
Under review as submission to TMLR

How vulnerable is my policy? Adversarial attacks on modern
behavior cloning policies

Anonymous authors
Paper under double-blind review

Abstract

Learning from Demonstration (LfD) algorithms have shown promising results in robotic ma-
nipulation tasks, but their vulnerability to adversarial attacks remains underexplored. This
paper presents a comprehensive study of adversarial attacks on both classic and recently
proposed algorithms, including Behavior Cloning (BC), LSTM-GMM, Implicit Behavior
Cloning (IBC), Diffusion Policy (DP), and VQ-Behavior Transformer (VQ-BET). We study
the vulnerability of these methods to untargeted, targeted and universal adversarial pertur-
bations. While explicit policies, such as BC, LSTM-GMM and VQ-BET can be attacked
in the same manner as standard computer vision models, we find that attacks for implicit
and denoising policy models are nuanced and require developing novel attack methods. Our
experiments on several simulated robotic manipulation tasks reveal that most of the current
methods are highly vulnerable to adversarial perturbations. We also show that these at-
tacks are transferable across algorithms, architectures, and tasks, raising concerning security
vulnerabilities to black-box attacks. In addition, we test the efficacy of randomized smooth-
ing, a widely used adversarial defense technique, and highlight its limitation in defending
against attacks on complex and multi-modal action distribution common in complex con-
trol tasks. In summary, our findings highlight the vulnerabilities of modern BC algorithms,
paving way for future work in addressing such limitations.

1 Introduction

Learning from Demonstration (LfD) has emerged as a powerful paradigm in AI and robotics, enabling agents
to acquire complex behaviors from expert demonstrations. These techniques are increasingly deployed in real-
world scenarios, such as to enable robots in industrial automation and household robotics. However, these
policies pose potential security risks since they can be easily maliciously manipulated by adversaries, causing
undesired behaviors or even catastrophic incidents. Motivated by these risks, to the best of our knowledge,
we are the first to present a systematic study of the vulnerabilities of LfD algorithms to adversarial attacks
with a focus on modern behavior cloning algorithms.

Adversarial attacks are a widely studied area that aims to develop imperceptible perturbations (Szegedy
et al., 2013) to change the output of machine learning models. Early work by Szegedy et al. (2013) and
Goodfellow et al. (2014) revealed that adding small, imperceptible perturbations to images could drastically
alter the prediction of neural network classifiers. Since then, a significant number of works have explored
various attack methods and defense techniques against adversarial attacks (Akhtar & Mian, 2018; Zhang
et al., 2020b; Chakraborty et al., 2021).

However, the robustness of LfD models to adversarial attacks has been largely overlooked in prior research,
particularly in the context of robotic manipulation tasks. While previous works have examined adversarial
robustness in reinforcement learning (Mo et al., 2023; Sun et al., 2020; Pattanaik et al., 2017; Lin et al.,
2017; Gleave et al., 2019; Zhang et al., 2020a; 2021; Moos et al., 2022), including whitebox attacks (Huang
et al., 2017; Casper et al., 2022) and backdoor detection (Chen et al., 2023), the impact of such pertur-
bations on LfD remains underexplored, especially as they relate to modern BC methods. Attacks in the
LfD domain present unique challenges, LfD policies must process temporal sequences of observations, handle

1

Under review as submission to TMLR

multimodal action distributions, and maintain stable control even under perturbations. This paper aims to
investigate the vulnerabilities specific to LfD algorithms under adversarial perturbations, shedding light on
their susceptibility and resilience in robotic settings.

Our work focuses specifically on post-deployment white-box attacks, where an adversary has access to the
trained model parameters but cannot modify the training process, as well as black-box transfer attacks.
Unlike training-time attacks that aim to corrupt the learning process, our attacks target the inference phase,
attempting to cause task failures through carefully crafted perturbations to visual observations. While this
may seem like a strong adversarial capability, the increasing trend toward open-source release of robotic
policy weights makes this a practical concern that needs to be addressed.

In this paper, we evaluate the adversarial robustness of several leading LfD frameworks, including Vanilla
Behavior Cloning (BC), LSTM-GMM (Mandlekar et al., 2021), Implicit Behavior Cloning (IBC) (Florence
et al., 2021), Diffusion Policy (Chi et al., 2023), and VectorQuantizied-Behavior Transformer (VQ-BET) (Lee
et al., 2024). Among these, IBC and Diffusion Policy have unique design pipelines due to the fact that they
are implicit rather than explicit policies and require more nuanced attacks. IBC employs energy-based models
to learn implicit policies, offering greater flexibility in learning complex, multimodal behaviors compared to
traditional methods. In IBC, the correct action is selected iteratively based on energy distribution rather than
explicitly during inference. To address this, we introduce a sampling-based attack method that approximates
the local energy surface, increasing the likelihood of selecting the desired target action. Diffusion Policy, on
the other hand, uses a generative model approach with denoising diffusion techniques to iteratively refine
actions, allowing it to capture diverse and continuous action distributions. While existing attacks (Chen
et al., 2024) can degrade performance, they require manipulating the entire denoising process, leading to
high compute costs of attack. One of our insights is that attacks are most effective at later stages of the
denoising process. By applying attacks specifically only on later stages we can significantly improve attack
efficiency. Overall, we hope our results serve as an impetus for enhancing awareness of the security and
reliability concerns regarding policies learned via behavior cloning and will inspire researchers to develop
more robust LfD algorithms.

The primary contributions of our work are as follows:

• We conduct the first comprehensive study of white-box adversarial attacks, both online (Projected
Gradient Descent (PGD) (Madry et al., 2017)) and offline (Universal Adversarial Perturbation
(Moosavi-Dezfooli et al., 2016)) attacks, on a variety of different behavior cloning algorithms. We
are the first to study adversarial attacks on LSTM-GMM, IBC, VQ-BET algorithms. We evaluate
these attacks in both targeted and untargeted settings and highlight the vulnerability of all the LfD
algorithms studied in this paper.

• We propose novel attack formulations for implicit models such as IBC and Diffusion Policy. Our
work addresses the unique challenges posed by the iterative action selection process, and propose
efficient attacks that only require manipulating a few steps of the denoising process.

• We provide insights into the transferability of attacks across algorithms, tasks, and vision backbones.
We find surprising transferability of the attacks across all the variations, highlighting the importance
of considering robustness in the training pipeline of modern imitation learning.

• We also show the limited efficacy of the commonly used adversarial defense, Randomized Smoothing
(Cohen et al., 2019), and discuss the implications of using such defenses in real-time and multi-modal
distributional settings such as robotics.

• We find that, out of all the policies we test, Diffusion Policies are the most robust. While recent
work (Carlini et al., 2023) has shown that combining a pretrained denoising diffusion probabilistic
model and a standard high-accuracy classifier can yield robustness for image classifiers, we are the
first to study and showcase the relative robustness of diffusion policies. We provide evidence that this
robustness might stem from its multi-step prediction process rather than inherent resilience. Our
results show that reducing the prediction horizon significantly decreases the adversarial robustness
of diffusion policies.

2

Under review as submission to TMLR

2 Related Work

There has been relatively little prior work exploring adversarial attacks on behavioral cloning algorithms.
Hall et al. (2020) provide an early demonstration that vanilla behavioral cloning policies can be vulnerable to
adversarial perturbations in driving simulations. Wu et al. (2023) also explore attacks against a vanilla BC
policy trained on image observations. Boloor et al. (2019) focus on simple CNN-based BC and demonstrate
the vulnerability of end-to-end autonomous driving models to simple physical adversarial examples such as
black lines on the road. We note that all three papers only consider white-box attacks and only attack
the steering angle while we attack high-dimensional robot control inputs and consider both white-box and
black-box attacks.

Jia et al. (2022) show that adversarial patches can directly attack object detectors causing robots to grasp
a human hand rather than a card. Unlike our work, which examines the vulnerabilities of modern LfD
algorithms, they target traditional object detection models in industrial robots. Other orthogonal work
to ours has examined adversarial attacks on simulated assistive robots trained via RL (He et al., 2023),
has investigated demonstration set poisoning attacks to prevent downstream behavioral cloning (Zhan et al.,
2020), and has studied language-based universal attacks (Zhao et al., 2024) for language-conditioned policies.

To the best of our knowledge, the prior work most related to this paper is by Chen et al. (2024), who explore
adversarial attacks on diffusion policies. Their method involves attacking the entire denoising process in
the diffusion policy, which is computationally expensive. By contrast, we demonstrate effective attacks by
manipulating only a few steps of the denoising process, significantly reducing the attack cost (interms of time
and compute). In addition, while Chen et al. only focus on developing attacks for a single type of policy
learning algorithm, our research examines the vulnerabilities of several different LfD algorithms and also
explores how adversarial perturbations transfer across different algorithms, tasks, and and visual backbones,
offering a broader and more comprehensive perspective on the vulnerability of modern behavior cloning and
the generalizability of such attacks.

In summary, while prior work such as (Hall et al., 2020), (Wu et al., 2023), and Boloor et al. (2019)
demonstrate the vulnerability of individual CNN-based behavior cloning (BC) models in driving domains,
our work is the first to systematically study adversarial robustness across a diverse suite of modern imitation
learning architectures, including LSTM-GMM, VQ-Transformer, Implicit BC, and Diffusion Policy. Chen
et al. (2024), who focus exclusively on diffusion models, we introduce tailored attack methods for a broad
range of architectures and evaluate them side-by-side. Finally, our work is the first to study black-box attacks
via transferability evaluations across algorithms, tasks, and vision backbones, offering insights into shared
vulnerabilities that are critical for the design of robust IL systems. Together, we believe these contributions
highlight the novelty and importance of our work.

