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Figure 1. High-resolution images generated by HiDiffusion. See Fig. 7 and appendix for more images. Our method enables Stable Diffusion
models to generate high-resolution images that surpass the training image size without any further training or fine-tuning. Additionally, our
method can significantly reduce the time consumption by 40% to 60% compared with the vanilla Stable Diffusion. Note that the images
shown in this paper are compressed due to the file size constraints. We will release the lossless images as soon as possible.

Abstract

We introduce HiDiffusion, a tuning-free framework com-
prised of Resolution-Aware U-Net (RAU-Net) and Modified
Shifted Window Multi-head Self-Attention (MSW-MSA) to

†Corresponding author

enable pretrained large text-to-image diffusion models to ef-
ficiently generate high-resolution images (e.g. 1024×1024)
that surpass the training image resolution. Pretrained dif-
fusion models encounter unreasonable object duplication
in generating images beyond the training image resolution.
We attribute it to the mismatch between the feature map size
of high-resolution images and the receptive field of U-Net’s
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convolution. To address this issue, we propose a simple yet
scalable method named RAU-Net. RAU-Net dynamically
adjusts the feature map size to match the convolution’s re-
ceptive field in the deep block of U-Net. Another obstacle in
high-resolution synthesis is the slow inference speed of U-
Net. Our observations reveal that the global self-attention in
the top block, which exhibits locality, however, consumes the
majority of computational resources. To tackle this issue, we
propose MSW-MSA. Unlike previous window attention mech-
anisms, our method uses a much larger window size and
dynamically shifts windows to better accommodate diffusion
models. Extensive experiments demonstrate that our HiDif-
fusion can scale diffusion models to generate 1024×1024,
2048×2048, or even 4096×4096 resolution images, while
simultaneously reducing inference time by 40%-60%, achiev-
ing state-of-the-art performance on high-resolution image
synthesis. The most significant revelation of our work is that
a pretrained diffusion model on low-resolution images is
scalable for high-resolution generation without further tun-
ing. We hope this revelation can provide insights for future
research on the scalability of diffusion models.

1. Introduction
Generative model has witnessed an explosion of diffu-

sion models of growing capability and applications [10, 34,
41–43]. Being trained on a large volume of training im-
ages (Laion 5B [40]), Stable Diffusion (SD) [29,34] can gen-
erate fixed-size (e.g. 768×768 for SD 2.1 [34]) high-quality
images given text or other kinds of prompts. However, it is
limited to synthesizing images with higher resolution (e.g.
2048×2048). The limitation has two perspectives: (i) Feasi-
bility. Diffusion models lack scalability in higher-resolution
image generation. As illustrated in Fig. 2, when scaling im-
age resolution from 512×512 to 1024×1024 for SD 1.5 [34],
the generated images exhibit unreasonable object duplica-
tion and inexplicable object overlaps. (ii) Efficiency. As
resolution increases, the time cost becomes more and more
unacceptable. For example, SD 1.5 can generate a 512×512
resolution image in only 5s, whereas it takes 182s to generate
a 2048×2048 image on an NVIDIA RTX 2080Ti . The low
efficiency of diffusion models in high-resolution generation
makes it impractical for real-world applications.

Can Stable Diffusion efficiently synthesize images with
resolution beyond the training image sizes? Existing meth-
ods answer this question by leveraging additional super-
resolution models [34, 50], or stacking fix-sized images on a
high-resolution canvas [1,14], or introducing a scaling factor
to adjust the attention entropy [15]. However, These ap-
proaches either require significant additional training efforts
or still suffer from object duplication. By analyzing the com-
ponents of Stable Diffusion, we find that the receptive field of
self-attention consistently equals the resolution, while cross-
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Figure 2. When scaling to 1024×1024 resolution, both SD 1.5 [34]
and high-resolution method MultiDiffusion [1] face object dupli-
cation in the whole denoising process. Our Hidiffusion is able to
generate reasonable object structure and realistic high-resolution
images.

attention and MLP are both pixel-wise operations. These
operations are not sensitive to resolution. However, the re-
ceptive field of convolutions remains fixed and does not
dynamically adapt to various resolutions. We assume this
mismatch makes convolution fail to output structural infor-
mation of objects suitable for higher resolution.

To address the mismatch between the feature map size of
high-resolution images and the convolution receptive field,
we present a simple but effective method called Resolution-
Aware U-Net (RAU-Net). Our approach involves Resolution-
Aware Downsampler (RAD) and Resolution-Aware Upsam-
pler (RAU) to align the feature map of high-resolution im-
ages in the U-Net with the convolution receptive field. The
RAD is achieved through a dilated convolution [48] down-
sampler with a variable dilation rate and stride, which adapts
to the desired resolution, while the RAU is achieved through
a simple interpolation function. This approach requires no
further fine-tuning and can be seamlessly integrated into
Stable Diffusion.

Besides high-resolution feasibility, efficiency is another
important concern. Many works focus on reducing the sam-
ple step [23–25, 39, 41], while few studies investigate the
inference acceleration of diffusion U-Net [2]. These ac-
celeration methods enhance the inference efficiency, but
also notably compromise the synthesis image quality. We
discover that the time-consuming global self-attention in
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the top blocks exhibit locality. Inspired by this observa-
tion, we propose Modified Shifted Window Multi-head Self-
Attention (MSW-MSA) and replace the global self-attention
with it in high-resolution synthesis. Note that the substi-
tution needs no further fine-tuning. Compared to window
attention used in Swin Transformer [22], our MSW-MSA
uses a much larger window size and dynamic shift strides to
better accommodate Stable Diffusion.

