
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

REVISITING RANDOM WALKS FOR LEARNING ON
GRAPHS

Anonymous authors
Paper under double-blind review

ABSTRACT

We revisit a recent model class for machine learning on graphs, where a random
walk on a graph produces a machine-readable record, and this record is processed
by a deep neural network to directly make vertex-level or graph-level predictions.
We refer to these stochastic machines as random walk neural networks (RWNNs),
and through principled analysis, show that we can design them to be isomorphism
invariant while capable of universal approximation of graph functions in probability.
A useful finding is that almost any kind of record of random walk guarantees
probabilistic invariance as long as the vertices are anonymized. This enables us,
for example, to record random walks in plain text and adopt a language model to
read these text records to solve graph tasks. We further establish a parallelism to
message passing neural networks using tools from Markov chain theory, and show
that over-smoothing in message passing is alleviated by construction in RWNNs,
while over-squashing manifests as probabilistic under-reaching. We empirically
demonstrate RWNNs on a range of problems, verifying our theoretical analysis and
demonstrating the use of language models for separating strongly regular graphs
where the 3-WL test fails, and transductive classification on arXiv citation network.

1 INTRODUCTION

Message-passing neural networks (MPNNs) are a popular class of neural networks on graphs where
each vertex keeps a feature vector and updates it by propagating messages over neighbors (Battaglia
et al., 2018). MPNNs have achieved success, one reason being their respect for the natural symmetries
of graph learning problems, i.e., invariance to graph isomorphism (Chen et al., 2019). On the other
hand, MPNNs in their basic form can be viewed as implementing color updates of the Weisfeiler-
Lehman (1-WL) graph isomorphism test, and thus their expressive power is not stronger (Xu et al.,
2019). Also, their inner working is often tied to the topology of the input graph, which is related to
over-smoothing, over-squashing, and under-reaching of features under mixing (Giraldo et al., 2023).

In this work, we revisit an alternative direction for learning on graphs, where a random walk on a
graph produces a machine-readable record, and this record is processed by a deep neural network
that directly makes graph-level or vertex-level predictions. We refer to these stochastic machines
as random walk neural networks (RWNNs). Pioneering works were done in this direction, often
motivated by the compatibility of random walks with sequence learning methods. Examples include
DeepWalk (Perozzi et al., 2014) and node2vec (Grover & Leskovec, 2016) which use skip-gram on
walks, AWE (Ivanov & Burnaev, 2018) which uses embeddings of anonymized walks (Micali & Zhu,
2016), and CRaWl (Tönshoff et al., 2023) which uses 1D CNNs on sliding window descriptions of
walks. These methods were proven powerful in various contexts, such as graph isomorphism learning
that require expressive powers surpassing 1-WL test (Tönshoff et al., 2023; Martinkus et al., 2023).

Despite the promises, unlike MPNNs, we currently have not reached a good principled understanding
of RWNNs. First, in context of geometric DL, it is unclear how we can systematically incorporate the
symmetries of graph learning problems into RWNNs, as their neural networks are not necessarily iso-
morphism invariant. Second, the upper bound of their expressive power, along with the requirements
on each component to reach it, is not clearly known. Third, whether and how the over-smoothing and
over-squashing problems may occur in RWNNs are not well understood. Addressing such questions
is important, as they allow us to better understand the strengths and limits of the existing methods,
and potentially design enhanced RWNNs by short-circuiting the search in their large design space.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Table 1: An overview of prior methods in context of RWNNs, and new components originating from
our analysis. NB means non-backtracking; MDLR means minimum degree local rule (Section 2.1).

Method Random walk Recording function q Reader NN fθ
DeepWalk Uniform Identity Skip-gram
node2vec Second-order pq-walk Identity Skip-gram
AWE Uniform Anonymization Embedding table
CRaWl Uniform + NB Sliding window 1D CNN
RW-AgentNet Uniform Neighborhoods RNN
WalkLM Uniform Text attributes Language model

Ours (Sections 2.1, 2.2, 3) MDLR (+ NB) (2.1) Anonymization (+ named Any universal (3.1)(+ restarts) (2.2) neighborhoods) (2.1)

“1-2-3-1-4-2” “a chordal 4-cycle”fθ

Figure 1: An RWNN that reads text record using a language model.

Contributions The main goal of our work is establishing a principled understanding of RWNNs
with a focus on the aforementioned aspects. Our starting point is a new formalization of RWNNs
which decouples random walks, their records, and neural networks that process them. This abstracts
a wide range of design choices including prior methods, as in Table 1. The key idea of our analysis
is then to understand RWNNs through a combination of two recent perspectives in geometric DL:
probabilistic notions of invariance and expressive power (Bloem-Reddy & Teh, 2020; Abboud et al.,
2021), and invariant projection of non-invariant neural networks (Puny et al., 2022; Dym et al., 2024).

This idea allows us to impose probabilistic invariance on RWNNs even if their neural networks
lack symmetry, by instead requiring (probabilistic) invariance conditions on random walks and their
records. This provides a justification for anonymized recording of walks (Micali & Zhu, 2016) and
our novel extension of it using named neighborhoods. As long as probabilistic invariance holds, this
also enables recording walks in plain text and adopting a language model to process them (Figure 1).

We then upper-bound the expressive power of RWNNs as universal approximation in probability
which surpasses the WL hierarchy of MPNNs, under the condition that random walk records the
graph of interest with a high probability. This establishes a useful link to cover times in Markov
chains, providing guidance on designing random walks to minimize or bound the cover times. From
this we motivate novel adaptation of minimum degree local rule (MDLR) walks (David & Feige,
2018) for RWNNs, and introduce restarts when working on a large and possibly infinite graph. We
also provide a justification for the widespread use of non-backtracking (Tönshoff et al., 2023).

Continuing the link to Markov chain theory, we further analyze RWNNs and establish a parallelism
to a linearized model of MPNNs. From this, we show that over-smoothing in MPNNs is inherently
avoided in RWNNs, while over-squashing manifests as probabilistic under-reaching. This eliminates
the typical trade-off between over-smoothing and over-squashing in MPNNs (Giraldo et al., 2023;
Nguyen et al., 2023), and allows an RWNN to focus on overcoming under-reaching by scaling the
walk length or using rapidly-mixing random walks such as non-backtracking walks.

We empirically demonstrate RWNNs on several graph problems. On synthetic setups, optionally
with a small 1-layer transformer, we verify our claims on cover times, over-smoothing, and over-
squashing. Then, we demonstrate adapting a language model (DeBERTa (He et al., 2021) to solve the
challenging task of isomorphism learning of strongly regular graphs with perfect accuracy whereas
the 3-WL test fails, improving over the previously known best result of RWNNs. We further suggest
that our approach can turn transductive classification problem on a large graph into an in-context
learning problem by recording labeled vertices during random walks. To demonstrate this, we apply
Llama 3 (meta llama, 2024) model on transductive classification on arXiv citation network with 170k
vertices, and show that it can outperform a range of MPNNs as well as zero- and few-shot baselines.
Our experiments show the utility of our approach in analysis and development of RWNNs.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

2 RANDOM WALK NEURAL NETWORKS

We start our discussion by formalizing random walk neural networks (RWNNs). We define an RWNN
as a randomized function Xθ(·) that takes a graph G as input and outputs a random variable Xθ(G)
on the output space Rd.1 In case of vertex-level tasks, it is additionally queried with an input vertex v
which gives a random variable Xθ(G, v). An RWNN consists of the following components:

1. Random walk algorithm that produces l steps of vertex transitions v0 → · · · → vl on the input
graph G. If an input vertex v is given, we fix the starting vertex by v0 = v.

2. Recording function q : (v0 → · · · → vl, G) 7→ z that produces a machine-readable record z of
the random walk. It may access the graph G to record auxiliary information such as attributes.

3. Reader neural network fθ : z 7→ ŷ that processes record z and outputs a prediction ŷ in Rd. It
is the only trainable component and is not restricted to specific architectures.

For graph-level prediction, we sample ŷ ∼ Xθ(G) by running a random walk on G and processing its
record using the reader NN fθ. For vertex-level prediction ŷ ∼ Xθ(G, v), we query the input vertex
v by simply starting the walk from it. In practice, we ensemble several sampled predictions e.g. by
averaging, which can be understood as Monte Carlo estimation of the mean predictor (·) 7→ E[Xθ(·)].
We now analyze each component for graph-level tasks on finite graphs, and then vertex-level tasks
on possibly infinite graphs. The latter simulates the problem of scaling to large graphs such as in
transductive classification. As our definition captures many known designs (Table 1), we discuss
them as well. We leave pseudocode in Appendix A.2 and leave notations and proofs in Appendix A.5.

2.1 GRAPH-LEVEL TASKS

Let G be the class of undirected, connected, and simple graphs2. Let n ≥ 1 and Gn be the collection
of graphs in G with at most n vertices. Our goal is to model a graph-level function ϕ : Gn → Rd using
an RWNN Xθ(·). Since ϕ is a graph function, it is reasonable to assume isomorphism invariance:

ϕ(G) = ϕ(H), ∀G ≃ H, (1)
Incorporating the invariance structure to our model class Xθ(·) would offer generalization benefit. As
Xθ(·) is randomized, we accept the probabilistic notion of invariance (Bloem-Reddy & Teh, 2020):

Xθ(G)
d
= Xθ(H), ∀G ≃ H. (2)

A justification is that, if Xθ(·) is invariant in probability, its mean predictor (·) 7→ E[Xθ(·)] would
be an invariant function. For more in-depth discussion, please see Section 4. We now claim that we
can achieve probabilistic invariance of Xθ(·) by properly choosing the random walk algorithm and
recording function while not imposing any constraint on the reader NN fθ.
Proposition 2.1. Xθ(·) is invariant in probability, if its random walk algorithm is invariant in
probability and its recording function is invariant.