3 Behavior Cloning Algorithms

In this section, we provide a brief background and high-level overview of the Behavior Cloning (BC) al-
gorithms we study in this paper. To provide clarity throughout the discussion, we first define some key
notations used across these algorithms. Let ξ ∈ Ξ represent a set of expert trajectory demonstrations, where
ξ is a trajectory consisting of a sequence of state-action pairs (s, a), sampled from an expert policy π∗(s).
Our objective in behavior cloning is to learn a policy πθ(s), parameterized by θ, that imitates the expert’s
behavior by minimizing a loss function L that measures the difference between the expert actions and the
actions predicted by the learned policy.

Formally, for a given policy πθ, we aim to minimize: π∗
θ = arg minπθ

∑
ξ∈Ξ

∑
s∈ξ L(πθ(s), π∗(s)), where L is

typically the cross-entropy loss for discrete actions or mean squared error for continuous actions.

We study five different behavior cloning approaches in this work. Due to space and because these are well-
known algorithms we provide only a high-level description here. For more details, please see Appendix B.:

Vanilla Behavior Cloning (BC) learns a direct mapping from states to actions through supervised
learning. Given state-action pairs (s, a), it trains a neural network to minimize the mean squared error

3

Under review as submission to TMLR

(continuous actions). While effective for simple tasks, BC struggles with multimodal behaviors and suffers
from compounding errors during execution.

LSTM-GMM enhances the performance of BC by incorporating temporal dependencies through an LSTM
network and modeling multimodal action distributions using Gaussian Mixture Models (GMMs). At each
timestep t, the LSTM processes the state sequence and outputs GMM parameters, enabling the policy to
capture both temporal dynamics and complex action distributions. The policy πθ(at|st, ht−1) is trained by
maximizing the likelihood of expert actions under the predicted GMM distributions.

Implicit Behavior Cloning (IBC) reformulates policy learning using energy-based models. Instead of
directly predicting actions, IBC learns an energy function Eθ(s, a) that assigns low energy to expert actions
and high energy to other actions. The policy is implicitly defined as πθ(s) = arg mina Eθ(s, a) and is trained
using contrastive learning to minimize the energy of expert actions relative to sampled negative actions.

Diffusion Policy (DP) takes a generative approach by learning to iteratively denoise actions. Starting
from Gaussian noise aT , the policy refines actions through T denoising steps conditioned on the state:
at−1 = α(at−γεθ(s, at, t))+σN (0, I), where εθ is a learned noise prediction network. This approach enables
modeling of complex, continuous action distributions.

VQ-Behavior Transformer (VQ-BET) combines transformer architectures with vector quantized VAEs
to handle multimodal continuous actions. The policy discretizes the action space using a hierarchical code-
book and predicts actions by minimizing L1 loss. This approach balances expressiveness and tractability
while capturing both coarse and fine-grained action details.

4 Adversarial Attacks on Imitation Learning

4.1 Adversarial Attack Methods

In our study, we focus on two primary adversarial attack methods that have shown significant effectiveness
in computer vision tasks:

Projected Gradient Descent (PGD) (Madry et al., 2017) is an iterative attack method that generates
adversarial perturbations by taking multiple steps in the direction that maximizes the loss function. Starting
from an initial input x0, PGD iteratively updates the input using the following rule: xk+1 = ΠBϵ(x0)(xk +
α · sign(∇xJ(θ, xk, y))), where J(θ, xk, y) is the model’s loss function, α is the step size, and ΠBϵ(x0) denotes
projection onto the ℓp-norm ball of radius ϵ centered at x0. The projection step ensures that the perturbed
input remains within the allowable perturbation bound. PGD is considered a strong attack as it explores
the local loss landscape thoroughly through multiple iterations.

Universal Adversarial Perturbations (UAP) (Moosavi-Dezfooli et al., 2016) aims to find a single
perturbation vector that can cause misclassification when applied to multiple different inputs. Unlike PGD
which computes perturbations for each input independently, UAP generates a single perturbation v that
satisfies ∥v∥p ≤ ϵ and successfully affects a high fraction of the input distribution. The perturbation is
computed iteratively over a set of training inputs by accumulating the minimal perturbation needed to
cause misclassification for each input while maintaining the constraint on the perturbation magnitude. This
approach is particularly relevant for real-world scenarios where computing per-input perturbations may not
be feasible, and the same attack vector needs to work across multiple observations.

Targeted vs Untargeted Attacks: Targeted and untargeted attacks represent two distinct adversarial
objectives. Untargeted attacks aim to degrade the policy’s performance by maximizing the loss function,
causing the model to output any incorrect action that leads to task failure. They focus on disrupting normal
policy execution without specifying a particular alternative behavior. In contrast, targeted attacks attempt
to force the policy to output specific undesired actions by minimizing the distance between the policy’s
output and a chosen target action. For example, in a robotic manipulation task, an untargeted attack might
cause the robot to move erratically or freeze in place, while a targeted attack would intentionally guide
the robot’s motion toward a specific undesired location or trajectory. This distinction is important because

4

Under review as submission to TMLR

targeted attacks often require more sophisticated optimization strategies to achieve precise control over the
policy’s behavior.
4.2 Threat Model

Before describing our adapted attacks, we first clearly specify our threat model:

This threat model is particularly relevant for deployed robotic systems using large pre-trained policies,
where model weights are publicly available but the training process is complete. We study both online
attacks (PGD) that can adapt perturbations in real-time and offline attacks (UAP) that must generate a
single fixed perturbation designed to work across all states.

Adversary’s Goal: The attacker aims to cause task failure by perturbing visual observations during deploy-
ment, either through untargeted perturbations that disrupt normal policy execution or targeted perturbations
that force specific undesired actions.

Adversary’s Knowledge and Capabilities: The attacker has white-box access to the trained policy
parameters but cannot modify them. Perturbations are limited to the visual observation space (no direct
action manipulation). Perturbations must remain within an Lp norm ball of radius ϵ to maintain impercep-
tibility. The attacker can compute gradients through the entire policy network. We note that eef pose, eef
quaterions, and gripper state as input along with the camera images; however, our attacks are only applied
to the vision component of the state.

Transferability Attacks: We would like to emphasize that we also study black-box transfer attacks.
In particular, we study how adversarial perturbations can transfer across different models, architectures
and tasks without requiring access to the target model’s parameters or training data. In these kinds of
transfer settings, an attacker can generate effective perturbations using only a surrogate model with similar
architecture, making these attacks feasible in black-box scenarios where the target model’s internals are
inaccessible. This property significantly broadens the threat surface, as successful attacks can be mounted
with minimal knowledge of the target system.

4.3 Attacks on Explicit BC Algorithms

The objectives for running PGD, and UAP on explicit behavior cloning methods such as Vanilla BC, LSTM-
GMM, and VQ-BET are based directly on their respective loss functions. For Vanilla BC, the adversarial
attacks aim to maximize the mean squared error (MSE) loss between the predicted and expert actions
by introducing small perturbations to the input states. In LSTM-GMM, the attacks target the temporal
dependencies modeled by the LSTM and the multimodal action distributions captured by the Gaussian
Mixture Model (GMM), aiming to disrupt the likelihood maximization over the GMM outputs. For VQ-
BET, the attacks exploit the latent action space by targeting the prediction loss of discrete latent codes,
ultimately leading to suboptimal action predictions. Each attack (PGD, UAP) thus aims to create adversarial
perturbations that exploit the specific vulnerabilities of these loss functions to degrade performance.

4.4 Attacks on Implicit BC Algorithms

Implicit BC algorithms differ from explicit ones in modeling the learning process and action selection, causing
naive adversarial attacks largely fail to generate feasible perturbations. In this section, we propose new attack
formulations for implicit BC models considering their unique designs.

4.4.1 Implicit Behavior Cloning

Implicit Behavior Cloning (IBC) leverages implicit modeling techniques and contrastive learning to learn a
policy directly from expert demonstrations. In IBC, the policy πθ(a | s) is learned by optimizing an energy-
based model (EBM) that assigns low energy values to actions demonstrated by the expert and higher energy
values to other actions. The energy function Eθ(s,a) parameterized by θ is trained using the InfoNCE loss,
for a batch of N actions:

5

Under review as submission to TMLR

LInfoNCE =
N∑

i=1
− log

(
e−Eθ(si,ai)

e−Eθ(si,ai) +
∑Nneg.

j=1 e−Eθ(si,ãj
i)

)
(1)

where ãj
i for j = 1, . . . Nneg. are the negative samples and i = 1 . . . N are the training samples in the batch.

The parameters θ are optimized by minimizing LInfoNCE, encouraging the model to assign lower energy to
expert actions compared to negative samples. This approach allows IBC to capture complex and multimodal
action distributions, leading to more robust imitation of expert behaviors (Florence et al., 2021). Since IBC
uses an implicit model with iterative sampling procedure for selecting actions, we need to develop specific
formulations for untargeted and targeted attacks for these kinds of implicit models, specifically for the
Derivative-Free Optimizer version of the inference. We summarize our attack in Algorithm 1.

