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Abstract

We consider a problem with multiple groups whose data distributions are unknown,
and an analyst would like to learn the mean of each group. We consider an active
learning framework to sequentially collect T samples with bandit feedback, each
period observing a sample from a chosen group. After observing a sample, the
analyst may update their estimate of the mean and variance of that group and
choose the next group accordingly. The analyst’s objective is to dynamically
collect samples to minimize the p-norm of the vector of variances of the mean
estimators after T rounds. We propose an algorithm, Variance-UCB, that selects
groups according to a an upper bound on the variance estimate adjusted to the
p-norm chosen. We show that the regret of Variance-UCB is Õ(T−2) for finite
p, and prove that no algorithm can do better. When p is infinite, we recover
the Õ(T−1.5) regret bound obtained in [4, 13] with improved dependence on the
remaining parameters and provide a new lower bound showing that no algorithm
can do better.

1 Introduction

Obtaining accurate estimates from limited labeled data is a fundamental challenge. To tackle this issue,
active learning has emerged as a promising solution framework where a decision-maker strategically
selects one sample at a time [35, 15, 22, 40, 24]. The estimation task becomes more complex when
faced with a large population of different groups, where it is important that all groups are represented
in the estimation procedure. If this allocation is not done correctly, the decision might incur structural
bias against some groups [32, 21, 33, 29]. If allowed to adjust the sampling allocation strategy,
the analyst can address their biases and re-allocate their sampling resources. A key challenge is to
dynamically collect data from different groups while maintaining a reasonable representation of all
the groups, which is the problem we tackle in this paper. We provide an active learning framework
for dynamic data collection with bandit feedback for estimating the means of multiple groups in a
representative manner.

We consider a population partitioned into multiple groups, each with data points drawn from an
unknown data distribution, and an analyst would like to learn the mean of each group. Each group’s
distribution has an unknown mean and unknown variance. At each time period, the analyst collects
one sample from a group of their choice and observes a sample from that group. Since only one
group is observed, this is also known as bandit feedback. Upon observation, the analyst exploits their
new knowledge to optimize their choice of the next group to observe. At the end of the time horizon
T , the analyst forms a mean estimate for each group. The objective of the analyst is to return a vector
of mean estimates with smallest p-norm of the variance vector of the mean estimates. The choice of
p-norm is motivated by its ability to capture different aspects of multi-group estimation performance
[10, 23, 28].
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By considering various values of p, we gain insights into different dimensions of estimation accuracy,
ranging from the overall spread of the estimates (p = 2, Euclidean norm) to the worst case deviation
from the true mean (p = +∞, infinity norm), a case that is studied in [4, 13]. This approach allows us
to assess the estimation quality from multiple perspectives, providing a more nuanced understanding
of how the diverse population is represented in the final estimation of the group means. The analyst
can choose p in a way to capture notions of fairness in the data collection process.

1.1 Summary of contributions

In this work, we first present an active learning framework that captures the trade-off between
representation and accuracy in the task of multi-group estimation. Our framework encapsulates a
large class of norms (p-norms), which bring various insights into different dimensions of estimation
accuracy. In Section 3, we present Variance-UCB, an algorithm that selects groups according to an
upper bound on the variance estimate adjusted to the p-norm.

We provide a norm-dependent regret bound on Variance-UCB under the two assumptions sub-
Gaussian feedback and positive variances. Specifically, we show that the regret is Õ(T−2) for
finite p norms (Theorem 1). For the case of the infinite norm, we show that the regret is Õ(T−1.5)
(Theorem 3). While bounds at this rate are already established in [4, 13], our bound provides tighter
dependencies in the problem parameters G and σmin. In the case of the infinite norm, we improve
the coefficient of the T−1.5 term in the regret from σ−2

minG
2.5 to G1.5. This improvement not only

tightens the dependency in the number of groups, but it also partially solves one of the open questions
left in [13] regarding the role of σmin in the regret bound. While we prove that σmin can still impact
the regret, it appears only in lower order terms with respect to T .

The analysis and proofs of these upper bounds is presented in Section 4. Our proof technique differs
from proofs of similar upper bounds in the related literature. Instead of studying the regret function
directly, we first consider its Taylor expansion, and focus our analysis on its dominant term. This
technique has two advantages. First, the dominant term is much simpler to analyze (linear in the
case of the infinite norm, and quadratic in the case of finite p norms) than the full regret function.
Second, the resulting upper bound is tighter in its dominant term, in that it does not suffer from large
numerical constants, as is common in the existing literature on regret analysis of bandit algorithms
(e.g., [4, 13]).

We also provide new matching lower bounds in T for both finite (Theorem 2) and infinite p-norms
(Theorem 4), establishing that Variance-UCB achieves the best possible regret in both regimes. These
bounds are summarized in Table 1. Prior to our work and to the best of our knowledge, no lower
bounds were known for this problem. The analysis of these results is presented in Section 5.

Table 1: Summary of main results
Norm Variance-UCB Regret Lower Bound on Regret for Any Policy
p < ∞ Õ

(
T−2

)
(Theorem 1) Ω

(
T−2

)
(Theorem 2)

p = ∞ Õ(T−1.5) (Theorem 3) Ω(T−1.5) (Theorem 4)

We empirically validate our findings by numerical experiments presented in Section 6, which show
that our theoretical regret bounds match empirical convergence rates in both cases of finite and infinite
p-norms. We also provide examples showing that for finite p-norms, the smallest variance affects the
regret, even when the feedback is Gaussian. This is in contrast to the case of the infinite norm, where
it is proven [13] that under Gaussian feedback, the algorithm is not affected by the smallest variance.

1.2 Related work

Our motivation stems from growing attention to data collection methods [34, 2, 18, 20]. We focus on
the problem of mean estimation and dynamically collecting data to achieve this goal. While there
is a substantial body of literature on data acquisition [9, 26], specifically in the presence of privacy
concerns and associated costs [19, 30, 31, 12, 17, 16], our approach differs as we do not consider the
costs of sharing data. Instead, we concentrate on the data collection process itself, rather than the
costs to data providers.
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Our work is related to multi-armed bandits problems [5, 37], in the sense that each group can be seen
as an arm, and choosing a group to sample from at each time step corresponds to choosing which arm
to pull. However, the performance criterion for multi-armed bandits is measured by the difference
between the mean of the chosen arm and the best arm [3, 14, 38]. In our framework, the means of the
chosen arms do not impact the performance. It is their variances that matter in the optimal solution,
as we measure the performance by considering the p-norm of the variance of the estimator, which
can be non-convex. Because of this, and to the best of our knowledge, usual bandits algorithms and
proof techniques [25] do not apply. Instead, we propose Variance-UCB, an algorithm that uses high
probability upper bounds on the variance estimates adjusted to the chosen norm.

Considering data acquisition from the perspective of active learning is a natural approach [6, 7, 27],
and in that sense our work is also related to active learning [15, 22, 24, 40]. In [1], the authors
address the optimal data acquisition problem under the assumption of additive objective functions.
They formulate the problem as an online learning problem and leverage well-understood tools from
online convex optimization [8, 11, 36]. However, their ideas do not apply to our setting due to the
non-additive nature of our decisions over time.

The case where the chosen norm is ∥·∥∞ is introduced in [4], where the authors devise the GAFS-MAX
algorithm and show that for bounded feedback with known upper bounds, it achieves regret Õ(T−1.5).
This case is also studied in [13], where the authors extend the feedback to sub-Gaussian, and devise
the B-AS algorithm, which also has Õ(T−1.5) regret. One property that emerges in their study is
a regret bound deteriorates with σ−1

min, where σ2
min is the smallest variance across groups. This is

counter-intuitive, as smaller variances in general make the learning simpler. The authors pose as
an open question whether any algorithm can have performance independent of σmin and show that
in the special case of exactly Gaussian feedback, one can derive a σmin free bound. We partially
answer this question, by showing that the leading term of the regret bound (with respect to T ) does
not depend on σmin. In other words, while σmin can still impact the regret, its effect appears only in
lower order terms. Our regret analysis of Variance-UCB for ∥ · ∥∞ recovers the same dependence in
T as in [13], but also has improved dependence in the number of groups G and the variance vector σ.
While [4, 13] serve as a starting point, most of their findings are only applicable to the special case
p = +∞. In particular, they cannot be expanded to other choices of norm. We show that for finite
p norms, we prove the regret bound is Õ(T−2), which is fundamentally different than the previous
Õ(T−1.5) bound.

2 Model

We consider a population partitioned into G disjoint groups. Each group is represented by an index g
from [G] := {1, . . . , G}. Each individual in the population holds a real-valued data point; data from
each group g ∈ [G] are distributed according to an unknown distribution Dg, with unknown mean
µg and unknown variance σ2

g . We denote σmin := ming∈[G] σg and let D := D1 × . . .×DG. The
analyst wishes to compute an unbiased estimate of the population mean for each group over T times
of data collection, sampling only one group at a time. The set of feasible policies is defined as

Π :=
{
π = {πt}t∈[T ] | πt ∈ Gt−1 × Rt−1 → ∆(G), ∀t ∈ [T ]

}
,

where ∆(G) is the set of measures supported on [G]. Let ng,T denote the number of collected
samples from group g at the end of time T , and let µ̂g,T be the sample mean estimator of µg for ng,T

collected samples. Once all data have been collected at the end of the time horizon T , the analyst will
compute the sample mean of each group, i.e.,

µ̂g,T =
1∑T

t=1 1Xt=g

T∑
t=1

1Xt=gYt.

Note that the vector µ̂T is always an unbiased estimator of the vector µ, as long as the policy π
samples at least once from each group.

The variance of µ̂g,T is
σ2
g

ng,T
. The p−norm of the vector of variances of ng,T is denoted as

Rp(nT ) :=

∥∥∥∥∥∥
{

σ2
g

ng,T

}G

g=1

∥∥∥∥∥∥
p

. (1)
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The analyst wishes to minimize E[Rp(nT )].

When choosing a policy, the analyst does not have access to the true standard deviation vector
σ := (σ1, . . . , σG), which is needed to compute the value Rp(nT ). Therefore the analyst must learn
σ through their decisions. We benchmark the performance of a policy against the best possible
performance in a complete information setting where σ is known, that is,

min
n∈NG

Rp(n) s.t.
∑
g∈[G]

ng = T. (2)

The optimization program (2) can be difficult to solve and analyze due to the integer constraints.
Instead of using the solution to (2) as a benchmark, we use the solution to its continuous relaxation (a
lower bound on (2)) , which we denote as,

R∗
p := min

n∈RG
+

Rp(n) s.t.
∑
g∈[G]

ng = T. (3)

Thus, we can define the regret of a policy as

Regretp,T (π,D) := Eπ[Rp(nT )]−R∗
p. (4)

For our analysis, we assume that the distributions Dg are sub-Gaussian, as stated in Assumption 1,
with corresponding constants c1, c2 known to the analyst.1

Assumption 1 (Sub-Gaussianity). For each g ∈ [G], Dg is sub-Gaussian. That is, there exist
universal constants c1, c2 > 0 such that for any ϵ > 0,

PY∼Dg
(|Y − µg| ≥ ϵ) ≤ c1 exp

(
−ϵ2/c2

)
.

We assume that such c1, c2 are known to the analyst.

Moreover, we assume that all groups have some variation in their data, as stated in Assumption 2.
Assumption 2 (Positive Variance). The minimum group variance is positive; i.e., σmin =
ming∈[G] σg > 0.

3 Our algorithm: Variance-UCB

Our algorithm, Variance-UCB, builds an increasingly accurate upper confidence bound for each σg,
which we denote UCBt(σg). Recall that ng,t denotes the number of collected samples from group g
through time t. At each time t, σg can be estimated via the sample standard deviation

σ̂g,t :=

√
1

ng,t − 1

∑
s≤t:Xs=g

(Ys − µ̂g,t)
2
.

For convention, we set σ̂g,0 = σ̂g,1 = +∞, indicating that at least two samples are required to obtain
a meaningful estimate of σg . We can then define

UCBt(σg) := σ̂g,t +
CT√
ng,t

, (5)

where

CT := 2
√
2 log (2T 4) c1 log(c2T 4) +

2
√
c1 log (2T 4) (1 + c2 + log(c2T 4))

(1− T−4)
√
2 log(2T 4)

T−2. (6)

CT was introduced in [13], and captures the trade-off between accuracy of the upper confidence
bound and confidence in the estimate, and is a polylogarithmic factor in T . In particular, CT can be
constructed by the analyst since it depends only on c1, c2, and T , which are known.

