to improve prediction quality (Mialon040

et al., 2023). Our paper introduces various methods 041

that improve performance and accuracy by exploit- 042

ing semantic contrast between generations. We 043

propose multiple techniques that adds a separate 044

filtering layer to discard irrelevant, inaccurate or 045

degenerated responses. Furthermore we introduce 046

the application of semantic vector embeddings in 047

relationship to self-consistency to group consis- 048

tent model outputs, aiding identification of alike 049

responses to estimate an accurate representation 050

about output sequences. Additionally weighting re- 051

sponses based of these semantic representations has 052

shown an inclining effect on model performance 053

in terms of accuracy. We also explore the impact 054

of weighting responses based on these semantic 055

representations. Figure 1 exemplary illustrates our 056

filtering process after mapping embeddings to a 057

two-dimensional space. 058

Overall, we show that self-consistency with se- 059

mantic marginalization not only substantially im- 060

proves accuracy on a range of benchmarks, but also 061

can be used as a filtering mechanism to improve 062

robustness towards nonsensical and degenerated 063

responses. By addressing these issues we want to 064

provide multiple methods that can be utilized as a 065

framework towards improvement of performance 066

and more textually aware and concise sequences in 067

the majority responses. 068
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Figure 1: Default self-consistency comprises three steps: (1) Prompt a model with chain-of-thought reasoning; (2)
Generate n sampled sequences, and (3) Marginalize results based on the most occurring numerical output.
Our proposed method samples results and marginalizes not only based on consistency in the output but also on
the consistency of the employed reasoning path. Our assumption is that Language Models often apply the correct
reasoning but lack the ability to conduct the needed mathematical operations correctly. We utilize this concept to let
reasoning paths improve the confidence in similar reasoning responses.

2 Methodology069

2.1 Semantic marginalization techniques070

We analyze a range of mechanisms for weighting071

and categorization. That follow a briefly similar072

operational pattern.073

1. Generate candidate responses: Given a query074

of few-shot examples, we generate n samples075

based on chain of thought prompting. (Wei076

et al., 2022)077

2. Embed reasoning paths: Here, we deviate078

from the typical sentence-wise approach used079

in BERT models. Instead, we take the entire080

sequence, including the generated responses,081

and use fine-tuned variants of BERT-models082

to embed the answer in semantic space.083

3. Filter and marginalize: We use various al-084

gorithms to filter and marginalize out results085

based on its featurized embedding vector.086

2.1.1 Inverse-distance weighting087

In a set of examples, it is common to observe that088

general answers exhibit similar operational patterns089

and behaviors. This observation underpins the ap-090

plication of inverse distance weighting, a technique091

where each vector in the set is assigned a weight092

based on its distance from a reference point or093

query. The essence of this approach lies in the prin- 094

ciple that vectors closer to the query are more likely 095

to be relevant and thus are given greater weight in 096

the decision-making or reasoning process. 097

We calculate the weights for each data point and 098

normalize the weights so that they sum to 1. The 099

process is shown below. To quantify these distances 100

and subsequent weights, we adapt a radial basis 101

function. 102

centroid =
1

N

N∑
i=1

data_embedding[i] 103

104
distances[i] = ∥data_embeddings[i]− centroid∥ 105

106

weights[i] =
1

distances[i]
107

In these formulations: 108

• centroid symbolizes the geometric center of 109

all data points. 110

• distances[i] denotes the distance of the i-th 111

data point from the centroid. 112

• weights[i] indicates the normalized weight of 113

the i-th data point, derived from its distance 114

to the centroid. 115

• N is the total number of data points in the 116

dataset. 117
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• data_embedding[i] represents the vector rep-118

resentation of the i-th data point.119

• ∥·∥ signifies an arbitrary distance function120

Our results are evaluated with Euclidean dis-121

tance. Additionally, we use Manhattan (L1)-122

distance as an alternative approach to Euclidean123

distance to measure the closeness of relevant data124

points, which is more robust to outliers.125

2.1.2 Identification of Anomalous Data Points126

We thoroughly examined outlier detection tech-127

niques, including k-nearest neighbors (KNN),128

isolation forest (ISF), and One-class support vector129

machines (OCSVM) (Liu et al., 2008; Manevitz130

and Yousef, 2002; Cover and Hart, 1967). These131

methods help isolate data points that deviate132

significantly from the norm, useful for spotting133

flawed reasoning, degenerated outputs, or model134

hallucinations.135

136

K-nearest neighbor calculates the distance137

D(x, y) between two n-dimensional points x and138

y using
√∑n

i=1(xi − yi)2.139

140

Isolation forest determines the anomaly score141

s(x, n) of a point x based on its path length h(x)142

within an isolation tree: s(x, n) = 2
−E(h(x))