For the targeted attack, a key challenge arises from the contrastive nature of IBC’s loss function. Since the
model can only minimize energy for actions present in the sample set, and these samples are drawn randomly,
there is no straightforward way to directly optimize for a specific target action. The probability of the desired
target action appearing in the negative samples is very low, making it difficult to construct an end-to-end
loss function that reliably guides the model toward selecting this target action. Hence, we formulate the
problem as finding the perturbation δ for a target action a′ such that, p̃θ(a′|s + δ) > p̃θ(a|s + δ). To achieve
this, we introduce a sampling-based attack method to approximate the local energy surface, making it easier to
select the target action. Specifically, we randomly sample a small number of negative actions, along with the
target action, to estimate the energy surface around the target region. We also consider the original action
during the attack. we then iteratively perform gradient ascent to decrease the energy of the target action
compared to both the original and negative actions. However, in-order to further increase the probability of
the target action being chosen during inference, we repeat this procedure Niter times to decrease the energy
of the target action with respect to more actions that could possibly be selected due to their vicinity to the
original actions. The details are presented in Algorithm 1.

For the untargeted attack, the objective is to perturb the state s by finding a perturbation δ that increases
the energy (reduces the probability) of the actions that would normally be taken by the trained policy on
clean state observations. In this case, we aim to push the model towards selecting less optimal actions by
maximizing the energy associated with the learned actions in the perturbed state. To achieve this, we perform
gradient ascent on the input pixels to maximize the energy of the correct action (aclean in Algorithm 1).
Thus, by maximizing the energy of the correct action, the policy is forced to select alternative actions that
are perturbed away from the intended action along different dimensions of the action space. While these
selected actions maintain some structure from the original state-action distribution, the perturbations cause
sufficient deviation to disrupt successful task execution.

4.4.2 Diffusion Policy

Diffusion Policy (DP) (Chi et al., 2023) aims to overcome the necessity of approximating the normalizing
constant (the negative samples required in the above IBC method) in an energy based model, by learning
the score function of the action-distribution.

In particular, the score function is defined as the gradient of the log-conditional probability distribution of
actions, which is usually learnt as a noise-prediction network (εθ) parameterized by θ.

∇a log p(a | s) = −∇aEθ(s,a) ≈ −εθ(s,a) (2)

Starting from ak sampled from Gaussian noise, DP iteratively denoises the sample k times to get a desired
noise-free sample a0.

ak−1 = α
(
ak − γεθ

(
s,ak, k

)
+N

(
0, σ2I

))
(3)

where α, γ, σ are the hyper-parameters that collectively define the noise schedule. The complete inference is
defined in Appendix B.

Algorithm 2 shows our online attack method for Diffusion Policy. Both targeted and untargeted attacks use
Mean Squared Error (MSE) loss for propogation of gradient. For the targeted attack, we try to minimize the

6

Under review as submission to TMLR

Algorithm 1 Implicit BC PGD Attack
Require: Trained energy model Eθ(s, a), state s, observation o, number of samples Nsamples, number of iterations Niters,

decay rate K, perturbation bound ϵ, step size α
1: Obtain clean action aclean by running IBC on s
2: for epoch = 1, 2, . . . , Nepochs do ▷ Optimize over multiple samples
3: Initialize sample set S = {ãi}Nsamples

i=1 ∼ U(amin, amax)
4: if Targeted then
5: Introduce aclean, atarget into S
6: end if
7: for iter = 1, 2, . . . , Niters do ▷ Inner PGD attack iterations
8: {Ei}

|S|
i=1 ← {Eθ(s′, ãi)}|S|

i=1 ▷ Compute energies with perturbation

9: {p̃i}
|S|
i=1 ←

{
e−Ei∑|S|

j=1
e

−Ej

}|S|

i=1

▷ Compute softmax probabilities

10: if Targeted then
11: Compute cross-entropy loss with atarget as the true label:
12: Loss = − log(p̃target) ▷ p̃target is the probability of atarget

13: else
14: Compute untargeted loss:
15: Loss = −Eθ(s′, aclean) ▷ Maximize energy of the correct action for untargeted attacks
16: end if
17: Update s′ using PGD step:
18: s′ = s′ + α · (∇ot Loss)Bϵ ▷ Projected on the lp norm ball
19: end for
20: end for
21: return s′

Algorithm 2 Diffusion Policy PGD Attack
Require: Observation horizon T0, Action Horizon Ta, Prediction Horizon Tp, State sequence St = {st−To+1, . . . , st}, number

of denoising iterations K
Ensure: Action sequence At = {at, . . . , at+Tp−1}
1: Aclean

t = Diffusion Policy Inference(St)
2: Atarget

t = Aclean
t + Desired Perturbations ▷ Only for Targeted Attack

3: Initialize Tattack, ϵ, α, γ, σ, Niters

4: Initialize A(K)
t ∼ N (0, I)

5: for k = K, K − 1, . . . , 1 do
6: A(k−1)

t = α(A(k)
t − γϵθ(St, A(k)

t , k)) + σN (0, I)
7: if k < Tattack then ▷ Attack during the last K − Tattack timesteps
8: for Niters do ▷ Inner PGD iterations
9: if Targeted then

10: Loss = −MSELoss(Ak−1
t , Atarget(k−1)

t)
11: else
12: Loss = MSELoss(Ak−1

t , Aclean(k−1)
t)

13: end if
14: St = St + α · ∇Ot (Loss)Bϵ ▷ Grad. ascent w.r.t current observations and project on ϵ ball.
15: end for
16: end if
17: end for
18: return St

distance between our predicted action and the target action (line 10) by doing gradient descent. Whereas,
in the untargeted attack, we try to maximize the distance between the predicted action and the clean action
(line 12) by doing gradient ascent. Running this attack end-to-end during the whole denoising process can
be costly, as we need to backpropogate through the entire network for each iteration for a single inference
step. However, we can reduce this computation by taking inspiration from prior work on image editing
attacks (Salman et al., 2023) and only apply the perturbations during last timesteps (line 7 of Algorithm 2)
of the denoising process. This enables us to avoid wasting attacks when the actions are very random (during
the initial steps of denoising) and only apply the attack when the data has started to converge towards the
mode. This significantly reduces the attack effort when compard with prior work (Chen et al., 2024) (in our
case by 80%, since we use Tattack = 80 and K = 100) while not affecting the quality of adversarial attack.

7

Under review as submission to TMLR

5 Experiments & Results

We design our experiments to the answer to following questions: (1) How vulnerable are modern behavior
cloning algorithms to adversarial attacks? (2) How transferable are the attacks across different algorithms
and different tasks? (3) What is the impact of different feature extraction backbones on attack performance,
as in how transferable are the attacks between different vision architectures? (4) How does the action
prediction horizon of the diffusion policy affect its vulnerability? (5) How do adversarial defense techniques
perform in our setting and what are the takeaways? (6) How sensitive are attacks to the range of adversarial
perturbation?

5.1 Environments

(a) Lift Task (b) Can Task (c) Square Task (d) Push-T Task

Figure 1: Environments used to study adversarial robustness of modern behavior cloning algorithms. (a)-(c)
are from RoboMimic (Mandlekar et al., 2021) and (d) is from Florence et al. (2021)

To demonstrate the adversarial robustness of modern behavior cloning algorithms, we consider a diverse set
of common benchmarks shown in Figure 1. The tasks of Lift, Can and Square are taken from Robomimic
(Mandlekar et al., 2021), where the state-of-the art frameworks such as Diffusion Policy and LSTM-GMM
have been shown to have a nearly 100% success rate in non-adversarial settings. To further assess the ability
of adversarial attacks to breach these frameworks on a diverse task, we consider the Push-T environment,
first introduced by Florence et al. (2021) and then subsequently used by Diffusion Policy (Chi et al., 2023)
and VQ-BET (Lee et al., 2024). Lift is a foundational manipulation task where a robot arm must lift a
small cube from a table surface. Can is a manipulation task requiring the robot to transfer a soda can from
a large source bin into a smaller target bin. Square is a high-precision manipulation task where the robot
must pick up a square nut and insert it onto a vertical rod. Push-T is a contact-rich manipulation task
where the robot must guide a T-shaped block to a fixed target location using a circular end-effector. Further
descriptions and details of these tasks are included in Appendix A.

5.2 Pretrained Policies

To provide consistent and reproducible results, we attack the pre-trained checkpoints for LSTM-GMM, IBC
and Diffusion Policy released by the authors of Diffusion Policy (Chi et al., 2023) on these suite of tasks,
and train our policies for Vanilla-BC and VQ-BET, due to absence of publicly available checkpoints. We
evaluate all the environments on 50 randomly initialized environments across 3 different seeds for reporting
the mean and standard deviation of the success rate.

5.3 How vulnerable are modern behavior cloning algorithms to adversarial attacks?

To assess the vulnerability of modern behavior cloning algorithms to adversarial attacks, we conducted a
comprehensive evaluation using both online (PGD) and offline (UAP) attack methods. Answering question
(1) our findings, as illustrated in Figures 2 and 3, reveal significant vulnerabilities in the adversarial robustness
of current algorithms when faced with perturbations in the observation space. Among the algorithms tested,
VQ-BET demonstrated the highest susceptibility to adversarial perturbations. We hypothesize that this
vulnerability stems from the discrete nature of its action space, which may lead to discontinuous decision
boundaries. In contrast, algorithms employing iterative methods for action selection, such as IBC and

8

Under review as submission to TMLR

Diffusion Policy, exhibited relatively higher robustness. This enhanced resilience can be attributed to the
inherent stochasticity in their action selection processes during inference. It is important to note that the
effectiveness of these attacks varies depending on the complexity of the task environment. For instance, the
Lift environment allows for a larger margin of error, making it more forgiving to substantial perturbations
in actions. However, as task complexity increases, we observe a dramatic reduction in the robot task success
rates (increase in attack success rates) across all algorithms. For example, Mandlekar et al. (2021) categorize
the difficulty of the tasks with Lift being the easiest, Can being harder than Lift, and Square being harder
than Can. As we increase the complexity of the task, we notice an increase in the efficacy of the adversarial
attacks as detailed in Appendix D.