In other words, even if fθ lacks symmetry, invariant random walk and recording function provably
converts it into an invariant random variable Xθ(·). This is an extension of invariant projection
operators on functions (Puny et al., 2022; Dym et al., 2024) to a more general and probabilistic setup.

Random walk algorithm A random walk algorithm is invariant in probability if it satisfies:

π(v0)→ · · · → π(vl)
d
= u0 → · · · → ul, ∀G π≃ H, (3)

where v[·] is a random walk on G, u[·] is a random walk on H , and π : V (G)→ V (H) specifies the
isomorphism from G to H . It turns out that many random walk algorithms in literature are already
invariant. To see this, let us write the probability of walking from a vertex u to its neighbor x ∈ N(u):

Prob[vt = x|vt−1 = u] :=
cG(u, x)∑

y∈N(u) cG(u, y)
, (4)

where the function cG : E(G) → R+ assigns positive weights (conductances) to edges. If we set
cG(·) = 1, we recover uniform random walk used in DeepWalk (Perozzi et al., 2014). We show:

1While any output type such as text is possible (Figure 1), we explain with vector output for simplicity.
2We assume this for simplicity but extending to directed or attributed graphs is possible.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Proposition 2.2. The random walk in Equation 4 is invariant in probability if its conductance c·
is invariant:

cG(u, v) = cH(π(u), π(v)), ∀G π≃ H. (5)
It includes constant conductance, and any choice that only uses degrees of endpoints deg(u), deg(v).

We favor using degrees since it is cheap while potentially improving the behaviors of walks. Among
many instantiations, we find that the following conductance function called the minimum degree
local rule (MDLR) (Abdullah et al., 2015; David & Feige, 2018) is particularly useful:

cG(u, v) :=
1

min[deg(u),deg(v)]
. (6)

MDLR is special as it has O(n2) vertex cover time, i.e., expected time of visiting all n vertices of a
graph, optimal among first-order random walks (Equation 4) that use degrees of endpoints.

A common practice is to add non-backtracking property that enforces vt+1 ̸= vt−1 (Tönshoff et al.,
2023), and we also find this beneficial. In Appendix A.1 we extend Equation 3 and Proposition 2.2 to
second-order walks that include non-backtracking and node2vec walks (Grover & Leskovec, 2016).

Recording function A recording function q : (v0 → · · · → vl, G) 7→ z takes a random walk and
produces a machine-readable record z. We let q(·, G) have access to the graph G the walk is taking
place. This allows recording auxiliary information such as vertex or edge attributes. A recording
function is invariant if it satisfies the following for any given random walk v[·] on G:

q(v0 → · · · → vl, G) = q(π(v0)→ · · · → π(vl), H), ∀G π≃ H. (7)
Invariance requires that q(·, G) produces the same record z regardless of re-indexing of vertices of G
into H . For this, we have to be careful in how we represent each vertex in a walk v0 → · · · → vl as a
machine-readable value, and which auxiliary information we record from G. For example, identity
recording used in DeepWalk (Perozzi et al., 2014) and node2vec (Grover & Leskovec, 2016) are not
invariant as the result is sensitive to vertex re-indexing. We highlight two choices which are invariant:

• Anonymization. We name each vertex in a walk with a unique integer, starting from v0 7→ 1 and
incrementing it based on their order of discovery. For instance, a random walk a→ b→ c→ a
translates to a sequence 1→ 2→ 3→ 1.

• Anonymization + named neighbors. While applying anonymization for each vertex v in a
walk, we record its neighbors u ∈ N(v) if they are already named but the edge v → u has not
been recorded yet. For instance, a walk a→ b→ c→ d on a fully-connected graph translates
to a sequence 1→ 2→ 3⟨1⟩ → 4⟨1, 2⟩, where ⟨·⟩ represents the named neighbors.

The pseudocode of both algorithms can be found in Appendix A.2. We now show the following:
Proposition 2.3. A recording function q : (v0 → · · · → vl, G) 7→ z that uses anonymization,
optionally with named neighbors, is invariant.

While anonymization was originally motivated by privacy concerns in (Micali & Zhu, 2016) (also
see Appendix A.6), Proposition 2.3 offers a new justification based on invariance. Our design of
recording named neighbors is novel, and is inspired by sublinear algorithms that probe previously
discovered neighbors in a walk (Dasgupta et al., 2014). In our context, it is useful since whenever a
walk visits a set of vertices S ⊆ V (G) it automatically records the entire induced subgraph G[S]. As
a result, to record all edges of a graph, a walk only has to visit all vertices. While traversing all edges,
i.e. edge cover time, is O(n3) (Zuckerman, 1991) in general, it is possible to choose a walk algorithm
that takes only O(n2) time to visit all n vertices. MDLR in Equation 6 exactly achieves this.

Reader neural network A reader neural network fθ : z 7→ ŷ processes the record z of the random
walk and outputs a prediction ŷ in Rd. As in Proposition 2.1, there is no invariance constraint imposed
on fθ, and any neural network that accepts the recorded walks and has a sufficient expressive power
can be used (we will make this precise in Section 3.1). This is in contrast to MPNNs where invariance
is hard-coded in feature mixing operations. Also, our record z can take any format, such as a matrix,
byte sequence, or plain text, as long as fθ accepts it. Thus, it is possible (while not required) to
choose the record to be plain text, such as "1-2-3-1", and choose fθ to be a pre-trained language
model. This offers expressive power (Yun et al., 2020) and has a potential benefit of knowledge
transfer from language domain (Lu et al., 2022; Rothermel et al., 2021).

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

2.2 VERTEX-LEVEL TASKS

We now consider vertex-level tasks. In case of finite graphs, we may simply frame a vertex-level task
(G, v) 7→ y as a graph-level task G′ 7→ y where G′ is G with its vertex v marked. Then, we can
solve G′ 7→ y by querying an RWNN Xθ(G, v) to start its walk at v0 = v.

A more interesting case is when G is an infinite graph that is only locally finite, i.e. has finite degrees.
This simulates problems on a large graph such as transductive classification. In this case, we may
assume that our target function depends on finite local structures (Tahmasebi et al., 2023).

Let r ≥ 1, and Br := {Br(v)} be the collection of local balls in G of radius r centered at v ∈ V (G).
We would like to model a vertex-level function ϕ : Br → Rd on G using an RWNN Xθ(·) by
querying the vertex of interest, Xθ(G, v). We assume that ϕ is isomorphism invariant:

ϕ(Br(v)) = ϕ(Br(u)), ∀Br(v) ≃ Br(u). (8)

The probabilistic invariance of Xθ(·) is defined as follows:

Xθ(G, v)
d
= Xθ(G, u), ∀Br(v) ≃ Br(u). (9)

We can achieve probabilistic invariance by choosing the walk algorithm and recording function
similar to the graph-level case3. As a modification, we query Xθ(G, v) with the starting vertex
v0 = v of the random walk. Anonymization informs v to the reader NN by always naming it as 1.

Then, we make a key choice of localizing random walks with restarts. That is, we reset a walk to
its starting vertex v0 either with a probability α ∈ (0, 1) at each step or periodically every k steps.
Restarting walks tend to stay more around starting vertex v0, and were used to implement locality bias
in personalized PageRank algorithm for search (Page et al., 1999). This localizing effect is crucial
in our context since a walk can drift away from Br(v0) before recording all necessary information,
which may take an infinite time to return as G is infinite (Janson & Peres, 2012). Restarts make the
return to v0 mandatory, ensuring that Br(v0) can be recorded in a finite expected time. We show:
Theorem 2.4. For a uniform random walk on an infinite graph G starting at v, the vertex and edge
cover times of the finite local ball Br(v) are not always finitely bounded.
Theorem 2.5. In Theorem 2.4, if the random walk restarts at v with any nonzero probability α or
any period k ≥ r + 1, the vertex and edge cover times of Br(v) are always finite.

3 ANALYSIS

In Section 2, we have described the design of RWNNs, primarily relying on the principle of (prob-
abilistic) invariance. In this section, we provide in-depth analysis on their expressive power and
relations to issues in MPNNs such as over-smoothing, over-squashing, and under-reaching.

3.1 EXPRESSIVE POWER

Intuitively, if the records of random walks contain enough information such that the structures of
interest, e.g. graph G or local ball Br(v), can be fully recovered, a powerful reader NN such as
an MLP (Hornik et al., 1989) or a transformer (Yun et al., 2020) on these records would be able to
approximate any function of interest. Our analysis formalizes this intuition.

We first consider using an RWNN Xθ(·) to universally approximate graph-level functions ϕ(·) in
probability, as defined in Abboud et al. (2021).
Definition 3.1. Xθ(·) is a universal approximator of graph-level functions in probability if, for all
invariant functions ϕ : Gn → R for a given n ≥ 1, and ∀ϵ, δ > 0, there exist choices of length l of
the random walk and network parameters θ such that the following holds:

Prob[|ϕ(G)−Xθ(G)| < ϵ] > 1− δ, ∀G ∈ Gn. (10)

We show that, if the random walk is long enough and the reader NN fθ is universal, an RWNN Xθ(·)
is capable of graph-level universal approximation. The length of the walk l controls the confidence
> 1− δ, with edge cover time CE(G) or vertex cover time CV (G) playing a central role.