c(n) ,143

where E(h(x)) is the average path length and c(n)144

is a normalization factor.145

146

Support vector machines minimizes147
1
2ω

Tω + C
∑n

i=1 ζi to find parameters ω, b,148

and ζi, subject to constraints that define the149

hyperplane (ω and b) and allow for anomalies150

(ζi), with C balancing margin maximization and151

classification error minimization.152

153

2.2 Sequence comparison154

To get a direct comparison of effectiveness between155

evaluating the embedding position in correlation156

to its other datapoints and evaluating wise we used157

cosine similarity to evaluate direct similarities be-158

tween sequences.159

Therefore we take n1, n2, n3, . . . , ni which rep-160

resents distinct elements in our set N , where each161

element n corresponds to a featurized embedding162

in the vector space.163

Then we determine the cosine similarity between164

all vectors (Here na and nb) given by the formula: 165

cosine_similarity(na, nb) =
na · nb

∥na∥2∥nb∥2
166

For a given rationale ne, we evaluate the cosine 167

similarity between ne and each ni in the set N . 168

Then, we aggregate the weights (or scores) of all 169

these cosine similarity results for ne. By summing: 170

Sne =
∑
i

∀ni ∈ N, cosine_similarity(ne, ni) 171

where Sne represents the aggregated score for 172

ne. 173

This process is then repeated for each element 174

nj in the set N , resulting in a series of aggregated 175

scores Sn1 , Sn2 , Sn3 , . . . , Sni . 176

These scores are then summed based on their an- 177

swer decision. This system effects that the highest 178

consensual response gets chosen as the solution. 179

3 Experimental Setup 180

We conduct multiple experiments with varying se- 181

tups in form of different benchmarks tested on each 182

model to cover a broad range of possible outputs. 183

Detailed information on the configurations used for 184

out models can be found in Appendix E. 185

3.1 Dimensionality reduction 186

We test dimensionality reduction with PCA and t- 187

SNE to see performance and preservation of the dis- 188

tribution on different algorithms. (Pearson, 1901; 189

Hotelling, 1933; Jolliffe, 2002) A detailed overview 190

is referenced in Section 5.6. 191

Additionally use the t-SNE for the visualization 192

of high-dimensional vector spaces, the configura- 193

tion is explained in Appendix L. (van der Maaten 194

and Hinton, 2008) 195

3.2 Datasets 196

3.2.1 Arithmetic reasoning 197

We evaluate arithmetic reasoning on AQuA-RAT 198

and SVAMP. (Ling et al., 2017; Patel et al., 2021) 199

We also use GSM8K (Cobbe et al., 2021) for 200

some ablations to evaluate performance on lower- 201

difficulty problems. 202

3.2.2 Code synthesis 203

To test our hypothesis on code generation we use 204

HumanEval introduced by Chen et al. (2021) in 205

connection with OpenAI. 206
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3.3 Language Models207

Our models are divided into generators, which pro-208

vide the reasoning/result sequences of of which we209

build the solutions and featurizers, which convert210

the output sequences into suitable vector represen-211

tations.212

3.3.1 Generators213

• GPT-3.5: For our evaluation we use the214

closed-source GPT-3.5 model architecture215

which is a transformer based large-scale lan-216

guage created by OpenAI.(Brown et al., 2020)217

218

• Llama 2: Llama 2 is a collection of open-219

weight Transformer models that perform220

well on a multitude of common benchmarks.221

We evaluate the 7-billion parameter variant.222

(Touvron et al., 2023)223

224

• Mistral 7B: Mistral 7B is a strong front to225

back transformer model. (Jiang et al., 2023) It226

outperforms larger-parameter models in pro-227

cessing large contextual information. We are228

using version 0.1 of the model.1229

3.3.2 Featurizers230

All of our featurizers are based on the BERT-231

architecture. (Devlin et al., 2019) This enables us232

to use different fine-tuned models to produce more233

concise embedding-vectors based on the given task.234

• roBERTa: roBERTa (Liu et al., 2019) is an235

"robustly" fine-tuned 125M parameter model236

derived from the original BERT architecture,237

featuring careful optimization to outperform238

its predecessor on several natural language239

processing benchmarks.240

241

• sciBERT: sciBERT is a 110M parameter242

BERT-model fine-tuned on a multi-domain243

corpus of roughly 1.14M scientific pub-244

lications, making it particularly adept at245

understanding more complex terminology246

and structure in academic contexts. (Beltagy247

et al., 2019)248

249

• MathBERT: MathBERT is a 100M token250

BERT-model that is fine-tuned on mathe-251

matical language based on up to an college252

1Our employed model does not utilize instruction tuning.

level math curriculum, books and math arXiv- 253

paper-abstracts.(Shen et al., 2023) 254

• codeBERT: codeBERT is a 125M parame- 255

ter fine-tuned BERT model for coding assign- 256

ments with a more pronounced understanding 257

of code. (Feng et al., 2020) 258

4 Results 259

4.1 Weighting results 260

4.1.1 Arithmetic reasoning 261

The results presented in Table 1 demonstrate no- 262

table improvements in accuracy when inverse dis- 263

tance weighting is applied, particularly in scenarios 264

with higher variance in overall numerical outputs. 265

The weighting models based on the inverse of the 266

distance outputs have shown to improve overall 267

self-consistency by an average margin of 3.75% 268

for AQuA-rat and 0.9% for SVAMP. 269

The use of Euclidean distance has yielded higher 270

average results but also greater variance in accu- 271

racy compared to Manhattan distance. This sug- 272

gests that penalizing more deviating results can be 273

beneficial for models with stronger performance. 274

We observe the same correlational increase in per- 275

formance in higher parameter models as already 276

percieved in self-consistency and chain-of-thought 277

prompting. 278

4.1.2 Weighted Code Synthesis 279

As evidenced in Table 2, employing inverse dis- 280

tance weighting enhances the quality of code syn- 281

thesis. This method consistently selects the sample 282

with the greatest weighting, aligning it closer to 283

the aggregate mean. Importantly, this approach 284

demonstrates a preference for clean and concise 285

code. This increases the likelihood of a sample 286

being nearer to the mean, especially when the ma- 287

jority of code samples exhibit qualities of clarity 288

and brevity. 289

Table 2: Model Performance Overview on HumanEval
at pass@1, based on CodeBERT encodings

accuracy (%)

Model Dataset Avg. Inverse Distance
default Weighting

Mistral HumanEval 18.7 23.8 (+5.1)
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Model Method AQuA-rat SVAMP
SC baseline 24.8 46.5

Llama 2 7B Inverse distance 24.6 (-0.2) 47.4 (+0.9)
L1 inverse distance 23.9 (-0.9) 46.7 (+0.2)
SC baseline 25.6 68.5

Mistral 7B Inverse distance 29.0 (+3.4) 69.8 (+0.3)
L1 inverse distance 28.6 (+3.0) 69.8 (+1.3)
SC baseline 59.4 79.8

GPT 3.5 Inverse distance 68 (+8.6) 81.0 (+1.2)
L1 inverse distance 68 (+8.6) 80 (+0.2)