0.94
0.98

0.77

1.00 1.00

0.23

0.00 0.03

0.25

0.00

0.32

0.00

0.12

0.86

0.00

Vanilla BC LSTM-GMM IBC Diffusion Policy-C VQ-BET
0

0.2

0.4

0.6

0.8

1

Algorithm

Ta
sk

 S
uc

ce
ss

 R
at

e

(a) PGD

0.94
0.98

0.77

1.00 1.00

0.48

0.00

0.68

0.92

0.000.00 0.00

0.71

0.00 0.00

Vanilla BC LSTM-GMM IBC Diffusion Policy-C VQ-BET
0

0.2

0.4

0.6

0.8

1 Attack Type
No Attack
Targeted Attack
Untargeted Attack

Algorithm

Ta
sk

 S
uc

ce
ss

 R
at

e

(b) UAP

Figure 2: Comparison of PGD and UAP attacks for the Lift task. The y-axis denotes the average success
rates of different BC policies, where lower is better for the attacker.

0.65
0.69

0.72

0.89

0.62

0.08 0.09
0.11

0.22

0.080.08 0.09

0.31

0.39

0.08

Vanilla BC LSTM-GMM IBC Diffusion Policy-C VQ-BET
0

0.2

0.4

0.6

0.8

1

Algorithm

Ta
sk

 S
uc

ce
ss

 R
at

e

(a) PGD

0.65
0.69

0.72

0.89

0.62

0.09 0.08

0.61

0.14

0.08
0.10 0.09

0.57

0.25

0.08

Vanilla BC LSTM-GMM IBC Diffusion Policy-C VQ-BET
0

0.2

0.4

0.6

0.8

1 Attack Type
No Attack
Targeted Attack
Untargeted Attack

Algorithm

Ta
sk

 S
uc

ce
ss

 R
at

e

(b) UAP

Figure 3: Comparison of PGD and UAP attacks for the Push-T task. The y-axis denotes the average success
rates of different BC policies, where lower is better for the attacker.

Particularly concerning is our finding that these vulnerabilities persist even with minimal perturbations
- even when epsilon is restricted to values as small as 4/256 (approximately 1.5% of the input range),
we observe substantial degradation in performance across most algorithms. This heightened sensitivity
to small perturbations suggests a fundamental brittleness in current behavior cloning approaches, as even
well-constrained adversarial attacks can significantly compromise policy performance (Fig. 12 in Appendix
G).

9

Under review as submission to TMLR

Table 1: Average Success rates of different target policies under untargeted universal adversarial perturba-
tions (UAP) generated from various attacker policies in the Lift task. The rows correspond to the attacker
policies (random refers to Gaussian noise with mean zero and std epsilon), and the columns correspond to
the target policies. Each cell reports the absolute task success rate after applying the attack.

Attacker
Target Policy Vanilla BC LSTM-GMM IBC DiffusionPolicy-C VQ-BET

Random 0.96 0.84 0.80 1.00 0.98
Vanilla BC 0.00 0.00 0.80 1.00 0.94

LSTM-GMM 0.94 0.00 0.72 1.00 0.96
IBC 1.00 0.10 0.64 1.00 0.98

DiffusionPolicy-C 0.82 0.22 0.78 0.00 0.94
VQ-BET 0.94 0.50 0.84 1.00 0.00

Table 2: Average success rates of target policies on the Push-T task under untargeted UAPs generated from
different attacker policies. This table illustrates the cross-algorithm transferability of adversarial perturba-
tions.

Attacker
Target Policy Vanilla BC LSTM-GMM IBC DiffusionPolicy-C VQ-BET

Random 0.60 0.61 0.64 0.82 0.55
Vanilla BC 0.10 0.08 0.41 0.80 0.22

LSTM-GMM 0.15 0.09 0.33 0.78 0.31
IBC 0.14 0.08 0.14 0.71 0.17

DiffusionPolicy-C 0.27 0.10 0.24 0.14 0.22
VQ-BET 0.26 0.14 0.47 0.61 0.08

Table 3: Percentage decrease in robot task completion rate (i.e., success rate reduction) when adversarial
perturbations generated on the Lift task are applied to other tasks (Can, Square). Negative values indicate
counterintuitive increases in performance under attack. This table highlights multi-task transferability of
universal perturbations.

Algorithm \ Task LIFT CAN LIFT-TO-CAN SQUARE LIFT-TO-SQUARE

Vanilla BC 100% 100% 50% 100% -40%
LSTM-GMM 100% 100% 40% 100% 38.9%
IBC* 7.9% 100% 100% 100% 100%
DiffusionPolicy-C 100% 100% 45% 100% 6.6%
VQ-BET 100% 100% 0% 100% 11.4%

*IBC has very low (almost zero) performance on the Can and Square task, so the above metric may not capture the
full picture for (only) IBC.

5.4 Can adversarial examples transfer across different algorithms and tasks?

The transferability of adversarial examples across different behavior cloning algorithms presents an intriguing
phenomenon, given the substantial differences in their loss functions and training methodologies (as detailed
in Section 3). While these algorithms share a common image encoder (ResNet-18), their end-to-end training
approach results in distinct feature representations that are not easily interpretable.

In simpler environments like the Lift task (see Table 1), where baseline success rates are high (>90% for
most algorithms), we observed limited transferability with relatively small proportional drops in performance,
aligning with our initial expectations. Intriguingly, in the PushT environment (Table 2) we noticed high-
transferability of attacks between algorithms except for Diffusion Policy and also as we progressed to more
complex environments (e.g., Square in Table 8 in the Appendix), where baseline success rates are lower

10

Under review as submission to TMLR

and tasks are naturally less robust to action perturbations, we noticed that transferred attacks often caused
larger proportional drops in performance relative to the baseline.

To answer the question regarding whether the attacks developed for one environment can transfer to other
environments keeping the algorithm fixed, we evaluated the transferability of the attacks across environments.
Our results in Table 3, where we report the percentage decrease in the robot task completion rate compared to
the non-attacked version, show that the attacks developed in Lift can transfer to both the other environments
(Can and Square). However in rare case of BC for Square, we see an unexpected increase in performance
when attacked using the attack developed for Lift environment but this could be due to random initialization
of environments and the time constraint for testing only 3 seeds for each algorithm. It could also be due
to the fact that adding a small amount of action noise to policies can sometimes increase performance by
helping the policy get unstuck.

5.5 Robustness of Implicit Policies

While our results show that both IBC and Diffusion Policy are generally more robust than explicit policies,
the asymmetry in their robustness to different attack types warrants deeper analysis. Specifically, Diffu-
sion Policy demonstrates greater resilience to PGD attacks, which we hypothesize stems from its multi-step
denoising inference process. Since PGD introduces perturbations that are propagated through a long se-
quence of refinement steps, the model’s iterative structure may naturally attenuate their impact—effectively
smoothing out sharp adversarial gradients over time. Conversely, IBC exhibits stronger robustness to univer-
sal perturbations, likely due to its stochastic, sampling-based action selection. Because IBC selects actions
based on contrastive energy scores over a diverse set of samples, a fixed UAP is less likely to consistently
degrade performance across all sampled actions. Moreover, while PGD directly optimizes the energy surface
in IBC, aligning with the model’s objective and making it a stronger threat, UAP lacks this fine-grained
adaptation. These differences suggest that each model’s inference dynamics play a central role in shaping its
vulnerability, and future work could explore this further via step-wise attack tracing or ablations over the
inference pipeline.

5.6 What is the impact of different feature extraction backbones to attack performance?

We further wanted to gain insights about the transferability of attack with different vision-backbones used
for policy learning. In-order to test this, we developed perturbations using ResNet-18 as the backbone and
then deployed these attacks on policies that were trained using ResNet-50, without regenerating the attacks.
This cross-architecture transfer scenario yielded surprising results. In the Lift task (see Table 4), we observed
high transferability for some algorithms (e.g., LSTM-GMM and IBC), while others showed more resilience
(e.g., Diffusion Policy-C and VQ-BET). The more complex Push-T task (see Table 5) demonstrated a more
consistent pattern of partial transferability across all algorithms.

Table 4: Average Success rates before and after untargeted UAP attacks generated using a ResNet-18
backbone and evaluated on policies using either ResNet-18 or ResNet-50. This setup tests cross-architecture
transferability of adversarial attacks on the Lift task. NA indicates no attack.

Algorithm NA Resnet-18 NA Resnet-50 Resnet-18 Resnet-50

Vanilla BC 1.00 1.00 0.21 0.75
LSTM-GMM 1.00 1.00 0.00 0.25
IBC 0.95 0.50 0.85 0.38
DiffusionPolicy-C 1.00 1.00 0.00 1.00
VQ-BET 1.00 1.00 0.00 0.98

Notably, in many cases, the ResNet-50 models showed vulnerability to attacks developed for ResNet-18,
suggesting that simply increasing model capacity does not guarantee improved robustness against cross-
architecture attacks. It also highlights the existence of shared vulnerabilities across different network archi-
tectures, which adversarial perturbations can exploit even when transferred to a different backbone. These

11

Under review as submission to TMLR

Table 5: Average Success rates on the Push-T task under untargeted UAPs created using ResNet-18 and
tested on ResNet-50-based policies. Demonstrates robustness of different algorithms to adversarial pertur-
bations transferred across visual backbones. NA indicates no attack.