We integrate RAU-Net and MSW-MSA into one tuning-
free framework, dubbed HiDiffusion. To the best of our
knowledge, our proposed HiDiffusion is the first to discuss
the feasibility and efficiency issues in high-resolution syn-
thesis. We conduct qualitative and quantitative experiments
to validate the effectiveness of our method. Specifically,
HiDiffusion can scale the synthesis resolution of SD 1.5 [34]
and SD 2.1 [34] from 512×512 to 2048×2048 and scale
SDXL [29] from 1024×1024 to 4096×4096. Moreover,
HiDiffusion reduces the generation time by 40% to 60%
compared with vanilla Stable Diffusion in high-resolution
image generation. The key finding of our study is that a
pretrained diffusion model on low-resolution images can
be scaled to high-resolution generation without further fine-
tuning. We hope this work can provide valuable guidance
for future research on the scalability of diffusion models.

2. Related Work
Text-to-Image Generation. Text-to-image generation

(TTI) has emerged as a highly debated and actively re-
searched topic within the thriving field of AI Generated Con-
tent (AIGC) [49]. In the early stages, methods [16,20,33,46]
based on generative adversarial networks (GANs) [7] pri-
marily utilize the small-scale data regime, effectively gen-
erating images through a generator-discriminator structure.
More recently, there has been an emerging trend of the Dif-
fusion Models (DMs) to become the new state-of-the-art
model in TTI [3, 26, 31, 38]. These auto-regressive methods
exploit large-scale data for text-to-image generation, with
representative methods such as Stable Diffusion [34], Dream-
booth [36], DALL-E [32], demonstrating their remarkable
synthesis capabilities. Despite their impressive progress,
these methods have limitations in generating high-quality
images beyond the resolution of the training images and
suffer from high computational costs.

High-Resolution Image Synthesis. Currently, the appli-
cation of diffusion models in high-resolution image gener-
ation poses a significant challenge. Existing methods have
primarily concentrated on diffusion in lower-dimensional
spaces (latent diffusion) [34], or divided the generative
process into multiple training or finetuning sub-problems
[12, 14, 44, 45]. For example, Cascaded Diffusion Mod-
els [11] employed multiple cascade super-resolution levels
of generation. Any-Size-Diffusion [50] introduces a multi-
aspect ratio training strategy. Nevertheless, these solutions

render the diffusion framework highly intricate. Recently,
there has been a growing interest in exploring training-free
or tuning-free approaches for variable-sized adaptation. [15]
propose a scaling factor from a new perspective of the at-
tention entropy to efficiently improve variable-sized text-
to-image synthesis in a training-free manner but not yet
addressed the challenge of higher-resolution generation. To
tackle this issue, MultiDiffusion [1] manipulated the genera-
tion process of a pretrained diffusion model by binding to-
gether multiple diffusion generation processes with a shared
set of parameters or constraints. SyncDiffusion [17] syn-
chronized multiple diffusions through gradient descent from
a perceptual similarity loss. Despite their advancements,
these approaches still exhibit object repetition in their re-
sults, thereby curbing their overall effectiveness. In contrast,
we propose a novel tuning-free method HiDiffusion that not
only eradicates the issue of image repetition but also main-
tains the exceptional fidelity of the generated high-resolution
images.

Diffusion Model Acceleration. As diffusion model train-
ing and inference is computationally expensive and time-
consuming, particularly in the context of high-resolution
images, various methods [4, 19, 28] have been extensively
investigated to accelerate the training and inference of diffu-
sion models. Unlike fast sampling approaches [23,39,41,43]
consider using deterministic sampling schemes to improve
the sampling speed. ToMeSD [2] speeded up an off-the-
shelf diffusion model without training by exploiting natural
redundancy in generated images by merging redundant to-
kens. In this work, through the analysis of the locality of
global self-attention in the shallow blocks, we develop a
novel Modified Shifted Window Multi-head Self-Attention
approach that significantly accelerates the generation of high-
resolution images without the need for fine-tuning.

3. Method
3.1. Preliminaries

The neural backbone of Stable Diffusion is implemented
as a U-Net [5, 34, 35], which contains several Down Blocks,
Up Blocks, and a Mid Block, as shown in Fig. 15a. The Mid
Block remains unchanged in our method. Consequently, we
omit it for the sake of simplicity. Each Down Block and Up
Block can be written respectively as:

y = D(F(x, t, p), α), (1)
y = U(F(x, t, p), β), (2)

where x is the input latent feature map, t is the timestep, p is
the prompt, α is the downsampling factor, β is the upsam-
pling factor. F incorporates ResNet [8] layers and Vision
Transformer [6] layers, which maintain the dimensions of
the feature map. D(∗, α) represents the downsampler that
downsample the dimensions of the feature map by a factor
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Figure 3. Comparison between vanilla Stable Diffusion’s U-Net
architecture and our proposed HiDiffusion RAU-Net architecture.
Parameters in all blocks are frozen. The main difference lies in the
blue Blocks (differ in the dimensions of feature map) and orange
Blocks (Our proposed RAD and RAU modules are incorporated
into Block 1.).

of α, and the upsampler U(∗, β) has a similar meaning. α
and β are set as 2 in vanilla U-Net. The downsampler and
upsampler in vanilla U-Net are computed as:

D(x, 2) = C3,1,2,1(x), (3)

U(x, 2) = C3,1,1,1(interp(x, 2)), (4)

where Ck,p,s,d means convolution filter with kernel size as k,
padding size as p, stride as s, dilation rate as d. interp(x, β)
denotes an interpolation function that upsample the resolu-
tion by a factor of β.

3.2. HiDiffusion

In the following, we delve into our proposed efficient
high-resolution image generation framework, named HiDif-
fusion. Specifically, our framework comprises two key com-
ponents: Resolution-Aware U-Net (RAU-Net) and Modified
Shifted Window Multi-head Self-Attention (MSW-MSA).
The RAU-Net is designed to overcome the drawback of Sta-
ble Diffusion in object duplication and inexplicable object
overlaps when scaling to higher image resolution, such as
1024 × 1024. MSW-MSA is introduced to improve the in-
ference efficiency of Stable Diffusion for high-resolution
image synthesis. The overall framework of HiDiffusion is
present in Fig. 4. We introduce our methods by exemplifying

ൈ 𝑇ଵ ൈ ሺ𝑇 െ 𝑇ଵሻ

RAU-Net U-Net

MSW-MSA

Figure 4. The framework of HiDiffusion.

how to enable SD 1.5 to generate images with 1024×1024
resolution. For more extreme resolution, e.g. 2048×2048,
please refer to the appendix for detail.