At time t+ 1, the algorithm chooses the next group Xt+1 using the rule:

Xt+1 = arg max
g∈[G]

UCBt (σg)
2p

p+1

ng,t
,
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Algorithm 1 Variance-UCB (p, T,G, c1, c2)

Input: norm parameter p, time horizon T , number of groups G and subgaussian parameters c1, c2.
1: Initialize ng,0 = 0, σ̂g,0 = σ̂g,1 = +∞, ∀g ∈ [G]
2: Compute CT according to (6).
3: for t = 0, . . . , T − 1 do
4: Compute UCBt(σg): UCBt(σg) = σ̂g,t +

CT√
ng,t

, ∀g ∈ [G]

5: Select group Xt+1 = argmaxg
UCBt(σg)

2p
p+1

ng,t

6: Observe feedback Yt+1 ∼ DXt+1

7: Update the number of samples: ng,t+1 = ng,t + IXt+1=g, ∀g ∈ [G]

8: Update the mean estimates: µ̂g,t+1 = 1
ng,t+1

∑t+1
s=1 1Xs=gYs, ∀g ∈ [G]

9: Update the standard deviation estimates: σ̂g,t+1 :=√
1

ng,t+1−1

∑
s≤t+1:Xs=g (Ys − µ̂g,t+1)

2
, ∀g ∈ [G]

10: end for
Output: µ̂g,T = 1

ng,T

∑T
s=1 1Xs=gYs, ∀g ∈ [G]

where where ties in the argmax can be broken arbitrarily. The analyst then observes a new sample Yt+1

from the chosen group Xt+1 and updates the upper confidence bounds accordingly. Variance-UCB is
presented formally in Algorithm 1.

Variance-UCB takes as input the time horizon T , the norm p, the groups [G], and the sub-Gaussian
parameters c1, c2. The algorithm initializes the upper confidence bound for every group to be infinity,
which reflects the absence of knowledge of {σg}.

In the special case p = +∞, Variance-UCB (instantiated with a different choice of CT ) coincides
with the B-AS algorithm of [13].2

3.1 Regret guarantees

Our first main result gives theoretical bounds on the performance of Algorithm 1 for finite p ∈ [1,∞).
We show in Theorem 1 that when p is finite, Variance-UCB incurs regret of Õ(T−2).
Theorem 1. For any D that satisfies Assumptions 1 and 2 and for any finite p, the regret of Variance-
UCB is at most Õ(T−2). That is,

Regretp,T (Variance-UCB,D) = Õ(T−2).

Our second main result, Theorem 2, provides a matching lower bound for our problem. Thus showing
that the performance of Variance-UCB and its analysis is the best possible in terms of T .
Theorem 2. Let p be finite and κ be a universal constant. For any online policy π, there exists an
instance Dπ such that for any T ≥ 1,

Regretp,T (π,Dπ) ≥ κ(p+ 1)T−2 +O
(
T−2.5

)
= Θ(T−2).

Our analysis and proof techniques can be extended naturally to the case where p = +∞. However,
the Õ(T−2) regret no longer holds, and the convergence rate jumps to Õ(T−3/2).
Theorem 3. Let Σ∞ :=

∑
g∈[G] σ

2
g . For any D that satisfies Assumptions 1 and 2,

Regret∞,T (Variance-UCB,D) ≤
(
CT

√
Σ∞ + C2

T

)
G1.5T−1.5 + o(T−1.5) = Õ(T−1.5).

Note that a similar bound for Theorem 3 has already been established in [13]:

Regret∞,T (B-AS,D) ≤ 28230(c1((c2 + 2)2 + 1) log2(T )Σ∞G2.5

σ2
minT

1.5
+ o

(
T−1.5

)
.

1In Section 6, we empirically evaluate the impact of mis-estimating c1 and c2.
2Our results still hold under this modified parameter setting for any CT satisfying Lemma 2.

5



Our result in Theorem 3 improves the existing regret in all the problem parameters, i.e., Σ∞ to
√
Σ∞,

and from G2.5 to G1.5). The most significant improvement lies in removing the dependence on σmin

in the main term of the regret. While σmin still appears in the negligible term o(T−1.5), this term will
be asymptotically dominated for even moderate T . This improved bound gives a better understanding
on how σmin impacts the performance of the algorithm, which was left as an open question in [13].

Finally, we give a matching lower bound for the case when p = ∞, showing that the analysis of
Variance-UCB is tight in T when p = +∞. To the best of our knowledge, no lower bound for this
problem was previously known.
Theorem 4. For any online policy π, there exists an instance Dπ such that for any T ≥ 1,

Regret∞,T (π,Dπ) ≥
1

2
G1.5T−1.5.

In Sections 4 and 5, we give outlines of the proofs of Theorems 1 and 2, respectively. While we
briefly mention why both results change at p = +∞, the full proofs for Theorems 3 and 4 is deferred
to Appendix C.

4 Deriving the upper bounds

In this section, we give an overview of the main steps to prove Theorem 1. A complete proof is
given in Appendix A. We first show in Lemma 1 that the optimal R∗

p(σ) is achieved for an optimal
static policy n∗

T (p) = {n∗
g,T (p)}g∈[G] that assumes knowledge of σ and samples each group g

proportionally to σ
2p

p+1
g .

Lemma 1. [Benchmark analysis] For each t ∈ N∗ and p ∈ [1,+∞], let n∗
g,t =

σ
2p

p+1
g t∑

h∈[G] σ
2p

p+1
h

. Then,

R∗
p(σ) = Rp(n

∗
T ) =

1

T
Rp(n

∗
1).

The proof of Lemma 1 utilizes the KKT conditions of the optimization program (3) that defines R∗
p.

For convenience, we introduce3 Σp :=
∑

g∈[G] σ
2p

p+1
g for each p ∈ [1,+∞] so that we can simplify

n∗
g,t =

t
Σp

σ
2p

p+1
g . Using Equation (4), the expression of regret can be simplified to

Regretp,T (π,D) = Eπ [Rp(nT )−Rp(n
∗
T )] . (7)

From Eq. (7), we can understand the behavior of the regret by answering the following questions.

1. How close is the random variable nT to the optimal sampling vector n∗
T ?

2. How does the curvature of Rp(.) affect the difference Rp(nT )−Rp(n
∗
T )?

Upper bounding the error nT − n∗
T : Before we answer the first question, we show in Lemma 2

that UCBt(σg) is an increasingly accurate upper bound for σg .

Lemma 2. For all g ∈ [G], with probability at least 1− Õ(T−2),

0 ≤ UCBt(σg)
2p

p+1 − σ
2p

p+1
g ≤ 4CT√

ng,t

p

p+ 1

(
σg +

2CT√
ng,t

) p−1
p+1

.

The proof of Lemma 2 utilizes Assumption 1 and the choice of UCBt(σg)
4, as defined in Eq. (5).

Using Lemma 2, the difference betwen the number of samples Variance-UCB collects and the optimal
number of samples can be bounded with high probability, which we state in Lemma 3.

3Note that the definition of Σp is consistent with the definition of Σ∞ introduced in Theorem 3
4Lemma 2 holds for all choices of p ∈ [1,+∞]. In particular, it is still true in the case where p =

+∞, as it can be understood by taking the limit p → +∞ in the inequalities: 0 ≤ UCBt(σg)
2 − σ2

g ≤
4CT√
ng,t

(
σg + 2CT√

ng,t

)
.
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Lemma 3. Variance-UCB collects a vector of samples n such that for all g ∈ [G], with probability
at least 1− Õ(T−2),

ng,T − n∗
g,T ≤ 3 +

4CT p

Σp(p+ 1)

(
σg +

2CT√
n∗
g,T

) p−1
p+1 √

n∗
g,T = Θ(

√
T ).

To understand the meaning of Lemma 3, we note that the feedback-dependent structure of the
algorithm makes the numbers of samples ng,T correlated across groups and over time, since the
algorithm attempts to sample regularly from all groups. A key technical challenge is to decouple ng,t

across groups and derive an instance dependent upper bound on nT − n∗
T . This challenge does not

arise in the classic multi-armed bandits setting, where the decision-maker’s goal is to repeatedly pull
only the best arm.

Curvature properties of Rp around the optimal value n∗
T : To answer the second question, we

exploit the smoothness of Rp(·) around n∗
T to approximate it with a polynomial function of n. Since

n∗
T is the minimizer of Rp(·) (subject to

∑
g∈[G] ng = T ) and Rp(·) is differentiable around n∗

T , the
first order of the Taylor approximation of Rp vanishes as T grows large, formalized in Lemma 4.

Lemma 4. Let p < +∞ and n′ ∈ RG
+ such that

∑
g∈[G] n

′
g = T . Then,∣∣∣∣∣∣Rp(n

′)−Rp(n
∗
T )

Rp(n∗)
− p+ 1

2

∑
g∈[G]

(n′
g − n∗

g,T )
2

Tn∗
g,T

∣∣∣∣∣∣ ≤ 7(p+ 2)2Σ2
p

σ2
min

max
g

(
n∗
g,T

n′
g

)3p+3 ∥n′ − n∗
T ∥3∞

T 3
.

We note that the bound in Lemma 4 holds regardless of the choice of the vector n′, including those
generated by Variance-UCB. One can interpret the upper bound in Lemma 4 as follows: the term
p+1
2

∑
g∈[G]

(n′
g−n∗

g,T )2

Tn∗
g,T

represents the exact Taylor first-order approximation of Rp(n
′)−Rp(n

∗
T )

Rp(n∗) , and
the right hand side represents an upper bound on this approximation. In particular, assuming an error
ϵ = n′ − n∗, Lemma 4 can be restated as,

Rp(n
′)−Rp(n

∗
T )

Rp(n∗)
= Θ

(
∥ϵ∥2

T 2

)
+ o

(
∥ϵ∥2

T 2

)
.

Putting everything together: The rest of the proof consists of applying Lemmas 3 and 4 to the
regret expression in Eq. (7). By Lemma 3, with high probability, ∥nT − n∗

T ∥∞ = Õ
(√

T
)

.

Applying this to Lemma 4 gives that Rp(nT ) − Rp(n
∗
T ) = ∥nT − n∗

T ∥2∞R∗
p · O

(
T−2

)
. By

Lemma 1, R∗
p = Θ(T−1), and therefore with high probability, Rp(nT )−Rp(n

∗
T ) = Õ(T−2). With

additional work, we show that the equality also holds in expectation, which implies from Eq. (7) that
Regretp,T (Variance-UCB,D) = Eπ[Rp(n)−Rp(n

∗
T )] = Õ(T−2).

4.1 The case p = +∞

Even though Lemmas 1, 2, and 3 hold for p = +∞, the approximation guarantee given in Lemma 4
does not hold because R∞ is not differentiable at n∗

T . As an alternative, we derive a first order upper
bound, which we state in Lemma 5.
Lemma 5. Let σ ∈ RG

+ and n′ ∈ RG
+ such that

∑
g∈[G] n

′
g = T . Then,

R∞(n′
T )−R∞(n∗

T )

R∞(n∗
T )

≤ −min
g

(
n′
g

n∗
g,T

− 1

)
+

1

4
max

g

(
n′
g

n∗
g,T

− 1

)2

max
g

(
n∗
g,T

n′
g

)3

Similar to Lemma 4, we interpret the upper bound above by decomposing it into a main term,

−ming

(
n′
g

n∗
g,T

− 1
)

, and an error term, 1
4 maxg

(
n′
g

n∗
g,T

− 1
)2

maxg

(
n∗
g,T

n′
g

)3
. As opposed to the

case where p < +∞, R∞ is not differentiable in n∗, thus the inequality above does not stem from a
Taylor approximation. Adapting the bound in Lemma 5 in the same steps as in Step 3 gives a regret
bound of Õ(T−1.5).
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5 Deriving the lower bounds

In this section, we provide the key ideas behind the proof of Theorem 2, with the full proof given
in Appendix B. Given any policy π, the idea is to pick Dπ from two constructed instances Da =
Da

1 × · · · ×Da
G and Db = Db

1 × · · · ×Db
G. The interaction of Da (resp. Db) with π yields a random

vector of the number of collected samples, denoted by na (resp. nb). Da and Db must satisfy the
following two conflicting properties:

1. Da and Db are sufficiently similar, in the sense that the distributions of na and nb are
close, so that π would have a hard time distinguishing between Da and Db. This notion of
similarity is captured by the KL-divergence of Da and Db.