Algorithm NA Resnet-18 NA Resnet-50 Resnet-18 Resnet-50

Vanilla BC 0.72 0.62 0.09 0.20
LSTM-GMM 0.72 0.56 0.08 0.21
IBC 0.74 0.57 0.63 0.27
DiffusionPolicy-C 0.88 0.78 0.14 0.54
VQ-BET 0.62 0.65 0.08 0.29

results underscore the importance of considering cross-architecture vulnerabilities in the design of robust
behavior cloning systems.

5.7 How does the action prediction horizon of the diffusion policy affect its vulnerability?

0 20 40 60 80
0

0.2

0.4

0.6

0.8

1
Action Horizon

4
8
12
16

Epochs

M
ea

n
Te

st
 S

co
re

Figure 4: Test mean score vs epochs for action
prediction horizon of 16 for lift, and various
action horizons during Untargeted UAP.

In addition to the above experiments, we find an interesting
trade-off between the action horizon of the Diffusion Policy
and robustness. In Fig. 4, we observe that as the action hori-
zon increases (the number of actions taken at a time), while
keeping the prediction horizon the same, the policy shows
increasing robustness to universal attack. We hypothesize
that as the action horizon increases the number of times the
perturbed observation gets observed decreases thus allowing
for smaller compounding errors during the inference.

However, if the action horizon is too long then the latency
and recovering from sub-optimal trajectories might lead to
worse overall performance.

5.8 How do adversarial defense techniques perform?

To evaluate the applicability of adversarial defenses from computer vision to robotic control, we investigate
Randomized Smoothing (Cohen et al., 2019) (we provide further details about the defense technique and
hyperparameters in Appendix E), a widely adopted defense technique, against our strongest attack method
(PGD). Our experimental results, presented in Tables 6 and 7, reveal that the effectiveness of randomized
smoothing varies significantly across different algorithms and task domains.

In the Lift task, we observe a spectrum of improvements in robustness. Most notably, Diffusion Policy and
VQ-BET demonstrate remarkable enhancement in performance, with the task success rate with randomized
smoothing increasing from 25% to 98% and 8% to 66% respectively. Vanilla BC exhibits moderate im-
provements, with success rates increasing from 48% to 52%, respectively. IBC also shows substantial gains,
improving from 21% to 50% success rate, while LSTM-GMM demonstrates minimal benefits. The Push-T
task, however, presents a markedly different scenario. The benefits of randomized smoothing are considerably
attenuated across most algorithms, with IBC being the slight exception, showing improvement from 38% to
50% success rate. The limited effectiveness in this task may be attributed to the inherent multi-modal nature
of the action distribution in the Push-T environment (Lee et al., 2024). In such cases, averaging predictions
can lead to actions that lie between valid modes of the distribution, resulting in suboptimal behavior.

This discrepancy in effectiveness across tasks suggests that the utility of randomized smoothing is highly task-
dependent. The defense appears more effective in tasks with simpler, unimodal action distributions, while
its benefits diminish in scenarios involving complex, multi-modal action spaces. These findings highlight the
need for defense mechanisms specifically designed for robotic control tasks that can maintain effectiveness
across varying degrees of task complexity and action space characteristics.

12

Under review as submission to TMLR

Table 6: Average Success rates of various behavior cloning algorithms on the Lift task under different
adversarial and defense conditions. We compare the baseline performance (no attack), randomized smoothing
alone, PGD attack, and PGD combined with randomized smoothing to assess the effectiveness of smoothing-
based defenses.

Algorithm NA NA Randomized PGD Randomized
Smoothing Attack Smoothing with PGD

Vanilla BC 1.00 1.00 0.48 0.52
LSTM-GMM 1.00 0.93 0.00 0.00
IBC 0.95 0.80 0.21 0.50
DiffusionPolicy-C 1.00 1.00 0.25 0.98
VQ-BET 1.00 1.00 0.08 0.66

Table 7: Average Success rates of behavior cloning algorithms on the Push-T task under baseline, PGD,
randomized smoothing, and combined PGD + smoothing settings. This table highlights the varying impact
of defense strategies in a contact-rich manipulation environment.

Algorithm NA NA Randomized PGD Randomized
Smoothing Attack Smoothing with PGD

Vanilla BC 0.74 0.74 0.08 0.08
LSTM-GMM 0.66 0.54 0.00 0.00
IBC 0.68 0.67 0.38 0.50
DiffusionPolicy-C 0.88 0.84 0.23 0.24
VQ-BET 0.72 0.71 0.10 0.10

5.9 How sensitive are attacks to the range of adversarial perturbation?

Our analysis reveals vulnerabilities in behavior cloning algorithms even with minimal perturbations (for
Universal Untargeted Attacks). As shown in Figure 12, while decreasing epsilon values generally reduces
attack efficacy, algorithms like VQ-BET, LSTM-GMM, and Diffusion Policy still exhibit substantial per-
formance degradation even at very small epsilon values (ϵ of 4/256). This heightened sensitivity to small
perturbations highlights a concerning vulnerability in current behavior cloning approaches, suggesting that
even well-constrained adversarial attacks can significantly compromise policy performance.

(a) Lift (b) PushT

Figure 5: Task success rates of behavior cloning algorithms under decreasing perturbation magnitudes (ϵ),
demonstrating their sensitivity to even small adversarial inputs. The steep drop in performance emphasizes
the lack of robustness across algorithms.

13

Under review as submission to TMLR

6 Conclusion & Future Work

Our results show that modern behavior cloning algorithms are vulnerable to adversarial attacks. Interestingly,
implicit policies such as Implicit Behavior Cloning and Diffusion Policy seem to be more robust than the
explicit policies. However, our results also demonstrate that the attack success rate is dependent on the
task. As tasks gets harder, it becomes easier to attack these algorithms. This also holds true based on the
results from transferability of attacks between different algorithms. Our results provide evidence that the
different algorithms as well as the same algorithm trained with a different architecture are learning some
similar features that are not completely orthogonal. Thus posing a security challenge since even if we are
using different vision encoders, task, or policy these perturbations are transferable.

We believe that our work lays foundation for future work in the direction of adversarial robustness of LfD
policies. Future work includes designing better metrics to capture the nuanced effects of adversarial attacks
on trajectories, rather than relying solely on success rates. Such metrics could provide deeper insights
into the uncertainty in the state-action distributions learned by the policies. Furthermore, while a much
progress on adversarial robustness has been made in computer vision, the sequential nature of robotic LfD
policies and the complex relationship between vision representations and resulting actions (especially for
implicit policies such as IBC and Diffusion Policy) provides an underexplored and exciting are for future
research into both vulnerabilities and defenses. In-addition, adversarial attacks with respect to the physical
parameters can provide reliability estimates and better coverage of state-action distribution. Our current
results show that even in settings where the robot feedback is more than vision, adversarial attacks only
on vision are significant enough to defeat a policy. Future work should investigate other types of hybrid
statespaces such as domains with force sensing feedback along with visual feedback to see if visual attacks
alone are sufficient to significantly degrade policy performance. Finally, future work should investigate
physical attacks on real robot platforms to study whether our findings in simulation generalize to real world
deployment of the different BC algorithms we have studied in this paper.

7 Broader Impact

This work reveals significant vulnerabilities in behavior cloning algorithms that could affect the safe de-
ployment of robotic systems in real-world applications. While exposing these security weaknesses could
potentially enable malicious exploitation, we believe their disclosure is crucial for developing robust safety
measures before widespread deployment in sensitive environments like industrial automation or healthcare
robotics. Our systematic evaluation provides concrete guidance for developing more secure systems. Our
goal is to ensure reliable and safe operation of robotic systems by identifying and addressing potential vulner-
abilities before deployment, while encouraging the research community to prioritize adversarial robustness
in future algorithm development.

References
Naveed Akhtar and Ajmal Mian. Threat of adversarial attacks on deep learning in computer vision: A

survey. Ieee Access, 6:14410–14430, 2018.

Michael Bain and Claude Sammut. A framework for behavioural cloning. In Machine Intelligence 15, pp.
103–129, 1995.

Adith Boloor, Xin He, Christopher Gill, Yevgeniy Vorobeychik, and Xuan Zhang. Simple physical adversarial
examples against end-to-end autonomous driving models. In 2019 IEEE International Conference on
Embedded Software and Systems (ICESS), pp. 1–7. IEEE, 2019.

Nicholas Carlini, Florian Tramèr, Krishnamurthy Dj Dvijotham, Leslie Rice, Mingjie Sun, and J Zico Kolter.
(certified!!) adversarial robustness for free! In The Eleventh International Conference on Learning
Representations. OpenReview, 2023.

Stephen Casper, Taylor Killian, Gabriel Kreiman, and Dylan Hadfield-Menell. White-box adversarial policies
in deep reinforcement learning. arXiv preprint arXiv:2209.02167, 2022.

14

Under review as submission to TMLR

Anirban Chakraborty, Manaar Alam, Vishal Dey, Anupam Chattopadhyay, and Debdeep Mukhopadhyay.
A survey on adversarial attacks and defences. CAAI Transactions on Intelligence Technology, 6(1):25–45,
2021.

Xuan Chen, Wenbo Guo, Guanhong Tao, Xiangyu Zhang, and Dawn Song. Bird: generalizable backdoor de-
tection and removal for deep reinforcement learning. Advances in Neural Information Processing Systems,
36:40786–40798, 2023.