3This is assuming that the random walks are localized in Br(v) and Br(u), e.g. with restarts.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Theorem 3.2. An RWNN Xθ(·) with a sufficiently powerful fθ is a universal approximator of
graph-level functions in probability (Definition 3.1) if it satisfies either of the below:

• It uses anonymization to record random walks of lengths l > CE(G)/δ.

• It uses anonymization + named neighbors to record walks of lengths l > CV (G)/δ.

While both cover times are O(n3) for uniform random walks (Aleliunas et al., 1979; Zuckerman,
1991), we can use MDLR in Equation 6 to achieve an O(n2) vertex cover time, in conjunction with
named neighborhood recording. While universality can be in principle achieved with uniform random
walks, our design reduces the worst-case length l required for the desired reliability > 1− δ.

We now show an analogous result for universal approximation of vertex-level functions.
Definition 3.3. Xθ(·) is a universal approximator of vertex-level functions in probability if, for all
invariant functions ϕ : Br → R for a given r ≥ 1, and ∀ϵ, δ > 0, there exist choices of length l and
restart probability α or period k of the random walk and network parameters θ such that:

Prob[|ϕ(Br(v))−Xθ(G, v)| < ϵ] > 1− δ, ∀Br(v) ∈ Br. (11)

We show the following, using local vertex cover time CV (Br(v)) and edge cover time CE(Br(v)):
Theorem 3.4. An RWNN Xθ(·) with a sufficiently powerful fθ and any nonzero restart probability
α or restart period k ≥ r + 1 is a universal approximator of vertex-level functions in probability
(Definition 3.3) if it satisfies either of the below for all Br(v) ∈ Br:

• It uses anonymization to record random walks of lengths l > CE(Br(v))/δ.

• It uses anonymization + named neighbors to record walks of lengths l > CV (Br(v))/δ.

Since restarts are required to finitely bound the local cover times on an infinite graph (Section 2.2),
non-restarting walks cannot support vertex-level universality in general, and our design is obligatory.

3.2 OVER-SMOOTHING, OVER-SQUASHING, AND UNDER-REACHING

Often, in MPNNs, each layer operates by passing features over edges and mixing them using weights
deduced from e.g. adjacency matrix. This ties them to the topology of the input graph, and a range of
prior work has shown how this relates to the well-known issues of over-smoothing, over-squashing,
and under-reaching. We connect these results and RWNNs to verify if similar issues may take place.

Let G be a connected non-bipartite graph with row-normalized adjacency matrix P . We consider a
linearized MPNN, where the vertex features h(0) are initialized as some probability vector x, and
updated by h(t+1) = h(t)P . This simplification is often useful in understanding the aforementioned
issues (Giraldo et al., 2023; Zhao & Akoglu, 2019). Specifically, in this model:

• Over-smoothing happens as the features exponentially converge to a stationary vector h(l) → π
as l→∞, smoothing out the input x (Giraldo et al., 2023).

• Over-squashing and under-reaching occur when a feature h
(l)
u becomes insensitive to distant

input xv . While under-reaching refers to insufficient depth l < diam(G) (Barceló et al., 2020),
over-squashing refers to features getting overly compressed at bottlenecks of G, even with
sufficient depth l. The latter is described by the Jacobian |∂h(l)

u /∂xv| ≤ [
∑l

t=0 P
t]uv,4 as the

bound often decays exponentially with l (Topping et al., 2022; Black et al., 2023).

What do these results tell us about RWNNs? We can see that, while P drives feature mixing in the
message passing schema, it can be also interpreted as the transition probability matrix of uniform
random walk where Puv is the probability of walking from u to v. This parallelism motivates us to
design an analogous, simplified RWNN and study its behavior.

We consider a simple RWNN that runs a uniform random walk v0 → · · · → vl, reads the record
xv0 → · · · → xvl by averaging, and outputs it as h(l). Like linear MPNN, the model involves l steps

4This bound is obtained by applying Lemma 3.2 of Black et al. (2023) to our linearized MPNN.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

of time evolution through P . However, while MPNN uses P to process features, this model uses
P only to obtain a record of input, with feature processing decoupled. We show that in this model,
over-smoothing does not occur as in simple MPNNs5:

Theorem 3.5. The simple RWNN outputs h(l) → x⊤π as l→∞.

Even if the time evolution through P happens fast (i.e. P is rapidly mixing) or with many steps l, the
model is resistant to over-smoothing as the input x always affects the output. In fact, if P is rapidly
mixing, we may expect improved behaviors based on Section 3.1 as the cover times could reduce.

On the other hand, we show that over-squashing manifests as probabilistic under-reaching:

Theorem 3.6. Let h(l)
u be output of the simple RWNN queried with u. Then:

E

[∣∣∣∣∣∂h(l)
u

∂xv

∣∣∣∣∣
]
=

1

l + 1

[
l∑

t=0

P t

]
uv

→ πv as l→∞. (12)

The equation shows that the feature Jacobians are bounded by the sum of powers of P , same as in
simple MPNN. Both models are subject to over-squashing phenomenon that is similarly formalized,
but manifests through different mechanisms. While in message passing the term is related to over-
compression of features at bottlenecks (Topping et al., 2022), in RWNNs it is related to exponentially
decaying probability of reaching a distant vertex v, i.e. probabilistic under-reaching.

In many MPNNs, it is understood that the topology of the input graph inevitably induces a trade-off
between over-smoothing and over-squashing (Nguyen et al., 2023; Giraldo et al., 2023). Our results
suggest that RWNNs avoid the trade-off, and we can focus on overcoming under-reaching e.g. with
long or rapidly-mixing walks, while not worrying much about over-smoothing. Design choices such
as MDLR (Equation 6) and non-backtracking (Alon et al., 2007) can be understood as achieving this.

4 RELATED WORK

We briefly review the related work. An extended discussion can be found in Appendix A.6.

Random walks for learning on graphs In graph learning, random walks have received interest
due to compatibility with sequence learning methods (Table 1). DeepWalk (Perozzi et al., 2014) and
node2vec (Grover & Leskovec, 2016) used skip-gram models on walks. CRaWl (Tönshoff et al.,
2023) used 1D CNN on sliding window-based walk records, with expressive power bounded by the
window size. We discuss the relation between CRaWl and our approach in depth in Appendix A.6.
AgentNet (Martinkus et al., 2023) learns agents that walk on a graph while recurrently updating their
features. While optimizing the walk strategy, this may trade off speed as training requires recurrent
roll-out of the network. Our method allows pairing simple and fast walkers, such as MDLR, with
parallelizable networks such as transformers. WalkLM (Tan et al., 2023) proposed a fine-tuning
method for language models on walks on text-attributed graphs. By utilizing anonymization, our
approach is able to process graphs even if no text attribute is given. Lastly, a concurrent work (Wang
& Cho, 2024) arrived at a similar use of anonymization combined with RNNs.

Probabilistic invariant neural networks Whenever a learning problem is compatible with sym-
metry, incorporating the associated invariance structure to the hypothesis class often leads to general-
ization benefit (Bronstein et al., 2021; Elesedy, 2022; 2023). This is also the case for probabilistic
invariant NNs (Lyle et al., 2020; Bloem-Reddy & Teh, 2020), which includes our approach. Proba-
bilistic invariant NNs have recently gained interest due to their potential of achieving higher expressive
powers compared to deterministic counterparts (Cotta et al., 2023; Sieradzki et al., 2022). In graph
learning, this is often achieved with stochastic symmetry breaking between vertices using randomized
features (Loukas, 2020; Puny et al., 2020; Abboud et al., 2021; Kim et al., 2022), vertex order-
ings (Murphy et al., 2019; Kim et al., 2023), or dropout (Papp et al., 2021). Our approach can be
understood as using random walk as a symmetry-breaking mechanism for probabilistic invariance,
which provides an additional benefit of natural compatibility with sequence learning methods.

5While we show not forgetting x for brevity, we may extend to initial vertex v0 using its anonymization as 1.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

10 12 14 16 18
Number of vertices

0

1000

2000

3000

4000

5000

Ra
nd

om
 w

al
k

st
ep

s

Edge cover time C_E(G)
Uniform
Uniform + NB
node2vec
MDLR (Ours)
MDLR + NB (Ours)

10 12 14 16 18
Number of vertices

0

200

400

600

800

1000

1200
Vertex cover time C_V(G)

Uniform
Uniform + NB
node2vec
MDLR (Ours)
MDLR + NB (Ours)

Figure 2: Cover times of random walks on varying sizes of lollipop graphs. NB is non-backtracking.

Baseline 1

Baseline 2

BuNN

Baseline 1

Baseline 2

BuNN

Figure 3: Over-smoothing and over-squashing (MSE ↓) for various walk lengths l.

Table 2: Over-smoothing and over-squashing results in comparison to baselines from Bamberger et al.
(2024). We report aggregated mean squared error (MSE ↓) for 4 randomized runs.

Method Clique (over-smoothing) Barbell (over-squashing)
Baseline 1 30.94 ± 0.42 30.97 ± 0.42
Baseline 2 0.99 ± 0.08 1.00 ± 0.07
MLP 1.10 ± 0.08 1.08 ± 0.07
GCN 29.65 ± 0.34 1.05 ± 0.08
SAGE 0.86 ± 0.10 0.90 ± 0.29
GAT 20.97 ± 0.40 1.07 ± 0.09
NSD 0.08 ± 0.02 1.09 ± 0.15
BuNN 0.03 ± 0.01 0.01 ± 0.07
RWNN-transformer (Ours) 0.016 ± 0.006 0.005 ± 0.002

5 EXPERIMENTS

We perform a series of experiments to demonstrate RWNNs. We implement random walk algorithms
in C++ based on Chenebaux (2020), which produces good throughput (<0.1 seconds for 10k steps)
even without GPU acceleration in (Tönshoff et al., 2023). Pseudocode is given in Appendix A.2. We
implement our training and inference pipelines in PyTorch. Supplementary experiments including
substructure counting, more real-world datasets, and link prediction, are in Appendix A.4.