Table 1: Comparison of Inverse distance weighting on different distance metrics and models, with SciBERT
embeddings

4.2 Self-consistency with outlier detection290

Outlier detection proves crucial for enhancing the291

overall quality of the results. This technique ef-292

fectively marginalizes points that detract from the293

model’s self-consistency and filters out irrelevant294

responses. This refinement in output quality is evi-295

dent even when the quantity of samples is reduced,296

suggesting that the effectiveness of anomaly detec-297

tion techniques is not solely dependent on sample298

size. 2 Results show meaningful increases in per-299

formance over the default. Anomaly detection3,300

while showing a frailty across different results with301

deviations up to 1% of the baseline, becomes a piv-302

otal method when considering the dual benefit of303

outlier detection.304

By selectively sampling out these outlier points,305

not only is the relevance of the responses main-306

tained, but the model’s self-consistency is ensured307

in a reduced sample space. This suggests that using308

outlier detection techniques can lead to a cleaner309

analysis and a more comprehensive distribution of310

relevant results, aiding in understanding the actual311

deviation of reasoning paths that are significant to312

the results.313

4.3 Direct comparison of Sequences314

To get a direct comparison of effectiveness between315

evaluating the embedding position in correlation to316

its other datapoints and evaluating sequence wise317

we used cosine similarity to evaluate direct similar-318

ities between sequences. (Gatto et al., 2023)319

2The obtained results exhibited slight deviations between
the different configurations. An extensive review across differ-
ent sets of configurations and parameters can be found under
Appendix J.1 to J.3.

3To provide a more stable assessment, we average the
results across all variations of different parameters.

Model AQuA-rat SVAMP
LLAMA 2 25.0 (+0.2) 46.9 (+0.4)
MISTRAL 29.8 (+3.6) 70.2 (+1.7)
GPT3.5 65.4 (+6.0) 80.3 (+0.5)

Table 4: Showcasing cosine similarity (weighted) com-
pared to all rationales

These results show that when sequences get 320

weighted based on maintained consistency between 321

all responses, we exhibit results that are more prone 322

to errors and reveal higher accuracy that got lost in 323

default self-consistency. 324

5 Additional studies 325

5.1 Abstract Consistency 326

While default self-consistency samples of one static 327

temperature models often present results that are ei- 328

ther deterministic or overly random, our employed 329

mechanism allows the model to find a "sweet-spot" 330

that lies high emphasis on wide-ranging but sen- 331

sical reasoning paths. To leverage this, we sam- 332

ple from a wide distribution of different reasoning 333

paths, from a variety of 5 different temperatures 334

per generation. These findings show that Abstract 335

Consistency not only provides a wider range of out- 336

puts with a more diverse spectrum of answers, but 337

also performs above average compared to default 338

self-consistency. 339

It is to note that higher temperature showed a de- 340

gree of randomness that can lead to higher degener- 341

ation. However this limiting factor can be mitigated 342

when applied with inverse temperature weighting 343

and improve performance of up to 2.5%. The ef- 344

fect of different temperature sets can be found in 345

Appendix K 346
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Model Method AQuA-rat SVAMP
Best Average Best Average

LLAMA 2

SC baseline 24.8 24.8 46.5 46.5
Isolation Forest 28.45 26.04 45.94 45.60
K-nearest-neighbors 25.40 25.37 45.85 45.71
Oneclass SVM 26.70 24.25 44.94 43.30

Mistral

SC baseline 25.6 25.6 68.5 68.5
Isolation Forest 26.61 25.97 68.84 68.34
K-nearest-neighbors 25.91 25.66 68.84 68.52
Oneclass SVM 28.45 26.08 67.23 65.33

GPT3.5

SC baseline 59.4 59.4 79.8 79.8
Isolation Forest 65.27 63.73 84.65 84.28
K-nearest-neighbors 62.81 60.04 84.64 84.42
Oneclass SVM 59.55 59.26 85.23 84.54

Table 3: Outlier detection performance on SVAMP and AQuA-rat. Performance increase over baseline of n > 1%
featured in bold. Encoded based on sciBERT

Method Accuracy (%)

Self-Consistency 46.50
Abstract consistency MV 46.53
Abstract consistency
(weighted)

48.54

Table 5: Weighted self-consistency with varying levels
of abstraction improves performance over default.

5.2 Finetuned featurizers347

The process of converting rationales into seman-348

tic embedding vectors was applied to multiple349

featurizer-models at different forms of fine-tuning350

to measure the ability of models to effectively con-351

vert sequences into fitting embedding vectors.352

BERT-Model avg distance (↓)
RoBERTa 48.697
MathBERT 45.892 (-2.8)
SciBERT 45.281 (-3.4)

Table 6: Featurizers finetuned on similar distributions
tend to pack answers more tightly together

The results revealed elevated results for SciB-353

ERT and MathBERT when compared to RoBERTa.354

This is likely due to RoBERTa’s general robust355

training where in contrast, both MathBERT and356

SciBERT exhibit stronger performance4. We con-357

4Tested on arithmetic samples only, due to their greater
variability and problem-solving scope compared to the more
logic-bound and less varied nature of coding tasks.