Yipu Chen, Haotian Xue, and Yongxin Chen. Diffusion policy attacker: Crafting adversarial attacks for
diffusion-based policies. ArXiv, abs/2405.19424, 2024.

Cheng Chi, Siyuan Feng, Yilun Du, Zhenjia Xu, Eric Cousineau, Benjamin Burchfiel, and Shuran Song.
Diffusion policy: Visuomotor policy learning via action diffusion. In Proceedings of Robotics: Science and
Systems (RSS), 2023.

Jeremy M. Cohen, Elan Rosenfeld, and J. Zico Kolter. Certified adversarial robustness via randomized
smoothing. ArXiv, abs/1902.02918, 2019.

Pete Florence, Corey Lynch, Andy Zeng, Oscar Ramirez, Ayzaan Wahid, Laura Downs, Adrian Wong,
Johnny Lee, Igor Mordatch, and Jonathan Tompson. Implicit behavioral cloning. Conference on Robot
Learning (CoRL), 2021.

Adam Gleave, Michael Dennis, Neel Kant, Cody Wild, Sergey Levine, and Stuart J. Russell. Adversarial
policies: Attacking deep reinforcement learning. ArXiv, abs/1905.10615, 2019.

Ian J. Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversarial examples.
CoRR, abs/1412.6572, 2014.

Garrett Hall, Arun Das, John Quarles, and Paul Rad. Studying adversarial attacks on behavioral cloning
dynamics. In 2020 IEEE 32nd International Conference on Tools with Artificial Intelligence (ICTAI), pp.
452–459. IEEE, 2020.

Jerry Zhi-Yang He, Daniel S Brown, Zackory Erickson, and Anca Dragan. Quantifying assistive robustness
via the natural-adversarial frontier. In Conference on Robot Learning, pp. 1865–1886. PMLR, 2023.

Jonathan Ho, Ajay Jain, and P. Abbeel. Denoising diffusion probabilistic models. ArXiv, abs/2006.11239,
2020.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural Computation, 9:1735–1780,
1997.

Sandy Huang, Nicolas Papernot, Ian Goodfellow, Yan Duan, and Pieter Abbeel. Adversarial attacks on
neural network policies. arXiv preprint arXiv:1702.02284, 2017.

Yifan Jia, Christopher M Poskitt, Jun Sun, and Sudipta Chattopadhyay. Physical adversarial attack on a
robotic arm. IEEE Robotics and Automation Letters, 7(4):9334–9341, 2022.

Seungjae Lee, Yibin Wang, Haritheja Etukuru, H. Jin Kim, Nur Muhammad, Mahi Shafiullah, and Lerrel
Pinto. Behavior generation with latent actions. ArXiv, abs/2403.03181, 2024.

Yen-Chen Lin, Zhang-Wei Hong, Yuan-Hong Liao, Meng-Li Shih, Ming-Yu Liu, and Min Sun. Tactics of
adversarial attack on deep reinforcement learning agents. In International Joint Conference on Artificial
Intelligence, 2017.

Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu. Towards
deep learning models resistant to adversarial attacks. ArXiv, abs/1706.06083, 2017.

Ajay Mandlekar, Danfei Xu, J. Wong, Soroush Nasiriany, Chen Wang, Rohun Kulkarni, Li Fei-Fei, Sil-
vio Savarese, Yuke Zhu, and Roberto Mart’in-Mart’in. What matters in learning from offline human
demonstrations for robot manipulation. In Conference on Robot Learning, 2021.

15

Under review as submission to TMLR

Kanghua Mo, Weixuan Tang, Jin Li, and X.Q. Yuan. Attacking deep reinforcement learning with decoupled
adversarial policy. IEEE Transactions on Dependable and Secure Computing, 20:758–768, 2023.

Janosch Moos, Kay Hansel, Hany Abdulsamad, Svenja Stark, Debora Clever, and Jan Peters. Robust
reinforcement learning: A review of foundations and recent advances. Machine Learning and Knowledge
Extraction, 4(1):276–315, 2022.

Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, Omar Fawzi, and Pascal Frossard. Universal adversarial
perturbations. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 86–94,
2016.

Anay Pattanaik, Zhenyi Tang, Shuijing Liu, Gautham Bommannan, and Girish V. Chowdhary. Robust deep
reinforcement learning with adversarial attacks. In Adaptive Agents and Multi-Agent Systems, 2017.

Stéphane Ross, Geoffrey Gordon, and Drew Bagnell. A reduction of imitation learning and structured
prediction to no-regret online learning. In Proceedings of the fourteenth international conference on
artificial intelligence and statistics, pp. 627–635. JMLR Workshop and Conference Proceedings, 2011.

Hadi Salman, Alaa Khaddaj, Guillaume Leclerc, Andrew Ilyas, and Aleksander Madry. Raising the cost of
malicious ai-powered image editing. In International Conference on Machine Learning, 2023.

Jianwen Sun, Tianwei Zhang, Xiaofei Xie, L. Ma, Yan Zheng, Kangjie Chen, and Yang Liu. Stealthy
and efficient adversarial attacks against deep reinforcement learning. In AAAI Conference on Artificial
Intelligence, 2020.

Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, D. Erhan, Ian J. Goodfellow, and Rob
Fergus. Intriguing properties of neural networks. CoRR, abs/1312.6199, 2013.

Faraz Torabi, Garrett Warnell, and Peter Stone. Behavioral cloning from observation. In Proceedings of the
27th International Joint Conference on Artificial Intelligence, pp. 4950–4957, 2018.

Han Wu, Syed Yunas, Sareh Rowlands, Wenjie Ruan, and Johan Wahlström. Adversarial driving: Attacking
end-to-end autonomous driving. In 2023 IEEE Intelligent Vehicles Symposium (IV), pp. 1–7. IEEE, 2023.

Albert Zhan, Stas Tiomkin, and Pieter Abbeel. Preventing imitation learning with adversarial policy en-
sembles. arXiv preprint arXiv:2002.01059, 2020.

Huan Zhang, Hongge Chen, Chaowei Xiao, Bo Li, Mingyan Liu, Duane Boning, and Cho-Jui Hsieh. Robust
deep reinforcement learning against adversarial perturbations on state observations. Advances in Neural
Information Processing Systems, 33:21024–21037, 2020a.

Huan Zhang, Hongge Chen, Duane Boning, and Cho-Jui Hsieh. Robust reinforcement learning on state
observations with learned optimal adversary. In International Conference on Learning Representation
(ICLR), 2021.

Wei Emma Zhang, Quan Z Sheng, Ahoud Alhazmi, and Chenliang Li. Adversarial attacks on deep-learning
models in natural language processing: A survey. ACM Transactions on Intelligent Systems and Technology
(TIST), 11(3):1–41, 2020b.

Ke Zhao, Huayang Huang, Miao Li, and Yu Wu. Rethinking the intermediate features in adversarial attacks:
Misleading robotic models via adversarial distillation. arXiv preprint arXiv:2411.15222, 2024.

16

Under review as submission to TMLR

A Task Description

We evaluate the vulnerability of behavior cloning methods on several manipulation tasks of varying com-
plexity.

• Lift: A foundational manipulation task where a robot arm must lift a small cube (4cm x 4cm x 4cm)
from a table surface. The task tests basic pick-and-place capabilities and serves as an entry-level
benchmark. Success is determined by elevating the cube above a threshold height. Initial cube poses
are randomized with z-axis rotation within a small square region at the table center.

• Can: A manipulation task requiring the robot to transfer a soda can from a large source bin into a
smaller target bin. This task presents increased difficulty over Lift due to the more complex grasping
requirements of the cylindrical can and the constrained placement target. The can’s initial pose is
randomized with z-axis rotation anywhere within the source bin.

• Square: A high-precision manipulation task where the robot must pick up a square nut and insert
it onto a vertical rod. This task significantly increases complexity by requiring precise alignment
and complex insertion dynamics. The nut’s initial pose is randomized with z-axis rotation within a
square region on the table surface.

• Push-T: A contact-rich manipulation task adapted from (Florence et al., 2021) where the robot
must guide a T-shaped block to a fixed target location using a circular end-effector. The task
requires precise control of contact dynamics, as the robot must strategically apply point contacts
to maneuver the block along the desired trajectory. Unlike pick-and-place tasks, success depends
on understanding and exploiting the complex dynamics of planar pushing. We evaluate using RGB
image observations augmented with end-effector proprioception. Initial positions of both the T-
shaped block and the end-effector are randomized to ensure learned policies must generalize across
different pushing strategies.

B More Details on Behavior Cloning Algorithms

B.1 Vanilla Behavior Cloning

Vanilla Behavior Cloning (Vanilla BC) learns a policy via supervised learning (Bain & Sammut, 1995; Torabi
et al., 2018). Given a dataset of state-action pairs D = {(st, at)}N

t=1, it directly maps states to actions using
a neural network, πθ trained to minimize the mean squared error (MSE) for continuous actions:

LBC(θ) = 1
N

N∑
t=1
∥πθ(st)− at∥2

2 (4)

While effective for simple tasks, Vanilla BC struggles with tasks requiring long-term dependencies owing to
the problem of compounding error and the tasks with multimodalilty in expert behavior, as it assumes a
unimodal distribution over actions (Ross et al., 2011; Florence et al., 2021).

