
LlmFixer: Fix the Helpfulness of Defensive Large Language Models

Anonymous ACL submission

Abstract001

Defense strategies of large language models002
besides alignment are introduced to defend003
against jailbreak attacks, and they have man-004
aged to decrease the success rate of jailbreak at-005
tacks. However, these defense strategies weak-006
ened the helpfulness of large language models.007
In this work, we propose a universal frame-008
work LlmFixer acting on large language models009
equipped with any defense strategy to recover010
their original helpfulness. LlmFixer consists011
of an input prompt re-writer and a logic patch.012
The prompt re-writer is a pre-model for clarify-013
ing the intention of input prompts, which pro-014
motes large language models to be more helpful015
to benign inputs and more rejective to mali-016
cious inputs. The logic patch is a lightweight017
structure that enhances large language models’018
comprehension capacity by supplementing cer-019
tain logical relationships. Without updating the020
parameters of a defensive large language model,021
LlmFixer fixes its helpfulness while preserving022
safety. Experiments on three large language023
models, five jailbreak attacks, and four defense024
strategies show the effectiveness of LlmFixer.025
The data and code are available.026

1 Introduction027

Although Large Language Models (LLMs) will nor-028

mally be aligned with human value by Reinforce-029

ment Learning from Human Feedback (RLHF)030

(Christiano et al., 2017) or other methods (Rafailov031

et al., 2024; Lee et al., 2023) before being released,032

they are vulnerable to jailbreak attacks. Jailbreak033

attacks like GCG (Zou et al., 2023), AutoDan (Liu034

et al., 2024b), and PAIR (Chao et al., 2023) refer035

to intentionally bypassing the internal safety mech-036

anism of LLMs by designing malicious prompts037

to induce LLMs to produce harmful content (Wei038

et al., 2024). They could potentially hurt the bene-039

fits of LLM users or even threaten social security.040

Therefore, numerous defense methods are pro-041

posed to increase the resistance of LLMs to jail-042

ONLY for clear benign

Prompt Re-writer

Defense+LlmFixer

LLM
Defense

Balanced Defense

Clearly Benign Vaguely Benign Vaguely Malicious Clearly Malicious

(a) Different input prompts in the input space

Safety

Helpfulness

Defense+LlmFixer Balanced Defense Defense LLM Method

(b) The comparison of existing methods and ours

Retain the Defense

Clarify the vaguely benign

NOT as good as Defense

How to kill a python process?

I'm sorry, but I cannot provide assistance or information
on illegal or harmful activities.

(c) LLM with balanced defense fails to handle vaguely benign input

Figure 1: Disadvantages of existing defense strategy.

break attacks. They can be categorized into LLM- 043

focused methods and input-focused methods. The 044

former ones change LLM itself (improve parame- 045

ters or structure) (Piet et al., 2023; Bianchi et al., 046

2024), while the latter ones detect and modify input 047

prompts before LLM processes them (Kumar et al., 048

2023; Liu et al., 2024c; Mo et al., 2024; Zhang 049

et al., 2024). Despite these defense methods effec- 050

tively reducing the success rate of jailbreak attacks, 051

LLMs equipped with defensive strategies tend to 052

be over-conservative. A phenomenon is that the 053

helpfulness of LLMs (1. willingness to respond 054

to benign instructions 2. quality of response to be- 055

nign instructions) is weakened while enhancing the 056

ability to defend against jailbreak attacks. 057

As there is a trade-off between safety and help- 058

fulness when LLMs defend against jailbreak at- 059

tacks, some other works try to reach a balance. 060

(Du et al., 2024; Ji et al., 2024; Xu et al., 2024b; 061

Liu et al., 2024a) proposed balanced defense strate- 062

gies that can decrease the success rate of jailbreak 063

1

attacks while maintaining LLMs’ general perfor-064

mance. However, a limitation of these balanced de-065

fense methods is that though they help LLMs better066

distinguish clearly benign input prompts from mali-067

cious ones than normal defense methods, they still068

mistakenly reject many vaguely benign queries. As069

shown in Figure 1(a), we assume that all LLM in-070

put prompts can be divided into four types: clearly071

benign, vaguely benign, vaguely malicious, and072

clearly malicious. We employ GPT-4 to detect the073

intention of input prompts, and those with 60%074

or lower confidence are defined as vague input075

prompts. An LLM can easily recognize the inten-076

tion of clear input prompts while being heavily con-077

fused by vague ones. Figure 1(c) shows an example078

of LLM with a balanced defense method wrongly079

rejecting a vaguely benign question. Those normal080

defenses and balanced defenses fail to deal with081

vaguely benign inputs not only because they have082

not clarified the intention for LLM to process, but083

whose defensive mechanism for safety makes the084

LLM more sensitive to tokens like ’kill’ or ’sex’085

contained in vaguely benign inputs. Furthermore,086

they tend to settle the sensitivity conservatively,087

rejecting those vaguely benign inputs that should088

have been positively responded to.089

To tackle the over-defense problem and over-090

come the limitation of exisiting works, we propose091

a universal framework LlmFixer to help LLMs092

equipped with any defense strategy to fix their093

helpfulness while allowing the defense strategy094

to play its due role. The framework is not a de-095

fense method against jailbreak, but it acts on LLMs096

with defense strategies to help (1)clarify vague in-097

puts. (2)improve understanding capacity. In this098

way, LlmFixer improves the possibility of LLM099

responding to benign queries and the quality of100

response to benign queries while preserving the101

safety mechanism contributed by the defense strat-102

egy. LlmFixer consists of a re-writer and a logic103

patch. The re-writer trained with reinforcement104

learning from LLM feedback can discretize token105

sequences in the input space of LLM, that is to106

say, the re-writer will reconstruct inputs to amplify107

the distance between vaguely benign inputs and108

vaguely malicious inputs. The logic patch is uti-109

lized to improve LLM’s comprehension capacity.110

Inspired by the conclusion that the Feed-Forward111

Networks (FFNs) in pre-trained language models112

contain factual knowledge (Dai et al., 2022), we hy-113

pothesize the logical relationship is also contained114

in FFNs to some extent. Thus, we add an FFN-115

like logic patch to the FFNs of LLM to repair its 116

inherent comprehension vulnerabilities without up- 117

dating the LLM’s original parameters. Besides, as 118

general datasets like AlpacaEval or JustEval rarely 119

include vaguely benign inputs like the one in Figure 120

1(c), we propose a vaguely benign prompts dataset 121

VagueEval to precisely evaluate the helpfulness of 122

defensive LLMs. LlmFixer is extensively tested on 123

three LLMs using five jailbreak attacks and four 124

defense methods. The experimental results demon- 125

strate its superiority. Our major contributions are 126

summarized as follows: 127

• We propose a novel universal framework Llm- 128

Fixer based on reinforcement learning from 129

LLM feedback to clarify the intention of LLM 130

inputs and improve the comprehension capac- 131

ity of a defensive LLM without affecting its 132

original defense strategy. To the best of our 133

knowledge, LlmFixer is the first helpfulness- 134

enhancing framework acting on defensive 135

LLMs. 136

• We create a vaguely benign dataset VagueEval 137

to reveal the real impact on the helpfulness of 138

LLM caused by defense strategies. 139

• We show the effectiveness of LlmFixer in re- 140

covering the helpfulness of defensive LLMs 141

through extensive experiments under multiple 142

circumstances. 143

2 Preliminaries 144

Here we introduce the notations and definitions 145

to formulate LlmFixer. We denote the train set as 146

{Di}Ni=1 and Di = (Ii, Ri, Yi), where Ii is the in- 147

put prompt ,Ri is the standard response, and Yi 148

equals 0 or 1 to label whether Ii is benign or mali- 149

cious. 150

Then we denote the output of the prompt re- 151

writer as Î and the response generated by the defen- 152

sive LLM as O. O can be divided into affirmative 153

and rejective. Affirmative responses are LLM mak- 154

ing efforts to answer questions or follow instruc- 155

tions in input prompts while rejective responses 156

are the rejection statements plus explanation. The 157

attitude A (affirmative: A = 1 or rejective: A = 0) 158

towards the input prompt can be extracted from O. 159

If the attitude is affirmative, that is, the LLM is 160

trying to be helpful, then we define the rest of O 161

to be a result; If the attitude is rejective, then we 162

define the rest part of O to be an explanation of 163

why the LLM refuses to help. 164

2

Prompt Re-writer

LLM Logic Patch clear benign

vaguely benign

vaguely malicious

clear malicious

clear benign

clarified benign

clarified malicious

clear malicious

(c) Inference Phase of LlmFixer

 Prompt Re-writer

 𝝅θ

NLPO
Response Quality

 Reward

Affirmative Rejective

Result

kill: harmful

How to kill a python process?