5.1 SYNTHETIC EXPERIMENTS

On synthetic setups, we first verify our claims on cover times in Section 2.1, focusing on the utility of
MDLR (Equation 6), non-backtracking, and neighborhood recording. We measure the edge cover
timesCE(G) and vertex cover timesCV (G) of random walk algorithms discussed in the main text, on
varying sizes of lollipop graphs G (Feige, 1995) which are commonly used to establish upper bounds
of cover times. The results are in Figure 2. We find that (1) MDLR achieves a significant speed-
up compared to uniform and node2vec walks, (2) adding non-backtracking significantly improves
the behavior of base first-order walks in all cases, and (3) edge cover times are often much larger
compared to vertex cover times, strongly justifying the use of neighborhood recording (Theorem 3.2).

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 3: Isomorphism learning results. We report accuracy of classifying training data rounded to
the first decimal point. *, †, ‡, §, and ⋄ are from Papp et al. (2021), Murphy et al. (2019), Zhao et al.
(2022b), Martinkus et al. (2023), and Alvarez-Gonzalez et al. (2024), respectively.

CSL SR16 SR25
Method 1, 2-WL fails 3-WL fails 3-WL fails
GIN 10.0%† 50.0%§ 6.7%‡
PPGN 100.0%§ 50.0%§ 6.7%‡
GIN-AK+ - - 6.7%‡
PPGN-AK+ - - 100.0%‡
GIN+ELENE - - 6.7%⋄

GIN+ELENE-L (ED) - - 100.0%⋄

GIN-RNI 16.0%* - -
GIN-RP 37.6%† - -
GIN-Dropout 82.0%* - -
RW-AgentNet 100.0%§ 50.5%§ -
AgentNet 100.0%§ 100.0%§ 6.7%
CRaWl 100.0%§ 100.0%§ 46.6%
RWNN-DeBERTa (Ours) 100.0% 100.0% 100.0%

Then, we verify our claims in Section 3.2 using Clique and Barbell datasets of Bamberger et al. (2024)
that explicitly test for over-smoothing and over-squashing, respectively. Our RWNN uses MDLR
walks with non-backtracking, and the reader NN is a 1-layer transformer encoder with width 128,
matching the baselines. We precisely follow the experimental procedure of Bamberger et al. (2024).
Figure 3 shows the results for varying walk lengths l. The model performs well on Clique overall,
while Barbell requires scaling the walk length. This agrees with our claims in Section 3.2 that RWNNs
in general avoid over-smoothing, but over-squashing manifests as probabilistic under-reaching (and is
therefore mitigated by sufficiently long walks). With l = 1000, our model in Table 2 outperforms all
baselines including BuNN which is specialized for mitigating over-smoothing and over-squashing.

5.2 GRAPH ISOMORPHISM LEARNING

We now test the claims on expressive power in Section 3.1 using three challenging datasets where the
task is recognizing the isomorphism type of input graph where certain WL test fails.

The Circular Skip Links (CSL) graphs dataset (Murphy et al., 2019) contains 10 non-isomorphic
regular graphs with 41 vertices of degree 4. Distinguishing these graphs requires computing lengths of
skip links, and 1-WL and 2-WL tests fail. The 4×4 rook’s and Shrikhande graphs (Alvarez-Gonzalez
et al., 2024), which we call SR16, are a pair of strongly regular graphs with 16 vertices of degree 6.
Distinguishing the pair requires detecting 4-cliques, and 3-WL test fails. The SR25 dataset (Balcilar
et al., 2021) contains 15 strongly regular graphs with 25 vertices of degree 12, on which 3-WL test
fails. Examples of the considered graphs and random walks on them can be found in Appendix A.2.

Our RWNN uses MDLR random walk with non-backtracking, and recording function with anonymiza-
tion and named neighbors that produces plain text (Algorithm 3). We use pre-trained DeBERTa-base
language model as the reader NN to leverage its capacity, and fine-tune it with cross-entropy loss for
at most 100k steps using AdamW optimizer with 2e-5 learning rate and 0.01 weight decay on 8×
RTX 3090 GPUs. We truncate the input to 512 tokens which is the maximum allowed by memory
constraint. We use batch size 256, and accumulate gradients for 8 steps for SR25. At test time, we
ensemble 4 predictions of the network by averaging classification logits.

The results are in Table 3. MPNNs that align with certain WL test fail when asked to solve harder
problems, e.g. GIN aligns with 1-WL and fails in CSL. A limited set of state-of-the art neural
networks solve SR25, but at the cost of introducing specialized structural features (Alvarez-Gonzalez
et al., 2024). Alternative approaches based on stochastic symmetry-breaking e.g. random node
identification, often fail on CSL although universal approximation is possible in theory (Abboud et al.,
2021), possibly due to learning difficulties. For algorithms based on walks, AgentNet and CRaWl
solve CSL and SR16, while failing on SR25. This is because learning a policy to walk in AgentNet
can be challenging in complex tasks especially at the early stage of training, and the expressiveness of
CRaWl is limited by the receptive field of the 1D CNN. Our approach based on DeBERTa language
model overcomes the problems, demonstrating as the first RWNN that solves SR25.

In Appendix A.3, we further provide visualizations of learned attentions by mapping attention weights
on text records of walks to input graphs. We find that the models often focus on sparse, connected
substructures, which presumably provide discriminative information on the isomorphism types.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Table 4: Test accuracy on ogbn-arxiv. † denotes using validation labels for label propagation or
in-context learning following Huang et al. (2020). For Llama 3, we ensemble 5 predictions by voting.

Method Accuracy
MLP 55.50%
node2vec 70.07%
GCN 71.74%
GraphSAGE 71.49%
GAT 73.91%
RevGAT 74.26%
Label propagation 68.50%
C&S 72.62%
C&S† 74.02%
Llama2-13b zero-shot 44.23%
GPT-3.5 zero-shot 73.50%
DeBERTa, fine-tuned 74.13%
Llama3-8b zero-shot 50.20%
Llama3-8b one-shot 52.49%
Llama3-8b one-shot† 52.54%
Llama3-70b zero-shot 65.33%
Llama3-70b one-shot† 67.57%
RWNN-Llama3-8b (Ours) 71.10%
RWNN-Llama3-8b (Ours)† 73.11%
RWNN-Llama3-70b (Ours)† 74.75%

5.3 REAL-WORLD TRANSDUCTIVE CLASSIFICATION

Previous results considered tasks on undirected, unattributed, and relatively small graphs. We now
show a preliminary result that RWNN based on Llama 3 (meta llama, 2024) language models can
solve real-world problem on a large graph with directed edges and textual attributes. We use ogbn-
arxiv (Hu et al., 2020), a citation network of 169,343 arXiv papers with title and abstract attributes.
The task is transductive classification into 40 areas such as "cs.AI" using a set of labeled vertices.

We consider two representative types of baselines. The first reads title and abstract of each vertex
using a language model and solves vertex-wise classification problem, ignoring graph structure. The
second initializes vertex features as language model embeddings and trains an MPNN, at the risk
of over-compressing the text. To take the best of both worlds, we design the recording function so
that, not only it does basic operations such as anonymization, it records a complete information of
the local subgraph including title and abstract, edge directions, and notably, labels in case of labeled
vertices (Appendix A.2) (Sato, 2024). The resulting record naturally includes a number of input-label
pairs of the classification task at hand, implying that we can frame transductive classification problem
as a simple in-context learning problem (Brown et al., 2020). This allows training-free application of
Llama 3 (meta llama, 2024) language model for transductive classification.

The results are in Table 4. Our models based on frozen Llama 3 perform competitively against
a range of previous MPNNs on text embeddings, as well as outperforming language models that
perform vertex-wise predictions ignoring graph structures such as GPT-3.5 and fine-tuned DeBERTa.
Especially, our model largely outperforms one-shot baselines, which are given 40 randomly chosen
labeled examples (one per class). This is surprising as our model observes fewer vertices, 29.17 in
average, due to other recorded information. This is presumably since the record produced by our
algorithm informs useful graph structure to the language model to quickly learn the task in-context
compared to randomly chosen shots. In Appendix A.3, we visualize the attention weights, verifying
that the model makes use of the graph structure recorded by random walks to make predictions.

As a final note, our approach is related to label propagation algorithms (Zhu & Ghahramani, 2002;
Zhu, 2005; Grady, 2006) for transductive classification, which makes predictions by running random
walks and probing the distribution of visited labeled vertices. The difference is, in our approach, the
reader NN i.e. language model can appropriately use other information such as attributes, as well as
do meaningful non-linear processing rather than simply probing the input. As shown in Table 4, our
approach outperforms label propagation, verifying our intuition.