B.2 LSTM-GMM

Long Short-Term Memory with Gaussian Mixture Model (LSTM-GMM) (Mandlekar et al., 2021) enhances
Vanilla BC by incorporating temporal dependencies through an LSTM network (Hochreiter & Schmidhuber,
1997). The LSTM processes a sequence of states s1, s2, . . . , sT recursively, maintaining an internal hidden
state ht at each time step. The policy πθ(at|st, ht−1) is parameterized by the LSTM to model the temporal
structure, while a GMM captures multimodal action distributions at each time step. At each time step t, the
LSTM updates its hidden state and predicts a multimodal distribution over actions : ht = LSTM(st, ht−1)
and p(at|st, ht−1, θ) = GMM(ht). The policy is trained by maximizing the likelihood of the observed ac-
tions given the state sequence: πθ = arg maxθ

∑
ξ∈Ξ

∑T
t=1 log p(at|st, ht−1, θ), where p(at|st, ht−1, θ) is the

17

Under review as submission to TMLR

probability of action at under the GMM, conditioned on the current state st and the previous hidden state
ht−1.

ht = LSTM(st, ht−1) (5)
p(at|st, ht−1, θ) = GMM(ht) (6)

πθ = arg max
θ

∑
ξ∈Ξ

T∑
t=1

log p(at|st, ht−1, θ) (7)

B.3 VQ-BET

The Vector Quantized Behavior Transformer (VQ-BET) (Lee et al., 2024) combines a transformer-based
architecture with vector quantization to handle multi-modal continuous action spaces. The policy discretizes
actions into latent codes using a hierarchical quantization process, which allows the model to capture both
coarse- and fine-grained action details. The model’s policy is formulated as a sequence prediction problem,
where the transformer predicts discrete latent codes and continuous offsets for actions.

The Vector-Quantized Behavior Transformer (VQ-BeT) is a two-stage model for behavior cloning. It dis-
cretizes continuous action chunks using a Residual Vector-Quantized VAE (VQ-VAE) and trains a GPT-style
transformer to predict the resulting latent action tokens from observation sequences.

Action Tokenization via Residual VQ-VAE Given a continuous action chunk at:t+n, an encoder ϕ
maps it to a latent vector:

x = ϕ(at:t+n)

This latent is discretized using a residual vector quantization process over Nq codebooks:

zq(x) =
Nq∑
i=1

zi
q, where zi

q ∈ Ci = {ei
1, . . . , e

i
K}

Each zi
q is selected via nearest-neighbor lookup from codebook Ci.

A decoder ψ reconstructs the original action:

ât:t+n = ψ(zq(x))

The VQ-VAE is trained to minimize a combination of reconstruction and commitment losses:

LVQ = ∥at:t+n − ψ(zq(x))∥1 + ∥sg[x]− e∥2
2 + λcommit∥x− sg[e]∥2

2

where sg[·] denotes the stop-gradient operator and e is the selected embedding vector. This loss uses the
standard VQ-VAE loss with stop-gradient tricks. The second term encourages the codebook vector e to
move toward the encoder output ϕ(a). The last term encourages the encoder output to stay close to the
selected codebook vector. The coefficient λcommit = 1 and controls strongly the encoder is “committed” to
using codebook entries rather than drifting away. Each residual quantization layer has its own codebook,
and the same VQ loss structure is applied layer-by-layer.

Transformer-Based Code Prediction and Offset Correction A transformer πθ is trained to predict
the code indices from a sequence of past state observations st−h:t. Let ζi

code(st) denote the categorical logits
output for codebook i, and let ci be the ground-truth code index (from quantization) for that codebook.

The predicted codes are decoded as:

⌊at:t+n⌋ = ψ

 Nq∑
i=1

ei
ci

An offset network ζoffset adds a residual correction for improved action fidelity:

ãt:t+n = ⌊at:t+n⌋+ ζoffset(st)

18

Under review as submission to TMLR

Code Prediction Loss To train the transformer’s categorical heads, a focal loss is applied to each pre-
dicted codebook distribution:

Lcode = Lfocal(ζ1
code(st), c1) + β

Nq∑
i=2
Lfocal(ζi

code(st), ci)

Here, β is a weighting coefficient for secondary codebooks and where

Lfocal = −αt(1− pt)γ log(pt). (8)

Total VQ-BeT Loss The total training loss combines code prediction and offset correction:

LVQ-BeT = Lcode + ∥at:t+n − ãt:t+n∥1

B.4 Implicit Behavior Cloning

Implicit Behavior Cloning (IBC) (Florence et al., 2021) reformulates the problem of policy learning as
an energy-based model (EBM). Instead of explicitly predicting actions, IBC defines a compatibility score
between states and actions using an energy function Eθ(s, a). The policy is implicitly represented by selecting
actions that minimize the energy: πθ(s) = arg mina Eθ(s, a)

πθ(s) = arg min
a
Eθ(s, a) (9)

The model is trained using contrastive learning, where the energy of expert actions is minimized relative to
negative (non-expert) samples. The training loss typically follows the InfoNCE objective, as discussed in
more detail in section 4.4.1.

Algorithm 3 Implicit BC Inference
Require: Trained energy model Eθ(s, a), observation s, number of samples Nsamples, number of iterations

Niters, initial sampling std. dev. σinit, decay rate K
1: Initialize {ãi}Nsamples

i=1 ∼ U(amin, amax), σ = σinit

2: for iter = 1, 2, . . . , Niters do
3: {Ei}

Nsamples

i=1 ← {Eθ(s, ãi)}Nsamples

i=1 ▷ Compute energies

4: {p̃i}
Nsamples

i=1 ←
{

e−Ei∑Nsamples

j=1
e−Ej

}Nsamples

i=1
▷ Compute softmax probabilities

5: if iter < Niters then
6: {ãi}Nsamples

i=1 ← Multinomial(Nsamples, {p̃i}
Nsamples

i=1 , {ãi}Nsamples

i=1) ▷ Resample with replacement
7: {ãi}Nsamples

i=1 ← {ãi +N (0, σ)}Nsamples

i=1 ▷ Add noise
8: {ãi}Nsamples

i=1 ← clip({ãi}Nsamples

i=1 , amin, amax) ▷ Clip to bounds
9: σ ← Kσ ▷ Shrink sampling scale

10: end if
11: end for
12: i = arg max

i
({p̃i}

Nsamples

i=1)

13: return ãi

B.5 Diffusion Policy

Diffusion Policy (DP) (Chi et al., 2023) uses a novel generative approach to model action distributions by
leveraging Denoising Diffusion Probabilistic Models (Ho et al., 2020). Diffusion Policy formulates visuomotor
control as a conditional denoising diffusion process over action sequences. Let a0

1:Tp
denote a ground-truth

action sequence of length Tp, and let s1:To be a sequence of past observations (states), where To is the
observation horizon. The policy aims to model the conditional distribution pθ(a1:Tp | s1:To).

19

Under review as submission to TMLR

Forward Process. A forward noising process is defined by a Markov chain of Gaussian perturbations:

ak
1:Tp

=
√
ᾱk a0

1:Tp
+
√

1− ᾱk ϵ, ϵ ∼ N (0, I), (10)

where k ∈ {1, . . . ,K} is the diffusion step and ᾱk is the cumulative product of a noise schedule.

Policy Representation and Sampling. The policy does not output actions directly but instead learns
to denoise a noisy sample using a learned score function ϵθ. At inference time, a sample from the policy is
produced by the reverse denoising process:

ak−1
1:Tp

= αk

(
ak

1:Tp
− γk ϵθ(s1:To

,ak
1:Tp

, k)
)

+N (0, σ2
kI), (11)

where αk, γk, and σk are functions of the diffusion step k. This iterative procedure approximates sampling
from the policy distribution pθ(a1:Tp | s1:To) via Langevin dynamics.

Training Objective. The training loss is derived from a variational bound on the negative log-likelihood:

Ldiff = Es,a0,ϵ,k

[∥∥∥ϵ− ϵθ(s1:To ,ak
1:Tp

, k)
∥∥∥2

2

]
, (12)

which corresponds to minimizing a weighted sum of denoising score-matching losses across diffusion steps.
This loss indirectly maximizes a lower bound on the conditional log-likelihood:

log pθ(a0
1:Tp
| s1:To

) ≥ Eq(a1:K
1:Tp

|a0
1:Tp

)

[
log pθ(a0

1:Tp
| a1:K

1:Tp
, s1:To

)
]
−KL[q∥p], (13)

where q is the forward diffusion process and p is the learned reverse process.

Closed-loop Execution. During deployment, the policy executes the first Ta ≤ Tp actions of the sampled
trajectory and replans using updated state observations. This forms a receding-horizon loop that balances
responsiveness and temporal consistency.

For Diffusion policy (Algorithm 4) we use absolute positional actions as the original work shows that CNN-
based diffusion policy performs poorly with robomimic’s offical dataset, that uses veloocity control, as in the
actions are represented as delta with respect to the current.

Algorithm 4 Diffusion Policy Inference
Require: Observation horizon T0, Action Horizon Ta, Prediction Horizon Tp, State sequence St =
{st−To+1, . . . , st}, number of denoising iterations K

Ensure: Action sequence At = {at, . . . ,at+Tp−1}
1: Initialize α, γ, σ
2: Initialize A(K)

t ∼ N (0, I)
3: for k = K,K − 1, . . . , 1 do
4: A(k−1)

t = α(A(k)
t − γϵθ(St,A(k)

t , k)) + σN (0, I)
5: end for
6: return St

C Hyperparameters

We adopt the following temporal horizons from Diffusion Policy:

20

Under review as submission to TMLR

• Action prediction horizon (Tp): 16 steps

• Action execution horizon (Ta): 8 steps

• Observation context window (To): 2 steps

For the adversarial attacks, we use the following settings:

1. Overall attack budget:

• ε = 0.0625 (16/256) L∞ norm (normalized to input range [0, 1])
• Perturbations are clipped to [0, 1] range

2. Framework-specific perturbation bounds:

• For standard BC frameworks on Robomimic: [0.15, 0.15, 0] in (x, y, z) directions for relative
end-effector positions

• For Diffusion Policy on Robomimic: [0.45, 0.45, 0] in (x, y, z) directions for absolute end-effector
positions. The larger perturbation magnitude accounts for the absolute position representation,
compared to relative positions used in other frameworks

• For all the frameworks on Push-T: [100, 100] for the two action dimensions.