Tell me what is racism.

Sorry, I cannot provide assistance

on illegal or harmful activities.

Racism is a belief that one race is

superior to others, resulting……

Intention Clarification

 Reward

Attitude

LLM Logic Patch

Explanation

…

…

Feed-Forward Network
 （of LLM）

Logic Patch

Explanation: LLM refused to respond to “How to

kill a python process” because it is harmful.

kill a process: NOT harmful

𝑂 𝑂′ ∆ 𝑂 + =
Update

(a) Training of the Prompt Re-writer (b) Training of the Logic Patch

Figure 2: The overview of the proposed LlmFixer framework.

3 Methodology165

The overview of the proposed LlmFixer framework166

is illustrated in Figure 2. It consists of an input167

prompt re-writer and a logic patch, acting on LLMs168

equipped with any defense strategy.169

3.1 Input Prompt Re-writer170

The input prompt re-writer is a pre-model of LLM171

applied to assist LLM in correctly judging the in-172

tention of input prompts. To be more specific, the173

re-writer enlarges the distance between vaguely be-174

nign prompts and vaguely malicious prompts in175

the input space. Then the rewritten prompt with176

a clearer intention will be processed by LLM and177

its original defense strategy. The re-writer is ex-178

pected to be a re-writing expert so other abilities of179

a generation model are considered of no account.180

3.1.1 Reinforcement Learning from LLM181

Feedback182

We train the re-writer based on Reinforcement183

Learning from LLM Feedback. Before the training184

process, the re-writer is initialized with πθ = πθ0 ,185

where πθ0 is a GPT-2(Radford et al., 2019) prelim-186

inarily fine-tuned on a normal question rewriting187

dataset QReCC (Anantha et al., 2021). Under the188

reinforcement learning framework, the re-writer189

plays the role of the learning policy. It is a proba-190

bility distribution over all tokens in V : 191

πθ(Î|I) =
L∏
l=1

p(q̂l|q̂1, ..., q̂l−1, I) (1) 192

where q̂1, ..., q̂l−1 is the first l − 1 tokens the re- 193

writer generated and q̂l is the next token to be se- 194

lected, namely the action in the context of RL. V is 195

the action space respectively. The ultimate goal of 196

training is to find the optimal policy to maximize 197

the expected reward. This can be formulated as 198

Eq̂t∼πθ(·|qt)[R(fϕ(Î))] (2) 199

where fϕ is the LLM with defense strategy, i.e., the 200

environment under the RL framework and R is a 201

reward function. All parameters of the LLM fϕ are 202

frozen during training. 203

3.1.2 Reward 204

The reward R is the sum of the intention clarifica- 205

tion reward and the response quality reward. We 206

use whether the attitude of the LLM response is 207

consistent with the label as the intention clarifica- 208

tion reward signal: 209

rintention = Yi ⊕Ai (3) 210

where ⊕ is an XOR operation. The intention clari- 211

fication reward motivates the re-writer to discretize 212

the input space. Then we use a judge function 213

3

to score the generated response for the response214

quality reward:215

rquality =

{
Judge(O) Yi ∧Ai = 1
a+b
2 Yi ∧Ai = 0

(4)216

where ∧ denotes an AND operation. a and b denote217

the upper and lower bounds of the Judge function.218

The Judge function is designed based on ROUGE219

(Chin-Yew, 2004). We only want the response220

quality reward work when the defensive LLM is221

willing to help with a benign prompt so the reward222

will be directly assigned to a midrange in other223

cases. The response quality reward regulates the re-224

writer to reconstruct a prompt by which the LLM225

can be instructed to produce a qualified response226

similar to the standard response. We get the final227

reward by adding rquality and rintention together:228

R = rintention + rquality (5)229

3.1.3 Policy Optimization230

To train the re-writer of LlmFixer, we upgrade nat-231

ural language policy optimization (NLPO) (Ra-232

mamurthy et al., 2023), a reinforcement learn-233

ing algorithm for natural language generation.234

NLPO is the parameterized-masked extension of235

PPO(Schulman et al., 2017), which learns to mask236

out irrelevant tokens in-context as it trains. Based237

on that, we extra mask out sensitive words in the be-238

nign prompts that mislead LLM’s defensive mech-239

anism. To accomplish that, we optimize a masking240

policy πψ beside πθ. The masking policy is a copy241

of πθ and updated every µ step. We denote242

Z(πθ) =
∑
q̂∈V

πθ0(q̂l|q̂1, ..., q̂l−1, I) (6)243

as the sum of probabilities of all action q̂ ∈ V244

to generate lth token given a particular state of245

s = q̂l|q̂1, ..., q̂l−1, I . NLPO originally selects the246

top-p tokens from the vocabulary V and then em-247

ploys an invalid-mask to the remaining tokens, in248

other words, NLPO sets the probabilities of the249

remaining tokens to zero when sampling actions250

from πθ. Formally, the subset V p
πθ ⊂ V replaces251

the original vocabulary V . Above that, when a252

vaguely benign prompt is mistakenly rejected, we253

additionally mask out sensitive tokens in the top-p254

range to clarify the benign intention of the prompt.255

The optimizing of πψ can be defined as:256

πψ(·|s, πθ) = πθ(·|s)/{Zp(πθ)/Zsensitive(πθ)}
(7)257

when the action space is V p/sensitive
πθ .258

3.2 Logic Patch 259

The logic patch is a lightweight structure inserted 260

into the LLM structure to repair its logical con- 261

tradictions. The logical contradictions are LLM’s 262

inherent imperfection or introduced by its defense 263

strategy. Based on the insight (Dai et al., 2022) that 264

factual knowledge is stored in the Feed-Forward 265

Networks(FFNs), we hypothesize that the logical 266

relationship is also reflected in FFNs. Therefore, 267

we use the logic patch to amend the output of FFNs 268

in an LLM, in other words, to fix the logical contra- 269

diction. In this way, the lightweight trainable logic 270

patch fixes logical contradictions without updating 271

the parameters of the LLM. The logic patch has an 272

FFN-like design: an input layer, two hidden lay- 273

ers, and an output layer, but with a much smaller 274

intermediate dimension. It can be denoted as: 275

Patch(X) = (Activation(XW1 + b1))W2 + b2
(8) 276

where X is the output of the attention layer in a 277

transformer block of the LLM and Activation is 278

the activation function corresponding to the one 279

in the LLM’s FFNs. W1, b1,W2, and b2 are first 280

hidden layer weight, first hidden layer bias, sec- 281

ond hidden layer weight, and second hidden layer 282

bias respectively. Then we add the output of the 283

logic patch to the LLM’s FFN output to attain a 284

contradiction-solved model. 285

FFN ′(X) = FFN(X) + Patch(X) (9) 286

3.2.1 Training 287

The logic patch is trained only when the LLM 288

rejects a benign prompt. For example, a benign 289

prompt “how to kill a python process" is input into 290

LLM and mistakenly responded with “sorry, I can- 291

not provide assistance or information on illegal 292

or harmful activities". There is a contradiction 293

between the intention of the prompt and the expla- 294

nation given by the LLM, which will be used to 295

update the parameters of the logic patch. The patch 296

impacts the prediction for a broad set of prompts 297