6 CONCLUSION

We contributed a principled understanding of RWNNs, where random walks on graphs are recorded
and processed by NNs to make predictions. We analyzed invariance, expressive power, and in-
formation propagation, showing that we can design RWNNs to be invariant and universal without
constraining its neural network. Experiments support the utility of our approach.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Ralph Abboud, İsmail İlkan Ceylan, Martin Grohe, and Thomas Lukasiewicz. The surprising power
of graph neural networks with random node initialization. In IJCAI, 2021. (pages 2, 5, 7, 9)

Mohammed Abdullah. The cover time of random walks on graphs. arXiv, 2012. (page 46)

Mohammed Amin Abdullah, Colin Cooper, and Moez Draief. Speeding up cover time of sparse
graphs using local knowledge. In IWOCA, 2015. (pages 4, 46)

Romas Aleliunas, Richard M. Karp, Richard J. Lipton, László Lovász, and Charles Rackoff. Random
walks, universal traversal sequences, and the complexity of maze problems. In Annual Symposium
on Foundations of Computer Science, 1979. (pages 6, 42, 46)

Noga Alon, Itai Benjamini, Eyal Lubetzky, and Sasha Sodin. Non-backtracking random walks mix
faster. Communications in Contemporary Mathematics, 2007. (pages 7, 18, 46)

Nurudin Alvarez-Gonzalez, Andreas Kaltenbrunner, and Vicenç Gómez. Improving subgraph-GNNs
via edge-level ego-network encodings. Transactions on Machine Learning Research, 2024. ISSN
2835-8856. (page 9)

Francesca Arrigo, Desmond J. Higham, and Vanni Noferini. Non-backtracking pagerank. J. Sci.
Comput., 2019. (page 46)

Muhammet Balcilar, Pierre Héroux, Benoit Gaüzère, Pascal Vasseur, Sébastien Adam, and Paul
Honeine. Breaking the limits of message passing graph neural networks. In ICML, 2021. (page 9)

Jacob Bamberger, Federico Barbero, Xiaowen Dong, and Michael Bronstein. Bundle neural networks
for message diffusion on graphs. arXiv, 2024. (pages 8, 9)

Pablo Barceló, Egor V. Kostylev, Mikaël Monet, Jorge Pérez, Juan L. Reutter, and Juan Pablo Silva.
The logical expressiveness of graph neural networks. In ICLR, 2020. (pages 6, 47)

Peter W. Battaglia, Jessica B. Hamrick, Victor Bapst, Alvaro Sanchez-Gonzalez, Vinícius Flores
Zambaldi, Mateusz Malinowski, Andrea Tacchetti, David Raposo, Adam Santoro, Ryan Faulkner,
Çaglar Gülçehre, H. Francis Song, Andrew J. Ballard, Justin Gilmer, George E. Dahl, Ashish
Vaswani, Kelsey R. Allen, Charles Nash, Victoria Langston, Chris Dyer, Nicolas Heess, Daan
Wierstra, Pushmeet Kohli, Matthew M. Botvinick, Oriol Vinyals, Yujia Li, and Razvan Pascanu.
Relational inductive biases, deep learning, and graph networks. arXiv, 2018. (page 1)

Anna Ben-Hamou, Roberto I. Oliveira, and Yuval Peres. Estimating graph parameters via random
walks with restarts. In Annual ACM-SIAM Symposium on Discrete Algorithms, 2018. (page 46)

Suman K Bera and C Seshadhri. How to count triangles, without seeing the whole graph. In KDD,
2020. (page 47)

Mitchell Black, Zhengchao Wan, Amir Nayyeri, and Yusu Wang. Understanding oversquashing in
gnns through the lens of effective resistance. In ICML, 2023. (pages 6, 47)

Benjamin Bloem-Reddy and Yee Whye Teh. Probabilistic symmetries and invariant neural networks.
J. Mach. Learn. Res., 2020. (pages 2, 3, 7)

Michael M. Bronstein, Joan Bruna, Taco Cohen, and Petar Velickovic. Geometric deep learning:
Grids, groups, graphs, geodesics, and gauges. arXiv, 2021. (page 7)

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel
Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M. Ziegler,
Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott
Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya
Sutskever, and Dario Amodei. Language models are few-shot learners. In NeurIPS, 2020. (page
10)

Eric Richard Bussian. Bounding the edge cover time of random walks on graphs. Georgia Institute of
Technology, 1996. (page 46)

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Lei Cai, Jundong Li, Jie Wang, and Shuiwang Ji. Line graph neural networks for link prediction.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021. (page 33)

carnage. Expected hitting time for simple random walk from origin to point (x,y) in 2d-integer-
grid. MathOverflow, 2012. URL https://mathoverflow.net/questions/112470.
[Online:] https://mathoverflow.net/questions/112470. (page 38)

Ashok K. Chandra, Prabhakar Raghavan, Walter L. Ruzzo, Roman Smolensky, and Prasoon Tiwari.
The electrical resistance of a graph captures its commute and cover times. Comput. Complex.,
1997. (page 47)

Runjin Chen, Tong Zhao, Ajay Jaiswal, Neil Shah, and Zhangyang Wang. Llaga: Large language and
graph assistant. arXiv, 2024a. (page 32)

Yukang Chen, Shengju Qian, Haotian Tang, Xin Lai, Zhijian Liu, Song Han, and Jiaya Jia. Longlora:
Efficient fine-tuning of long-context large language models. arXiv, 2023a. (page 47)

Zhengdao Chen, Soledad Villar, Lei Chen, and Joan Bruna. On the equivalence between graph
isomorphism testing and function approximation with gnns. In NeurIPS, 2019. (page 1)

Zhengdao Chen, Lei Chen, Soledad Villar, and Joan Bruna. Can graph neural networks count
substructures? In NeurIPS, 2020. (page 33)

Zhikai Chen, Haitao Mao, Hang Li, Wei Jin, Hongzhi Wen, Xiaochi Wei, Shuaiqiang Wang, Dawei
Yin, Wenqi Fan, Hui Liu, and Jiliang Tang. Exploring the potential of large language models
(llms)in learning on graphs. SIGKDD Explor., 2023b. (page 47)

Zhikai Chen, Haitao Mao, Jingzhe Liu, Yu Song, Bingheng Li, Wei Jin, Bahare Fatemi, Anton
Tsitsulin, Bryan Perozzi, Hui Liu, and Jiliang Tang. Text-space graph foundation models: Compre-
hensive benchmarks and new insights. arXiv, 2024b. (page 32)

Maixent Chenebaux. graph-walker: Fastest random walks generator on networkx graphs. https:
//github.com/kerighan/graph-walker, 2020. (page 8)

Flavio Chiericetti, Anirban Dasgupta, Ravi Kumar, Silvio Lattanzi, and Tamás Sarlós. On sampling
nodes in a network. In WWW, 2016. (page 46)

Don Coppersmith, Uriel Feige, and James B. Shearer. Random walks on regular and irregular graphs.
SIAM J. Discret. Math., 1996. (page 46)

Leonardo Cotta, Gal Yehuda, Assaf Schuster, and Chris J. Maddison. Probabilistic invariant learning
with randomized linear classifiers. In NeurIPS, 2023. (page 7)

George Cybenko. Approximation by superpositions of a sigmoidal function. Math. Control. Signals
Syst., 1989.

Anirban Dasgupta, Ravi Kumar, and Tamas Sarlos. On estimating the average degree. In WWW,
2014. (pages 4, 46)

Roee David and Uriel Feige. Random walks with the minimum degree local rule have o(n2) cover
time. SIAM J. Comput., 2018. (pages 2, 4, 46)

Artur Back de Luca and Kimon Fountoulakis. Simulation of graph algorithms with looped transform-
ers. arXiv, 2024. (page 47)

Grégoire Delétang, Anian Ruoss, Jordi Grau-Moya, Tim Genewein, Li Kevin Wenliang, Elliot Catt,
Chris Cundy, Marcus Hutter, Shane Legg, Joel Veness, and Pedro A. Ortega. Neural networks and
the chomsky hierarchy. In ICLR, 2023. (page 47)

Karel Devriendt and Renaud Lambiotte. Discrete curvature on graphs from the effective resistance.
Journal of Physics: Complexity, 2022. (page 47)

Jian Ding, James R Lee, and Yuval Peres. Cover times, blanket times, and majorizing measures. In
Annual ACM symposium on Theory of computing, 2011. (page 46)

12

https://mathoverflow.net/questions/112470
https://mathoverflow.net/questions/112470
https://github.com/kerighan/graph-walker
https://github.com/kerighan/graph-walker

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Peter G Doyle and J Laurie Snell. Random walks and electric networks. American Mathematical
Soc., 1984. (page 47)

Ioana Dumitriu, Prasad Tetali, and Peter Winkler. On playing golf with two balls. SIAM J. Discret.
Math., 2003. (pages 38, 46)

Vijay Prakash Dwivedi, Ladislav Rampásek, Michael Galkin, Ali Parviz, Guy Wolf, Anh Tuan Luu,
and Dominique Beaini. Long range graph benchmark. In NeurIPS, 2022. (page 32)

Nadav Dym, Hannah Lawrence, and Jonathan W. Siegel. Equivariant frames and the impossibility of
continuous canonicalization. In ICML, 2024. (pages 2, 3)

Bryn Elesedy. Group symmetry in pac learning. In ICLR workshop on geometrical and topological
representation learning, 2022. (page 7)

Bryn Elesedy. Symmetry and Generalisation in Machine Learning. PhD thesis, University of Oxford,
2023. (page 7)

William Falcon. Pytorch lightning. https://github.com/Lightning-AI/lightning,
2019.

Dario Fasino, Arianna Tonetto, and Francesco Tudisco. Hitting times for non-backtracking random
walks. arXiv, 2021. (page 46)

Bahare Fatemi, Jonathan Halcrow, and Bryan Perozzi. Talk like a graph: Encoding graphs for large
language models. arXiv, 2023. (page 47)

Uriel Feige. A tight upper bound on the cover time for random walks on graphs. Random Struct.
Algorithms, 1995. (pages 8, 46)

Matthias Fey and Jan E. Lenssen. Fast graph representation learning with PyTorch Geometric. In
ICLR Workshop on Representation Learning on Graphs and Manifolds, 2019.