2. Da and Db are also sufficiently dissimilar in the sense that they induce distinct optimal
allocation rules n∗

a and n∗
b . Specifically, any allocation n cannot be simultaneously close

to both n∗
a and n∗

b , and n incurs a high regret under at least one of the two instances. This
notion of dissimilarity is captured below.

Let σa ∈ RG
+ be the vector of standard deviations of all groups under Da, and let Sa

ϵ be the set of
allocations n such that Rp(n;σ

a) is within ϵ of R∗
p(σ

a) for any n ∈ Sa
ϵ . Formally,

Sa
ϵ :=

{
n ∈ NG

∣∣∣∣∑
g

ng = T, Rp(n,σ
a)−R∗

p(σ
a) ≤ ϵ

}
.

Let σb be a second vector and define Sb
ϵ similarly. We define the dissimilarity d(σa,σb) :=

infϵ≥0{Sa
ϵ ∩ Sb

ϵ ̸= ∅}, which is the smallest ϵ so that these sets of allocations are disjoint. There is a
tension between the two requirements on Da and Db, which is formalized next in Lemma 6.

Lemma 6. Let π be a fixed policy and Da, Db be two instances with standard deviation vectors
σa,σb, respectively. Then,

max{Regretp,T (π,D
a),Regretp,T (π,D

b)} ≥ d(σa,σb) exp
(
−
∑

g∈[G] Eπ,Da [ng,t]KL(Da
g ||Db

g)
)
.

The proof follows from an adapted version of LeCam’s method [39]. To understand the implication of
Lemma 6, we examine the two terms involved in the right hand side of the inequality. The first term,
d(σa,σb), increases the further σa and σb are from each other. The second term has the opposite
monotonicity, as it decreases with the KL divergence of the two instances. These conflicting terms
capture the trade-off of loss minimization versus information gain, and deriving the lower bound will
come from constructing two instances for which this trade-off is maximised.

Specifically, Da is chosen such that all groups have data distributed according to Da
g ∼ N

(
0, σ2

)
;

we denote σa := σ(1, . . . , 1) as the vector of standard deviations of each group. Even though
instance a has all identical groups, the policy π may treat groups differently, and the interaction of π
with Da may yield give different expected numbers of samples from each group. We pick h ∈ [G]

such that Eπ,Da [nh,T ] is minimized over [G], and construct Db as follows:

Db :

{
Db

h ∼ N
(
0, σ2(1 +

√
G
T )
)

Db
g ∼ N

(
0, σ2

)
, ∀g ̸= h

.

On the one hand, notice that Da and Db only differ in their coordinate h, so that KL(Da
g ||Db

g) =

1(g = h)Θ(GT−1), and by minimality of h, Eπ,Da [nh,t] ≤ T
G , so that∑

g∈[G]

Eπ,Da [ng,t]KL(Da
g ||Db

g) = Eπ,Da [nh,t]KL(Da
h||Db

h) ≤
T

G
Θ(GT−1) = Θ(1).

Second, we show that d(σa,σb) = Θ(T−2). We do this by measuring the distance be-
tween the sets Sa

ϵ and Sb
ϵ for a fixed ϵ, and then estimate the smallest ϵ for which this dis-

tance is 0. This smallest ϵ corresponds to d(σa,σb). Combining both in Lemma 6 yields
max{Regretp,T (π,D

a),Regretp,T (π,D
b)} ≥ Θ(T−2).

Remark 1. For p = +∞, the proof remains the same except that in this case d(σa,σb) = Θ(T−3/2),
resulting in an overall lower bound of Θ(T−3/2). See Appendix C.3 for the complete proof.
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6 Numerical study

In this section, we present experimental results on the empirical performance of Variance-UCB. We
explore the impact of varying each important parameter of the problem: the time horizon T , norm
parameter p, number of groups G, distributions Dg, and the sub-Gaussianity parameters c1, c2. In
all the experiments Dg follow Gaussian distributions. Except where they are varied, the default
parameter settings are T = 105, p = 2, G = 2, with the respective data distributions of groups 1
and 2 as N (1, 1) and N (2, 2.5), satisfying c1 = c2 = 5. For each parameter setting evaluated, we
run Variance-UCB 500 times and report average regret over all 500 runs. For convenience, time and
regret are presented on logarithmic scales.
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Figure 1: Impact of the p-norm on the regret.

First, we vary the choice of the parameter p ∈ {1, 2, 10, 25,+∞} and observe its effect on the regret.
Figure 1 shows that the convergence rates for each p precisely match those predicted by Theorems 1
and 3: a slope of -2 for the finite values of p ({1, 2, 10, 25}), and a slope of -1.5 for p = ∞.
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Figure 2: Impact of mis-estimating CT on the regret

Next, we study how mis-specifying the sub-Gaussianity parameters c1 and c2 affect the regret of
Algorithm 1. The parameter values (c1, c2) only affect the algorithm’s behavior through CT , so it is
more natural to directly study the impact of errors in CT . For the parameters used in our experimental
setup, the value of CT prescribed in Equation (6) is ∼ 5; we consider both underestimating and
overestimating CT , and evaluate regret when instead plugging in values of CT ∈ {0.001, 5, 1000} in
the UCB update step defined in Equation (5). Figure 2 shows that choosing an overestimate of CT

incurs an increased regret. This is not surprising since choosing a larger CT decreases the confidence
of the algorithm in its estimates, and forces over-exploration. Choosing a low CT also incurs a higher
regret which can more severely impact the performance, as the algorithm under-explores and can
get stuck in sub-optimal behavior. However, with a long enough time horizon, the algorithm will
eventually estimate σ accurately, regardless of the small choice of CT . As observed in Figure 2, the
smallest value of CT = 0.001 initially has the highest regret, corresponding to incorrect estimates
and insufficient exploration, and then finally converges very late to have the lowest regret. Even for
very large T , this curve has higher variance due to the noise in the estimates.
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Figure 3: The impact of σmin on the regret

Next, we study the effect of varying the lowest variance σ2
min ∈ {0.05, 0.1, 0.5, 1} while holding all

other variances fixed, for each p ∈ {1, 2,+∞}. First, Figure 3 shows that varying σmin has no effect
on the regret when p = +∞. This matches a result of [13], where they prove that when p = +∞,
their UCB-style algorithm (very similar to Variance-UCB) is not affected by the lowest variance
when the feedback is Gaussian. However, our experimental results show that this phenomenon does
not persist when p is finite, as illustrated in Figure 3, where we observe that regret decreases when
the lowest variance σmin increases. This is surprising since increasing the lowest variance makes the
feedback more volatile, and one would expect an increase in regret as a result.
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Figure 4: Impact of the number of groups G on regret

Finally, we vary the number of groups G ∈ {2, 10, 50}. For the additional groups, we generate
their data from Gaussian Dg, with means µg ∼ U([−1, 1]) and standard deviations σg ∼ U([2, 4])
independently for each group. From Figure 4, we observe that the regret increases in the number of
groups, as expected. When the number of groups is small (G = 2), Variance-UCB quickly enters a
regime where regret decreases quickly. However, as the number of groups grows (G ∈ {10, 50}),
the necessary time to enter the decay regime increases (∼ 30, 000 for G = 10 and ∼ 90, 000 for
G = 50). Initially the algorithm samples (on average) uniformly across all groups due to the UCB
term outweighing the sample variance estimates, and each group must wait to be sampled enough
times for the algorithm to estimate its optimal sampling rate. This delay will naturally increase with
the number of groups. Once the confidence bounds are small enough, the algorithm samples the
highest variances first. This causes abrupt variation (especially in the case where p is small) because
the objective function is very sensitive to changes in one coordinate.
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A Proof of Theorem 1

A.1 Proof of Lemma 1

The proof of Lemma 1 consists of using optimality conditions on rp:

Lemma 1. [Benchmark analysis] For each t ∈ N∗ and p ∈ [1,+∞], let n∗
g,t =

σ
2p

p+1
g t∑

h∈[G] σ
2p

p+1
h

. Then,

R∗
p(σ) = Rp(n

∗
T ) =

1

T
Rp(n

∗
1).

Proof. The case of p = +∞ is discussed in [4, 13]. We focus on when p < +∞. Recall the
definition of R∗

p from Eq. (3):

R∗
p := min

n∈RG
+

Rp(n) s.t.
∑
g∈[G]

ng = T.

Since the function x → xp is increasing in R+, we can replace the objective by [Rp(n)]
p
=∑

g∈[G]

σ2p
g

np
g

. Any feasible point n with a zero coordinate would have Rp(n) = +∞, therefore any
argmin to the optimization program n∗ above must have positive coordinates, and satisfies the KKT
conditions

∀g ∈ [G],
∂

∂ng
Rp(n)

p − ∂

∂ng
λ

∑
h∈[G]

nh − T

 = 0,

λ ∈ R.

For each g ∈ [G], the first line of the system above is equivalent to −p
σ2p
g

np+1
g

− λ = 0. Therefore the
KKT conditions imply that

σ2p
1

np+1
1

= . . . =
σ2p
G

np+1
G

, or equivalently,
σ

2p
p+1

1

n1
= . . . =

σ
2p

p+1

G

nG
=

∑
g∈[G] σ

2p
p+1
g∑

g∈[G] ng
=

∑
g∈[G] σ

2p
p+1
g

T
.

Hence the unique minimizer is the vector

n∗
T =

T∑
g∈[G] σ

2p
p+1
g

σ
2p

p+1 .

Therefore, R∗
p = Rp(n

∗
T ). Moreover, Rp(n

∗
T ) = Rp(Tn

∗
1) =

1
T Rp(n

∗
1), where the last equality

follows from the homogeneity of the norm.

A.2 Proof of Lemma 2

In this section, we establish a key property of UCBt (σg), which relies on Assumption 1.

Lemma 2. For all g ∈ [G], with probability at least 1− Õ(T−2),

0 ≤ UCBt(σg)
2p

p+1 − σ
2p

p+1
g ≤ 4CT√

ng,t

p

p+ 1

(
σg +

2CT√
ng,t

) p−1
p+1

.

Proof. Following the notations of Section 3, we introduce the following event:

AT :=
⋂

g∈[G],2≤t≤T

{
|σ̂g,t − σg| ≤

CT√
t

}
.

Based on corollary 1 of [13], we have

(i) Pπ(AT ) ≥ 1− 2GT−2.5,
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(ii) conditionally on AT ,

∀g ∈ [G], t ≥ 2G, |σ̂g,t − σg| ≤
CT√
ng,t

,

so that conditionally on AT , we have:

UCBt (σg) = σ̂g,t +
CT√
ng,t

= σg +
CT√
ng,t

+ (σ̂g,t − σg)

∈ σg +
CT√
ng,t

+

[
− CT√

ng,t
,

CT√
ng,t

]
= σg +

[
0,

2CT√
ng,t

]
,

where the first Eq. is due to the definition of UCBt introduced in (5), and the bounding is due to the
definition of AT . Next, notice that the function x → (σg + x)

2p
p+1 is increasing, which implies that

σ
2p

p+1
g ≤ UCBt (σg)

2p
p+1 ≤

(
σg +

2CT√
ng,t

) 2p
p+1

, (8)

which proves the leftmost inequality in Lemma 2. To prove the rightmost inequality, notice that
x → (σg + x)

2p
p+1 is also convex, therefore by Jensen’s inequality,(

σg +
2CT√
ng,t

) 2p
p+1

−σ
2p

p+1
g ≤ 2CT√

ng,t

2p

p+ 1

(
σg +

2CT√
ng,t

) 2p
p+1−1

=
4CT√
ng,t

p

p+ 1

(
σg +

2CT√
ng,t

) p−1
p+1

,

which concludes the proof.

A.3 Proof of Lemma 3

The goal of this section is to prove Lemma 3, which consists of bounding with high probability
n− n∗. To do so, we will design an alternative sequence ñ, that is simultaneously easy to analyze,
and upper bounds n with high probability. The motivation for the choice of ñ comes from the
relaxation of the choice made at every time step by Variance-UCB.