close to each other in the input space, possibly in- 298

cluding the inputs without logical contradiction. 299

We set an extra goal during the training process to 300

avoid affecting logically correct inputs: 301

fϕ′(I) =

{
O′ I ∈ C

fϕ(I) I /∈ C
(10) 302

where O′ is the calibrated output and C is the spe- 303

cific range that we expect the logic patch to act 304

on. 305

4

4 Experiments306

4.1 Experimental Settings307

Models. We conducted experiments on three open-308

source large language models: Vicuna-7b (Chiang309

et al., 2023), Llama3-8b (Dubey et al., 2024), and310

Qwen2.5-7b (Yang et al., 2024) to evaluate Llm-311

Fixer.312

Helpfulness Evaluation. To evaluate the impact of313

LlmFixer on LLM’s helpfulness, we create VagueE-314

val and use JustEval(Lin et al., 2023). VagueEval315

is a collection of benign prompts that would be316

potentially rejected by defensive LLMs selected317

from Chatbot Arena (Zheng et al., 2024) and MS-318

MARCO (Nguyen et al., 2016). We choose ques-319

tions, instructions, or prompts that contain sen-320

sitive words or phrases that frequently appear in321

malicious query benchmark Advbench (Zou et al.,322

2023) and HEx-PHI (Qi et al., 2024), such as the323

example shown in Figure 1(c). The same quantity324

of malicious prompts that fails to be detected by325

the baseline defense model is collected in VagueE-326

val as well. Creation details and quality checks327

of VagueEval have been presented in Appendix D.328

Additionally, JustEval, a benchmark that analyzes329

model performance on six dimensions is employed330

to evaluate the general helpfulness of LLM. We331

adopt the False Reject Rate (FRR) and the Quality332

score as helpfulness evaluation metrics. FRR is de-333

fined as the proportion of queries rejected by LLM334

in all benign queries, which is utilized to assess the335

possibility of LLM responding to benign queries.336

Following Multi-aspect Evaluation Protocol (Lin337

et al., 2023), we use GPT-4 to evaluate responses338

across five dimensions helpfulness, clarity, factual-339

ity, depth, and engagement. The average score is340

considered to be the Quality score.341

Safety Evaluation. We use five jailbreak attacks:342

GCG (Zou et al., 2023), AutoDan (Liu et al.,343

2024b), PAIR (Chao et al., 2023), SAP30 (Deng344

et al., 2023) and DeepInception (Li et al., 2023) to345

evaluate the impact of LlmFixer on LLM’s safety.346

They are representative state-of-the-art jailbreak at-347

tacks of different types, effectively circumventing348

the internal alignment of LLM. Following previous349

works (Zou et al., 2023; Liu et al., 2024b), we adopt350

Attack Success Rate (ASR) as the safety evaluation351

metric. ASR is defined as the proportion of mali-352

cious inputs successfully inducing LLM to produce353

harmful content in all malicious inputs.354

Baselines. We consider four advanced defense355

strategies as baselines: ICD (Wei et al., 2023) en-356

hances model safety through examples that demon- 357

strate rejection to produce harmful content; PAT 358

(Mo et al., 2024) trains a prompt control attached 359

to the user prompt as a guard prefix; SafeDecoding 360

(Xu et al., 2024b) considered the trade-off between 361

helpfulness and harmlessness, introducing a safety- 362

aware decoding strategy to produce helpful and 363

harmless responses; MoGU (Du et al., 2024) trans- 364

forms the base LLM into the usable LLM and the 365

safe LLM to improve LLMs’ safety while retaining 366

their usability. 367

Implementation Details. We conduct the experi- 368

ments with GeForce RTX 3090 and Tesla V100 369

PCIE. More implementation details have been 370

shown in Appendix C. 371

4.2 Experimental Results 372

We evaluate LLMs protected by different defenses 373

with and without LlmFixer. For helpfulness eval- 374

uation, a lower FRR indicates a better willingness 375

to respond to benign inputs, and a higher Quality 376

score corresponds to better quality general perfor- 377

mance. ASR is reported for safety evaluation; the 378

lower it is, the better. The following observations 379

are made according to experimental results in Table 380

1. Items show that LlmFixer improves LLM help- 381

fulness or retains LLM safety have been bolded. 382

LlmFixer recovers the helpfulness of defen- 383

sive LLMs. The results of FFR and Quality score 384

show that defense methods weaken the helpful- 385

ness of defensive LLMs and LlmFixer recovers 386

it. Take Vicuna for example, four different de- 387

fenses cause varying degrees of increase for the 388

FRR of Vicuna on both VagueEval and JustEval. 389

The most notable item is that PAT leads to 48% 390

FFR on VagueEval, severely damaging the prob- 391

ability of responding to benign inputs for Vicuna. 392

SafeDecoding and MoGU try to keep the utility of 393

LLMs while improving safety. Though they reach 394

a low FFR on JustEval, the FRR calculated on 395

VagueEval shows that they cannot deal with vague 396

inputs, especially vaguely benign inputs. LlmFixer 397

consistently enhances all defense methods, achiev- 398

ing -12% FFR with ICD, -36% FFR with PAT, - 399

7% FFR with SafeDecoding, and -13% FFR with 400

MoGU on VagueEval. As for response quality, our 401

proposal also generally improves the Quality score 402

for LLMs equipped with defense methods. An ex- 403

ception to this is that LlmFixer does not enhance 404

the response quality of LLM with ICD. We think 405

the reason is that the in-context examples from ICD 406

have already supplemented some logical relation- 407

5

Model Defense
Helpfulness Safety (ASR↓)

VagueEval JustEval
GCG PAIR Auto SAP DeepFRR↓ Quality↑ FRR↓ Quality↑

Llama3

Llama3 11% 4.62 6% 4.74 8% 6% 0% 0% 0%
Llama3 + Llmfixer 2% 4.68 2% 4.82 10% 6% 0% 2% 0%
ICD 22% 4.57 12% 4.49 0% 0% 0% 0% 0%
ICD + LlmFixer 5% 4.58 5% 4.58 0% 0% 0% 0% 5%
PAT 31% 4.13 16% 4.36 0% 5% 2% 0% 0%
PAT + LlmFixer 6% 4.52 6% 4.79 0% 4% 2% 0% 0%
SafeDecoding 10% 4.71 6% 4.79 0% 4% 0% 0% 0%
SafeDecoding + LlmFixer 6% 4.76 3% 4.82 0% 3% 2% 0% 0%
MoGU 15% 4.82 5% 4.77 2% 0% 0% 0% 0%
MoGU + LlmFixer 2% 4.86 0% 4.88 2% 0% 0% 0% 0%

Qwen2.5

Qwen 9% 4.14 4% 4.23 22% 14% 18% 25% 36%
Qwen + LlmFixer 0% 4.15 0% 4.20 16% 14% 8% 3% 32%
ICD 15% 4.26 9% 4.17 0% 8% 0% 0% 100%
ICD + LlmFixer 5% 4.26 1% 4.22 0% 8% 0% 0% 100%
PAT 39% 3.82 17% 3.90 2% 12% 6% 0% 59%
PAT + LlmFixer 9% 4.08 9% 3.92 1% 12% 8% 0% 50%
SafeDecoding 12% 4.24 2% 4.24 0% 4% 0% 0% 100%
SafeDecoding + LlmFixer 7% 4.17 2% 4.18 2% 2% 0% 0% 78%
MoGU 11% 4.35 3% 4.32 4% 18% 32% 0% 20%
MoGU + LlmFixer 4% 4.35 0% 4.34 4% 16% 16% 0% 20%

Vicuna

Vicuna 6% 4.10 2% 4.29 62% 40% 32% 60% 100%
Vicuna + LlmFixer 2% 4.12 0% 4.29 52% 34% 29% 42% 66%
ICD 17% 3.97 8% 4.25 38% 32% 26% 47% 100%
ICD + LlmFixer 5% 3.97 1% 4.34 32% 28% 22% 47% 80%
PAT 48% 3.22 15% 3.76 1% 28% 5% 0% 78%
PAT + LlmFixer 10% 3.78 2% 4.12 1% 20% 2% 0% 66%
SafeDecoding 11% 4.18 5% 4.28 18% 26% 24% 49% 100%
SafeDecoding + LlmFixer 4% 4.30 4% 4.30 19% 24% 24% 50% 76%
MoGU 13% 4.15 6% 4.08 4% 4% 0% 70% 0%
MoGU + LlmFixer 0% 4.16 0% 4.22 4% 3% 0% 72% 0%

Table 1: The helpfulness and safety evaluation of LLMs protected by different defenses with and without LlmFixer.