Robert Fitzner and Remco van der Hofstad. Non-backtracking random walk. Journal of Statistical
Physics, 2013. (page 18)

Agelos Georgakopoulos and Peter Winkler. New bounds for edge-cover by random walk. Comb.
Probab. Comput., 2014. (page 46)

Justin Gilmer, Samuel S. Schoenholz, Patrick F. Riley, Oriol Vinyals, and George E. Dahl. Neural
message passing for quantum chemistry. In ICML, 2017.

Francesco Di Giovanni, T. Konstantin Rusch, Michael M. Bronstein, Andreea Deac, Marc Lackenby,
Siddhartha Mishra, and Petar Velickovic. How does over-squashing affect the power of gnns?
arXiv, 2023. (page 47)

Jhony H. Giraldo, Konstantinos Skianis, Thierry Bouwmans, and Fragkiskos D. Malliaros. On the
trade-off between over-smoothing and over-squashing in deep graph neural networks. In CIKM,
2023. (pages 1, 2, 6, 7, 47)

Leo J. Grady. Random walks for image segmentation. IEEE Trans. Pattern Anal. Mach. Intell., 2006.
(pages 10, 47)

Aditya Grover and Jure Leskovec. node2vec: Scalable feature learning for networks. In KDD, 2016.
(pages 1, 4, 7, 18, 36)

William L. Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large
graphs. In NeurIPS, 2017.

Pengcheng He, Xiaodong Liu, Jianfeng Gao, and Weizhu Chen. Deberta: decoding-enhanced bert
with disentangled attention. In ICLR, 2021. (page 2)

Xiaoxin He, Xavier Bresson, Thomas Laurent, Adam Perold, Yann LeCun, and Bryan Hooi. Harness-
ing explanations: Llm-to-lm interpreter for enhanced text-attributed graph representation learning.
In ICLR, 2023.

13

https://github.com/Lightning-AI/lightning

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Jeffery Hein. Wald’s identity. (page 40)

Kurt Hornik, Maxwell B. Stinchcombe, and Halbert White. Multilayer feedforward networks are
universal approximators. Neural Networks, 1989. (page 5)

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. Lora: Low-rank adaptation of large language models. In ICLR, 2022. (pages
32, 47)

Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele Catasta,
and Jure Leskovec. Open graph benchmark: Datasets for machine learning on graphs. In NeurIPS,
2020. (page 10)

Qian Huang, Horace He, Abhay Singh, Ser-Nam Lim, and Austin R Benson. Combining label
propagation and simple models out-performs graph neural networks. arXiv, 2020. (page 10)

Satoshi Ikeda, Izumi Kubo, and Masafumi Yamashita. The hitting and cover times of random walks
on finite graphs using local degree information. Theor. Comput. Sci., 2009. (page 46)

Sergey Ivanov and Evgeny Burnaev. Anonymous walk embeddings. In ICML, 2018. (page 1)

Svante Janson and Yuval Peres. Hitting times for random walks with restarts. SIAM J. Discret. Math.,
2012. (pages 5, 38, 46)

Jeff D Kahn, Nathan Linial, Noam Nisan, and Michael E Saks. On the cover time of random walks
on graphs. Journal of Theoretical Probability, 1989. (page 46)

Mark Kempton. Non-backtracking random walks and a weighted ihara’s theorem. arXiv, 2016. (page
46)

Jinwoo Kim, Dat Nguyen, Seonwoo Min, Sungjun Cho, Moontae Lee, Honglak Lee, and Seunghoon
Hong. Pure transformers are powerful graph learners. In NeurIPS, 2022. (page 7)

Jinwoo Kim, Dat Nguyen, Ayhan Suleymanzade, Hyeokjun An, and Seunghoon Hong. Learning
probabilistic symmetrization for architecture agnostic equivariance. In NeurIPS, 2023. (page 7)

Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional networks.
In ICLR, 2017.

Filip Klubicka, Alfredo Maldonado, Abhijit Mahalunkar, and John D. Kelleher. Synthetic, yet
natural: Properties of wordnet random walk corpora and the impact of rare words on embedding
performance. In GWC, 2019. (page 47)

Filip Klubicka, Alfredo Maldonado, Abhijit Mahalunkar, and John D. Kelleher. English wordnet
random walk pseudo-corpora. In LREC, 2020. (page 47)

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph E.
Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model
serving with pagedattention. In Proceedings of the ACM SIGOPS 29th Symposium on Operating
Systems Principles, 2023.

Hao Liu, Jiarui Feng, Lecheng Kong, Ningyue Liang, Dacheng Tao, Yixin Chen, and Muhan Zhang.
One for all: Towards training one graph model for all classification tasks. In ICLR, 2024. (page 32)

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In ICLR, 2019.

Andreas Loukas. What graph neural networks cannot learn: depth vs width. In ICLR, 2020. (page 7)

László Lovász. Random walks on graphs. Combinatorics, Paul erdos is eighty, 1993. (pages 46, 47)

Kevin Lu, Aditya Grover, Pieter Abbeel, and Igor Mordatch. Frozen pretrained transformers as
universal computation engines. In AAAI, 2022. (page 4)

Clare Lyle, Mark van der Wilk, Marta Kwiatkowska, Yarin Gal, and Benjamin Bloem-Reddy. On the
benefits of invariance in neural networks. arXiv, 2020. (page 7)

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Karolis Martinkus, Pál András Papp, Benedikt Schesch, and Roger Wattenhofer. Agent-based graph
neural networks. In ICLR, 2023. (pages 1, 7, 9)

Nathan McNew. Random walks with restarts, 3 examples, 2013. (pages 38, 39, 46)

meta llama. llama3: The official meta llama 3 github site. https://github.com/
meta-llama, 2024. (pages 2, 10)

Silvio Micali and Zeyuan Allen Zhu. Reconstructing markov processes from independent and
anonymous experiments. Discret. Appl. Math., 2016. (pages 1, 2, 4, 46)

Christopher Morris, Martin Ritzert, Matthias Fey, William L. Hamilton, Jan Eric Lenssen, Gaurav
Rattan, and Martin Grohe. Weisfeiler and leman go neural: Higher-order graph neural networks.
In AAAI, 2019.

Ryan L. Murphy, Balasubramaniam Srinivasan, Vinayak A. Rao, and Bruno Ribeiro. Relational
pooling for graph representations. In ICML, 2019. (pages 7, 9)

Khang Nguyen, Nong Minh Hieu, Vinh Duc Nguyen, Nhat Ho, Stanley J. Osher, and Tan Minh
Nguyen. Revisiting over-smoothing and over-squashing using ollivier-ricci curvature. In ICML,
2023. (pages 2, 7, 47)

Roberto Oliveira. Mixing and hitting times for finite markov chains, 2012. (page 46)

Yann Ollivier. Ricci curvature of markov chains on metric spaces. Journal of Functional Analysis,
2009. (page 47)

Lawrence Page, Sergey Brin, Rajeev Motwani, Terry Winograd, et al. The pagerank citation ranking:
Bringing order to the web, 1999. (pages 5, 47)

Athina Panotopoulou. Bounds for edge-cover by random walks, 2013. (page 46)

Pál András Papp, Karolis Martinkus, Lukas Faber, and Roger Wattenhofer. Dropgnn: Random
dropouts increase the expressiveness of graph neural networks. NeurIPS, 2021. (pages 7, 9)

Seonghyun Park, Narae Ryu, Gahee Kim, Dongyeop Woo, Se-Young Yun, and Sungsoo Ahn. Non-
backtracking graph neural networks. In NeurIPS Workshop: New Frontiers in Graph Learning,
2023. (page 47)

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward
Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-performance deep
learning library. In NeurIPS, 2019.

Yuval Peres and Perla Sousi. Mixing times are hitting times of large sets. Journal of Theoretical
Probability, 2015. (page 46)

Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. Deepwalk: online learning of social representations.
In KDD, 2014. (pages 1, 3, 4, 7)

Oleg Platonov, Denis Kuznedelev, Michael Diskin, Artem Babenko, and Liudmila Prokhorenkova. A
critical look at the evaluation of gnns under heterophily: Are we really making progress? arXiv,
2023. (page 32)

Omri Puny, Heli Ben-Hamu, and Yaron Lipman. Global attention improves graph networks general-
ization. arXiv, 2020. (page 7)

Omri Puny, Matan Atzmon, Edward J. Smith, Ishan Misra, Aditya Grover, Heli Ben-Hamu, and
Yaron Lipman. Frame averaging for invariant and equivariant network design. In ICLR, 2022.
(pages 2, 3)

Brian Rappaport, Anuththari Gamage, and Shuchin Aeron. Faster clustering via non-backtracking
random walks. arXiv, 2017. (page 18)

15

https://github.com/meta-llama
https://github.com/meta-llama

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Danielle Rothermel, Margaret Li, Tim Rocktäschel, and Jakob Foerster. Don’t sweep your learning
rate under the rug: A closer look at cross-modal transfer of pretrained transformers. arXiv, 2021.
(page 4)

Clayton Sanford, Bahare Fatemi, Ethan Hall, Anton Tsitsulin, Mehran Kazemi, Jonathan Halcrow,
Bryan Perozzi, and Vahab Mirrokni. Understanding transformer reasoning capabilities via graph
algorithms. arXiv, 2024. (page 47)

Ryoma Sato. Training-free graph neural networks and the power of labels as features. arXiv, 2024.
(pages 10, 32)

Yuval Sieradzki, Nitzan Hodos, Gal Yehuda, and Assaf Schuster. Coin flipping neural networks. In
ICML, 2022. (page 7)

Daniel Spielman. Spectral and algebraic graph theory. Yale lecture notes, draft of December, 2019.
(page 47)