We assume through the whole section what the event AT is realized. For convenience, we view the
right hand side of Lemma 2 as a quantity of its own, and introduce the width function

wg : x > 0 → wg(x) :=
4CT

Σp
√
x

p

p+ 1

(
σg +

2CT√
x

) p−1
p+1

,

so that the inequality in Lemma 2 can be rewritten as

0 ≤ UCBt (σg)
2p

p+1 − σ
2p

p+1
g ≤ Σpwg(ng,t). (9)

We start by proving the following lemma, which follows from the decisions Variance-UCB makes:
Lemma 7. For t ≥ 2G, we have:

nXt+1,t − twXt+1
(nXt+1,t) ≤ n∗

Xt+1,t

Proof. The proof exploits the greedy property of the algorithm. A group needs to be sam-
pled exactly twice to have a finite UCB. Therefore, for t = 1, . . . , 2G, Variance-UCB sam-
ples every group twice (in an arbitrary order), so that at n1,2G = . . . = nG,2G = 2 and
UCB2G(σ1)

2p
p+1 , . . . ,UCB2G(σG)

2p
p+1 < +∞. By choice of Xt+1, the following inequality holds:

∀g ∈ [G],
UCBt(σg)

2p
p+1

ng,t
≤

UCBt(σXt+1
)

2p
p+1

nXt+1,t
. (10)
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On the one hand, from the leftmost inequality in (9),

∀g ∈ [G],
σ

2p
p+1
g

ng,t
≤ UCBt(σg)

2p
p+1

ng,t
. (11)

On the other hand, from the rightmost inequality in (9),

UCBt(σXt+1)
2p

p+1

nXt+1,t
≤

σ
2p

p+1

Xt+1
+ΣpwXt+1

(nXt+1,t)

nXt+1,t
. (12)

Therefore by combining both Inequalities (11) and (12) in Inequality (10),

∀g ∈ [G],
σ

2p
p+1
g

ng,t
≤

σ
2p

p+1

Xt+1
+ΣpwXt+1

(nXt+1,t)

nXt+1,t
,

which implies, after multiplying both sides by ng,tnXt+1,t and summing over g ∈ [G],

nXt+1,t

∑
g∈[G]

σ
2p

p+1
g︸ ︷︷ ︸

=Σp

≤
(
σ

2p
p+1

Xt+1
+ΣpwXt+1

(nXt+1,t)

) ∑
g∈[G]

ng,t︸ ︷︷ ︸
=t

.

Dividing both sides by Σp > 0, and using the formula n∗
g,t =

σ
2p

p+1
g

Σp
t (see Lemma 1) implies

nXt+1,t ≤ n∗
Xt+1,t + twXt+1(nXt+1,t).

Lemma 7 follows by substracting twXt+1(nXt+1,t) from both sides.

Lemma 7 states that the possible excess between the number of samples output by the algorithm and
the optimal number of samples is not too big, and can be controlled by the width w. Since the width
decreases in the number of samples, the function

x → x− twg(x)

must be increasing and has therefore an inverse function that is also increasing, which we denote
W t

g(x). We introduce the following sequence, which mimics the behavior stated in Lemma 7:

ñg,t = ng,t For t = 1, . . . , 2G

ñg,t+1 = ñg,t + 1
(
ñg,t ≤ W t

g

(
n∗
g,t

))
For t ≥ 2G

The sequence is easier to analyze and upper bounds the true number of samples n:
Lemma 8. ñ ≥ n.

Proof. By construction, the result holds for t = 1, . . . , 2G. Assume for the sake of contradiction that
the result does not hold for a g ∈ [G] and t + 1 > 2G, and take such a t minimal. For such a pair
(g, t):

1 ≥ 1(Xt+1 = g) = ng,t+1 − ng,t

> ñg,t+1 − ñg,t

= 1(ñg,t ≤ W t
g(n

∗
g,t))

= 1(ng,t ≤ W t
g(n

∗
g,t)) ≥ 0,

where the first step follows from the definition of n. By minimality of t, ng,t+1 > ñg,t+1 and
ng,t = ñg,t, which induces the second step. The third step follows from the definition of ñ, and the
last step follows once again from the minimality of t.

The strict inequality in the chain of inequalities implies that 1(Xt+1 = g) = 1 and 1(ng,t ≤
W t

g(n
∗
g,t)) = 0, so that

nXt+1,t > W t
g(n

∗
Xt+1,t).

By taking the inverse of the increasing function W t
g on both sides, the previous inequality can be

rewritten as
nXt+1,t − twXt+1

(nXt+1,t) > n∗
Xt+1,t,

contradicting Lemma 7. Therefore the assumption is wrong and ñ ≥ n, which completes the
proof.
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Lemma 9. For a fixed g,the sequence {W t
g(n

∗
g,t)}t≥1 is increasing. Consequently,

ñg,t ≤ W t
g(n

∗
g,t)

+ + 2

Proof. For a fixed x > 0 and t ≥ 1,
(x− (t+ 1)wg(x))− (x− twg(x)) = −wg(x) < 0,

therefore the sequence of functions {x → x − twg(x)}t≥1 is decreasing in t. Consequentely, the
sequence of its inverse functions {x → W t

g(x)}t≥1 is increasing in t:

W t+1
g (n∗

g,t+1) ≥ W t
g(n

∗
g,t+1). (13)

Moreover, the function W t
g is increasing in R+:

W t
g(n

∗
g,t+1) ≥ W t

g(n
∗
g,t). (14)

By combining Equations (13) and (14), we obtain
W t+1

g (n∗
g,t+1) ≥ W t

g(n
∗
g,t),

which proves that the sequence {W t
g(n

∗
g,t)}t≥1 is increasing, thus completing the proof for the first

part of Lemma 9.

The second part follows by induction on t ≥ 1. For t ≤ 2G, the result holds immediately as
ñg,t = ng,t and ng,t ≤ 2. We assume the result holds for a t ≥ 2G. We distinguish two cases:

• ñg,t ≤ W t
g

(
n∗
g,t

)
: This implies that:

ñg,t+1 = ñg,t + 1

≤ W t
g

(
n∗
g,t

)
+ 1

≤ W t+1,g
p

(
n∗
g,t+1

)
+ 1

≤ W t+1,g
p

(
n∗
g,t+1

)+
+ 2,

where the first step stems from the definition of ñ, the second step stems from the assumption
ñg,t ≤ W t

g

(
n∗
g,t

)
, and the third step stems from the first part of the proof.

• ñg,t > W t
g

(
n∗
g,t

)
: This implies that:

ñg,t+1 = ñg,t

≤ W t
g

(
n∗
g,t

)+
+ 2

≤ W t+1,g
p

(
n∗
g,t+1

)+
+ 2,

where the first step stems from the definition of ñ, the second step stems from the induction
hypothesis, and the third step stems from the first part of the proof.

Studying both cases concludes the induction and proves the inequality for all t ≥ 1. This concludes
the proof of Lemma 9.

Next, we derive an upper bound on W t
g :

Lemma 10. For x > 0, W t
g(x) ≤ x

1−t
wg(x)

x

.

Proof. Let x, y > 0 with 0 ≤ y − twg(y) = x, so that y = W t
g(x) by definition of W t

g . we have:

x

1− t
wg(x)

x

=
y − twg(y)

1− t
wg(y−twg(y))

x−twg(x)

= y
1− t

wg(y)
y

1− t
wg(y−twg(y))

y−twg(y)

≥ y = W t
g(x),

where the last step follows from the function y → wg(y)
y being decreasing, which concludes the

proof.
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We are now ready to prove Lemma 3.
Lemma 3. Variance-UCB collects a vector of samples n such that for all g ∈ [G], with probability
at least 1− Õ(T−2),

ng,T − n∗
g,T ≤ 3 +

4CT p

Σp(p+ 1)

(
σg +

2CT√
n∗
g,T

) p−1
p+1 √

n∗
g,T = Θ(

√
T ).

Proof. Conditionally on AT , all the previous lemmas stated in this section hold. Consequently,

ng,T ≤ ñg,T

≤ 2 +W t
g(n

∗
g,T )

+

≤ 2 +
n∗
g,T

1− T
wg(n∗

g,T )

n∗
g,T

≤ 2 + n∗
g,T + 1 + Twg(n

∗
g,T )

= 3 + n∗
g,T +

4CT p

Σp(p+ 1)

(
σg +

2CT√
n∗
g,T

) p−1
p+1 √

n∗
g,T ,

where the first step stems from Lemma 8, the second step stems from Lemma 9, the third step stems
from first order approximations and the last step stems from Lemma 10. From Assumption 2, σ > 0,
therefore n∗ = Θ(T ) and the right hand side is Θ(

√
T ).

A.4 Proof of Lemma 4

The goal of this section is to prove Lemma 4. We will do so by combining the optimality of n∗ and
the curvature properties of Rp.

Lemma 4. Let p < +∞ and n′ ∈ RG
+ such that

∑
g∈[G] n

′
g = T . Then,∣∣∣∣∣∣Rp(n

′)−Rp(n
∗
T )

Rp(n∗)
− p+ 1

2

∑
g∈[G]

(n′
g − n∗

g,T )
2

Tn∗
g,T

∣∣∣∣∣∣ ≤ 7(p+ 2)2Σ2
p

σ2
min

max
g

(
n∗
g,T

n′
g

)3p+3 ∥n′ − n∗
T ∥3∞

T 3
.

Proof. Since Rp is defined over the constrained set {n ∈ RG
+|
∑

g ng = T} with empty interior,
Taylor inequality can’t be directly applied. To overcome this, we construct an alternative function
that has the same curvature as Rp while being defined on a non-empty interior domain. Define

K :=

{
λ ∈ [0, 1]G−1

∣∣∣∑
g

λg ≤ 1

}
. (15)

For each vector n ∈ RG
+ with

∑T
t=1 ng = T , we set for each g ∈ [G− 1] λg :=

ng

T . We have λ ∈ K.
Moreover, we have from (1):

Rp(n) =

∥∥∥∥∥∥
{
σ2
g

ng

}G

g=1

∥∥∥∥∥∥
p

=
1

T

∥∥∥∥{σ2
1

λ1
, . . . ,

σ2
G−1

λG−1
,

σ2
G

1− λ1 − . . .− λG−1

}∥∥∥∥
p

. (16)

where the last equality follows from the homogeneity property of the p-norm. Eq. (16) motivates the
introduction of the re-scaled function r:

rp : λ ∈ K → rp(λ) :=

∥∥∥∥{σ2
1

λ1
, . . . ,

σ2
G−1

λG−1
,

σ2
G

1− λ1 − . . .− λG−1

}∥∥∥∥
p

, (17)

so that Eq. (16) can be written as

Rp(n) =
1

T
rp(λ). (18)
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From the definition of K in (15), the interior of K, denoted K◦, is non-empty and is equal to

K◦ =

λ ∈ K|∀g ∈ [G− 1], λg > 0,
∑

g∈[G−1]

λg < 1

 .

Moreover, the function rp is C3 in K◦. From Lemma 1, λ∗ ∈ K◦. Therefore from Taylor’s theorem,
we have for λ ∈ K◦:
∣∣∣∣rp(λ) − rp(λ

∗
) − (λ − λ

∗
)∇rp(λ

∗
) −

1

2
⟨H(λ

∗
)(λ − λ

∗
),λ − λ

∗⟩
∣∣∣∣ ≤ ∥λ − λ

∗∥3∞ sup
u∈[λ,λ′]
x,y,z∈N

x+y+z=3
{g,h,i}⊂[G−1]

∣∣∣∣∣ 1

x!y!z!

∂3rp(u)

∂λg∂λh∂λi

∣∣∣∣∣ ,

(19)

where ∇ is the gradient operator and H is the hessian operator. We exploit the optimality of λ∗ to
derive simple expressions for ∇rp(λ

∗), H(λ∗), and ∂3rp(u)
∂λg∂λh∂λi

. First, since λ∗ is optimal and an
interior point of K, the following equality holds:

∇rp(λ
∗) = 0G. (20)

In particular, ⟨λ − λ∗,∇rp(λ
∗)⟩ = 0. ⟨H(λ∗)(λ − λ∗),λ − λ∗⟩ is simpified in the following

lemma, which proof is deferred to A.6:

Lemma 11. ⟨H(λ∗)(λ− λ∗),λ− λ∗⟩ = (p+ 1)rp(λ
∗)
∑

g∈[G]

(λg−λ∗
g)

2

λ∗
g

.

so that Inequality (19) is rewritten as∣∣∣∣∣∣rp(λ)− rp(λ
∗)− 1

2
(p+ 1)rp(λ

∗)
∑
g∈[G]

(λg − λ∗
g)

2

λ∗
g

∣∣∣∣∣∣ ≤ ∥λ−λ∗∥3∞ sup
u∈[λ,λ′]
x,y,z∈N

x+y+z=3
{g,h,i}⊂[G−1]

∣∣∣∣ 1

x!y!z!

∂3rp(u)

∂λg∂λh∂λi

∣∣∣∣ .
(21)

It remains to bound 1
x!y!z!

∂3rp(u)
∂λg∂λh∂λi

. To do this, the following lemma is applied (the proof is also
deferred to A.6):

Lemma 12. The following inequality holds:

sup
u∈[λ,λ′]
x,y,z∈N

x+y+z=3
{g,h,i}⊂[G−1]

∣∣∣∣ 1

x!y!z!