ships to LLMs. Extensive experiments prove that408

LlmFixer successfully fixes the helpfulness of de-409

fensive LLMs. This achievement is more notable410

in Llama3 and we attribute this phenomenon to the411

strict internal alignment of Llama3. The more con-412

servative a LLM is, the more notable our proposal413

performs.414

LlmFixer preserves the safety of defensive415

LLMs. For each row in Table 1, the ASR of five416

jailbreak attacks is reported to present safety. Llm-417

Fixer barely causes the growth of ASR compared418

to the non-LlmFixer item and even facilitates re-419

duction. It shows that LlmFixer allows the original420

defenses of LLM to play their role when they col-421

laborate. We deem that the slight reduction of ASR422

is caused by the input discretization contributed by423

the prompt re-writer. The re-writer amplifies the 424

intention of malicious inputs and exposes it to the 425

defense mechanism, leading to a lower ASR. 426

LlmFixer is universally effective. We tested 427

LlmFixer on three LLMs with four defense meth- 428

ods. Our proposal shows universal effectiveness for 429

input-focused defense like ICD and PAT, or LLM- 430

focused defense like SafeDecoding and MoGU. 431

It works notably on strong alignment LLMs like 432

Llama3. Additionally, we evaluate LlmFixer on 433

Qwen2.5 with different parameter counts to demon- 434

strate how our method performs on smaller and 435

larger LLMs. As shown in Table 2, LlmFixer makes 436

a huge improvement in the helpfulness of Qwen2.5- 437

0.5b and a relatively small increase in the helpful- 438

ness of Qwen2.5-32b. It indicates that the smaller 439

6

LLM
Defense

Helpfulness Safety (ASR↓)

Qwen2.5
VagueEval JustEval

GCG PAIR Auto SAP DeepFRR↓ Quality↑ FRR↓ Quality↑

0.5b
ICD 22% 4.12 14% 4.02 0% 8% 0% 0% 100%
ICD+LlmFixer 7% 4.26 1% 4.06 0% 7% 1% 0% 78%

7b
ICD 15% 4.26 9% 4.17 0% 8% 0% 0% 100%
ICD+LlmFixer 5% 4.26 1% 4.22 0% 8% 0% 0% 100%

32b
ICD 9% 4.35 4% 4.24 0% 4% 0% 0% 100%
ICD+LlmFixer 5% 4.36 0% 4.24 0% 4% 0% 0% 26%

Table 2: Study on how LlmFixer works on LLMs with different sizes.

Defense Ablation
Helpfulness Safety (ASR↓)

VagueEval JustEval
GCG PAIR Auto SAP DeepFRR↓ Quality↑ FRR↓ Quality↑

ICD
LlmFixer 5% 3.97 1% 4.34 32% 28% 22% 47% 80%
w/o re-writer 18% 3.96 7% 4.29 38% 32% 24% 42% 100%
w/o logic patch 5% 3.97 2% 4.29 32% 29% 22% 42% 80%

PAT
LlmFixer 10% 3.78 2% 4.12 1% 20% 2% 0% 66%
w/o re-writer 32% 3.31 14% 4.03 1% 27% 5% 0% 78%
w/o logic patch 25% 3.49 8% 3.88 1% 20% 2% 0% 67%

SafeDecoding
LlmFixer 4% 4.30 4% 4.30 19% 24% 24% 50% 76%
w/o re-writer 10% 4.24 5% 4.28 18% 26% 24% 49% 100%
w/o logic patch 7% 4.19 4% 4.29 19% 23% 24% 52% 76%

MoGU
LlmFixer 0% 4.16 0% 4.22 4% 3% 0% 72% 0%
w/o re-writer 10% 4.15 5% 4.19 4% 3% 0% 70% 0%
w/o logic patch 4% 4.16 2% 4.10 4% 4% 0% 70% 0%

Table 3: Ablation study to verify the significance of two components of LlmFixer.

the parameter size of an LLM, the better LlmFixer440

can fix it. We speculate that the reason for this is441

that a larger LLM has greater capability of compre-442

hension and there are fewer understanding flaws443

for LlmFixer to fix. The safety results show that444

LLM size does not affect how LlmFixer retains the445

safety of LLMs. After testing LlmFixer with dif-446

ferent jailbreak methods, defense methods, LLM447

types and LLM sizes, we show when our method448

is working and which models benefited from our449

method. To sum up, LlmFixer is universally effec-450

tive and especially helpful on strictly aligned and451

smaller LLMs.452

LlmFixer causes a low computation cost. Llm-453

Fixer brings extra runtime mainly because of the454

re-writing process. We use a GPT-2 with 345M455

parameters as the re-writer to be the pre-model of456

an LLM scaled nearly 7b or even larger. For which,457

LlmFixer approximately introduces an additional458

runtime cost of less than one-twentieth.459

4.3 Ablation Study460

We conduct ablation studies to verify the signif-461

icance of two components of LlmFixer. The ab-462

lation results of Vicuna are shown in Table 2: the 463

prompt re-writer and the logic patch separately play 464

their part to enhance helpfulness. In most cases, 465

defenses with the re-writer and the logic patch out- 466

perform defenses with only one module. We also 467

observe that the prompt re-writer contributes more 468

improvement on FFR than the logic patch. Espe- 469

cially for ICD, the logic patch barely has any im- 470

pact. For safety evaluation, both the re-writer and 471

the patch preserve the original safety outcome con- 472

tributed by the defense methods or LLM’s internal 473

alignment. The prompt re-writer further contributes 474

to a slight reduction of ASR. More experimental 475

results on Llama3 and Qwen2.5 are presented in 476

Appendix A.1. 477

Besides GPT2, we evaluate MobileLLM, Galac- 478

tica, and TinyLLama to be the base of the re-writer. 479

Table in Appendix A.2 shows that LlmFixer with 480

all LMs are effective and GPT2-based LlmFixer 481

slightly surpasses others. We attribute it to GPT2 482

excelling in coherence and grammatical accuracy 483

and its architectural advantage enables it to better 484

understand and generate high-quality text in rewrit- 485

7

ing tasks.486

We also conduct a transferability study. We train487

LlmFixer on Qwen2.5 as direct LlmFixer and on488

Vicuna as transferred LlmFixer. Then we evaluate489

both of them on Qwen2.5. According to results490

shown in Appendix A.3, the direct version gen-491

erally outperforms the transferred version. But492

LlmFixer still shows fair transferability as the trans-493

ferred version surpasses the LLM without it.494

4.4 Parameter Sensitivity Analysis495

Hyperparameter sensitivity analysis is conducted496

on Vicuna equipped with ICD. We mainly focus497

on the two key parameters: p in Equation 7, which498

denotes the number of top tokens in the NLPO op-499

timization process, and d, which represents the in-500

termediate dimension of the logic patch. As shown501

in Figure 3, we obtain the best FFR when p = 0.5.502

A large p could mask out excessive tokens, causing503

the rewritten prompts to deviate from the original504

meaning. With the increase of d, the FFR tends to505

decrease. It demonstrates that a larger logic patch506

supplements more logical relationships. Neither p507

nor d affects the ASR result of jailbreak attacks.508

Figure 3: Hyper-parameter sensitivity analysis.

5 Related Works1509

Jailbreak Attacks on LLMs. A jailbreak attack510

on LLMs is an intentional design of prompts to trig-511

ger LLMs to produce harmful content by circum-512

venting the alignment for LLMs. Several effective513

ways to construct jailbreak prompts are as follows.514

Manual Design: People manually design jailbreak515

prompts to induce harmful outputs from LLMs516

(Deng et al., 2023; Li et al., 2023). Gradient-517

based Generation: Considering textual inputs of518

1Because of the page limitation, the intact ’Related Works’
with more details are presented in the Appendix B.