Behrooz Tahmasebi, Derek Lim, and Stefanie Jegelka. The power of recursion in graph neural
networks for counting substructures. In AISTATS, 2023. (page 5)

Yanchao Tan, Zihao Zhou, Hang Lv, Weiming Liu, and Carl Yang. Walklm: A uniform language
model fine-tuning framework for attributed graph embedding. In NeurIPS, 2023. (page 7)

Jan Tönshoff, Martin Ritzert, Hinrikus Wolf, and Martin Grohe. Walking out of the weisfeiler leman
hierarchy: Graph learning beyond message passing. Transactions on Machine Learning Research,
2023. (pages 1, 2, 4, 7, 8, 31, 32, 46)

Jake Topping, Francesco Di Giovanni, Benjamin Paul Chamberlain, Xiaowen Dong, and Michael M.
Bronstein. Understanding over-squashing and bottlenecks on graphs via curvature. In ICLR, 2022.
(pages 6, 7, 47)

Heng Wang, Shangbin Feng, Tianxing He, Zhaoxuan Tan, Xiaochuang Han, and Yulia Tsvetkov. Can
language models solve graph problems in natural language? In NeurIPS, 2023. (page 47)

Yuanqing Wang and Kyunghyun Cho. Non-convolutional graph neural networks. arXiv, 2024. (page
7)

Gail Weiss, Yoav Goldberg, and Eran Yahav. Thinking like transformers. In Marina Meila and Tong
Zhang (eds.), ICML, 2021. (page 47)

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi,
Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, and Jamie Brew. Huggingface’s
transformers: State-of-the-art natural language processing. arXiv, 2019.

Xinyi Wu, Amir Ajorlou, Zihui Wu, and Ali Jadbabaie. Demystifying oversmoothing in attention-
based graph neural networks. In NeurIPS, 2023. (page 47)

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? In ICLR, 2019. (page 1)

Yujun Yan, Milad Hashemi, Kevin Swersky, Yaoqing Yang, and Danai Koutra. Two sides of the
same coin: Heterophily and oversmoothing in graph convolutional neural networks. In 2022 IEEE
International Conference on Data Mining (ICDM), 2022. (page 33)

Ruosong Ye, Caiqi Zhang, Runhui Wang, Shuyuan Xu, and Yongfeng Zhang. Language is all a graph
needs. In Findings of EACL, 2024. (page 47)

Chulhee Yun, Srinadh Bhojanapalli, Ankit Singh Rawat, Sashank J. Reddi, and Sanjiv Kumar. Are
transformers universal approximators of sequence-to-sequence functions? In ICLR, 2020. (pages
4, 5)

Bohang Zhang, Jingchu Gai, Yiheng Du, Qiwei Ye, Di He, and Liwei Wang. Beyond weisfeiler-
lehman: A quantitative framework for gnn expressiveness. arXiv, 2024. (page 33)

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Jianan Zhao, Meng Qu, Chaozhuo Li, Hao Yan, Qian Liu, Rui Li, Xing Xie, and Jian Tang. Learning
on large-scale text-attributed graphs via variational inference. arXiv, 2022a.

Jianan Zhao, Le Zhuo, Yikang Shen, Meng Qu, Kai Liu, Michael M. Bronstein, Zhaocheng Zhu, and
Jian Tang. Graphtext: Graph reasoning in text space. arXiv, 2023. (pages 32, 47)

Lingxiao Zhao and Leman Akoglu. Pairnorm: Tackling oversmoothing in gnns. arXiv, 2019. (page
6)

Lingxiao Zhao, Wei Jin, Leman Akoglu, and Neil Shah. From stars to subgraphs: Uplifting any GNN
with local structure awareness. In ICLR, 2022b. (pages 9, 33)

Xiaojin Zhu and Zoubin Ghahramani. Learning from labeled and unlabeled data with label propaga-
tion. ProQuest number: information to all users, 2002. (pages 10, 47)

Xiaojin Jerry Zhu. Semi-supervised learning literature survey, 2005. (pages 10, 47)

David Zuckerman. On the time to traverse all edges of a graph. Inf. Process. Lett., 1991. (pages 4, 6,
39, 43, 46)

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

A APPENDIX

A.1 SECOND-ORDER RANDOM WALKS (SECTION 2)

In second-order random walks, the probability of choosing vt+1 depends not only on vt but also
on vt−1. We consider non-backtracking (Alon et al., 2007; Fitzner & van der Hofstad, 2013) and
node2vec (Grover & Leskovec, 2016) random walks as representatives.

A non-backtracking random walk is defined upon a first-order random walk algorithm, e.g. one in
Equation 4, by enforcing vt+1 ̸= vt−1:

Prob[vt+1 = x|vt = j, vt−1 = i] :=


Prob[vt+1 = x|vt = j]∑

y∈N(j)\{i} Prob[vt+1 = y|vt = j]
for x ̸= i,

0 for x = i,

(13)

where Prob[vt+1 = x|vt = j] is the probability of walking j → x given by the underlying first-order
random walk. Notice that the probabilities are renormalized over N(j) \ {i}. This is ill-defined in the
case the walk traverses i→ j and reaches a dangling vertex j which has i as its only neighbor, since
N(j) \ {i} = ∅. In such cases, we allow the random walk to "begrudgingly" backtrack (Rappaport
et al., 2017), i→ j and then j → i, given that it is the only possible choice due to the dangling of j.

In case of node2vec random walk (Grover & Leskovec, 2016), a weighting term α(vt−1, vt+1) with
two (hyper)parameters, return p and in-out q, is introduced to modify the behavior of a first-order
random walk:

Prob[vt+1 = x|vt = j, vt−1 = i] :=
α(i, x) Prob[vt+1 = x|vt = j]∑

y∈N(j) α(i, y) Prob[vt+1 = y|vt = j]
, (14)

where the probability Prob[vt+1 = x|vt = j] is given by the underlying first-order random walk and
α(vt−1, vt+1) is defined as follows using the shortest path distance d(vt−1, vt+1):

α(vt−1, vt+1) :=


1/p for d(vt−1, vt+1) = 0,
1 for d(vt−1, vt+1) = 1,
1/q for d(vt−1, vt+1) = 2.

(15)

Choosing a large return parameter p reduces backtracking since it decreases the probability of walking
from vt to vt−1. Choosing a small in-out parameter q has a similar effect of avoiding vt−1, with a
slight difference that it avoids the neighbors of vt−1 as well.

We now show an extension of Proposition 2.2 to the above second-order random walks:
Proposition A.1. The non-backtracking random walk in Equation 13 and the node2vec random walk
in Equation 14 are invariant if their underlying first-order random walk algorithm is invariant.

Proof. The proof is given in Appendix A.5.3.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

A.2 MAIN ALGORITHM

We outline the main algorithms for the random walk and the recording function described in Section 2
and used in Section 5. Algorithm 1 shows the random walk algorithm, and Algorithms 2, 3, and 4
show the recording functions. For the random walk algorithm, we use non-backtracking described in
Appendix A.1 and the minimum degree local rule conductance cG(·) given in Equation 6 by default.

Based on the algorithms, in Figures 4, 5, and 6 we illustrate the task formats used for graph separation
experiments in Section 5.2 by providing examples of input graphs, text records of random walks on
them, and prediction targets for the language model that processes the records. Likewise, in Figures 7,
8, and 9 we show task formats for transductive classification on arXiv citation network in Section 5.3.

Algorithm 1: Random walk algorithm
Data: Input graph G, optional input vertex v, conductance function cG : E(G)→ R+, walk

length l, optional restart probability α ∈ (0, 1) or period k > 1
Result: Random walk v0 → · · · → vl, restart flags r1, ..., rl
/* transition probabilities p : E(G) → R+ */

1 for (u, x) ∈ E(G) do
2 p(u, x)← cG(u, x)/

∑
y∈N(u) cG(u, y) // Equation 4

/* starting vertex v0 */
3 if v is given then

/* query starting vertex */
4 v0 ← v
5 else

/* sample starting vertex */
6 v0 ∼ Uniform(V (G))

/* random walk v1 → · · · → vl, restart flags r1, ..., rl */
7 v1 ∼ Categorical({p(v0, x) : x ∈ N(v0)})
8 r1 ← 0
9 for t← 2 to l do

/* restart flag rt */
10 rt ← 0
11 if α is given then

/* if restarted at t− 1, do not restart */
12 if rt−1 = 0 then
13 rt ∼ Bernoulli(α)

14 else if k is given then
15 if t ≡ 0 (mod k) then
16 rt ← 1

/* random walk vt */
17 if rt = 0 then
18 S ← N(vt−1) \ {vt−2}
19 if S ̸= ∅ then

/* non-backtracking */
20 vt ∼ Categorical({p(vt−1, x)/

∑
y∈S p(vt−1, y) : x ∈ S}) // Equation 13

21 else
/* begrudgingly backtracking */

22 vt ← vt−2

23 else
/* restart */

24 vt ← v0

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Algorithm 2: Recording function, using anonymization
Data: Random walk v0 → · · · → vl, restart flags r1, ..., rl
Result: Text record z
/* named vertices S, namespace id(·) */

1 S ← {v0}
2 id(v0)← 1
/* text record z */

3 z← id(v0)
4 for t← 1 to l do

/* anonymization vt 7→ id(vt) */
5 if vt /∈ S then
6 S ← S ∪ {vt}
7 id(vt)← |S|

/* text record z */
8 if rt = 0 then

/* record walk vt−1 → vt */
9 z← z+ "-"+ id(vt)

10 else
/* record restart vt = v0 */

11 z← z+ ";"+ id(vt)