jecture that this is due to their training data being 358

more representative of the reasoning tasks that we 359

evaluate on here (Sun et al., 2020). This obser- 360

vation suggests that improper or "unfitting" fine- 361

tuning reduces overall data point density, resulting 362

in a loss of information within the produced vectors, 363

and consequently hindering subsequent marginal- 364

ization techniques (Merchant et al., 2020). 365

5.3 Comparison and effects 366

Meta-Reasoning over multiple chains of 367

thoughts While meta reasoning has proven 368

effective on tasks that have qualitative evident 369

information, its ability to stay consistent between 370

arithmetic operations and its subsequent reasoning 371

path witnesses the same limiations as default 372

self-consistency and chain of thought. (Yoran et al., 373

2023) 374

5.4 Evaluation on clusters 375

The implementation of k-means clustering5 376

showed that regardless of the fact that reasoning 377

can be improved by detailed mappings, clustering 378

didn’t attribute to enhance the quality of the seman- 379

tic evaluation. Additionally we reason this to be 380

attributed to two limiting factors: 381

1. Lower amount of samples used for evaluation 382

2. Too broad marginalization and consideration 383

as outlying points 384

5Averaged over 10 random states to ensure an representa-
tive example. Please refer to Appendix I.2 for the unaveraged
values.
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We systematically experimenting with a spectrum385

of values for the parameter k, with a significant386

emphasis on k=2 to ensure that the clusters would387

still provide a sufficient amount of associated ra-388

tionales with each cluster to utilize the effect of389

self-consistency.390

Our objective was to ensure that these more sub-391

stantial clusters provide a robust framework for the392

influence of self-consistency. It is probable that393

higher amounts of samples enables not only better394

and more accurate clustering but enables higher395

values of k to show higher performance.396

Table 7: Performance using k-means for outlier detec-
tion, with k = 2

Model AQuA-rat SVAMP
LLAMA 2 24.16 42.47
Mistral 24.83 62.52
GPT-3.5 65.52 78.67

Table 8: Averaged over 10 runs, clustering has shown
volatility based on initial cluster placement. The unaver-
aged runs are referenced in Appendix I.2

This method implies that the predictions asso-397

ciated with the majority cluster are the ones for398

which the model exhibits the greatest overall confi-399

dence. A detailed accessment of the found results400

can be accessed in Appendix I.1.401

5.5 Result augmentation402

To enhance the quality of our embeddings and en-403

sure they are not clustered solely based on output404

results, we implemented a process of result aug-405

mentation. This involved removing end results406

before generating embedding vectors, which were407

then used to form clusters. Our findings demon-408

strate that this approach shows the influence of in-409

conclusive answers without results and proves that410

even incorrect outputs can still be used in differ-411

ent methods to enhance overall output quality and412

mechanisms that make use of semantic evaluation.413

Mistral Llama-2 GPT 3.5
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Figure 2: Accuracy representation with and without
incorporating results from None numerical solutions.

5.6 Robustness to dimensionality reduction 414

Inverse distance has shown high variance over dif- 415

ferent dimensionality reduction techniques which 416

impacts accuracy on a margin that overall decreases 417

performance. 418

In high-dimensional spaces, both Euclidean and 419

Manhattan distances demonstrate effective perfor- 420

mance, making them viable for visualization pur- 421

poses. However, they are less suitable for weight- 422

ing data points when benchmarking performance. 423

Model Dataset PCA t-SNE SOTA
LLAMA 2 AQuA-rat 22.98 25.0 24.8
LLAMA 2 SVAMP 43.04 42.84 46.5
MISTRAL AQuA-rat 26.21 25.81 25.6
MISTRAL SVAMP 66.77 63.76 68.5
GPT3.5 AQuA-rat 66.23 63.37 59.4
GPT3.5 SVAMP 80.15 79.16 79.8

Table 9: Dimensionality reduced results that improve
quality over default are featured in Bold.

5.7 Correlation of Sequence Length on Model 424

Performance 425

We observe a correlation6 indicating statistical sig- 426

nificance, supporting the robustness of the observed 427

trend between the average sequence length gener- 428

ated by our models and the improvement in accu- 429

racy when employed with inverse distance weight- 430

ing. 431

We attribute this to the increased importance of 432

exemplar selection across longer chains of thought 433

that can be more prone to outliers over the course 434

of the reasoning process. 435

6ρ = 0.83, p-value 0.042
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Dataset Model Avg. Seq.
Length

Avg. Accuracy
Increase (%)

AQUA-rat GPT3.5 102.40 8.6
AQUA-rat MISTRAL 53.24 3.2
SVAMP MISTRAL 52.92 0.8
SVAMP LLAMA 2 52.29 0.5
SVAMP GPT3.5 49.71 1,3
AQUA-rat LLAMA 2 49.58 -1.55

Table 10: Comparison of Sequence Length and Accu-
racy Increase measured on word count