3.2.1 Resolution-Aware U-Net

An illustrative comparison of the vanilla Stable Diffusion
(V1.5) U-Net and RAU-Net in the context of generating
1024×1024 resolution images is presented in Fig. 15. We
incorporate our Resolution-Aware Downsapler (RAD) in
Down Block 1 as a substitute for the conventional down-
sampler, and likewise, we replace the upsampler with the
Resolution-Aware Upsampler (RAU) in Up Block 1. RAD
downsamples the feature map to guarantee the dimensions of
the resulting feature map align with those of the correspond-
ing training images, thereby matching with the convolution’s
receptive field. Specifically, the RAD and RAU can be writ-
ten as follows:

RAD(x, α) = C3,p,α,d(x), (5)

RAU(x, β) = C3,1,1,1(interp(x, β)). (6)

For 1024×1024 image generation, we need to downsam-
ple the feature map by a factor of 4 to match the receptive
field of the following convolutions, i.e., α = 4. This down-
sampling factor represents twice the downsampling factor
of the conventional downsampler. To mitigate information
loss caused by the convolutional stride larger than the kernel
size, we incorporate dilation by setting d = 2 and p = 2.
In this case, the effective window size of the convolution in
RAD increases from 3 to 5. For RAU, we only need to adjust
the interpolation factor to 4. Compared to Vanilla U-Net,
both RAD and RAU do not introduce additional trainable
parameters. Therefore, RAD and RAU can directly load the
weight of the corresponding samplers from Vanilla U-Net
without further fine-tuning.

Upon incorporating RAU-Net into SD 1.5, We address
the object duplication problem but also bring blurriness. We
find that Stable Diffusion forms object structure in the early
denoising stage, and refines object details in the later stage.
The same phenomenon is also observed in [47]. We discover
that RAU-Net can generate rational object structures in the
early stage, whereas applying Vanilla U-Net in the later
stages can produce more enriching details. Consequently,
we establish a threshold T1, such that when the denoising
steps t < T1, RAU-Net is employed, conversely, when the
denoising steps t ≥ T1, Vanilla U-Net is utilized. This
simple adjustment can effectively improve the quality of
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(a) Operation consumption. (b) Mean attention distance.

Figure 5. Analysis of the time consumption and mean attention
distance. (a) The self-attention operation within Block 1 signifi-
cantly dominates the time consumption. (b) A pronounced locality
is evident in the self-attention mechanism within the top blocks.

high-resolution images. Moreover, we observed that the
parameter T1 is not sensitive, with settings between 20 and
40 for 1024 × 1024 generation yielding notably superior
performance. For a detailed comparative analysis of this
observation, please refer to Sec. 5.1.

3.2.2 Modified Shifted Window Attention

Stable Diffusion combined with RAU-Net is capable of gen-
erating high-quality high-resolution images. However, it still
faces an efficiency challenge: unaffordable slow speed in
generating high-resolution images. Fig. 5a shows the time
consumption of each operation in SD 1.5, given a latent fea-
ture map with 128×128 (corresponding to 1024×1024 reso-
lution in pixel space). It can be observed that self-attention,
especially in Block 1 (i.e. Down Block 1 and Up Block 1),
takes the dominant consumption, which is also mentioned
in [29]. Driven by previous local self-attention works in
vision [22, 27], We visualize the mean attention distance
for each head across different timesteps of Block 1 (top
block) and Mid Block (bottom block), as shown in Fig. 5b.
We surprisingly find that the self-attention mechanism in
the top blocks demonstrates a pronounced locality. Certain
heads are observed to attend to approximately half of the
image, while others focus on even more confined regions
close to the query location. According to this observation, it
is suggested to propose local self-attention for efficient com-
putation. Specifically, we introduce window attention [22]
to replace the original global attention:

y = W-MSA(x,w) + x, (7)

where W-MSA means Window Multi-head Self-Attention
and w represents the window size. Besides W-MSA, a win-
dow shift operation is also needed to introduce cross-window
connections. However, Swin Transformer [22] block that
encompasses two successive self-attention modules is incom-
patible with Stable Diffusion transformer block which in-
cludes only one self-attention module. To address this issue,
we propose to shift different strides based on the timesteps.

Generally, this Modified Shifted Window Multi-head Self-
Attention (MSW-MSA) can be written as:

y = MSW-MSA(x,w, s(t)) + x, (8)

where s(t) is the shifted stride function dependant on the
timestep t. Specifically, we adopt a simple yet effective
random selection strategy, where at each timestamp, we
randomly select a stride parameter from a fixed set of shift
strides. This approach enables the integration of information
from diverse windows, yielding significant image quality
improvement. In comparison to the small window of Swin
Transformer [22], another notable modification we have
implemented is based on the discovery that larger window
sizes are crucial in achieving a favorable balance between
efficiency and quality, see Sec. 5.3.

We finally substitute the global self-attention in Block 1
with MSW-MSA. It is worth noting that while other blocks
can integrate MSW-MSA, the resulting efficiency gains are
not substantial. Experiments demonstrate that our MSW-
MSA approach can reduce time consumption by a remark-
able 40% to 60% in high-resolution image synthesis.