LLMs are discrete data, there is no direct gradient 519

signal when trying to optimize jailbreak prompts. 520

To solve this problem, (Zou et al., 2023) introduced 521

Greedy Coordinate Gradient-based Search (GCG). 522

Reinforcement Learning Generation: Reinforce- 523

ment learning (RL) is another feasible way for 524

heuristic optimization (Kassem and Saad, 2024). 525

Jailbreak Defenses. Aligning LLMs by Su- 526

pervised Fine-Tuning (SFT) (Ouyang et al., 527

2022), Reinforcement Learning from Human Feed- 528

back(RLHF) (Ouyang et al., 2022), Direct Prompt 529

Optimization (DPO) (Rafailov et al., 2024) or other 530

methods (Lee et al., 2023; Chen et al., 2024) is 531

becoming a regular step before LLMs are released. 532

However, extra defensive strategies beyond align- 533

ment are required after numerous jailbreak attacks 534

that intentionally bypass LLMs’ built-in safety 535

mechanisms are proposed. Jailbreak defenses can 536

be briefly divided into LLM-focused methods and 537

input-focused methods. 538

Trade-off Between Helpfulness and Safety. 539

Large language models have a trade-off between 540

helpfulness and safety when defending against jail- 541

break. Some works attempt to improve LLMs’ 542

robustness against jailbreak attacks while main- 543

taining their helpfulness (Xu et al., 2024b). For 544

example, MoGU framework (Du et al., 2024) is 545

proposed to train the base LLM into two variants: 546

the helpful LLM and the safe LLM, and utilize 547

dynamic routing to flexibly choose either version. 548

And (Ji et al., 2024) invents a smoothing-based de- 549

fense SEMANTICSMOOTH that aggregates the 550

predictions of multiple semantically transformed 551

copies of a given input prompt to balance the trade- 552

off. Though some discussion occurred about the 553

trade-off between helpfulness and safety in LLM 554

jailbreak defense, this phenomenon has not been se- 555

riously analyzed and the problem is not well solved. 556

6 Conclusion 557

This paper proposes a novel framework, LlmFixer, 558

to handle the over-defense problem of large lan- 559

guage models. We trained an input prompt re- 560

writer based on Reinforcement Learning from LLM 561

Feedback to clarify the intention of input prompts 562

and proposed a logic patch to repair the logic in- 563

consistencies of LLMs. Quantitative evaluation of 564

three mature large language models and five jail- 565

break attacks with four defenses demonstrates the 566

superiority of our proposal. 567

8

7 Limitations568

While the proposed LImFixer framework demon-569

strates promising results in recovering the helpful-570

ness of defensive LLMs, several limitations warrant571

consideration. The logic patch’s design hinges on572

the assumption that logical relationships are primar-573

ily embedded in FeedForward Networks (FFNs),574

which might not hold for models with divergent575

architectures, limiting its universal applicability.576

Compatibility challenges may also arise with dy-577

namically updated defense mechanisms, as Llm-578

Fixer assumes static defense strategies. Finally,579

while the framework preserves safety metrics un-580

der tested scenarios, its robustness against sophis-581

ticated, multi-step adversarial attacks remains un-582

certain, necessitating further exploration. These583

limitations underscore the need for broader val-584

idation, architectural adaptability, and enhanced585

efficiency to strengthen the framework’s practical586

utility.587

8 Ethics Statement588

This work adheres to ethical research practices by589

utilizing publicly available datasets (e.g., VagueE-590

val, JustEval, MSMARCO) and ensuring compli-591

ance with data usage guidelines. The VagueE-592

val dataset, constructed from benign prompts in593

Chatbot Arena and MSMARCO, prioritizes non-594

sensitive content to avoid privacy violations. All595

code, datasets, and artifacts are open-sourced to596

foster transparency, reproducibility, and commu-597

nity scrutiny. However, risks persist: despite safety598

enhancements, malicious actors might exploit the599

framework to bypass defenses or amplify harm-600

ful outputs, particularly if adversarial techniques601

evolve beyond tested scenarios. While the logic602

patch and re-writer mitigate over-defensiveness,603

no system is impervious to novel attack vectors.604

We advocate for ongoing monitoring, rigorous test-605

ing, and collaborative efforts to address emergent606

vulnerabilities, balancing utility and safety in real-607

world LLM deployments.608

References609

Raviteja Anantha, Svitlana Vakulenko, Zhucheng Tu,610
Shayne Longpre, Stephen Pulman, and Srinivas611
Chappidi. 2021. Open-domain question answering612
goes conversational via question rewriting. In Pro-613
ceedings of the 2021 Conference of the North Amer-614
ican Chapter of the Association for Computational615

Linguistics: Human Language Technologies, pages 616
520–534. 617

Federico Bianchi, Mirac Suzgun, Giuseppe Attanasio, 618
Paul Rottger, Dan Jurafsky, Tatsunori Hashimoto, 619
and James Zou. 2024. Safety-tuned llamas: Lessons 620
from improving the safety of large language models 621
that follow instructions. In The Twelfth International 622
Conference on Learning Representations. 623

Patrick Chao, Alexander Robey, Edgar Dobriban, 624
Hamed Hassani, George J Pappas, and Eric Wong. 625
2023. Jailbreaking black box large language models 626
in twenty queries. arXiv preprint arXiv:2310.08419. 627

Kai Chen, Chunwei Wang, Kuo Yang, Jianhua Han, 628
HONG Lanqing, Fei Mi, Hang Xu, Zhengying Liu, 629
Wenyong Huang, Zhenguo Li, and 1 others. 2024. 630
Gaining wisdom from setbacks: Aligning large lan- 631
guage models via mistake analysis. In The Twelfth 632
International Conference on Learning Representa- 633
tions. 634

Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng, 635
Zhanghao Wu, Hao Zhang, Lianmin Zheng, Siyuan 636
Zhuang, Yonghao Zhuang, Joseph E Gonzalez, and 637
1 others. 2023. Vicuna: An open-source chatbot 638
impressing gpt-4 with 90%* chatgpt quality. See 639
https://vicuna. lmsys. org (accessed 14 April 2023), 640
2(3):6. 641

Lin Chin-Yew. 2004. Rouge: A package for automatic 642
evaluation of summaries. In Proceedings of the Work- 643
shop on Text Summarization Branches Out, 2004. 644

Paul F Christiano, Jan Leike, Tom Brown, Miljan Mar- 645
tic, Shane Legg, and Dario Amodei. 2017. Deep 646
reinforcement learning from human preferences. Ad- 647
vances in neural information processing systems, 30. 648

Damai Dai, Li Dong, Yaru Hao, Zhifang Sui, Baobao 649
Chang, and Furu Wei. 2022. Knowledge neurons in 650
pretrained transformers. In Proceedings of the 60th 651
Annual Meeting of the Association for Computational 652
Linguistics (Volume 1: Long Papers), pages 8493– 653
8502. 654

Boyi Deng, Wenjie Wang, Fuli Feng, Yang Deng, Qifan 655
Wang, and Xiangnan He. 2023. Attack prompt gen- 656
eration for red teaming and defending large language 657
models. In Findings of the Association for Computa- 658
tional Linguistics: EMNLP 2023, pages 2176–2189. 659

Yanrui Du, Sendong Zhao, Danyang Zhao, Ming Ma, 660
Yuhan Chen, Liangyu Huo, Qing Yang, Dongliang 661
Xu, and Bing Qin. 2024. Mogu: A framework for en- 662
hancing safety of open-sourced llms while preserving 663
their usability. arXiv preprint arXiv:2405.14488. 664

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, 665
Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman, 666
Akhil Mathur, Alan Schelten, Amy Yang, Angela 667
Fan, and 1 others. 2024. The llama 3 herd of models. 668
arXiv preprint arXiv:2407.21783. 669

9

Zhang-wei Hong, Idan Shenfeld, Tsun-hsuan Wang,670
Yung-sung Chuang, Aldo Pareja, James Glass, Akash671
Srivastava, and Pulkit Agrawal. 2024. Curiosity-672
driven red-teaming for large language models. In673
International Conference on Learning Representa-674
tions.675

Jiabao Ji, Bairu Hou, Alexander Robey, George J Pap-676
pas, Hamed Hassani, Yang Zhang, Eric Wong, and677
Shiyu Chang. 2024. Defending large language mod-678
els against jailbreak attacks via semantic smoothing.679
arXiv preprint arXiv:2402.16192.680

Aly Kassem and Sherif Saad. 2024. Finding a needle681
in the adversarial haystack: A targeted paraphrasing682
approach for uncovering edge cases with minimal683
distribution distortion. In Proceedings of the 18th684
Conference of the European Chapter of the Associa-685
tion for Computational Linguistics (Volume 1: Long686
Papers), pages 552–572.687

Aounon Kumar, Chirag Agarwal, Suraj Srinivas, Soheil688
Feizi, and Hima Lakkaraju. 2023. Certifying llm689
safety against adversarial prompting. arXiv preprint690
arXiv:2309.02705.691

Raz Lapid, Ron Langberg, and Moshe Sipper. 2024.692
Open sesame! universal black-box jailbreaking of693
large language models. In ICLR 2024 Workshop on694
Secure and Trustworthy Large Language Models.695

Harrison Lee, Samrat Phatale, Hassan Mansoor, Kellie696
Lu, Thomas Mesnard, Colton Bishop, Victor Car-697
bune, and Abhinav Rastogi. 2023. Rlaif: Scaling698
reinforcement learning from human feedback with ai699
feedback. arXiv preprint arXiv:2309.00267.700