The visualization suggest a limited size range436

where the technique can effectively utilize the con-437

text of given exemplars. Larger sentences appear438

to function optimally initially, but will start to lose439

context up to an upper limit. While smaller sizes440

often doesnt contain enough context to allow the441

featurizer to effectivly distinguish and therefore cat-442

egorize responses. (Adi et al., 2017) The optimal443

size of an embedding vector, therefore, is one that444

balances the need for detailed, contextual informa-445

tion with the risk of introducing too much noise by446

overly large dimensions.447

6 Related Work448

Reasoning has been identified as an ubiquitous is-449

sue, across many domains in Large Language Mod-450

els (Creswell et al., 2022). After Rae et al. (2021)451

highlighted the challenges in reasoning across var-452

ious domains in Large Language Models, subse-453

quent research has increasingly focused on enhanc-454

ing these models reasoning capabilities.455

One general method applied in many of those stud-456

ies, is few-shot learning which guides models into457

a more contextually aware and accurate direction,458

by training with a small but highly fitting set of459

examples. (Brown et al., 2020)460

Furthermore fine-tuning has shown positive results461

on specialized data in a broad amount of areas.462

(Radford and Narasimhan, 2018)463

One other significant advancement in the area that464

has synergized with few shot has been the develop-465

ment of the ’chain of thought’ prompting, which466

guides LLM’s to mimic human-like step-by-step467

reasoning processes. (Wei et al., 2022; Saparov and468

He, 2023). Recent work on verification works on469

increasing both faithfulness (Lyu et al., 2023) and470

interpretability of errors made in those reasoning471

chains. (Golovneva et al., 2022; Jacovi et al., 2024)472

In the context of our research, we extend the con-473

cept of self-consistency, as originally proposed by474

Wang et al. (2023).475

7 Conclusion and discussion 476

This study demonstrates that a model’s reasoning 477

path can be a relevant attribute when evaluating 478

responses. We overview straightforward yet effec- 479

tive methods to improve self-consistency by uti- 480

lizing the coherence and consistency of reasoning 481

sequences and observe a variable but upward trend- 482

ing performance in accuracy. Furthermore, ma- 483

nipulating output sequences serves not just to im- 484

prove accuracy but also data quality and robustness. 485

Marginalizing outliers specifically shows promise 486

for increasing the reliability and integrity of evalu- 487

ation sequences. Future work may use these tech- 488

niques to test generalizability on commonsense 489

reasoning performance or apply the methods and 490

marginalization techniques for other intrinsic eval- 491

uations. It is worth noting that our system uses 492

embedding vectors to filter responses based on gen- 493

eral reasoning accuracy, prioritizing broad similar- 494

ity over subtle variations, as the benefit of choosing 495

the numerical majority vote from self-consistency 496

to yield correct answers still applies, especially in 497

the limited rationale space. 498

8 Limitations 499

Our study proposes the application of semantic vec- 500

tor representations to group and weigh model out- 501

puts, which is designed to facilitate the identifica- 502

tion of consensus responses (Wang et al., 2023). Se- 503

mantic vectors must capture variations in meaning 504

and context, which is particularly hard in abstract 505

reasoning tasks without a sufficient amount of con- 506

text making prompting techniques to enhance the 507

models output structure and size an important fac- 508

tor as visualized in Table 10. The process of clus- 509

tering based on semantic vectors can be challeng- 510

ing due to the nuanced and abstract nature of rea- 511

soning processes. This limitation underscores the 512

need for advanced featurization models and explicit 513

choice of a fitting fine-tuned model (Merchant et al., 514

2020). Like showcased in Table 6, multiple mod- 515

els should be considered for semantic analysis, to 516

ensure that the model outputs are grouped in a way 517

that truly reflects their underlying meaning and rel- 518

evance. Without these fitting featurizers, on fields 519

with more subtle variations or on short sequences, 520

the employed method might not be able to distin- 521

guish different sequences well enough to uphold a 522

notable positive effect. 523
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9 Reproducibility Statement524

Our experiments include a variety of models with525

different sizes: Microsoft Phi1.5B is publicly avail-526

able at https://huggingface.co/microsoft/527

phi-1_5/tree/main and can be used under the528

Microsoft Research License.529

GPT-3 has an API that is open for public use530

https://openai.com/blog/openai-api.531

Mistral 7B is available for unrestricted use532

under the Apache 2.0 license, while its model533

architecture and setup are open source https:534

//github.com/mistralai/mistral-src.535

Llama 2 is a model with restricted access, made536

available by Meta. You can gain access to it by537

requesting permission through the provided Meta538

license. You can find more information about it at539

https://ai.meta.com/llama/.540

All of our BERT models are built upon the541

BERT-base model developed by google-research,542

which is accessible under the Apache 2.0 license543

including MathBERT and SciBert. RoBERTa and544

codeBERT can be used under the MIT license.545

546

Our Datasets as well as used configuration547

for our language Models, are accessible throughout548

this paper and in the Appendix to aid the repro-549

ducibilty of our experiments.550

A majority of our experiments were done using551

huggingface to access datasets, models and552

general data. Some of the used algorithms were553

implemented with scikit-learn (Pedregosa et al.,554

2011) and the sklearn api (Buitinck et al., 2013).555

9.1 GPU usage556

approx. Hours GPU Model Memory
200 h NVIDIA T4 15GB
50 h NVIDIA V100 16GB
50 h NVIDIA A100 40GB

557

10 Ethical Considerations & Risks558

Language Models can produce factual incorrect in-559

formation and might induce biases based on user560

prompts.561

The employed featurizers, based on BERT models,562

have been trained exclusively on English language563

corpora, making them unsuitable and inconsistent564

when utilized with texts in other languages, poten-565

tially altering results negativly.566

Mistral 7B does not include content moderation.567

We encourage anyone to use produced results and568

capabilities of Language Models in a responsible569

manner. 570
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11 Appendices 955

A Effects of Symbolic logic and 956

embeddings 957

Subtle variations in reasoning or content, particu- 958

larly in fields like mathematics, can lead to signifi- 959

cant divergences in outcomes, suggesting a prefer- 960

ence for symbolic logic to distinguish these differ- 961

ences precisely. 962

However, the employed system focuses rather on 963

identifying correct reasoning patterns and broader 964

similarity in the representational space of embed- 965

dings. This approach presupposes that correct rea- 966

soning across various contexts tends to follow sim- 967

ilar operational patterns. By leveraging embedding 968

vectors, the system isolates responses that devi- 969

ate significantly in reasoning quality or factuality, 970

rather than getting entangled in the minutiae of 971

every possible variation. Thus, while embedding 972
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vectors may overlook some subtle differences, their973

use is justified by their effectiveness in broadly974

categorizing and filtering responses according to975

general reasoning accuracy. Additionally, the de-976

faultly delivered effect of self-consistency implies977

that multiple exemplars, when exhibiting correct978

or similar reasoning, will eventually result in the979

majority of correct numerical answers, which will980

prove especially effective when the space of ratio-981

nales is limited to these that are sufficiently sup-982

ported by its reasoning path.983

B Performance variation984

Across different findings, we see a variation in per-985

formance with a general upward trend. As shown986

in Table 10 and discussed in Appendix A, sequence987

length seems to affect model performance posi-988

tively. Smaller sequences tend to contain less infor-989

mation, as seen with LLAMA 7B’s position in the990

table.991

Moreover, GPT3.5’s instruction fine-tuning pos-992

itively affects sequence length and output content,993

leading to longer and more contextual sentences.994

Additionally, there’s a trend towards larger mod-995

els, suggesting that increased parameter size may996

improve performance across tasks and the way in-997

formation is packed across the exemplars.998

C Perplexity of generated Sequences999

Table 11 illustrates that there is no apparent cor-1000

relation between the performance of the models1001

and their respective perplexity scores. A notable1002

trend is the consistently better performance on the1003

SVAMP dataset compared to AQuA-rat, likely at-1004

tributable to the simpler nature of SVAMP’s ques-1005

tions. Furthermore, the Mistral model exhibits a1006

slightly superior performance, which can be as-1007

cribed to its higher accuracy across both datasets.1008

This suggests that the confidence in the sequences1009

remains robust, regardless of the model choice and1010

accuracy.1011

Model Dataset Perplexity
SVAMP Mistral 0.1422
SVAMP LLAMA 2 0.1483
AQUA-rat Mistral 0.1841
AQUA-rat LLAMA 2 0.1861