∂3rp(u)

∂λg∂λh∂λi

∣∣∣∣ ≤ 7(p+ 2)2

(ming λ∗
g)

2
max

g

(
λ∗
g

λg

)3p+3

rp(λ
∗).

which implies after dividing both sides by rp(λ)∣∣∣∣∣∣rp(λ)− rp(λ
∗)

rp(λ
∗)

− p+ 1

2

∑
g∈[G]

(λg − λ∗
g)

2

λ∗
g

∣∣∣∣∣∣ ≤ 7(p+ 2)2

(ming λ∗
g)

2
max

g

(
λ∗
g

λg

)3p+3

∥λ− λ∗∥3∞. (22)

By using the change of variable from λ to n′, we have

Rp(n
′) =

1

T
rp(λ), Rp(n

∗) =
1

T
rp(λ

∗), ∥λ− λ∗∥∞ ≤ ∥n′ − n∗∥∞
T

which implies

Rp(n
′)−Rp(n

∗
T )

Rp(n∗)
≤ p+ 1

2

∑
g∈[G]

(n′
g − n∗

g,T )
2

Tn∗
g,T

+
7(p+ 2)2Σ2

p

σ2
min

max
g

(
n∗
g,T

n′
g

)3p+3 ∥n′ − n∗
T ∥3∞

T 3
,

hence proving Lemma 5.
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A.5 Putting everything together

We are now ready to complete the proof of Theorem 1.
Theorem 1. For any D that satisfies Assumptions 1 and 2 and for any finite p, the regret of Variance-
UCB is at most Õ(T−2). That is,

Regretp,T (Variance-UCB,D) = Õ(T−2).

Proof. First, notice that

Regretp,T (Variance-UCB) = Eπ[Rp(n)−R∗
p]

= E[Rp(n)−R∗
p|AT ]Pπ(AT ) + E[Rp(n)−R∗

p|Ac
T ]Pπ(Ac

T )

≤ E[Rp(n)−R∗
p|AT ] + ∥σ2∥pPπ(Ac

T ),

where the first step stems from the definition of regret introduced in Eq. (4), the second step
stems from the law of total expectation, and the third step stems from both P(AT ) ≤ 1 and
Rp(n) − R∗

p ≤ ∥σ2∥p. It remains to show that each term in the rightmost side is in Õ(T−2).
First, Pπ(Ac

T ) ≤ 2GT−2.5 = Õ(T−2). Next, we have conditionally on AT :

Rp(n)−Rp(n
∗)

Rp(n∗)
≤ p+ 1

2

∑
g∈[G]

(ng − n∗
g,T )

2

Tn∗
g,T

+
7(p+ 2)2Σ2

p

σ2
min

max
g

(
n∗
g,T

ng

)3p+3 ∥n− n∗∥3∞
T 3

≤ p+ 1

2

G∥n− n∗∥2∞
T ming n∗

g,T

+
7(p+ 2)2Σ2

p

σ2
min

max
g

(
n∗
g,T

ng

)3p+3 ∥n− n∗∥3∞
T 3

,

where the first inequality stems from Lemma 4, and the second inequality stems from (ng,T −
n∗
g,T )

2 ≤ ∥n− n∗∥2∞. Since
∑

g ng,T = T , from Lemma 3,

ng,T − n∗
g,T = −

∑
h ̸=g

nh,T − n∗
h,T

≥ −3(G− 1)−
∑
h̸=g

4CT p

Σp(p+ 1)

(
σg +

2CT√
n∗
h,T

) p−1
p+1 √

n∗
h,T

≥ −3(G− 1)−Gmax
h

4CT p

Σp(p+ 1)

(
σg +

2CT√
n∗
h,T

) p−1
p+1 √

n∗
h,T

≥ −3G− 4GCT p

Σp(p+ 1)

(
minσg +

2CT√
minh n∗

h,T

) p−1
p+1 √

min
h

n∗
h,T ,

where the first step stems from
∑

h nh,T − n∗
h,T =

∑
h nh,T −

∑
h n

∗
h,T = T − T = 0, the second

step stems from Lemma 3, and the last steps stem from taking the max over the sum. The last
inequality implies

∥n− n∗∥∞ ≤ 3G+
4GCT p

Σp(p+ 1)

(
minσg +

2CT√
minh n∗

h,T

) p−1
p+1 √

min
h

n∗
h,T . (23)

In particular, ∥n− n∗∥∞ = Õ(
√
minh n∗

h,t) = Õ(
√
T ) and

max
g

n∗
g,T

ng,T
≤ 1

1− ∥n−n∗∥∞
minh n∗

=
1

1− Õ(T−0.5)
= Õ(1).

Therefore,

p+ 1

2

G∥n− n∗∥2∞
T ming n∗

g,T

+
7(p+ 2)2Σ2

p

σ2
min

max
g

(
n∗
g,T

ng

)3p+3 ∥n− n∗∥3∞
T 3

=
p+ 1

2

GÕ(T )

TΘ(T )
+

7(p+ 2)2Σ2
p

σ2
min

Õ(1)
Õ(T 1.5)

T 3

= Õ(T−1).
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Recall from Lemma 1 that R∗
p = Rp(n

∗) = Θ(T−1). Thus by taking the conditional expectation on
AT , we have

E[Rp(n)−R∗
p|AT ] ≤ R∗

pÕ(T−1) = Õ(T−2),

which concludes the proof of Theorem 1.

A.6 Proof of auxiliary lemmas

In this section, we prove Lemmas 11 and 12. To do so, simple expressions for the derivatives of rp
are needed. These are established in the following lemma:

Lemma 13. For g, h, i ∈ [G− 1], we introduce the following functions in K◦:

Hg : λ ∈ K →
σ2p
G

(1− λ1 − . . .− λG−1)p+1
−

σ2p
g

λp+1
g

Gh,g :=
1

p+ 1

∂

∂λg
Hh,

Ig,h,i :=
1

p+ 2

∂

∂λi
Gg,h.

The following holds:

1. ∇rp = r1−p
p H .

2. Hg,h = (1− p)r1−2p
p HgHh + (p+ 1)r1−p

p Gg,h.

3.

∂3rp
∂λg∂λh∂i

= (1− p)(1− 2p)HgHhHir
1−3p
p

+ (1− 2p)(1 + p) (HgGh,i +HhGi,g +HgGh,i)

+ r1−2p
p + (p+ 1)(p+ 2)Ig,h,ir

1−p
p .

Proof. Fix a λ ∈ K◦ and g, h, i ∈ [G− 1].

Expression of the gradient: On the one hand,the definition of rp in (17) implies

rpp(λ) =

∥∥∥∥{σ2
1

λ1
, . . . ,

σ2
G−1

λG−1
,

σ2
G

1− λ1 − . . .− λG−1

}∥∥∥∥p
p

=
σ2p
G

(1− λ1 − . . .− λG−1)p
+

∑
h≤G−1

σ2p
h

λp
h

,

so that
∂

∂λg
(rpp)(λ) = p

[
σ2p
G

(1− λ1 − . . .− λG−1)p+1
−

σ2p
g

λp+1
g

]
= pHg(λ). (24)

On the other hand, from the formula (fp)′ = pf ′fp−1,

∂

∂λg
(rpp)(λ) = prp−1

p (λ)
∂

∂λg
rp(λ), (25)

Combining Equations (24) and (25) yields

∂

∂λg
rpp = pHg = prp−1

p

∂

∂λg
rp,

so that
∂

∂λg
rp = r1−p

p Hg. (26)

Therefore ∇rp =
(

∂
∂λ1

rp, . . . ,
∂

∂λG−1
rp

)
= r1−p

p (H1, . . . ,HG−1) = r1−p
p H , which proves the

first Eq. of Lemma 13.
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Expression of the Hessian: We have

Hg,h =
∂2

∂λg∂λh
rp

=
∂

∂λg

(
r1−p
p Hh

)
= (1− p)r−p

p

(
∂

∂λg
rp

)
Hh + r1−p

p

∂

∂λg
Hh

= (1− p)r1−2p
p HgHh + (p+ 1)r1−p

p Gg,h.

where the first equality is due to the definition of the Hessian, the second equality is due to the
expression of the gradient from Eq. (26), the third equality applies the product rule to the derivative,
and the fourth equality applies the definition of Gg,h in Lemma 13. This proves the second Equality
of Lemma 13.

Third derivatives.

∂3

∂λg∂λh∂i
rp =

∂

∂λi
Hg,h

=
∂

∂λi

{
(1− p)r1−2p

p HgHh + (p+ 1)r1−p
p Gg,h

}
= (1− p)

∂

∂λi

{
r1−2p
p HgHh

}
+ (p+ 1)

∂

∂λi

{
r1−p
p Gg,h

}
,

where the first equality is due to the definition of the Hessian, the second inequality is due to the
Hessian expression established previously, and the third equality is due to the linearity of derivation.
In a similar fashion to the previous case, we derivate each of the products r1−2p

p HgHh and r1−p
p Gg,h

separately. On the one hand,

∂

∂λi
{r1−2p

p HgHh} = HgHh
∂

∂λi
{r1−2p

p }+ r1−2p
p

(
Hg

∂

∂λi
Hh +Hh

∂

∂λi
Hg

)
= HgHh(1− 2p)r−2p

p r1−p
p Hi + r1−2p

p (Hg(p+ 1)Gh,i +Hh(p+ 1)Gg,i)

= (1− 2p)r1−3p
p HgHhHi + (p+ 1)r1−2p

p (HgGh,i +HhGg,i) ,

where the first equality is due to the derivation product rule, the second equality is due to the definition
of Gg,h introduced in Lemma 13, and the third equality is due to a reordering of the terms. On the
other hand, by following the exact same steps

∂

∂λi

{
r1−p
p Gg,h

}
= (1− p)r−p

p

∂

∂λi
rp + r1−p

p

∂

∂λi
Gg,h

= (1− p)r−p
p r1−p

p HiGg,h + (p+ 2)r1−p
p Ig,h,i

= (1− p)r1−2p
p HiGg,h + (p+ 2)r1−p

p Ig,h,i.

Replacing the previous two expressions in the formula for ∂3

∂λg∂λh∂i
rp yields

∂3

∂λg∂λh∂i
rp = (1− p)(1− 2p)HgHhHir

1−3p
p

+ (1− 2p)(1 + p) (HgGh,i +HhGi,g +HgGh,i)

+ r1−2p
p + (p+ 1)(p+ 2)Ig,h,ir

1−p
p ,

where the symmetry of Gg,h = Gh,g is used. This derives the third Eq. of Lemma 13 and concludes
the proof.

We are now ready to establish the proof of Lemma 11.

Lemma 11. ⟨H(λ∗)(λ− λ∗),λ− λ∗⟩ = (p+ 1)rp(λ
∗)
∑

g∈[G]

(λg−λ∗
g)

2

λ∗
g

.
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Proof. Setting the value λ∗ in the value of the Hessian established in Lemma 13 implies that for
g, h ∈ [G]:

Hg,h(λ
∗) = (1− p)r1−2p

p HgHh(λ
∗) + (p+ 1)r1−p

p (λ∗)Gg,h(λ
∗)

= (p+ 1)r1−p
p (λ∗)Gg,h(λ

∗)

= (p+ 1)r1−p
p (λ∗)Σp+1

p

(
1

λ∗
G

+
1

λ∗
g

1(g = h)

)
= (p+ 1)rp(λ

∗)

(
1

λ∗
G

+
1

λ∗
g

1(g = h)

)
where the first equality stems from the definition of the Hessian, the second equality stems from
H(λ∗) = 0 due to the optimality of λ∗, the third equality stems from the definition of Gg,h, and the

fourth equality stems from rp(λ
∗) = Σ

1
p−1
p . As a consequence,

⟨H(λ∗)(λ− λ∗),λ− λ∗⟩ =
∑

g,h∈[G−1]

Hg,h(λ− λ∗)g(λ− λ∗)h

= (p+ 1)rp(λ
∗)

∑
g,h∈[G−1]

(
1

λ∗
G

+
1

λ∗
g

1(g = h)

)
(λ− λ∗)g(λ− λ∗)h

= (p+ 1)rp(λ
∗)


∑

g,h∈[G−1](λ− λ∗)g(λ− λ∗)h

λ∗
G

+
∑

g∈[G−1]

(λ− λ∗)2g
λ∗
g


= (p+ 1)rp(λ

∗)


(∑

g∈[G−1](λ− λ∗)g

)2
λ∗
G

+
∑

g∈[G−1]

(λ− λ∗)2g
λ∗
g


= (p+ 1)rp(λ

∗)

 (λ− λ∗)2G
λ∗
G

+
∑

g∈[G−1]

(λ− λ∗)2g
λ∗
g


= (p+ 1)rp(λ

∗)
∑
g∈[G]

(λg − λ∗
g)

2

λ∗
g

,

where the first step follows from the definition of the scalar product, and the second step stems from
the expression of H(λ∗) derived previously in the proof. In the third step, the sum is distributed over
the terms 1

λ∗
G

and 1
λ∗
g
1(g = h). In the fourth step, the first sum is factorized, and in the fifth step, the

equality
∑

g∈[G−1](λ− λ∗)g = (1− λG)− (1− λ∗
G) = λ∗

G − λG is used. This completes the proof
of Lemma 11.