Haoran Li, Dadi Guo, Wei Fan, Mingshi Xu, Jie Huang,701
Fanpu Meng, and Yangqiu Song. Multi-step jail-702
breaking privacy attacks on chatgpt. In The 2023703
Conference on Empirical Methods in Natural Lan-704
guage Processing.705

Xuan Li, Zhanke Zhou, Jianing Zhu, Jiangchao Yao,706
Tongliang Liu, and Bo Han. 2023. Deepinception:707
Hypnotize large language model to be jailbreaker.708
arXiv preprint arXiv:2311.03191.709

Zeyi Liao and Huan Sun. 2024. Amplegcg: Learning a710
universal and transferable generative model of adver-711
sarial suffixes for jailbreaking both open and closed712
llms. arXiv preprint arXiv:2404.07921.713

Bill Yuchen Lin, Abhilasha Ravichander, Ximing Lu,714
Nouha Dziri, Melanie Sclar, Khyathi Chandu, Chan-715
dra Bhagavatula, and Yejin Choi. 2023. The unlock-716
ing spell on base llms: Rethinking alignment via717
in-context learning. In The Twelfth International718
Conference on Learning Representations.719

Jiaxu Liu, Xiangyu Yin, Sihao Wu, Jianhong Wang,720
Meng Fang, Xinping Yi, and Xiaowei Huang. 2024a.721
Tiny refinements elicit resilience: Toward efficient722
prefix-model against llm red-teaming. arXiv preprint723
arXiv:2405.12604.724

Xiaogeng Liu, Nan Xu, Muhao Chen, and Chaowei 725
Xiao. 2024b. Autodan: Generating stealthy jailbreak 726
prompts on aligned large language models. In The 727
Twelfth International Conference on Learning Repre- 728
sentations. 729

Zichuan Liu, Zefan Wang, Linjie Xu, Jinyu Wang, 730
Lei Song, Tianchun Wang, Chunlin Chen, Wei 731
Cheng, and Jiang Bian. 2024c. Protecting your 732
llms with information bottleneck. arXiv preprint 733
arXiv:2404.13968. 734

Yichuan Mo, Yuji Wang, Zeming Wei, and Yisen Wang. 735
2024. Studious bob fight back against jailbreak- 736
ing via prompt adversarial tuning. arXiv preprint 737
arXiv:2402.06255. 738

Tri Nguyen, Mir Rosenberg, Xia Song, Jianfeng Gao, 739
Saurabh Tiwary, Rangan Majumder, and Li Deng. 740
2016. Ms marco: A human-generated machine read- 741
ing comprehension dataset. 742

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, 743
Carroll Wainwright, Pamela Mishkin, Chong Zhang, 744
Sandhini Agarwal, Katarina Slama, Alex Ray, and 1 745
others. 2022. Training language models to follow in- 746
structions with human feedback. Advances in neural 747
information processing systems, 35:27730–27744. 748

Anselm Paulus, Arman Zharmagambetov, Chuan Guo, 749
Brandon Amos, and Yuandong Tian. 2024. Ad- 750
vprompter: Fast adaptive adversarial prompting for 751
llms. arXiv preprint arXiv:2404.16873. 752

Julien Piet, Maha Alrashed, Chawin Sitawarin, Sizhe 753
Chen, Zeming Wei, Elizabeth Sun, Basel Alomair, 754
and David Wagner. 2023. Jatmo: Prompt injection 755
defense by task-specific finetuning. arXiv preprint 756
arXiv:2312.17673. 757

Xiangyu Qi, Yi Zeng, Tinghao Xie, Pin-Yu Chen, Ruoxi 758
Jia, Prateek Mittal, and Peter Henderson. 2024. Fine- 759
tuning aligned language models compromises safety, 760
even when users do not intend to! In International 761
Conference on Learning Representations. 762

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, 763
Dario Amodei, Ilya Sutskever, and 1 others. 2019. 764
Language models are unsupervised multitask learn- 765
ers. 766

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christo- 767
pher D Manning, Stefano Ermon, and Chelsea Finn. 768
2024. Direct preference optimization: Your language 769
model is secretly a reward model. Advances in Neu- 770
ral Information Processing Systems, 36. 771

Rajkumar Ramamurthy, Prithviraj Ammanabrolu, 772
Kianté Brantley, Jack Hessel, Rafet Sifa, Christian 773
Bauckhage, Hannaneh Hajishirzi, and Yejin Choi. 774
2023. Is reinforcement learning (not) for natural 775
language processing: Benchmarks, baselines, and 776
building blocks for natural language policy optimiza- 777
tion. In The Eleventh International Conference on 778
Learning Representations. 779

10

John Schulman, Filip Wolski, Prafulla Dhariwal,780
Alec Radford, and Oleg Klimov. 2017. Proxi-781
mal policy optimization algorithms. arXiv preprint782
arXiv:1707.06347.783

Taylor Shin, Yasaman Razeghi, Robert L Logan IV,784
Eric Wallace, and Sameer Singh. 2020. Autoprompt:785
Eliciting knowledge from language models with au-786
tomatically generated prompts. In Proceedings of the787
2020 Conference on Empirical Methods in Natural788
Language Processing (EMNLP), pages 4222–4235.789

Chawin Sitawarin, Norman Mu, David Wagner, and790
Alexandre Araujo. 2024. Pal: Proxy-guided black-791
box attack on large language models. arXiv preprint792
arXiv:2402.09674.793

Sam Toyer, Olivia Watkins, Ethan Adrian Mendes,794
Justin Svegliato, Luke Bailey, Tiffany Wang, Isaac795
Ong, Karim Elmaaroufi, Pieter Abbeel, Trevor Dar-796
rell, and 1 others. 2023. Tensor trust: Interpretable797
prompt injection attacks from an online game. arXiv798
preprint arXiv:2311.01011.799

Yi-Lin Tuan, Xilun Chen, Eric Michael Smith,800
Louis Martin, Soumya Batra, Asli Celikyilmaz,801
William Yang Wang, and Daniel M Bikel. 2024. To-802
wards safety and helpfulness balanced responses via803
controllable large language models. arXiv preprint804
arXiv:2404.01295.805

walkerspider. 2022. Dan is my new friend.806

Eric Wallace, Shi Feng, Nikhil Kandpal, Matt Gardner,807
and Sameer Singh. 2019. Universal adversarial trig-808
gers for attacking and analyzing nlp. In Proceedings809
of the 2019 Conference on Empirical Methods in Nat-810
ural Language Processing and the 9th International811
Joint Conference on Natural Language Processing812
(EMNLP-IJCNLP), pages 2153–2162.813

Alexander Wei, Nika Haghtalab, and Jacob Steinhardt.814
2024. Jailbroken: How does llm safety training fail?815
Advances in Neural Information Processing Systems,816
36.817

Zeming Wei, Yifei Wang, and Yisen Wang. 2023.818
Jailbreak and guard aligned language models with819
only few in-context demonstrations. arXiv preprint820
arXiv:2310.06387.821

Nevan Wichers, Carson Denison, and Ahmad Beirami.822
2024. Gradient-based language model red teaming.823
In Proceedings of the 18th Conference of the Euro-824
pean Chapter of the Association for Computational825
Linguistics (Volume 1: Long Papers), pages 2862–826
2881.827

Xilie Xu, Keyi Kong, Ning Liu, Lizhen Cui, Di Wang,828
Jingfeng Zhang, and Mohan Kankanhalli. 2024a. An829
llm can fool itself: A prompt-based adversarial attack.830
In The Twelfth International Conference on Learning831
Representations.832

Zhangchen Xu, Fengqing Jiang, Luyao Niu, Jinyuan 833
Jia, Bill Yuchen Lin, and Radha Poovendran. 834
2024b. Safedecoding: Defending against jailbreak 835
attacks via safety-aware decoding. arXiv preprint 836
arXiv:2402.08983. 837

An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, 838
Bo Zheng, Bowen Yu, Chengyuan Li, Dayiheng Liu, 839
Fei Huang, Haoran Wei, and 1 others. 2024. Qwen2. 840
5 technical report. arXiv preprint arXiv:2412.15115. 841

Yihao Zhang and Zeming Wei. 2024. Boosting jailbreak 842
attack with momentum. In ICLR 2024 Workshop on 843
Reliable and Responsible Foundation Models. 844