Table 11: Perplexity Scores across different Models,
"best" result is featured in bold.
Not evaluated on GPT-3.5 due to limited possibilities
on the OpenAI public API.

D N-Gram Rationale Comparison 1012

D.1 Rouge-N as a performance measure 1013

Contrary to GPT-3.5’s performance in terms of ac- 1014

curacy, it under performs in comparison when tak- 1015

ing ROUGE metrics into account. As expected it 1016

excels in generating accurate, contextually relevant 1017

responses but expressed responses more detailed 1018

in a more comprehensive fashion, leading to lower 1019

ROUGE scores due to the strictly accurate less 1020

extensive rationale annotated in the dataset. (Lin, 1021

2004) 1022

The other Models like LLAMA 2 7B and Mistral 1023

7B produce higher scores. This might be related to 1024

factors like style of writing and higher text length 1025

which although it leads to more comprehensive em- 1026

beddings lowers it’s score when compared with a 1027

metric like Rouge-N as visible in Table 10 1028

LLAMA MISTRAL GPT-3.5

0.12

0.14

0.16

0.18

0.167
0.173

0.123R
ou

ge
-N

Sc
or

e

Rouge-N Score Comparison among Models
on AQuA-rat

Figure 3: The ROUGE-N score was applied solely to
the AQuA-rat dataset, as datasets like SVAMP provide
numerical answers instead of sequential/textual ratio-
nales.

D.2 N-Gram weighting 1029

N-Grams are often used for context understanding, 1030

aiding tasks like sentiment analysis and language 1031

modeling In our study, we used N-Grams to weigh 1032

their impact on results, testing different ’n’ values 1033

to see how they affect accuracy outcomes. 1034

The low accuracy and poor results, coupled with 1035

a degree of randomness in the result distribution, 1036

indicate challenges in effectively correlating text 1037

using N-Grams. We experimented with different 1038

values of ’n’ for N-Grams, aiming to improve per- 1039

formance, but encountered limitations. As depicted 1040

in the table, the effectiveness of N-Grams varied, 1041
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Table 12: Weighting results based on N-Gram overlap
with n = 2

Model AQUARAT SVAMP
LLAMA 2 15.5 32.8
MISTRAL 16.7 47.1
GPT3.5 25.3 63.9

suggesting that the pure similar wording in ratio-1042

nales cant be utilized in an effective way to im-1043

prove or even stably perform similar to the base-1044

line. Higher values of "n" consecutively worsened1045

results.1046

E Model configurations1047

Configurations may deviate slightly on GPT3.5 due1048

to usage via the public API.1049

• top-k: 501050

• top-p: 501051

• sampling: true1052

• max-new-tokens: see Appendix E.11053

• temperature: see Appendix F.11054

E.1 max-new-tokens1055

We used a default of 150 max-new-tokens across1056

all models on SVAMP, due to the complexity and1057

length of sequences on AQuA-rat we chose 2001058

max-new-tokens. Due to the length of Code tasks1059

we set the max generation of new tokens to 400 on1060

humaneval.1061

F Abstract consistency1062

F.1 Temperature sets1063

We tested our theory of abstraction on a variety of1064

temperature sets and found that set 1 exhibits the1065

best balance between diversity and correctness in1066

our examples. Therefore, it outperforms the other1067

proposed sets.1068

Set 1 (t) Set 2 (t) Set 3 (t)
0.9 0.7 0.5
0.8 0.6 0.4
0.7 0.5 0.3
0.6 0.4 0.2
0.5 0.3 0.1

Table 13: Each Temperature is tested on 1/5 of the
samples per generation, to ensure an even distribution.

All other experiments have been conducted on 1069

a static temperature of 0.8 to aid reproducibility 1070

and comparability between results and effects of 1071

the employed mechanisms. 1072

F.2 Weighing abstract consistency 1073

We propose several methods for weighing se- 1074

quences from different temperatures. Additionally, 1075

we employ a weighing system based on the inverse 1076

of the applied temperature. Furthermore, we con- 1077

ducted tests using weighted squared inverse weight- 1078

ing on a small subset. However, these tests did not 1079

yield substantially elevated results and performed 1080

on a similar margin. 1081

Figure 4: Average

n∑
i=1

1

ti
(1)

Figure 5: Squared Average

n∑
i=1

(
1

ti

)2

(2)