Next, we establish the proof of Lemma 12.
Lemma 12. The following inequality holds:

sup
u∈[λ,λ′]
x,y,z∈N

x+y+z=3
{g,h,i}⊂[G−1]

∣∣∣∣ 1

x!y!z!

∂3rp(u)

∂λg∂λh∂λi

∣∣∣∣ ≤ 7(p+ 2)2

(ming λ∗
g)

2
max

g

(
λ∗
g

λg

)3p+3

rp(λ
∗).

Proof. From Lemma 1, the following equality holds for each g ∈ [G]:

σ2p
g =

∑
h∈[G]

σ
2p

p+1

h

p+1

(λ∗
g)

p+1 = Σp+1
p (λ∗

g)
p+1.

For a fixed u ∈ [λ,λ∗],
∑

g ug =
∑

g λg =
∑

g λ
∗
g = 1, thus the coordinate g0 achieving the

maximal
λ∗
g

ug
must have ug0 ≤ λ∗

g0 . Since u ∈ [λ,λ∗] this implies that λg0 ≤ ug0 ≤ λ∗
g0 and
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consequently maxg
λ∗
g

ug
≤ maxg

λ∗
g

λg
. The following upper bounds follow:

|Hg(u)| = Σp+1
p

∣∣∣∣∣
(
λ∗
G

uG

)p+1

−
(
λ∗
g

ug

)p+1
∣∣∣∣∣ ≤ Σp+1

p

(
max

g

λ∗
g

λg

)p+1

,

|Gg,h(u)| = Σp+1
p

∣∣∣∣∣ (λ∗
G)

p+1

(uG)p+2
+

(λ∗
g)

p+1

(ug)p+2
1(g = h)

∣∣∣∣∣ ≤
2Σp+1

p

ming λ∗
g

(
max

g

λ∗
g

λg

)p+2,

|Ig,h,i(u)| = Σp+1
p

∣∣∣∣∣ (λ∗
G)

p+1

(uG)p+3
−

(λ∗
g)

p+1

(ug)p+3
1(g = h = i)

∣∣∣∣∣ ≤
Σp+1

p

(ming λ∗
g)

2

(
max

g

λ∗
g

λg

)p+3

.

Moreover, since p ≥ 1, each j ∈ {1− p, 1− 2p, 1− 3p} is non-positive, and by minimality of λ∗:

rp(u)
j ≤ rp(λ

∗)j ,

so that:

|HgHhHir
1−3p
p (u)| ≤

(
max

g

λ∗
g

λg

)3p+3

Σ3p+3
p rp(λ

∗)1−3p,

| (HgGh,i +HhGi,g +HgGh,i) r
1−2p
p (u)| ≤ 3

2Σp+1
p

ming λ∗
g

(
max

g

λ∗
g

λg

)p+2
(
Σp+1

p

(
max

g

λ∗
g

λg

)p+1
)
,

|Ig,h,ir1−p
p (u)| ≤

Σp+1
p

(ming λ∗
g)

2

(
max

g

λ∗
g

λg

)p+3

r1−p
p (λ∗).

Each of the previous three expressions can be simplified by using rp(λ
∗) = Σ

1
p−1
p :

|HgHhHir
1−3p
p (u)| ≤

(
max

g

λ∗
g

λg

)3p+3

rp(λ
∗),

| (HgGh,i +HhGi,g +HgGh,i) r
1−2p
p (u)| ≤ 6

ming λ∗
g

(
max

g

λ∗
g

λg

)2p+3

rp(λ
∗),

|Ig,h,ir1−p
p (u)| ≤ 1

(ming λ∗
g)

2

(
max

g

λ∗
g

λg

)p+3

rp(λ
∗).

Hence by using the expression of the third derivatives established in Lemma 13:∣∣∣∣ ∂3rp(u)

∂λg∂λh∂λi

∣∣∣∣ ≤ ∣∣(1− p)(1− 2p)HgHhHir
1−3p
p (u)

∣∣
+
∣∣∣(1− 2p)(1 + p) (HgGh,i +HhGi,g +HgGh,i) r

1−2p(u)
p

∣∣∣
+
∣∣(p+ 1)(p+ 2)Ig,h,ir

1−p
p (u)

∣∣
≤ 2p2

(
max

g

λ∗
g

λg

)3p+3

rp(λ
∗) +

12(p+ 1)2

ming λ∗
g

(
max

g

λ∗
g

λg

)2p+3

rp(λ
∗)

+
(p+ 2)2

(ming λ∗
g)

2

(
max

g

λ∗
g

λg

)p+3

rp(λ
∗)

≤ 7(p+ 2)2

(ming λ∗
g)

2

(
max

g

λ∗
g

λg

)3p+3

rp(λ
∗).

As a consequence, by taking the sup over u, g, h, i, x, y, z,

sup
u∈[λ,λ∗]
x,y,z∈N

x+y+z=3
{g,h,i}⊂[G−1]

∣∣∣∣ 1

x!y!z!

∂3rp(u)

∂λg∂λh∂λi

∣∣∣∣ ≤ 7(p+ 2)2

(ming λ∗
g)

2
max

g

(
λ∗
g

λg

)3p+3

rp(λ
∗), (27)

which completes the proof of Lemma 12.
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B Proof of Theorem 2

In this section, we prove Theorem 2. First, we establish an initial lower bound that captures the
trade-off between how hard it is to distinguish two instances and how hard it is to optimize both under
the same action (See Appendix B.1). Next, we provide a specific counter example which regret is at
least Θ(T−2) (See Appendix B.2).

B.1 Proof of Lemma 6

Lemma 6. Let π be a fixed policy and Da, Db be two instances with standard deviation vectors
σa,σb, respectively. Then,

max{Regretp,T (π,D
a),Regretp,T (π,D

b)} ≥ d(σa,σb) exp
(
−
∑

g∈[G] Eπ,Da [ng,t]KL(Da
g ||Db

g)
)
.

Proof. Let Da and Db be two instances with standard deviations σa and σb, and let δ ≥ d(σa, σb).
Let X be a random variable over the set {a, b}. The following inequalities hold

max(Regretp,T (π,D
a),Regretp,T (π,Db)) ≥ EX [Regretp(π,DX)]

≥ E[Rp(n;σ
X)−R∗

p(σ
X)|Rp(n;σ

X)−R∗
p(σ

X) > δ]

× Pπ,X

(
Rp(n;σ

X)−R∗
p(σ

X) > δ
)

≥ δPX,π

(
Rp(n;σ

X)−R∗
p(σ

X) > δ
)
,

where the first step stems from the support of X being {a, b}, and the second step stems from the law
of total expectation. Let x̂ be the following (random) classifier:

x̂ :=


a If Rp(n;σ

a)−R∗
p(σ

a) ≤ δ

b If Rp(n,σ
b)−R∗

p(σ
b) ≤ δ

Indifferent Otherwise

Since δ ≥ d(σa, σb), x̂ is well defined. Moreover, Pπ.X

(
Rp(n;σ

X)−R∗
p(σ

X) > δ
)
≥ PX(x̂ ̸=

X) ≥ inf x̂ PX(x̂ ̸= X), where the infinimum is taken over all the classifiers of {a, b}. Moreover,
by Pinsker’s inequality, inf x̂ PX(x̂ ̸= X) ≥ exp

(
−KL(Da||Db)

)
. Moreover, from bandits feed-

back divergence properties (see [25]), KL(Da||Db) =
∑

g∈[G] Eπ,Da [ng,t]KL(Da
g ||Db

g), which
concludes the proof of Lemma 6.

B.2 The counter-examples

We introduce the following instances for each g ∈ [G],

Dg :

{
Da

1 ∼ N
(
0, 1 + 1√

T

)
Da

g ∼ N (0, 1) , ∀g ̸= 1
Db :

{
Db

2 ∼ N
(
0, 1 + 1√

T

)
Da

g ∼ N (0, 1) , ∀g ̸= 2

We start by upper bounding the KL-divergence between the two instances:

Lemma 14. The following inequality holds:
∑

g∈[G] Eπ,Da [ng,T ]KL(Da
g ||Db

g) ≤ 1
2

Proof. For convenience, we set ν :=
√

1
T < 1. The formula for the KL−divergence of two

univariate normal distributions of zero mean implies

KL(Da
h||Db

h) =
1

2

(
log

(
σ2(1 + ν)

σ2

)
+

σ2 − (σ2(1 + ν))

σ2(1 + ν)

)
.
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The taylor expansion of the expression above can be derived by combining the expansions of both the
functions x → log(1 + x) and x → 1

1+x in the domain (0, 1):

1

2

(
log

(
σ2(1 + ν)

σ2

)
+

σ2 − (σ2(1 + ν))

σ2(1 + ν)

)
=

1

2

−
∑
k≥1

(−1)k

k
νk − ν

∑
k≥0

(−1)kνk


=

1

2

∑
k≥1

(−1)kνk
(
1− 1

k

)

=
ν2

2

∑
k≥0

(−1)kνk
(
1− 1

k + 2

)

≤ ν2

2
,

Summing over all coordinates implies∑
g∈[G]

Eπ,Da [ng,T ]KL(Da
g ||Db

g) = Eπ,Da [nh,T ]KL(Da
h||Db

h) ≤
Tν2

2
=

1

2
,

where the inequality follows from nT ≤ T . This concludes the proof.

Next, we derive a simpler form for d(σa,σb). The simplification exploits the symmetries in σa,σb:
Lemma 15. Let u denote the unit vector (1, . . . , 1)T . The following equality holds:

d(σa,σb) = rp

(
1

G
u;σa

)
− r∗p(σ

a)

where the function rp is introduced in Appendix A.

Proof. For x ∈ {a, b}, let Sx
ϵ := {ϵ > 0|rp(λ;σx)− r∗p(σ

x) ≤ ϵ}. By definition of d,

d(σa,σb) = inf{δ ≥ 0|Sa
ϵ ∩ Sb

ϵ ̸= ∅}.

We prove d(σa,σb) = rp
(
1
Gu;σa

)
− r∗p(σ

a) by proving each of the inequalities d(σa,σb) ≤
rp
(
1
Gu;σa

)
− r∗p(σ

a) and d(σa,σb) ≥ rp
(
1
Gu;σa

)
− r∗p(σ

a).

First, we prove d(σa,σb) ≤ rp
(
1
Gu;σa

)
− r∗p(σ

a). Since σa can be obtained by swapping
the first two coordinates of σb, the symmetry of rp implies r∗p(σ

a) = r∗p(σ
b). Moreover, for

each (λ1, λ2,λ
′) ∈ K, rp((λ1, λ2,λ3:G);σ

a) = rp((λ2, λ1,λ3:G);σ
b). As a consequence,

rp
(
1
Gu;σa

)
−r∗p(σ

a) = rp
(
1
Gu;σb

)
−r∗p(σ

b), and any ϵ > 0 satisfying ϵ ≥ rp
(
1
Gu;σa

)
−r∗p(σ

a)

must also satisfy Sa
ϵ ∩ Sb

ϵ ̸= ∅. In particular, d(σa,σb) ≤ rp
(
1
Gu;σa

)
− r∗p(σ

a).

To derive d(σa,σb) ≥ rp
(
1
Gu;σa

)
− r∗p(σ

a), we use the following lemma, which proof is deferred
later in the section:

Lemma 16. If λ = (λ1, . . . , λG) ∈ Sa
ϵ ∩ Sb

ϵ , and τ a permutation of [G]. λτ := (λτ(1), . . . , λτ(G))

is also in Sa
ϵ ∩ Sb

ϵ .