3. PGD attack parameters:

• Number of iterations: 40
• Per-iteration step size (εiteration): 0.005

For IBC inference, we use derivative-free optimization with Nsamples = 1024.

C.1 TARGET ACTION SELECTION

For targeted attacks across all algorithms, target actions are generated by perturbing the expected clean
actions:

atarget = aclean + δaction (14)

where aclean is the action predicted by the unperturbed policy and δaction is the desired action perturbation.
For our experiments, we set δaction = [0.15, 0.15] for perturbations in x and y directions for all frameworks
except Diffusion Policy, where we use δaction = [0.45, 0.45]. These values were chosen to ensure the target
actions remain within physically feasible bounds while being sufficiently different from the clean actions
to potentially cause task failures. For PGD attacks, this target action computation is performed at each
inference step using the current clean action prediction, while for UAP the target actions are computed once
using the perturbed offline action trajectories.

D Results on Additional Environments

D.1 Square Environment

21

Under review as submission to TMLR

0.20

0.82

0.03

0.99

0.59

0.00 0.00 0.00 0.00 0.000.00 0.00 0.00 0.07 0.00

Vanilla BC LSTM-GMM IBC Diffusion Policy-C VQ-BET
0

0.2

0.4

0.6

0.8

1

Algorithm

Ta
sk

 S
uc

ce
ss

 R
at

e

(a) PGD attacks for square.

0.20

0.82

0.03

0.99

0.59

0.08 0.00 0.00 0.00 0.000.00 0.00 0.00 0.01

0.40

Vanilla BC LSTM-GMM IBC Diffusion Policy-C VQ-BET
0

0.2

0.4

0.6

0.8

1 Attack Type
No Attack
Targeted Attack
Untargeted Attack

Algorithm

Ta
sk

 S
uc

ce
ss

 R
at

e

(b) Universal perturbation attacks for square.

Figure 6: Comparison of PGD and universal perturbation attacks for square task.

Table 8: Inter-Algorithm Transferability of Universal Untargeted Perturbations for Square

Square

Attacker
Target Policy Vanilla BC LSTM-GMM IBC DiffusionPolicy-C VQ-BET

Random 0.42 0.36 0.00 0.98 0.64
Vanilla BC 0.00 0.08 0.00 0.94 0.38

LSTM-GMM 0.18 0.00 0.00 0.96 0.62
IBC 0.42 0.1 0.00 0.98 0.62

DiffusionPolicy-C 0.00 0.00 0.00 0.00 0.32
VQ-BET 0.26 0.00 0.00 0.98 0.00

D.2 Can Environment

0.80

1.00

0.07

1.00
0.96

0.00 0.00 0.00 0.00 0.050.00 0.00 0.00 0.00 0.00

Vanilla BC LSTM-GMM IBC Diffusion Policy-C VQ-BET
0

0.2

0.4

0.6

0.8

1

Algorithm

Ta
sk

 S
uc

ce
ss

 R
at

e

(a) PGD attacks for Can.

0.80

1.00

0.07

1.00
0.96

0.00 0.00 0.00 0.00 0.000.00 0.00 0.00 0.00 0.00

Vanilla BC LSTM-GMM IBC Diffusion Policy-C VQ-BET
0

0.2

0.4

0.6

0.8

1 Attack Type
No Attack
Targeted Attack
Untargeted Attack

Algorithm

Ta
sk

 S
uc

ce
ss

 R
at

e

(b) Universal perturbation attacks for Can.

Figure 7: Comparison of PGD and universal perturbation attacks for Can task.

22

Under review as submission to TMLR

Table 9: Inter-Algorithm Transferability of Universal Untargeted Perturbations for Can

Can

Attacker
Target Policy Vanilla BC LSTM-GMM IBC DiffusionPolicy-C VQ-BET

Random 0.62 0.94 0.00 1.00 0.96
Vanilla BC 0.00 0.66 0.00 0.42 0.88

LSTM-GMM 0.18 0.00 0.00 0.72 0.68
IBC 0.72 0.98 0.00 1.00 0.92

DiffusionPolicy-C 0.02 0.24 0.00 0.00 0.70
VQ-BET 0.34 0.64 0.00 0.42 0.04

Table 10: Inter-Architecture Transferability. Transferability of attacks trained with resnet-18 to resnet-50
as backbone for Can.

Algorithm NA Resnet-18 NA Resnet-50 Resnet-18 Resnet-50
Vanilla BC 0.75 0.70 0.00 0.34
LSTM-GMM 1.00 0.25 0.00 0.00
IBC 0.09 0.00 0.00 0.00
DiffusionPolicy-C 1.00 0.875 0.00 0.30
VQ-BET 1.00 0.70 0.04 0.70

E Randomized Smoothing

Randomized smoothing is a technique used to enhance the robustness of deep neural networks against
adversarial perturbations. The core idea is to smooth the model’s predictions by averaging over multiple
randomly perturbed versions of the input. For a given input state s, the smoothed policy π̃(s) is defined as:

π̃(s) = Eε[π(s+ ε)], where ε ∼ N (0, σ2I) (15)

During inference, we approximate this expectation by averaging predictions over N randomly sampled per-
turbations:

π̃(s) ≈ 1
N

N∑
i=1

π(s+ εi), where εi ∼ N (0, σ2I) (16)

E.1 Implementation Details

For our experiments, we used:

• Number of random samples (N): 100

• Noise standard deviation (σ):

– Lift task: σ = 0.1
– Push-T task: σ = 0.05

The σ values were carefully chosen through validation to maintain performance on clean (non-attacked)
inputs while providing meaningful defense against adversarial perturbations.

F ILLUSTRATIONS

In this section, we show examples of the adversarial perturbations. Figure 8 shows an example of untargeted
attacks on the visual input for the Lift task. Figure 9 shows an example of targeted attacks on the visual

23

Under review as submission to TMLR

input for the Lift task. Figure 10 shows an example of untargeted attacks on the visual input for the Push-T
task. Figure 11 shows an example of targeted attacks on the visual input for the Push-T task. We note that
these perturbations are minor and in some cases almost imperceptible.

Unattacked

Vanilla BC

LSTM-GMM

IBC

Diffusion Policy

VQ-BET

Figure 8: Untargeted Attacks on Lift task.

24

Under review as submission to TMLR

Unattacked

Vanilla BC

LSTM-GMM

IBC

Diffusion Policy

VQ-BET

Figure 9: Targeted Attacks on Lift task, where the target direction is towards top-left corner of the object.

25

Under review as submission to TMLR

Unattacked

Vanilla BC

LSTM-GMM

IBC

Diffusion Policy

VQ-BET

Figure 10: Untargeted Attacks on PushT task.

26

Under review as submission to TMLR

Unattacked

Vanilla BC

LSTM-GMM

IBC

Diffusion Policy

VQ-BET

Figure 11: Targeted Attacks on PushT task, where the target is bottom right corner of the environment.

27

Under review as submission to TMLR

G Sensitivity to Epsilon Values

Our analysis reveals vulnerabilities in behavior cloning algorithms even with minimal perturbations (for
Universal Untargeted Attacks). As shown in Figure 12, while decreasing epsilon values generally reduces
attack efficacy, algorithms like VQ-BET, LSTM-GMM, and Diffusion Policy still exhibit substantial per-
formance degradation even at very small epsilon values (ϵ of 4/256). This heightened sensitivity to small
perturbations highlights a concerning vulnerability in current behavior cloning approaches, suggesting that
even well-constrained adversarial attacks can significantly compromise policy performance.

(a) Lift (b) PushT

Figure 12: Performance of the algorithms to smaller epsilon values highlight the vulnerability and lack of
robustness of the Behavior Cloning Algorithms.

28

	Introduction
	Related Work
	Behavior Cloning Algorithms
	Adversarial Attacks on Imitation Learning
	Adversarial Attack Methods
	Threat Model
	Attacks on Explicit BC Algorithms
	Attacks on Implicit BC Algorithms
	Implicit Behavior Cloning
	Diffusion Policy

	Experiments & Results
	Environments
	Pretrained Policies
	How vulnerable are modern behavior cloning algorithms to adversarial attacks?
	Can adversarial examples transfer across different algorithms and tasks?
	Robustness of Implicit Policies
	What is the impact of different feature extraction backbones to attack performance?
	How does the action prediction horizon of the diffusion policy affect its vulnerability?
	How do adversarial defense techniques perform?
	How sensitive are attacks to the range of adversarial perturbation?

	Conclusion & Future Work
	Broader Impact
	Task Description
	More Details on Behavior Cloning Algorithms
	Vanilla Behavior Cloning
	LSTM-GMM
	VQ-BET
	Implicit Behavior Cloning
	Diffusion Policy

	Hyperparameters
	TARGET ACTION SELECTION

	Results on Additional Environments
	Square Environment
	Can Environment

	Randomized Smoothing
	Implementation Details

	ILLUSTRATIONS
	Sensitivity to Epsilon Values