G Used k-shot prompts 1082

The used 8-Shot prompt for mathematical 1083

reasoning follows the example provided in pg. 43 1084

and use the on pg. 36 referenced set for AQuA on 1085

the AQuA-rat dataset with of the original Chain of 1086

thought paper. 1087

1088
Q: There are 15 trees in the grove. Grove 1089

workers will plant trees in the grove today. After 1090

they are done, there will be 21 trees. How many 1091

trees did the grove workers plant today? 1092

A: We start with 15 trees. Later we have 21 trees. 1093

The difference must be the number of trees they 1094

planted. So, they must have planted 21 - 15 = 6 1095

trees. The answer is 6. 1096

Q: If there are 3 cars in the parking lot and 2 more 1097

cars arrive, how many cars are in the parking lot? 1098

A: There are 3 cars in the parking lot already. 2 1099

more arrive. Now there are 3 + 2 = 5 cars. The 1100

answer is 5. 1101

Q: Leah had 32 chocolates and her sister had 42. If 1102

they ate 35, how many pieces do they have left in 1103

total? 1104

A: Leah had 32 chocolates and Leah’s sister had 1105

42. That means there were originally 32 + 42 = 74 1106

chocolates. 35 have been eaten. So in total they 1107

still have 74 - 35 = 39 chocolates. The answer is 1108

39. Q: Jason had 20 lollipops. He gave Denny 1109

some lollipops. Now Jason has 12 lollipops. How 1110

many lollipops did Jason give to Denny? 1111
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A: Jason had 20 lollipops. Since he only has 121112

now, he must have given the rest to Denny. The1113

number of lollipops he has given to Denny must1114

have been 20 - 12 = 8 lollipops. The answer is 8.1115

Q: Shawn has five toys. For Christmas, he got two1116

toys each from his mom and dad. How many toys1117

does he have now?1118

A: He has 5 toys. He got 2 from mom, so after that1119

he has 5 + 2 = 7 toys. Then he got 2 more from1120

dad, so in total he has 7 + 2 = 9 toys. The answer1121

is 9.1122

Q: There were nine computers in the server room.1123

Five more computers were installed each day, from1124

monday to thursday. How many computers are1125

now in the server room?1126

A: There are 4 days from monday to thursday. 51127

computers were added each day. That means in1128

total 4 * 5 = 20 computers were added. There were1129

9 computers in the beginning, so now there are 9 +1130

20 = 29 computers. The answer is 29.1131

Q: Michael had 58 golf balls. On tuesday, he1132

lost 23 golf balls. On wednesday, he lost 2 more.1133

How many golf balls did he have at the end of1134

wednesday?1135

A: Michael initially had 58 balls. He lost 23 on1136

Tuesday, so after that he has 58 - 23 = 35 balls. On1137

Wednesday he lost 2 more so now he has 35 - 2 =1138

33 balls. The answer is 33.1139

Q: Olivia has $23. She bought five bagels for $31140

each. How much money does she have left?1141

A: She bought 5 bagels for $3 each. This means1142

she spent 5 * $3 = $15 on the bagels. She had $231143

in beginning, so now she has $23 - $15 = $8. The1144

answer is 81145

1146
Proposed 4-shot on AQuA(-rat):1147

Q: John found that the average of 15 numbers is1148

40. If 10 is added to each number then the mean of1149

the numbers is?1150

Answer Choices: (a) 50 (b) 45 (c) 65 (d) 78 (e) 641151

A: If 10 is added to each number, then the mean1152

of the numbers also increases by 10. So the new1153

mean would be1154

50. The answer is (a).1155

Q: If a / b = 3/4 and 8a + 5b = 22,then find the1156

value of a.1157

Answer Choices: (a) 1/2 (b) 3/2 (c) 5/2 (d) 4/2 (e)1158

7/21159

A: If a / b = 3/4, then b = 4a / 3. So 8a + 5(4a / 3)1160

= 22. This simplifies to 8a + 20a / 3 = 22, which1161

means 44a / 3 = 22. So a is equal to 3/2. The1162

answer is (b).1163

Q: A person is traveling at 20 km/hr and reached 1164

his destiny in 2.5 hr then find the distance? 1165

Answer Choices: (a) 53 km (b) 55 km (c) 52 km 1166

(d) 60 km (e) 50 km 1167

A: The distance that the person traveled would 1168

have been 20 km/hr * 2.5 hrs = 50 km. The answer 1169

is (e). 1170

Q: How many keystrokes are needed to type the 1171

numbers from 1 to 500? 1172

Answer Choices: (a) 1156 (b) 1392 (c) 1480 (d) 1173

1562 (e) 1788 1174

A: There are 9 one-digit numbers from 1 to 9. 1175

There are 90 two-digit numbers from 10 to 99. 1176

There are 401 three-digit numbers from 100 to 500. 1177

9 + 90(2) + 401(3) = 1392. The answer is (b). 1178

1179

1180

Our generation on humaneval were conducted 0- 1181

shot using just the raw prompt given by the dataset. 1182

H Datasets 1183

We use the configuration splits for testing as sug- 1184

gested by default. We employ a test split of 1000 1185

samples on SVAMP and 1.3K for GSM8K. For 1186

AQuA-rat, our test includes the full set of 254 ex- 1187

amples. 1188

I K-means Clustering 1189

Across our study we employed kmeans to cluster 1190

datapoints mapped by our featurizer model. 1191

I.1 Clustering effects 1192

Clustering has shown diminishing returns in terms 1193

of accuracy, however the herein provided evidence 1194

shows that clustering with k-means provides a no- 1195

table advantages which even tho the accuracy was 1196

low can be used as a diagnostic tool and similarity 1197

measure 1198

I.1.1 Silouhette score 1199

We used the silhouette score to evaluate clustering 1200

effectiveness. This score measures how similar 1201

an object is to its own cluster compared to other 1202

clusters, ranging from -1 to 1. 1203

Our obtained averaged silhouette score equals 1204

0.41, suggesting a moderate level of distinction 1205

between clusters. This range indicates that, on av- 1206

erage, objects within a cluster are closer to each 1207

other than to objects in other clusters, but the sepa- 1208

ration is not highly distinct. 1209

This finding suggests that clusters are indicating 1210

a clear structure in sentence and wording of results 1211
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and due to Kmeans nature perform better on higher1212

sample sizes.1213

1214

I.1.2 Average correct datapoint proportion1215

Despite the fragility shown during evaluation on1216

benchmarks, the k-means accurately categorizes1217

the majority of correct answer within the prepon-1218

derant cluster, not only based on cluster size. This1219

implies that the method, even with limited data,1220

captures essential patterns effectively.1221

High-performing models are more likely to ad-1222

here closely to the chosen method. This is because1223

when most answers are correct, there’s a lower1224

chance of incorrect responses outweighing the cor-1225

rect ones, which could lead to inaccuracies.1226

Table 14: Proportion of correct responses in the majority
cluster compared to total true responses.