4. Experiments
4.1. Experiment Settings

In this work, we evaluate the performance of our HiD-
iffusion in SD 1.5 [34], SD 2.1 [34] and SDXL [29]. We
apply our approach to text-guided image synthesis on high-
resolution, ranging from 4× to even 16× times the train-
ing image resolution. For quantitative evaluation, we use
Frechet Inception Distance (FID) [9] to measure the realism
of the output distribution and CLIP Score [30] to evalu-
ate the alignment between image and text. In addition, we
utilize the Variance of the Laplacian [13] to evaluate the
sharpness of the images, commonly used in image quality
assessment. We compare our HiDiffusion with other meth-
ods on ImageNet [37] and COCO [21] datasets. Without
further elaboration, we generate 10K (10 per class) images
to compute metrics for ImageNet evaluation and generate
40,504 (1 per caption) images from COCO 2014 validation
captions to compute metrics for COCO evaluation. We use
xFormers [18] by default. The model’s latency is measured
on a single NVIDIA RTX 2080Ti with a batch size of 1.

We mainly introduce the parameter setting for SD 1.5 and
SD 2.1, please refer to the appendix for the SDXL parameter
setting. For 1024×1024 generation, we incorporate RAD
and RAU in Block 1 and set α = β = 4. We set the
window size as (64, 64). The predefined set of shift strides
is {(0, 0), (16, 16), (32, 32), (48, 48)}. All experiments are
conducted with 50 DDIM steps. The classifier-free guidance
scale is 7.5. The threshold T1 switching from RAU-Net to
vanilla U-Net is set as 20. When extended to 2048×2048,
we can simply set α = 8 to generate images of even higher
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Irish water spanielTiger Red admiral

Pickup truck A vase on top of a table with a 
weird looking flower in it

A giraffe running across a grass 
covered field

A small plane is preparing 
to land on the strip

A very rusty old car near 
some pretty flowers

The Big Ben clock tower underneath 
a cloudy blue sky

SD 1.5 MD HD SD 1.5 MD HD SD 2.1 MD HD

Figure 6. Images with 1024×1024 resolution generated by SD 1.5, SD 2.1, Multidiffusion (MD) and our method HiDiffusion (HD) on
ImageNet and COCO datasets. The text beneath each image is the input text prompt for the diffusion model. Please refer to the appendix for
more samples.

ImageNet COCO

Method Resolution Latency (s) ↓ FID ↓ CLIP Score ↑ FID ↓ CLIP Score ↑

SD 1.5

1024 × 1024

20.13 25.55 0.295 38.21 0.309
SD 1.5 + HiDiffusion 12.21(-39%) 21.81 0.307 21.36 0.323
SD 2.1 16.77 24.63 0.299 31.33 0.314
SD 2.1 + HiDiffusion 9.89(-41%) 22.34 0.309 20.77 0.326

SD 1.5

2048 × 2048

182.26 53.03 0.284 78.53 0.286
SD 1.5 + HiDiffusion 74.09(-59%) 27.33 0.307 28.93 0.321
SD 2.1 133.93 60.60 0.281 82.74 0.289
SD 2.1 + HiDiffusion 56.35(-58%) 30.67 0.305 32.87 0.320
SDXL 96.70 27.48 0.300 28.71 0.318
SDXL + HiDiffusion 79.96(-17%) 22.22 0.314 20.89 0.332

SDXL†
4096 × 4096 913.16 96.36 0.276 161.68 0.271

SDXL + HiDiffusion† 666.56(-27%) 64.05 0.299 108.18 0.300

Table 1. Comparison of vanilla Stable Diffusion and our Hidiffusion
in zero-shot text-guided image synthesis on ImageNet and COCO
dataset. † means we generate 5K images for quantitative evaluation
due to the heavy computational burden.

resolution. However, a sharp change in resolution caused
by interpolation may bring blurriness, hence we adopt a
progressive approach by incorporating RAU and RAD with
α = β = 4 into Block 1 and Block 2, respectively, This
allows the feature map to gradually match the receptive field
of the convolution. Please refer to the appendix for more
details.

4.2. Main results

In this section, We incorporate our method into SD
1.5 [34], SD 2.1 [34], and SDXL [29] to evaluate its ef-
fectiveness. SD 1.5 and SD 2.1 are capable of generating
images with 512×512 resolution. We integrate our method
into them to scale the resolution to 1024×1024 and even
2048×2048. For SDXL, which is trained for generating
1024×1024 images, we incorporate our method to scale the
resolution to 2048×2048 and even 4096×4096. Besides

ImageNet COCO

Method Resolution Latency (s) ↓ FID ↓ CLIP Score ↑ FID ↓ CLIP Score ↑

SD 1.5 + MD

1024 × 1024

346.75 24.87 0.301 67.49 0.319
SD 1.5 + HiDiffusion 12.21(-96%) 24.80 0.307 53.70 0.320
SD 2.1 + MD 323.59 24.01 0.302 67.08 0.319
SD 2.1 + HiDiffusion 9.89(-97%) 25.08 0.309 52.99 0.323

SD 1.5 + MD

2048 × 2048

2673.09 58.59 0.296 119.49 0.298
SD 1.5 + HiDiffusion 74.09(-97%) 29.92 0.307 57.35 0.320
SD 2.1 + MD 2494.02 57.87 0.297 124.43 0.299
SD 2.1 + HiDiffusion 56.35(-98%) 33.04 0.305 59.78 0.316

Table 2. Comparison of high-resolution generation method and our
HiDiffusion in zero-shot text-guided image synthesis performance
on ImageNet and COCO dataset.

Method Resolution Latency (s) FID ↓ CLIP-Score ↑
Baseline

512× 512
4.63 17.68 0.308

ToMeSD 4.04(-12%) 18.82 0.307
MSW-MSA 4.07(-12%) 16.71 0.308

Baseline
1024×1024

16.37 22.93 0.307
ToMeSD 12.61(-23%) 22.76 0.305
MSW-MSA 12.21(-24%) 21.80 0.307

Table 3. Quantitative evaluation of ToMeSD and our proposed
MSW-MSA on ImageNet.

fixed aspect ratios, we also generate images with various as-
pect ratios, such as 512×2048, 1280×1024 and 2048×4096,
and so on. We also compare our method with the high-
resolution generation method MultiDiffusion (MD) [1]. For
the acceleration of the diffusion model, we compare the dif-
fusion acceleration method ToMeSD [2] with our proposed
MSW-MSA. Moreover, we compare our method with super-
resolution method for a thorough evaluation, even though
the latter requires a large number of high-resolution images
and extra training efforts to train a super-resolution model.