Zhexin Zhang, Yida Lu, Jingyuan Ma, Di Zhang, Rui 845
Li, Pei Ke, Hao Sun, Lei Sha, Zhifang Sui, Hongning 846
Wang, and 1 others. 2024. Shieldlm: Empowering 847
llms as aligned, customizable and explainable safety 848
detectors. arXiv preprint arXiv:2402.16444. 849

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan 850
Zhuang, Zhanghao Wu, Yonghao Zhuang, Zi Lin, 851
Zhuohan Li, Dacheng Li, Eric Xing, and 1 others. 852
2024. Judging llm-as-a-judge with mt-bench and 853
chatbot arena. Advances in Neural Information Pro- 854
cessing Systems, 36. 855

Andy Zou, Zifan Wang, J Zico Kolter, and Matt Fredrik- 856
son. 2023. Universal and transferable adversarial 857
attacks on aligned language models. arXiv preprint 858
arXiv:2307.15043. 859

A Ablation Study 860

A.1 Ablation Studies on Llama3 and Qwen2.5 861

Ablation Studies on Llama3 and Qwen2.5 are pre- 862

sented in Table 4. 863

A.2 Ablation Studies on other LM as 864

pretrained re-writer 865

Besides GPT2, we evaluate MobileLLM, Galac- 866

tica, and TinyLLama to be the base of the re-writer. 867

Table 5 shows that LlmFixer with all LMs are effec- 868

tive and GPT2-based LlmFixer slightly surpasses 869

others. 870

A.3 Transfer Study 871

We train LlmFixer on Qwen2.5 as direct LlmFixer 872

and on Vicuna as transferred LlmFixer. Then we 873

evaluate both of them on Qwen2.5. According to 874

Table 6, the direct version generally outperforms 875

the transferred version. But LlmFixer still shows 876

fair transferability as the transferred version sur- 877

passes the LLM without it. 878

11

Model Defense Ablation

Helpfulness Safety (ASR)
VagueEval JustEval

GCG PAIR AutoDSAP DeepFRR Quality FRR Quality

Llama3

ICD
LlmFixer 5% 4.58 5% 4.58 0% 0% 0% 0% 5%
w/o re-writer 21% 4.26 9% 4.41 0% 0% 0% 0% 5%
w/o logic patch 8% 4.27 2% 4.45 0% 0% 2% 3% 2%

PAT
LlmFixer 6% 4.52 6% 4.79 0% 4% 2% 0% 0%
w/o re-writer 28% 4.39 13% 4.39 0% 4% 1% 0% 5%
w/o logic patch 9% 4.47 8% 4.22 0% 4% 2% 2% 0%

SafeDecoding
LlmFixer 6% 4.76 3% 4.82 0% 3% 2% 0% 0%
w/o re-writer 19% 4.04 5% 4.28 5% 1% 2% 4% 0%
w/o logic patch 2% 4.86 0% 4.88 2% 0% 0% 0% 0%

MoGU
LlmFixer 2% 4.06 0% 4.28 2% 0% 0% 0% 0%
w/o re-writer 10% 3.85 4% 4.11 4% 0% 0% 23% 0%
w/o logic patch 4% 4.03 2% 4.02 2% 0% 0% 0% 0%

Qwen2.5

ICD
LlmFixer 5% 4.26 1% 4.22 0% 8% 0% 0% 100%
w/o re-writer 13% 4.06 5% 3.90 0% 9% 0% 0% 95%
w/o logic patch 13% 3.92 2% 3.92 2% 7% 0% 0% 100%

PAT
LlmFixer 9% 4.08 9% 3.92 1% 12% 8% 0% 50%
w/o re-writer 32% 3.96 15% 3.61 0% 15% 5% 0% 50%
w/o logic patch 26% 3.78 8% 3.59 5% 10% 8% 0% 67%

SafeDecoding
LlmFixer 7% 4.17 2% 4.18 2% 2% 0% 0% 78%
w/o re-writer 10% 3.85 2% 3.89 2% 2% 2% 5% 60%
w/o logic patch 8% 3.70 2% 4.04 2% 2% 0% 0% 76%

MoGU
LlmFixer 4% 4.35 0% 4.34 4% 16% 16% 0% 20%
w/o re-writer 5% 3.95 4% 4.03 4% 18% 20% 0% 15%
w/o logic patch 8% 3.95 6% 3.99 4% 18% 20% 0% 17%

Table 4: Ablation Study on Llama3 and Qwen2.5.

Defense choice of LM

Helpfulness Safety (ASR↓)

VagueEval JustEval
GCG PAIR Auto SAP DeepFRR Quality FRR Quality

ICD

GPT2(LlmFixer) 5% 3.97 1% 4.34 32% 28% 22% 47% 80%
MobileLLM 8% 3.96 7% 4.02 33% 24% 24% 48% 100%
Galactica 8% 3.88 5% 4.08 54% 25% 26% 32% 95%
TinyLlama 6% 3.92 4% 4.28 32% 22% 22% 42% 78%

PAT

GPT2(LlmFixer) 10% 3.78 2% 4.12 1% 20% 2% 0% 66%
MobileLLM 11% 3.31 16% 4.03 1% 27% 5% 0% 78%
Galactica 11% 3.42 12% 4.11 2% 24% 4% 0% 88%
TinyLlama 11% 3.33 8% 3.98 1% 20% 2% 0% 69%

SafeDecoding

GPT2(LlmFixer) 4% 4.30 4% 4.30 19% 24% 24% 50% 76%
MobileLLM 5% 3.92 5% 4.29 27% 25% 25% 70% 82%
Galactica 4% 4.28 5% 4.28 18% 26% 24% 49% 100%
TinyLlama 5% 4.12 4% 4.29 19% 23% 24% 52% 76%

MoGU

GPT2(LlmFixer) 0% 4.16 0% 4.22 4% 3% 0% 72% 0%
MobileLLM 0% 4.01 0% 4.20 8% 8% 0% 83% 0%
Galactica 2% 4.15 0% 4.19 4% 3% 0% 70% 0%
TinyLlama 4% 4.16 0% 4.07 4% 2% 0% 56% 0%

Table 5: Ablation study to find out whether choice of LLM affects LlmFixer.

12

Defense Transferability
VagueEval JustEval

GCG PAIR Auto SAP DeepFRR↓ Quality↑ FRR↓ Quality↑

PAT
w/o LlmFixer 39% 3.82 17% 3.90 2% 12 % 6% 0% 59%

direct 9% 4.08 9% 3.92 1% 12% 8% 0% 50%
transferred 32% 3.93 10% 3.90 2% 12% 9% 0% 56%

MoGU
w/o LlmFixer 11% 4.35 3% 4.32 4% 18% 32% 0% 20%

direct 4% 4.35 0% 4.34 4% 16% 16% 0% 20%
transferred 9% 4.33 0% 4.32 4% 10% 15% 0% 20%

Table 6: Transferability study.