Model SVAMP AQUA-rat

LLAMA 2 68.8 56.6
MISTRAL 66.2 46.2

GPT3.5 69.4 55.5

The shown results indicate a trend demonstrating1227

that the selected cluster is more likely to feature1228

the majority of correct responses, with an average1229

of 60.5%.1230

We witness the same strides towards higher sam-1231

ple sizes with the usage of k-means as already con-1232

veyed in the original self-consistency paper, here1233

larger sample sizes might be able to capture the1234

amount of correct answers in a more favorable man-1235

ner due to their enabled potential for a higher num-1236

ber of clusters, capturing more nuanced and subtle1237

variations rather than the broad range of responses.1238

I.1.3 Cluster density comparison1239

The primary cluster and the ostensibly weaker,1240

later-disregarded cluster exhibit comparable per-1241

formance in terms of the average distance of the1242

data points to its subsequent cluster centroid.1243

I.2 Clustering results1244

Due to k-means inherent randomness during initial-1245

ization, we average its performance over 10 runs.1246

1247

Table 15: Average Deviation for clusters

Method Model Chosen Disregarded
cluster cluster

SVAMP LLAMA 2.037 2.567
SVAMP MISTRAL 2.981 3.800
SVAMP GPT 4.428 4.513
AQuA-rat LLAMA 0.838 0.670
AQuA-rat MISTRAL 0.871 0.598
AQuA-rat GPT3.5 3.649 3.684
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Table 16: Results of LLAMA 2

SVAMP
Run Number random state Accuracy (%)

1 10 42.31
2 20 42.40
3 30 42.25
4 40 41.99
5 50 41.94
6 60 42.80
7 70 43.07
8 80 42.70
9 90 42.35

10 100 42.89

AQuA-rat

Run Number random state Accuracy (%)

1 10 25.47
2 20 24.53
3 30 22.38
4 40 24.51
5 50 26.76
6 60 23.81
7 70 25.12
8 80 24.02
9 90 22.58
10 100 22.42

Table 17: Results of Mistral 7B

SVAMP
Run Number random state Accuracy (%)

1 10 62.72
2 20 62.45
3 30 62.74
4 40 61.88
5 50 62.46
6 60 62.22
7 70 62.15
8 80 61.69
9 90 63.04

10 100 63.85

AQuA-rat

Run Number random state Accuracy (%)

1 10 23.18
2 20 23.11
3 30 24.77
4 40 25.45
5 50 25.93
6 60 26.39
7 70 25.00
8 80 26.51
9 90 25.24
10 100 22.73

Table 18: Results of GPT3.5

SVAMP
Run Number random state Accuracy (%)

1 10 78.56
2 20 79.06
3 30 78.86
4 40 78.66
5 50 78.86
6 60 78.07
7 70 79.36
8 80 78.36
9 90 78.56

10 100 78.36

AQuA-rat

Run Number random state Accuracy (%)

1 10 68.07
2 20 70.28
3 30 65.32
4 40 66.82
5 50 66.67
6 60 69.71
7 70 66.67
8 80 67.79
9 90 68.72
10 100 65.12
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J Outlier detection across different1248

parameters1249

J.1 k-nearest neighbor results1250

In the k-nearest neighbor (KNN) algorithm,1251

parameters such as the number of neighbors1252

(n_neighbors), the distance metric (metric), and the1253

algorithm used for computing nearest neighbors1254

were varied. The best-performing configuration in1255

terms of accuracy was found with n_neighbors1256

set to 5, using the euclidean metric using the1257

ball_tree algorithm and a threshold of 90% that1258

concluded to an averaged accuracy of 56.18% with1259

all Models and Datasets.1260

J.2 Isolation forest results1261

For the Isolation Forest, the grid search varied1262

parameters including the number of estimators1263

(n_estimators), the contamination factor, and the1264

max samples size. The configuration yielding the1265

highest accuracy utilized n_estimators=200, con-1266

tamination=auto, and max_samples=auto with1267

an performance of 58.56% averaged across all1268

Models and Datasets.1269

J.3 support vector machines results1270

In the case of Support Vector Machines (SVM), the1271

kernel type (kernel), the regularization parameter1272

(nu), and the gamma value were among the pa-1273

rameters adjusted. The most accurate results were1274

achieved with a linear kernel, nu set to 0.01, and1275

gamma set to scale. The average accuracy was1276

55.17%1277

K Abstract consistency on different1278

temperature sets1279

Higher temperature in generative models intro-1280

duces a degree of randomness that can negatively1281

impact performance by increasing degeneration in1282

model outputs. However, this limiting factor can1283

be partially mitigated through techniques such as1284

inverse temperature weighting. When applied ap-1285

propriately alongside temperature variation. The1286

benefits of higher temperature are not monotonic1287

- beyond an optimal level, continuing to increase1288

temperature will again degrade performance. There1289

exists a sweet spot where judiciously elevated tem-1290

perature and re-weighting allows models to pro-1291

duce greater diversity without excessive degrada-1292

tion which we found to lay between t = 0.5 and t =1293

0.9.1294

L t-SNE 1295

To emphasize the separation and clustering since it 1296

provides more visually informative representations 1297

that can aid in data exploration and pattern recog- 1298

nition tasks superior to PCA We select a perplexity 1299

parameter of 2, grounded in the fact that local dis- 1300

tributions yield a more informative representation 1301

than global distributions. 1302

This is attributed to the increased density of points 1303

in close proximity, enhancing the detail captured 1304

in the mapping. 1305
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perplexity = 2 perplexity = 7

Figure 6: Based on a test on a subset of arithmetic reasoning examples, evaluated on 10, 15 and 20 generated outputs
based on baseline self-consistency with the in Appendix G provided n-Shot prompts.
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