Comparision with vanilla SD. In Fig. 6, we show quali-
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SD 1.5
512x2048

SD 1.5
1024x2048

SD 1.5
2048x2048
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Figure 7. Samples for user-defined text prompts from HiDiffusion. The text displayed in the image represents the diffusion model version and
image resolution. After integrating our method, Stale diffusion is capable of efficiently generating high-resolution images with resolutions
ranging from 1024×1024 to 4096×4096, accommodating various aspect ratios. Best viewed when zoomed in.

Laplacian Variance

Method Resolution Latency (s) ↓ FID ↓ CLIP Score ↑ Mean ↑ Max ↑

SD 1.5 + LDM-SR∗

1024 × 1024

19.82 17.56 0.307 0.486 10.353
SD 1.5 + HiDiffusion 12.21(-38%) 21.81 0.307 0.894 14.027
SD 2.1 + LDM-SR∗ 19.63 18.54 0.308 0.456 5.387
SD 2.1 + HiDiffusion 9.89(-50%) 22.34 0.309 0.673 13.666

SD 1.5 + LDM-SR∗

2048 × 2048

68.78 17.32 0.308 0.354 6.650
SD 1.5 + HiDiffusion 74.09 27.33 0.307 0.754 15.058
SD 2.1 + LDM-SR∗ 68.61 18.16 0.308 0.355 5.987
SD 2.1 + HiDiffusion 56.35(-18%) 30.67 0.304 0.579 8.796

Table 4. Comparison of diffusion super-resolution and our method
on ImageNet dataset. ∗ is a two-stage method, requiring extra
high-resolution datasets and training efforts to train a large super-
resolution model. Our approach is one-stage and can generate
high-resolution images without any extra costs.

tative comparison between the baseline and our method on
ImageNet [37] and COCO [21] datasets. It can be easily seen
the vanilla Stable Diffusion suffer from duplication problem
and degradation in visual quality as well. In contrast, our
HiDiffusion mitigates the duplication problem and holds
more realistic image structures simultaneously. We also
present samples with user-defined imaginative prompts and
extreme resolution with various aspect ratios in Fig. 7. The
quantitative results are shown in Tab. 1. Our approach outper-
forms vanilla SD in both quality and image-text alignment.
We achieve much better metric scores across all experiment
settings, especially for the images with much higher resolu-
tion (a significant FID improvement from 78.53 to 28.93 for
SD 2.1 on the resolution 2048×2048).

Comparison with high-resolution synthesis method.
In Fig. 6, we present a set of samples for the qualitative
comparison between MultiDiffusion (MD) and our method
on ImageNet [37] and COCO [21] datasets. We observe
that MD fails to mitigate the issue of duplication. Moreover,
the images generated by MD fail to adhere to fundamental
principles of perspective, wherein objects appear smaller

as they get far away. For example, when considering the
image generated by MD with the prompt ”A giraffe running
across a grass-covered field”, a small-sized deer appears in
the foreground while a large-sized deer appears in the back-
ground, which deviates from reality. Conversely, our method
significantly surpasses MD in terms of both image quality
and image structural rationality. Tab. 2 shows quantitative
results between MD and our method. Note that we generate
5K images for quantitative evaluation in this section due to
the heavy computational burden of MD. The quantitative
demonstrates our method outperforms MD across almost all
metrics. It is worth noting that we significantly surpass MD
in generation efficiency: the latency of our method is only
approximately 1/30 of MD.

Comparison with diffusion acceleration method. We
compare our method with the widely used diffusion model
acceleration technique called Token Merge for Stable Diffu-
sion (ToMeSD) [2]. We compare ToMeSD with our method
at the resolutions of 512×512 and 1024×1024 based on
SD 1.5. Tab. 3 shows the quantitative results on Ima-
geNet [37]. As observed, our proposed MSW-MSA out-
performs ToMeSD across all metrics. Please refer to the
appendix for the visual sample comparison.

Comparison with diffusion super-resolution models.
Instead of directly generating high-resolution images using
a single diffusion model, a more commonly used approach
in the community is to generate 512×512 images using Sta-
ble Diffusion and scale them to higher resolution using an
extra super-resolution model. Although the latter approach
requires additional high-resolution training datasets and ex-
tensive training efforts to train a large super-resolution model,
we compare it for a thorough comparison, despite the inher-
ent unfairness to our one-stage and training-free method.
We compare our method with a pretrained Stable Diffusion
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Figure 8. Samples of 1024×1024 and 2048×2048 resolution generated by LDM-SR and our method based on SD 2.1. Please refer to the
appendix for more samples.

super-resolution model LDM-SR [34] Tab. 4 shows the quan-
titative results. In terms of generation efficiency, our method
outperforms LDM-SR significantly at 1024x1024 resolution
(9.89s vs. 19.63s), while it is comparable with LDM-SR
at 2048x2048 resolution. Both LDM-SR and our method
are capable of generating plausible structures. However,
our method exhibits significantly better Laplacian variance
across different resolutions. This indicates that the images
generated by our method are clearer and more detailed. We
visualizing the synthesized samples in Fig. 8. Compared
with LDM-SR, a distinction can be observed in terms of
visual image quality. Our method directly generates content
on a 1024×1024 or 2048×2048 canvas, resulting in higher
richness, sharper characteristics, and fine-grained details.