B Related Works879

An intact version of Related Works with more de-880

tails is presented here.881

Jailbreak Attacks on LLMs. A jailbreak attack882

on LLMs is an intentional design of prompts to883

trigger LLMs to produce harmful content by cir-884

cumventing the alignment for LLMs. Several ef-885

fective ways to construct jailbreak prompts are as886

follows. Manual Design: People manually design887

jailbreak prompts to induce harmful outputs from888

LLMs (Deng et al., 2023; Li et al., 2023). A typical889

method is DAN (walkerspider, 2022) which stands890

for "do anything now", trying to break the con-891

straint of alignment in LLM by telling the chatbot892

to act like a specific role. More role-play (Li et al.)893

and in-context (Wei et al., 2023) attacking methods894

are proposed inspired by DAN. Importantly, the895

paper of (Wei et al., 2024) pointed out two fail-896

ure modes of LLM safety: competing objectives897

and mismatched generalization, guiding the pro-898

duction of hand-crafted jailbreak prompts. For the899

good of the research on jailbreak attacks, (Toyer900

et al., 2023) proposed a dataset created by players901

of an online game called Tensor Trust, containing902

over 126,000 prompt injection attacks and 46,000903

defenses. Gradient-based Generation: Consider-904

ing textual inputs of LLMs are discrete data, there905

is no direct gradient signal when trying to opti-906

mize jailbreak prompts. To solve this problem,907

(Zou et al., 2023) introduced Greedy Coordinate908

Gradient-based Search (GCG). GCG employs the909

gradients associated with one-hot encoded token910

indicators to identify a selection of potential substi-911

tutes for each token slot. Subsequently, it evaluates912

the impact of these alternatives through forward913

propagation. GCG is a simple extension of the914

optimization method in AutoPrompt (Shin et al.,915

2020) and they both apply the key idea of Uni-916

versal Adversarial Triggers (UAT) (Wallace et al.,917

2019) which proposed to generate a set of tokens918

that induce a model to output a specific predic-919

tion when concatenated to any input. A series of 920

gradient-based jailbreak methods (Wichers et al., 921

2024; Sitawarin et al., 2024; Liao and Sun, 2024; 922

Zhang and Wei, 2024) are postulated after GCG. 923

Reinforcement Learning Generation: Reinforce- 924

ment learning (RL) is another feasible way for 925

heuristic optimization (Kassem and Saad, 2024). 926

In (Hong et al., 2024), curiosity-driven red teaming 927

(CRT) for LLMs based on RL is put forward to ob- 928

tain larger coverage of generated jailbreak prompts 929

while maintaining effectiveness compared to other 930

existing RL methods. (Kassem and Saad, 2024) 931

proposed Targeted Paraphrasing via RL (TPRL) to 932

automatically learn a policy to generate adversar- 933

ial samples from language models. Besides, other 934

heuristic learning methods like genetic algorithm 935

(Lapid et al., 2024; Liu et al., 2024b) and LLM at- 936

tacking LLM (Xu et al., 2024a; Paulus et al., 2024) 937

are also applied in generating jailbreak prompts. 938

Jailbreak Defenses. Aligning LLMs by Su- 939

pervised Fine-Tuning (SFT) (Ouyang et al., 940

2022), Reinforcement Learning from Human Feed- 941

back(RLHF) (Ouyang et al., 2022), Direct Prompt 942

Optimization (DPO) (Rafailov et al., 2024) or other 943

methods (Lee et al., 2023; Chen et al., 2024) is 944

becoming a regular step before LLMs are released. 945

However, extra defensive strategies beyond align- 946

ment are required after numerous jailbreak attacks 947

that intentionally bypass LLMs’ built-in safety 948

mechanisms are proposed. Jailbreak defenses can 949

be briefly divided into LLM-focused methods and 950

input-focused methods. LLM-focused methods 951

alter LLM itself to enhance its safety. Fine-tuning 952

LLMs with safety data (Piet et al., 2023) is one of 953

the most common LLM-focused methods. (Bianchi 954

et al., 2024) proved that safety instruction tuning 955

successfully increases the general safety of an LLM 956

when the quantity of safety data is appropriate. 957

While input-focused methods refer to detecting 958

and revising prompts before they are input into 959

LLMs without changing the structure and parame- 960

13

ters of LLMs. For instance, IBProtector (Liu et al.,961

2024c) is proposed to compress input prompts to962

maintain only essential information for the target963

LLMs to respond to defend against jailbreak. (Mo964

et al., 2024; Liu et al., 2024a; Wei et al., 2023) gen-965

erate additional defensive tokens on original input966

prompts to defend against jailbreak. (Ji et al., 2024)967

introduces a set of seven semantics-preserving968

transformations to reconstruct input prompts.969

Trade-off Between Helpfulness and Safety.970

Large language models have a trade-off between971

helpfulness and safety when defending against jail-972

break. The results of the experiment in (Bianchi973

et al., 2024) show that a proper amount of safety974

data introduced to improve the safety of LLMs975

does not adversely impact general performance.976

However, excessive safety data can make LLM ex-977

aggerate safety, weakening its ability to answer978

general questions. (Tuan et al., 2024) put forward979

a Self-Generation and Fine-tuning paradigm, try-980

ing to make the helpfulness and safety attributes of981

LLMs controllable in different cases. Some works982

attempt to improve LLMs’ robustness against jail-983

break attacks while maintaining their helpfulness984

(Xu et al., 2024b). For example, MoGU frame-985

work (Du et al., 2024) is proposed to train the base986

LLM into two variants: the helpful LLM and the987

safe LLM, and utilize dynamic routing to flexibly988

choose either version. And (Ji et al., 2024) invents989

a smoothing-based defense SEMANTICSMOOTH990

that aggregates the predictions of multiple semanti-991

cally transformed copies of a given input prompt to992

balance the trade-off. Though some discussion oc-993

curred about the trade-off between helpfulness and994

safety in LLM jailbreak defense, this phenomenon995

has not been seriously analyzed and the problem is996

not well solved.997

C Implementation Details998

We conduct the experiments with GeForce RTX999

3090 and Tesla V100 PCIE. The prompt re-writer1000

is initialized with GPT-2 (Radford et al., 2019)1001

fine-tuned on a normal question rewriting dataset1002

QReCC (Anantha et al., 2021) and further trained1003

by NLPO with a learning rate of 5e-6. For the1004

logic patch, we concatenate it to the last layer of1005

the transformer decoder during implementation and1006

train it with a batch size of 512. Both the re-writer1007

and the patch are trained on the VagueEval train1008

set. The code and data are submitted as supplemen-1009

tary materials and will be publicly available upon1010

publication. 1011

D Dataset Details 1012

To construct the VagueEval dataset, we first iden- 1013

tify and compile a pool of benign prompts from two 1014

primary sources: Chatbot Arena and MSMARCO. 1015

These sources provide a diverse range of natural 1016

language queries and instructions that are generally 1017

considered safe and non-malicious. Next, we focus 1018

on selecting prompts that contain sensitive words 1019

or phrases. These sensitive elements are identified 1020

based on their frequent appearance in malicious 1021

query benchmarks such as Advbench and HEx- 1022

PHI. By cross-referencing these benchmarks, we 1023

ensure that the selected benign prompts have the 1024

potential to be flagged by defensive language mod- 1025

els due to the presence of these sensitive terms. 1026

And we use GPT-4 to detect the intention of in- 1027

put prompts. Those with 60% or lower confidence 1028

are defined as vague input prompts. Additionally, 1029

we collect an equal number of malicious prompts 1030

that have successfully evaded detection by a base- 1031

line defense model. These malicious prompts are 1032

carefully curated to reflect common evasion tactics 1033

used in adversarial settings. The final dataset is 1034

a balanced combination of benign prompts with 1035

sensitive content and malicious prompts that by- 1036

pass initial defenses, providing a comprehensive 1037

resource for evaluating the robustness of defensive 1038

language models. 1039

To ensure the reliability and validity of the 1040

VagueEval dataset, a rigorous quality check pro- 1041

cess is implemented. Initially, each prompt in the 1042

dataset undergoes a content review to verify the 1043

presence of sensitive words or phrases as specified 1044

in the construction criteria. This step involves man- 1045

ual inspection and automated keyword matching to 1046

confirm that the prompts align with the character- 1047

istics of both benign and malicious queries. Sub- 1048

sequently, the dataset is subjected to a consistency 1049

check, where the balance between benign and mali- 1050

cious prompts is verified to ensure that the dataset 1051

accurately represents the intended distribution. Ad- 1052

ditionally, a subset of prompts is tested against mul- 1053

tiple defense models to validate that the malicious 1054

prompts indeed evade detection while the benign 1055

prompts are appropriately flagged. This validation 1056

step helps in identifying any anomalies or misclas- 1057

sifications within the dataset. Finally, metadata 1058

associated with each prompt is reviewed for com- 1059

pleteness and accuracy, ensuring that all relevant 1060

14

information is correctly documented. By following1061

this multi-step quality check process, VagueEval1062

is ensured to be a high-quality dataset suitable for1063

evaluating the effectiveness of defensive mecha-1064

nisms in language models.1065

15

	Introduction
	Preliminaries
	Methodology
	Input Prompt Re-writer
	Reinforcement Learning from LLM Feedback
	Reward
	Policy Optimization

	Logic Patch
	Training

	Experiments
	Experimental Settings
	Experimental Results
	Ablation Study
	Parameter Sensitivity Analysis

	Related WorksBecause of the page limitation, the intact 'Related Works' with more details are presented in the Appendix B.
	Conclusion
	Limitations
	Ethics Statement
	Ablation Study
	Ablation Studies on Llama3 and Qwen2.5
	Ablation Studies on other LM as pretrained re-writer
	Transfer Study

	Related Works
	Implementation Details
	Dataset Details