Let ϵ ≥ 0 satisfying Sa
ϵ ∩ Sb

ϵ ̸= ∅, and let λ ∈ Sa
ϵ ∩ Sb

ϵ . For each permutation τ , λτ is also in
Sa
ϵ ∩ Sb

ϵ . Each of Sa
ϵ and Sb

ϵ is convex and therefore the intersection Sa
ϵ ∩ Sb

ϵ is also convex, which
implies that

1

G
u =

1

G!

∑
τpermutation

λτ ∈ Sa
ϵ ∩ Sb

ϵ ,

which in turn implies that ϵ ≥ rp
(
1
Gu,σa

)
− r∗(σa). By taking the inf we get dp(σa,σb) ≥

rp
(
1
Gu,σa

)
− r∗p(σ

a), which completes the proof.

We now state the proof of Lemma 16:
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Proof. Let λ = (λ1, . . . , λG) ∈ Sa
ϵ ∩ Sb

ϵ . Since every permutation can be written as a composition
of transpositions (2-cycles), it suffices to prove the result for transpositions. Let τ = (g, h) with
g ̸= h. We distinguish 3 cases:

1. g, h ≥ 3: Since σa
3:G = σb

3:G, rp(λ;σ
x) = rp(λτ ;σ

x) for each x ∈ {a, b}. The
implication λτ ∈ Sa

ϵ ∩ Sb
ϵ follows.

2. g, h ≤ 2: By symmetry of the problem, σa
1 = σb

2 = σb
τ(1). Similarly, σa

2 = σb
τ(2).

Therefore, λ ∈ Sa
ϵ implies λτ ∈ Sb

ϵ . Similarly, λ ∈ Sb
ϵ implies λτ ∈ Sa

ϵ . The implication
λτ ∈ Sa

ϵ ∩ Sb
ϵ follows.

3. g ∈ {1, 2} and h ≥ 3. Without loss of generality, assume that g = 1 and h = 3. Since
Db

1 ∼ Db
3, the equality σb

1 = σb
3 holds and therefore rp(λ;σ

b) = rp(λτ ;σ
b), therefore

λτ ∈ Sb
ϵ . Moreover, rp(λτ ;σ

a) = rp(λ;σ
b), therefore λτ ∈ Sa

ϵ . The implication
λτ ∈ Sa

ϵ ∩ Sb
ϵ follows.

The three cases cover all possible 2-cycles, which completes the proof.

We are now ready to state the proof of Theorem 2. It remains to show that dp(σa,σb) = rp
(
1
2u, σa

)
−

r∗p(σ
a) = Θ(T−2). We are ready to state the proof of Theorem 2.

Theorem 2. Let p be finite and κ be a universal constant. For any online policy π, there exists an
instance Dπ such that for any T ≥ 1,

Regretp,T (π,Dπ) ≥ κ(p+ 1)T−2 +O
(
T−2.5

)
= Θ(T−2).

Proof. We set Dπ := argmax
{

Regretp (π,D
a) ,Regretp

(
π,Db

)}
. The following inequalities

hold:

Regretp (π,Dπ) ≥ max
{

Regretp (π,D
a) ,Regretp

(
π,Db

)}
≥ d(σa,σb) exp

(
−
∑

g∈[G] Eπ,Da [ng,t]KL(Da
g ||Db

g)
)

≥
(
rp

(
1

G
u;σa

)
− r∗p(σ

a)

)
exp

(
−1

2

)
where the first step stems from the definition of Dπ , the second step stems from Lemma 6, and the
third step stems from a combination of both Lemma 19 and Lemma 15. The rest of the proof consists
in deriving a lower bound on rp

(
1
Gu;σa

)
− r∗p(σ

a). Since we will now solely focus on σa, we can
drop the dependencies in σ. A direct consequence of Inequality (19) is

rp
(
1
Gu
)

r∗p
− 1 ≥ p+ 1

2

∑
g∈[G]

(
1
G − λ∗

g

)2
λ∗
g

− 7(p+ 2)2

(ming λ∗
g)

2
max

g

(
λ∗
g

1/G

)3p+3

∥u/G− λ∗∥3∞. (28)

We will lower bound each of the terms p+1
2

∑
g∈[G]

( 1
G−λ∗

g)
2

λ∗
g

and

− 7(p+2)2

(ming λ∗
g)

2 maxg

(
λ∗
g

1/G

)3p+3

∥u/G− λ∗∥3∞. For convenience, we set

fT := λ∗
1 −

1

G
.

Since the first group has the highest variance, λ∗
1 should also be the highest. In particular, λ∗

1 ≥ 1
G

and fT ≥ 0. By symmetry of σa, λ∗
2 = . . . = λ∗

G = 1
G − fT

G−1 . Therefore,

∑
g∈[G]

(
1
G − λ∗

g

)2
λ∗
g

=
f2
T

1
G + fT

+
(G− 1)

(
fT

G−1

)2
1
G − fT

G−1

= Gf2
T

 1

1 +GfT︸ ︷︷ ︸
≥1−GfT

+
1

G− 1

1

1− GfT
G−1︸ ︷︷ ︸

≥0

 ≥ Gf2
T−G2f3

T .
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Next, notice that λ∗ ≤ 1, which implies that maxg

(
λ∗
g

1/G

)3p+3

≤ G3p+3, and that ∥u/G−λ∗∥∞ =

max(fT , fT /(G− 1)) = fT , and ming λ
∗
g = 1

G − fT
G−1 . Therefore,

rp
(
1
Gu
)

r∗p
−1 ≥ p+ 1

2

(
Gf2

T −G2f3
T

)
−7(p+ 2)2G3p+3f3

T(
1
G − fT

G−1

)2 =
p+ 1

2

(
Gf2

T −G2f3
T

)
−7(p+ 2)2G3p+5f3

T(
1− G

G−1fT

)2 .

(29)
It remains to bound fT . We do so by deriving the first terms of its taylor expansion in and T :

fT =

(
1 + 1√

T

) 2p
p+1

G− 1 +
(
1 + 1√

T

) 2p
p+1

− 1

G

=
1 + 2p

p+1
1√
T
+ o

(
1√
T

)
G+ 2p

p+1
1√
T
+ o

(
1√
T

) − 1

G

=
1

G

((
1 +

2p

p+ 1

1√
T

+ o

(
1√
T

))(
1− 2p

p+ 1

1

G
√
T

+ o

(
1√
T

))
− 1

)
=

2p

p+ 1

1

G

(
1− 1

G

)
1√
T

+ o

(
1√
T

)
,

where the first equality stems from Lemma 1, the second equality stems from the binomial Taylor
expansion, and the third equality stems from the Taylor expansion of x → 1

1−x . The last step implies
that there exists universal constants q1, q2 such that for T ≥ 1,

1

G

(
1− 1

G

)
q1√
T

≤ fT ≤ 1

G

(
1− 1

G

)
q2√
T
.

Replacing the previous bounding of fT in Inequality (29) yields

rp
(
1
Gu
)

r∗p
− 1 ≥ 2q21

G

(
1− 1

G

)2
p+ 1

T
+O

(
1

T
√
T

)
,

which in turn implies

rp

(
1

G
u

)
− r∗p ≥ q21(p+ 1)

4

r∗p
GT

+O

(
1

T 2
√
T

)
≥ q21

4

p+ 1

T 2
+O

(
1

T 2
√
T

)
.

where we used r∗p = Θ(T−1) and from Lemma 1 that

r∗p =

∥∥∥∥σ2

n∗
T

∥∥∥∥
p

=
1

T
Σ

p+1
p

p =

(
(G− 1) +

(
1 + 1√

T

) 2p
p+1

) p+1
p

T
≥ G

T
.

By setting κ =
q21
4 , we get RegretT (π,Dπ) ≥ κp+1

T 2 + O
(

1
T 2

√
T

)
, which completes the proof of

Theorem 4.

C Upper and lower bounds when p = ∞

The proof for Theorem 3 (upper bound when p = ∞) follows the same high-level steps as the proof
of Theorem 1 (upper bound when p ∈ R). However, some adjustments of the proofs are necessary.
Table 2 summarizes the changes that are required.

In Appendix C.1, we introduce and prove Lemma 5, the replacement for Lemma 4. In Appendix C.3,
we prove Theorem 4.
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Result Does it hold for p = +∞ ?
Lemma 1 Yes

Lemmas 2, 3 Yes
Lemma 4 No, replaced by Lemma 5

Lemmas 6, 19, 15 Yes
d(σa, σb) = Θ(T−2) No, replaced by d(σa, σb) = Θ(T−1.5)

Table 2: Summary of the possible extensions to p = +∞

C.1 Curvature of R∞

The upper bound Lemma 4 goes to +∞ as p = +∞ and is no longer insightful. In this section, we
provide a suitable bound:

Lemma 5. Let σ ∈ RG
+ and n′ ∈ RG

+ such that
∑

g∈[G] n
′
g = T . Then,

R∞(n′
T )−R∞(n∗

T )

R∞(n∗
T )

≤ −min
g

(
n′
g

n∗
g,T

− 1

)
+

1

4
max

g

(
n′
g

n∗
g,T

− 1

)2

max
g

(
n∗
g,T

n′
g

)3

Proof.

From Lemma 1,
σ2
1

n∗
1,T

= . . . =
σ2
G

n∗
G,T

= R∞(n∗
T ) = R∗

∞,

so that for g ∈ [G] and n′,

σ2
g

n′
g

= R∗
∞ + σ2

g

(
1

n′
g

− 1

n∗
g,T

)

≤ R∗
∞ + σ2

g

(
−1

(n∗
g,T )

2
(n′

g − n∗
g,T ) +

1

2
(n′

g − n∗
g,T )

2 sup
x∈{n′

g,n
∗
g,T }

1

2x3

)

= R∗
∞

1−

(
n′
g

n∗
g,T

− 1

)
+

1

4

(
n′
g

n∗
g,T

− 1

)2

max

(
1,

(
n∗
g,T

n′
g

)3
)

where the first step follows from R∗
∞ =

σ2
g

n∗
g,T

, the second step follows from Taylor’s inequality

applied on the function x → 1
x on n∗

g,T , and the first step follows from the definition of the infinite
norm. By dividing both sides by R∗

∞, rearranging the terms, and taking the max, we obtain

R∞(n′
T )−R∞(n∗

T )

R∞(n∗
T )

≤ max
g

−

(
n′
g

n∗
g,T

− 1

)
+

1

4

(
n′
g

n∗
g,T

− 1

)2

max

(
1,

(
n∗
g,T

n′
g

)3
)

≤ −min
g

(
n′
g

n∗
g,T

− 1

)
+

1

4
max

g

(
n′
g

n∗
g,T

− 1

)2

max
g

(
n∗
g,T

n′
g

)3

.

which completes the proof of Lemma 1.

C.2 Proof of Theorem 3

Theorem 3. Let Σ∞ :=
∑

g∈[G] σ
2
g . For any D that satisfies Assumptions 1 and 2,

Regret∞,T (Variance-UCB,D) ≤
(
CT

√
Σ∞ + C2

T

)
G1.5T−1.5 + o(T−1.5) = Õ(T−1.5).
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Proof. Similarly to Appendix A.5, the total-expectation bounding still holds:

Regret∞,T (Variance-UCB,D) ≤ E[R∞(n)−R∗
∞|AT ] + ∥σ2∥∞Pπ(Ac

T ). (30)

We now upper bound each of the two terms in (30). First, similarly to the case where p < +∞
presented in Appendix A, Pπ(Ac

T ) ≤ 2GT−2.5, so that

∥σ2∥∞Pπ(Ac
T ) ≤ 2G∥σ2∥∞T−2.5 = o(T−1.5). (31)

Next, we apply the final lower bound derived in Section B.2 from [13]:

Lemma 17. Conditionally on AT ,

ng,T

n∗
g,T

− 1 ≥ −G
√
G√

T

(
CT√
Σ∞

(
1 +

CT√
Σ∞

)
+ 8

√
2G1/4

(
CT√
Σ∞

)3/4
√
1 +

CT√
Σ∞

T−3/4

)
.

By taking the min over g ∈ [G] in Lemma 17, the following inequality follows conditionally on AT :

−min
g

(
ng,T

n∗
g,T

− 1

)
≤ G

√
G√
T

(
CT√
Σ∞

(
1 +

CT√
Σ∞

)
+ 8

√
2G1/4

(
CT√
Σ∞

)3/4
√
1 +

CT√
Σ∞

T−3/4

)
.