5. Ablation study

5.1. The impact of threshold T1 in RAU-Net

T1 0 10 20 30 40 50

FID 26.38 24.05 21.81 21.18 21.12 25.55
CLIP-Score 0.309 0.308 0.307 0.308 0.307 0.295

Table 5. Quantitative evaluation of the impact of various T1 on the
performance of HiDiffusion.

This threshold introduced in Sec. 3.2.1 determines when
to switch from RAU-Net to vanilla U-Net. We explore the
impact of different thresholds on the performance of HiDiffu-
sion. The quantitative results based on SD 1.5 are shown in
Tab. 5. When T1 is between 20 and 40, there is no significant
difference in metric evaluation. Based on the observation of
generated samples, we find that T1 ranging from 20 to 40 can
effectively alleviate object duplication, with T1 = 20 yield-
ing the optimal performance. Therefore, we select T1 = 20
as the default setting. Please refer to the appendix for visual
samples.

Position Block 1 Block 2 Block 3

FID 21.81 20.84 21.26
CLIP-Score 0.307 0.307 0.305

Table 6. Quantitative evaluation of the position of RAD and RAU.

5.2. The impact of the position of RAD and RAU

Our main idea is to introduce RAD and RAU to dynam-
ically downsample the feature map to match the receptive
field of the convolution. We insert the RAD and RAU into
Block 1, Block 2, and Block 3 respectively based on SD
1.5 to examine the impact of the Resolution-aware sampler
at different locations, as shown in Tab. 6. There is a minor
quantitative metric difference between different locations.
However, we visually observe that incorporating RAD and
RAU in Block 1 can better mitigate object duplication. We
present a comparison of the generated samples in the ap-
pendix.

5.3. The impact of the window size

The window size determines the receptive field of self-
attention. We compare the performance from small window
size proposed in Swin Transformer [22] to our proposed
large window size based on SD 1.5, as shown in Tab. 7. As
the window size gradually increases, the performance im-
proves. We achieve the optimal balance between efficiency
and performance when the window size is half the height
and width of the feature map.

Window size 4 16 32 64

FID 417.15 53.02 22.37 21.81
CLIP-Score 0.225 0.295 0.307 0.307

Table 7. Quantitative evaluation of the impact of window size.

6. Conclusion
In this paper, we propose a tuning-free framework named

HiDiffusion for pretrained text-to-image diffusion models.
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HiDiffusion includes Resolution-Aware U-Net (RAU-Net)
that makes high-resolution generation possible and Modified
Shifted Window Multi-head Self-Attention (MSW-MSA)
that makes high-resolution generation efficient. Empiri-
cally, HiDiffusion can scale diffusion models to generate
1024×1024, 2048×2048, or even 4096×4096 resolution
images, while simultaneously reducing inference time by
40%-60%. Compared to super-resolution methods, Our gen-
erated images have higher richness and fine-grained details.
We hope our work can bring insight to future works about
the scalability of diffusion models.

Limitations and future work: Our approach involves
directly harnessing the intrinsic potential of stable diffu-
sion without any additional training or fine-tuning, hence
some inherent issues posed by stable diffusion persist, such
as the requirement for prompt engineering to obtain more
promising images. Furthermore, we can explore better ways
to integrate with super-resolution models to achieve higher
resolution and amazing image generation outcomes.
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Appendix
In the appendix, we present the following details associ-

ated with HiDiffusion:
• Unsuccessful trials on object duplication.
• Details about SDXL [29] settings.
• Details about extreme resolutions (2048×2048 for SD

1.5 [34], SD 2.1 [34], 4096×4096 for SDXL).
• Ablations on resolution-aware operation.
• Ablations on shift window.
• Additional qualitative results.

A. Unsuccessful trials on object duplication
Solving object duplication problem in high-resolution

generation is not a straightforward task. Before effectively
addressing it, we went through numerous failed attempts.
In this section, we outline three unsuccessful trials that are
easily conceived and intuitively viable.

A.1. Latent feature rescale

ൈ 𝑇ଶ

Upsample

ൈ ሺ𝑇 െ 𝑇ଶሻ

1024x1024 
Image

Figure 9. The framework of latent feature rescale.

Figure 10. The generated samples of latent feature rescale.

Taking the generation of 1024×1024 resolution images
by SD 1.5 [34] as a case study. One straightforward approach
to solving object duplication is to first denoise the latent fea-
tures corresponding to the 512×512 resolution. After denois-
ing certain steps (T2), the latent features are upsampled to the
size corresponding to 1024×1024 resolution and the denois-
ing process continues, as illustrated in Fig. 9. This method
treats the low-resolution latent features at T2 timestep as
priors to govern the generation content of 1024×1024 reso-
lution. For 50 DDIM steps, we set T2 = 30. The generated
samples are shown in Fig. 10, we find that this method fails
to generate high-quality 1024×1024 images.

A.2. Low-resolution latent feature guidance

As Stable Diffusion can generate reasonable object struc-
tures in 512×512 resolution, a straightforward approach
involves using the low-resolution (i.e. 512×512) denois-
ing process to guide the high-resolution (i.e. 1024×1024)

𝛼

…

…

𝛼 𝛼

1024x1024 
Image

Figure 11. The framework of low-resolution latent feature guid-
ance.

Figure 12. The generated samples of low-resolution latent feature
guidance.

denoising process, as show in Fig. 11. Assuming that at
step T3, the latent noise prediction for the 512×512 resolu-
tion is denoted as ϵl, and the latent noise prediction for the
1024×1024 resolution is denoted as ϵh. We use ϵl to guide
the direction of ϵh by employing a weighted sum:

ϵh = α · interp(ϵl, 2) + (1− α) · ϵh. (9)

We set α = 0.8 and Fig. 12 shows the generated samples.
We discover that the method even fails to generate structural
information about objects. Instead, it still generates images
with a large amount of noise.

A.3. Self-attention with fixed receptive field

Input Window 
attention

Output

Figure 13. Constrain the receptive field of self-attention by using
window attention.

In the main paper, we demonstrate that the receptive field
of self-attention is equal to the size of the latent feature. In
principle, self-attention with a global receptive field would
not be accountable for object duplication. However, we hy-
pothesize that self-attention might be limited to handling
interactions within a feature map corresponding to higher
resolution. As the generated resolution increases, the number
of entries involved in self-attention would increase dramati-
cally, which could result in uncontrollable outcomes. In this
section, we maintain the same number of entries for self-
attention as during training when generating images with
1024×1024 resolution. This can be achieved by window
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Figure 14. The generated samples when constraining the receptive
field of self-attention.

attention, as shown in Fig. 13. Note that we also introduce
shifted window attention as proposed in the main paper. We
present the generated samples in Fig. 14. Constraining the
receptive field of self-attention cannot solve the object dupli-
cation problem. However, when downsampling the feature
map to align with the receptive field of convolution, we no-
tice that object duplication disappears. Consequently, we
infer that the origin of object duplication is not rooted in
self-attention but rather in convolution.

B. Details about SDXL settings.
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(a) Vanilla U-Net of SDXL
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Figure 15. Comparison between vanilla SDXL’s U-Net and our
proposed HiDiffusion RAU-Net for SDXL. Parameters in all blocks
are frozen. The main difference lies in the blue Blocks (differ in
the dimensions of feature map) and orange Blocks (Our proposed
RAD and RAU modules are incorporated into Block 2.).

An illustrative comparison of the vanilla SDXL U-Net
and RAU-Net for SDXL in the context of generating
2048×2048 resolution images is presented in Fig. 15. We
incorporate RAD and RAU in Block 2 and set α = β = 4
to match the receptive field of the following convolutions.
In contrast to SD 1.5 and SD 2.1’s U-Net, the Down Block
1 and Up Block 1 of SDXL only consist of two and three
ResNet blocks, respectively. If we choose to incorporate
the RAD and RAU in Block 1, the shallow ResNet Blocks
in Block 1 are insufficient to effectively handle the resolu-

Block 2Block 1

Figure 16. 2048×2048 resolution comparison between inserting
resolution-aware samplers into Block 1 and Block 2.

tion change caused by the interpolation function in RAD,
resulting in the synthesis of blurry images. We present the
qualitative comparison between inserting RAD and RAU in
Block 1 and inserting RAD and RAU in Block 2 in Fig. 16.
In the experiment of the main paper, We set T1 = 20 for 50
DDIM steps. The classifier-free guidance scale is 7.5. Since
Block 1 of SDXL U-Net does not contain self-attention,
we incorporate MSW-MSA into Block 2. We set the win-
dow size as (64, 64). The predefined set of shift strides is
{(0, 0), (16, 16), (32, 32), (48, 48)}. For 4096×4096 reso-
lution generation, please refer to Appendix C.

C. Details about extreme resolutions

For SD 1.5 and SD 2.1, generating images with
2048×2048 resolution is a significant challenge, considering
that this resolution is already 16 times the training image
resolution. RAU-Net can generate images with 2048×2048
resolution by simply setting α = β = 8, d = 4, p = 4,
as shown in Fig. 18b. However, β = 8 implies that RAU
upsamples the feature map by a factor of 8 using an inter-
polation function. This abrupt resolution change brought
by interpolation leads to the generation of blurred images,
as illustrated in Fig. 20a. To tackle the issue of declining
image quality in extreme resolution, we adopt a progressive
variant of RAU-Net, as shown in Fig. 18c. We incorporate
RAU and RAD with α = β = 4, d = 2, p = 2 into Block
1 and Block 2, respectively. This allows the feature map to
gradually align with the receptive field of the convolution,
thus circumventing the blurriness issue caused by a large
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Figure 17. The framework of image synthesis with extreme resolution (2048×2048 for SD 1.5 and SD 2.1, 4096×4096 for SDXL). Pro
RAU-Net means progressive RAU-Net.
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Figure 18. U-Net variants of SD 1.5 and SD 2.1. (a) Vanilla U-Net.
(b) RAU-Net. (c) Progressive RAU-Net. (b) can generate images
with 2048×2048 resolution by simply setting α = β = 8, d = 4,
p = 4. However, a sharp change in resolution caused by interpola-
tion may bring blurriness. We adopt (c), a progressive approach by
incorporating RAU and RAD with α = β = 4, d = 2, p = 2 into
Block 1 and Block 2 to allow the feature map to gradually match
the receptive field of the convolution. This progressive method can
mitigate blurriness and generate high-quality images.

interpolation factor. For 4096×4096 resolution generation
of SDXL, we also adopt progressive RAU-Net, as shown
in Fig. 19c. We incorporate RAU and RAD with α = β = 4,
d = 2, p = 2 into Block 1 and Block 2, respectively.

As described in the main paper, matching the feature
map size with the receptive field of the convolution can
generate coherent object structures while potentially affect-
ing image details. Therefore, we choose to gradually re-
duce the usage of resolution-aware samplers throughout the
denoising process for finer image detail when generating
images with extreme resolution. Specifically, we employ
Progressive RAU-Net in the early stage, followed by RAU-
Net in the middle stage, and finally vanilla U-Net in the
later stage. We establish two thresholds T1 and T2: when
denoising steps t < T1, We use progressive RAU-Net; when
T1 ≤ t ≤ T2, We use RAU-Net ; when t > T2, vanilla
U-Net is used. We present the framework in Fig. 17 and
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Figure 19. U-Net variants of SDXL. (a) Vanilla U-Net. (b) RAU-
Net. (c) Progressive RAU-Net. The parameter settings of (c) are
same with Fig. 20.

generated samples in Fig. 20b. In the experiment of the
main paper, We set T1 = 15 and T2 = 35 for 50 DDIM
steps. We incorporate MSW-MSA into Block 1 for SD 1.5
and SD 2.1, and into Block 2 for SDXL. We set the win-
dow size as (128, 128). The predefined set of shift strides
is {(0, 0), (32, 32), (64, 64), (96, 96)}. The classifier-free
guidance scales of SD 1.5, SD 2.1, and SDXL are all 7.5.