(32)
Moreover, since CT = Õ(1), the right hand side of the inequality above is in Õ(

√
T ). Next, from

Inequality (23), and from ming n
∗
g,T = T

ming σ2
g

Σ∞
,

max
g

(
ng,T

n∗
g,T

− 1

)2

≤ 1

(minh n∗
h,T )

2

(
3G+

4GCT

Σ∞

(
min
g

σg +
2CT√

minh n∗
h,T

)√
min
h

n∗
h,T

)2

≤ 18G2

(minh n∗
h,T )

2
+

32G2C2
T

Σ∞ minh n∗
h,T

(
2(min

g
σg)

2 + 4C2
T

)
=

64G2C2
T

T

(
1 +

2C2
T

ming σ2
g

)
+

18G2Σ2
∞

T 2 ming σ4
g

= Õ(T−1),

and

max
g

n∗
g,T

ng,T
=

1

ming
ng,T

n∗
g,T

=
1

1 +ming

(
ng,T

n∗
g,T

− 1
)

≤ 1(
1− G

√
G√
T

(
CT√
Σ∞

(
1 + CT√

Σ∞

)
+ 8

√
2G1/4

(
CT√
Σ∞

)3/4√
1 + CT√

Σ∞
T−3/4

))+

= O(1).

Combining the previous two inequalities yields

1

4
max
g

ng,T

n∗
g,T

− 1

2

max
g

(
n∗
g,T

ng,

)3

≤

64G2C2
T

T

(
1 +

2C2
T

ming σ2
g

)
+

18G2Σ2
∞

T2 ming σ4
g[(

1 − G
√

G√
T

(
CT√
Σ∞

(
1 +

CT√
Σ∞

)
+ 8

√
2G1/4

(
CT√
Σ∞

)3/4√
1 +

CT√
Σ∞

T−3/4

))+
]3 .

(33)
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Recall that R∗
∞ = Σ∞

T . Applying Lemma 5 on ng,T and using the upper bounds (32) and (33)
implies that conditionally on AT

R∞(nT )−R∞(n∗
T ) ≤

G3/2Σ∞

T 3/2

CT√
Σ∞

(
1 +

CT√
Σ∞

)
+

G7/4Σ∞

T 9/4

(
CT√
Σ∞

)3/4
√
1 +

CT√
Σ∞

+

64G2Σ∞C2
T

T 2

(
1 +

2C2
T

ming σ2
g

)
[(

1− G
√
G√
T

(
CT√
Σ∞

(
1 + CT√

Σ∞

)
+ 8

√
2G1/4

(
CT√
Σ∞

)3/4√
1 + CT√

Σ∞
T−3/4

))+
]3

+

18G2Σ3
∞

T 3 ming σ4
g[(

1− G
√
G√
T

(
CT√
Σ∞

(
1 + CT√

Σ∞

)
+ 8

√
2G1/4

(
CT√
Σ∞

)3/4√
1 + CT√

Σ∞
T−3/4

))+
]3 .

Since the right hand side is deterministic, the inequality above extends by taking the conditional
expected value on AT . Moreover, the second, third, and fourth term are all in o(T−1.5), so that:

E[R∞(n)−R∗
∞|AT ] ≤ CT

√
Σ∞

(
1 +

CT√
Σ∞

)
G1.5T−1.5 + o(T−1.5). (34)

Finally, combining both inequalities (31) and (34) in Inequality (30) yields

Regret∞,T (Variance-UCB,D) ≤ CT

√
Σ∞

(
1 +

CT√
Σ∞

)
G1.5T−1.5 + o(T−1.5),

which completes the proof of Theorem 3.

C.3 Proof of Theorem 4

Lemma 18. Let σa,σb be two vectors with Σa
∞ :=

∑
g(σ

a
g )

2, Σb
∞ :=

∑
g(σ

b
g)

2 and Σa
∞ ≥ Σb

∞.
There exists a Σa,b

∞ ∈ [Σb
∞,Σa

∞] such that

d(σa,σb) =
Σa,b

∞
2T

∥λ∗(σa)− λ∗(σb)∥1

Proof. Let σa,σb be two vectors with Σa
∞ :=

∑
g(σ

a
g )

2 and Σb
∞ :=

∑
g(σ

b
g)

2, ϵ > 0, and
λ ∈ [0, 1]G such that

∑
g λg = 1. We have:

R∞(Tλ;σa)−R∗
∞(σa) =

1

T

(
max

g

σa
g

λg
− Σa

∞

)
=

Σa
∞
T

(
max

g

λ∗
g(σ

a)

λg
− 1

)
,

therefore,

Tλ ∈ Sa
ϵ ⇐⇒ R∞(Tλ;σa)−R∗

∞(σa) ≤ ϵ

⇐⇒ Σa
∞
T

(
max

g

λ∗
g(σ

a)

λg
− 1

)
≤ ϵ

⇐⇒ ∀g ∈ [G],
λ∗
g(σ

a)
Tϵ
Σa

∞
+ 1

≤ λg.

Hence, the allocation Tλ is simultaneously in Sa
ϵ and Sb

ϵ if and only if

∀g ∈ [G], max

(
λ∗
g(σ

a)
Tϵ
Σa

∞
+ 1

,
λ∗
g(σ

b)
Tϵ
Σb

∞
+ 1

)
≤ λg,
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In particular, Sa
ϵ ∩ Sb

ϵ is the polytope{
Tλ|λ ∈ [0, 1]G,

∑
g

λg = 1, ∀g ∈ [G], max

(
λ∗
g(σ

a)
Tϵ
Σa

∞
+ 1

,
λ∗
g(σ

b)
Tϵ
Σb

∞
+ 1

)
≤ λg

}
which is non-empty if and only if∑

g

max

(
λ∗
g(σ

a)
Tϵ
Σa

∞
+ 1

,
λ∗
g(σ

b)
Tϵ
Σb

∞
+ 1

)
≤ 1.

so that d(σa,σb) is the (unique) solution to the equation
∑

g max

(
λ∗
g(σ

a)
Tϵ
Σa
∞

+1
,
λ∗
g(σ

b)
Tϵ

Σb
∞

+1

)
= 1. To better

understand the form of this solution, we introduce the following three decreasing functions:

f : ϵ > 0 →
∑
g

max

(
λ∗
g(σ

a)
Tϵ
Σa

∞
+ 1

,
λ∗
g(σ

b)
Tϵ
Σb

∞
+ 1

)

fa : ϵ > 0 →
∑
g

max

(
λ∗
g(σ

a)
Tϵ
Σa

∞
+ 1

,
λ∗
g(σ

b)
Tϵ
Σa

∞
+ 1

)

fa : ϵ > 0 →
∑
g

max

(
λ∗
g(σ

a)
Tϵ
Σb

∞
+ 1

,
λ∗
g(σ

b)
Tϵ
Σb

∞
+ 1

)
First, notice that d(σa,σb) = f−1(1). Next, by assuming (WLOG) that Σa

∞ ≥ Σb
∞, we have

fa ≥ f ≥ f b, so that d(σa,σb) = f−1(1) ∈ [(f b)−1(1), (fa)−1(1)]. Moreover,

fa(ϵ) =
∑
g

max

(
λ∗
g(σ

a)
Tϵ
Σa

∞
+ 1

,
λ∗
g(σ

b)
Tϵ
Σa

∞
+ 1

)

=

∑
g max

(
λ∗
g(σ

a), λ∗
g(σ

b)
)

Tϵ
Σa

∞
+ 1

=
1
2

∑
g λ

∗
g(σ

a) + λ∗
g(σ

b) + |λ∗
g(σ

a)− λ∗
g(σ

b)|
Tϵ
Σa

∞
+ 1

=
1 + 1

2∥λ
∗(σa)− λ∗(σb)∥1

Tϵ
Σa

∞
+ 1

,

where the first step stems from the definition of fa, the second step stems from max(x, y) =
x+y+|x−y|

2 , the third step stems from
∑

g λ
∗
g = 1, and the fourth step stems from the defintion of the

1−norm. The last equation implies

f−1
a (1) =

Σa
∞

2T
∥λ∗(σa)− λ∗(σb)∥1.

Similarly, f−1
b (1) =

Σb
∞

2T ∥λ∗(σa)− λ∗(σb)∥1. Therefore:

Σb
∞

2T
∥λ∗(σa)− λ∗(σb)∥1 ≤ d(σa,σb) ≤ Σa

∞
2T

∥λ∗(σa)− λ∗(σb)∥1,

which concludes the proof.

Theorem 4. For any online policy π, there exists an instance Dπ such that for any T ≥ 1,

Regret∞,T (π,Dπ) ≥
1

2
G1.5T−1.5.

Proof. The proof consists of constructing two instances that optimize the trade-off stated in Lemma
6. The first instance, which is denoted Da, consists of G groups of standard normal distributions.
Next, select a group h such that Eπ,Da [ng,T ] is minimal. Notice that by minimality of Eπ,Da [nh,T ],
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Eπ,Da [nh,T ] ≤
1

G

∑
g∈[G]

Eπ,Da [ng,T ] =
1

G
Eπ,Da

∑
g∈[G]

ng,T

 =
T

G
. (35)

The second instance, which is denotes Db, is defined as follows:

Db
g =

{
N (0, 1 + ν) For g = h

N (0, 1) Otherwise

We have {
σa = (1, . . . , 1)

σb = σa + νeh

so that Σa
∞ = G, Σb

∞ = G+ ν and

λ∗(σa) =
1

G
(1, . . . , 1)

∀g ∈ [G], λ∗
g(σ

b) =

{
1

G+ν For g ̸= h
1+ν
G+ν For g = h

We introduce the following Lemma, which proof is deferred to later in this section.

Lemma 19. The following inequality holds:
∑

g∈[G] Eπ,Da [ng,T ]KL(Da
g ||Db

g) ≤ Tν2

2G .

By combining both Lemmas 18 and 19 in the inequality stated in Lemma 6, we obtain

max
{

Regret∞(π,Da),Regret∞(π,Db)
}
≥ min(Σa

∞,Σb
∞)

2T
∥λ∗(σa)− λ∗(σb)∥1 exp

(
−Tν2

2G

)
= e−

Tν2

2G
G

2T

(
1

G
− 1

G+ ν
+ (G− 1)

(
1 + ν

G+ ν
− 1

G

))
=

e−
Tν2

2G

2

G

T
× (G+ ν)−G+ (G− 1)(G+Gν −G− ν)

G(G+ ν)

=
e−

Tν2

2G

2

νG

T
× 1 + (G− 1)2

G(G+ ν)
.

By setting ν =
√

G
T ≤ 1 and Dπ := argmax

{
Regret∞(π,Da),Regret∞(π,Db)

}
, the previous

inequality implies

Regret∞(π,Dπ) = max
{

Regret∞(π,Da),Regret∞(π,Db)
}
≥ e−1/2

2

G1.5

T 1.5

1 + (G− 1)2

G(G+ 1)
≥ 1

2
G1.5T−1.5

which completes the proof of Theorem 4, .

We now prove Lemma 19.

Lemma 19. The following inequality holds:
∑

g∈[G] Eπ,Da [ng,T ]KL(Da
g ||Db

g) ≤ Tν2

2G .

Proof. For convenience, we set ν :=
√

G
T < 1. The formula for the KL−divergence of two

univariate normal distributions of zero mean implies

KL(Da
h||Db

h) =
1

2

(
log

(
σ2(1 + ν)

σ2

)
+

σ2 − (σ2(1 + ν))

σ2(1 + ν)

)
.
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The taylor expansion of the expression above can be derived by combining the expansions of both the
functions x → log(1 + x) and x → 1

1+x in the domain (0, 1):

1

2

(
log

(
σ2(1 + ν)

σ2

)
+

σ2 − (σ2(1 + ν))

σ2(1 + ν)

)
=

1

2

−
∑
k≥1

(−1)k

k
νk − ν

∑
k≥0

(−1)kνk


=

1

2

∑
k≥1

(−1)kνk
(
1− 1

k

)

=
ν2

2

∑
k≥0

(−1)kνk
(
1− 1

k + 2

)

≤ ν2

2
,

where the first step stems from the inequality nT ≤ T , the second step stems from using the previous
two equalities, the third step stems from simplifying the infinite sum term-wise, the fourth step stems
from the expansion of a geometric serie, and the fifth step stems from µ = 1√

T
≥ 0. Since Da and

Db have the same distribution at all coordinates except coordinate h, we have:∑
g∈[G]

Eπ,Da [ng,T ]KL(Da
g ||Db

g) = Eπ,Da [nh,T ]KL(Da
h||Db

h) ≤
Tν2

2G

where the inequality follows from the minimality of Eπ,Da [nh,T ] and
∑

g Eπ,Da [ng,T ] = T . This
concludes the proof.
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