D. Ablations on resolution-aware operation
In the main paper, for the 1024×1024 resolution gener-

ation, RAD is achieved by adjusting the convolution stride
and utilizing dilation to enlarge the kernel size. This method
downsamples the feature map by a factor of four to accom-
modate the receptive field of the convolution. Alternatively,
a more intuitive approach would be to keep the convolution
unchanged and downsample the feature map by a factor of 2
using a pooling operation, which can be written as:

RAD(x, 4) = C3,1,2,1(pool(x, 2)). (10)

This method can also achieve the goal of resolution-aware
downsampling. In this section, we investigate which meth-
ods can generate higher-quality images. We present quanti-
tative comparison in Tab. 8. Compared with the additional
pooling operation, the dilation method exhibits superior per-
formance in both FID and CLIP-Score.
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(a) (b)

Figure 20. 2048×2048 resolution samples generated by (a) Directly
set α = 8 in Block 1 of RAU-Net. (b) The final progressive method.
The diffusion model version is SD 1.5.

Method FID↓ CLIP-Score↑
Pool 26.85 0.304
Dilation 21.81 0.307

Table 8. Quantitative evaluation of two variants of resolution-aware
operation on ImageNet [37]. The resolution is 1024×1024 and the
diffusion model version SD 1.5.

E. Ablations on window shift

In the main paper, we introduce a window shift strategy
that randomly selects a stride from a fixed set of shift strides.
In this section, we compare our method with another window
shift strategy: Apply window attention and shifted window
attention at adjacent timestep. Compared with the window
shift strategy in the main paper, This method can mitigate
randomness. As shown in Tab. 9, the method proposed in the
main paper is comparable with the alternating method. We
believe that as long as window connection can be introduced,
the differences between different methods are negligible. In
practice, any suitable window interaction method for the dif-
fusion model can be selected to efficiently generate images.

Method FID↓ CLIP-Score↑
Alternating 21.91 0.306
Ours 21.81 0.307

Table 9. Quantitative evaluation of different window shift strategies
on ImageNet. The resolution is 1024×1024 and the diffusion model
version is SD 1.5.

F. Additional qualitative results
We provide additional qualitative results, including the

comparison between ToMeSD and our MSW-MSA (Fig. 21);
visual samples in ablation study (Figs. 22 to 24); comparison
between vanilla Stable Diffusion, MultiDiffusion, and our
HiDiffusion (Fig. 25); comparison between LDM-SR* and
HiDiffusion (Figs. 26 and 27); high-resolution samples with
various aspect ratios generated by HiDiffusion (Figs. 28
to 35).

*https://huggingface.co/stabilityai/stable-diffusion-x4-upscaler
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Baseline ToMeSD MSW-MSA

Figure 21. Comparison of 1024×1024 resolution between baseline (SD 1.5 + HiDiffusion without MSW-MSA), ToMeSD and our MSW-
MSA on ImageNet. The merge ratio of ToMeSD is 0.5. ToMeSD compromises the fine details of the images. Conversely, our approach is
capable of generating results comparable to the baseline.
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𝑇ଵ0 50

Figure 22. Visual samples with 1024×1024 resolution of different T1 on ImageNet. T1 ranging from 20 to 40 can effectively mitigate object
duplication and maintains high image quality, with T1 = 20 yielding the optimal performance.
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Block 1 Block 2 Block 3

Figure 23. Comparison of 1024×1024 resolution between different locations of Resolution-aware sampler on ImageNet. It can be easily
seen that incorporating RAD and RAU in Block 1 can better mitigate object duplication.

17



Window size
4 64

Figure 24. Comparison of 1024×1024 resolution from small window size proposed in Swin Transformer [22] to our proposed large window
size on ImageNet. The image quality improves as the window size increases. We achieve the optimal balance between efficiency and
performance when the window size is half the height and width of the feature map.
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SD MD HD

Figure 25. Images with 1024×1024 resolution generated by SD, Multidiffusion (MD) and our HiDiffusion (HD).
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1024x1024

LDM-SR
1024x1024

HiDiffusion
1024x1024

HiDiffusion
1024x1024

HiDiffusion
1024x1024

Figure 26. Comparison between LDM-SR and our HiDiffusion. Our HiDiffusion can generate images with higher richness and fine-grained
details on 1024×1024 resolution. Best viewed when zoomed in.
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LDM-SR
2048x2048

HiDiffusion
2048x2048

LDM-SR
2048x2048

HiDiffusion
2048x2048

Figure 27. Comparison between LDM-SR and our HiDiffusion. Our HiDiffusion can generate images with higher richness and fine-grained
details on 2048×2048 resolution. Best viewed when zoomed in.
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Figure 28. 1024×1024 resolution samples generated by HiDiffusion based on SD 1.5. Best viewed when zoomed in.
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Figure 29. 1536×1024 resolution samples generated by HiDiffusion based on SD 2.1. Best viewed when zoomed in.
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Figure 30. 2048×2048 resolution samples generated by HiDiffusion based on SD 1.5. Best viewed when zoomed in.
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Figure 31. 2048×2048 resolution samples generated by HiDiffusion based on SD 2.1. Best viewed when zoomed in.
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Figure 32. 2048×2048 resolution samples generated by HiDiffusion based on SDXL. Best viewed when zoomed in.
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Figure 33. 2048×3072 resolution samples generated by HiDiffusion based on SDXL. Best viewed when zoomed in.
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Figure 34. 4096×4096 resolution samples generated by HiDiffusion based on SDXL. Best viewed when zoomed in.
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Figure 35. 4096×4096 resolution samples generated by HiDiffusion based on SDXL. Best viewed when zoomed in.
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