Algorithm 3: Recording function, using anonymization and named neighbors
Data: Random walk v0 → · · · → vl, restart flags r1, ..., rl, input graph G
Result: Text record z
/* named vertices S, namespace id(·), recorded edges T */

1 S ← {v0}
2 id(v0)← 1
3 T ← ∅
/* text record z */

4 z← id(v0)
5 for t← 1 to l do

/* anonymization vt 7→ id(vt) */
6 if vt /∈ S then
7 S ← S ∪ {vt}
8 id(vt)← |S|

/* text record z */
9 if rt = 0 then

/* record walk vt−1 → vt */
10 z← z+ "-"+ id(vt)
11 T ← T ∪ {(vt−1, vt), (vt, vt−1)}

/* named neighborhood U */
12 U ← N(vt) ∩ S
13 if U ̸= ∅ then

/* sort in ascending order id(u1) < · · · < id(u|U|) */
14 [u1, ..., u|U |]← SortByKey(U, id)
15 for u← u1 to u|U | do

/* record named neighbors vt → u */
16 if (vt, u) /∈ T then
17 z← z+ "#"+ id(u)
18 T ← T ∪ {(vt, u), (u, vt)}

19 else
/* record restart vt = v0 */

20 z← z+ ";"+ id(vt)

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Algorithm 4: Recording function for transductive classification on arXiv network (Section 5.3)
Data: Directed input graph G, random walk v0 → · · · → vl and restart flags r1, ..., rl on the

undirected copy of G, paper titles {tv}v∈V (G) and abstracts {av}v∈V (G), target category
labels {yv}v∈L for labeled vertices L ⊂ V (G)

Result: Text record z
/* named vertices S, namespace id(·), recorded edges T */

1 S ← {v0}
2 id(v0)← 1
3 T ← ∅
/* text record z */
/* record starting vertex */

4 z← "Paper 1 - Title: {tv0}", Abstract: {av0}"
5 for t← 1 to l do

/* anonymization vt 7→ id(vt) */
6 if vt /∈ S then
7 S ← S ∪ {vt}
8 id(vt)← |S|

/* text record z */
9 if rt = 0 then

/* record walk vt−1 → vt with direction */
10 if (vt−1, vt) ∈ E(G) then
11 z← z+ " Paper {id(vt−1)} cites Paper {id(vt)}"
12 else
13 z← z+ " Paper {id(vt−1)} is cited by Paper {id(vt)}"

14 T ← T ∪ {(vt−1, vt), (vt, vt−1)}
/* record title tv, abstract av, and label yv if v is labeled */

15 if id(vt) = |S| then
16 z← z+ " - {tv}"
17 if v ∈ L then
18 z← z+ ", Category: {yv}"

19 z← z+ ", Abstract: {av}"
20 else
21 z← z+ "."

/* named neighborhood U */
22 U ← N(vt) ∩ S
23 if U ̸= ∅ then

/* sort in ascending order id(u1) < · · · < id(u|U|) */
24 [u1, ..., u|U |]← SortByKey(U, id)
25 for u← u1 to u|U | do

/* record named neighbors vt → u with directions */
26 if (vt, u) /∈ T then
27 if (vt, u) ∈ E(G) then
28 z← z+ " Paper {id(vt)} cites Paper {id(u)}."
29 else
30 z← z+ " Paper {id(vt)} is cited by Paper {id(u)}."

31 T ← T ∪ {(vt, u), (u, vt)}

32 else
/* record restart */

33 z← z+ " Restart at Paper 1."

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Graph

1
2

3

4

5
6

7

8

9

10

11
12

13

14

15

1617

18

19

20

21

22

23

24

25

26
27

28

29

30

31

32

33

34

35

36

37
38

39

40

41

Random Walk

t=l

t=0

Record [CLS]1-2-3-4-5-6-7-8-9#6-10#5-11-12-13#1-14-15#1#3-16-17#3#5-5-10-11-18#9#13-13-14-
19#16-16-17-5-6-20#4-21-22-23-24#2-25#1#8#18-8-26#24-27#23-28#19#22-22-29#19-19-14-
13-18-11-10-5-17-30#10-31#16#29-29-32#21-33#7#20-7-34#26-35#27-36#12#14#28-28-22-
29-31-37#32-32-33-7-6-5-4-20-6-5-4-20-33-32-37-38#11#30-39#12#35-12-11-10-5-4-40#
2#21#23-2-24-23-27-28-19-16-17-30-10-5-4-40-2-3-4-5-17-3-2-40-4-20-33-32-21-20-33-
41#34#37#39-39-38-37-31-29-32-33-41-34-35-36-28-27-35-39-12-13-1-15-3-4-20-6-7-33-
41-34-35-39-41-37-32-33-20-21-40-23-22-29-31-37-41-34-35-39-12-13-18-25-24-26-34-7-
33-20-4-40-23-27-35-36-12-11-10-30-31-16-15-3-4-40-23-22-28-36-14-19-29-31-37-41-
33-32-29-22-21-32-33-20-4-40-21-22-29-19-14-15-16-31-29-[SEP]

Answer csl(41, 9)

Graph

1
2

3
4

5

6
7

8
9

10

11

12

13
14

15

16

17

18
19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

Random Walk

t=l

t=0

Record [CLS]1-2-3-4-5-6-7-8-9-10-11-12-13-14#8-15-16#6#8-6-7-8-14-13-17-18#12-19#1-20#17-
21-22-23#4-24#21-21-20-17-13-25#15-26-27#5#7-28#12#25-12-13-14-29#9#17-17-13-25-28-
12-13-14-8-9-10-30#20#22#29-22-31#10-32#1#11#18-1-19-33#2#21-21-22-31-32-1-19-33-
2-34-35#15#26-36#16-16-15-25-28-27-7-6-37#4#24#36-4-23-24-38#33#34#36-34-2-1-39#3#
23#31-23-24-38-33-19-1-2-3-39-23-24-21-33-38-24-23-4-37-24-23-39-1-2-34-38-36-37-6-
5-4-23-39-3-4-5-6-16-15-35-26-40#3#5#34-5-6-7-27-28-12-13-17-29-9-41#7#11#28-7-27-
26-25-13-12-11-32-18-12-13-14-15-25-26-40-34-38-36-37-24-23-4-37-24-21-33-2-3-4-5-
27-7-6-16-15-35-34-2-3-40-26-35-34-38-33-21-20-17-29-14-15-16-8-9-41-28-27-7-8-14-
15-25-28-27-5-6-7-41-9-8-7-41-9-10-31-[SEP]

Answer csl(41, 16)

Figure 4: Two CSL graphs and text records of random walks from Algorithms 1 and 3. Task is graph
classification into 10 isomorphism types csl(41, s) for skip length s ∈ {2, 3, 4, 5, 6, 9, 11, 12, 13, 16}.
In random walks, we label vertices by anonymization and color edges by their time of discovery.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Graph

1

2

3 4

5

6

7

8
9

10

11

12

13

14

15 16

Random Walk

t=l

t=0

Record [CLS]1-2-3-4#2-5-6-7#1#2#5-8#3#5#6-9#3-3-4-5-10#1#4-11#1#3#8#9-12#1#6#10-13#6#9-6-
5-8-7-2-14#3#4#6#12#13-13-9-15#1#2#7#13-7-6-13-12-1-2-4-10-12-11-1-7-15-1-11-12-10-
4-14-13-15-2-7-8-9-3-2-7-8-5-7-2-3-14-13-15-1-2-14-13-16#4#5#9#10#15-5-10-1-11-3-
14-4-16-10-1-12-13-6-12-13-6-12-10-11-12-10-11-1-7-6-13-15-16-5-4-14-3-9-13-16-15-
1-12-13-9-15-7-2-14-13-6-5-7-2-4-3-9-15-13-14-6-5-7-8-9-11-10-5-16-4-3-14-2-15-13-
12-10-5-16-4-14-13-12-14-13-16-10-5-6-14-3-9-16-13-9-15-1-2-15-7-1-12-13-6-8-5-7-6-
12-1-11-12-14-4-2-15-9-8-7-1-15-16-4-14-12-1-10-5-16-9-8-5-16-13-12-6-14-2-1-7-15-
16-4-2-1-15-16-10-4-16-15-9-16-15-13-6-8-9-16-5-6-[SEP]

Answer 4 × 4 rook’s graph

Graph

1

2

3

4
5

6

7

8

9 10

11

12

13

14

15

16

Random Walk

t=l

t=0

Record [CLS]1-2-3-4#2-5#3-6#1-7#5-8#3#5-9#3-3-4-5-10#1#4#6-11#4#9-12#2#4#7-13#6#7#9#11-7-
14#1#2#8#12-8-5-6-7-13-9-11-4-5-3-4-12-14-1-10-6-15#1#2#3#9#13-2-14-16#1#8#9#10#11-
10-11-4-10-6-1-16-8-7-5-8-9-3-5-7-8-14-7-6-15-2-3-8-14-2-1-16-11-4-10-6-15-13-6-1-
16-10-6-1-16-14-12-13-7-12-4-3-2-12-11-4-5-7-13-15-3-5-6-1-15-9-13-11-16-10-6-13-9-
11-4-12-7-13-6-7-5-6-1-15-9-11-13-6-5-4-2-3-9-15-1-14-16-1-15-6-7-13-15-1-10-5-3-2-
1-16-10-4-11-16-10-5-4-12-11-9-16-11-9-13-12-14-16-1-10-4-11-12-13-6-5-7-12-2-3-5-
4-10-6-13-9-8-5-10-16-11-12-2-1-6-10-5-3-9-8-14-16-11-10-5-6-7-12-14-16-11-12-14-1-
16-11-10-4-11-13-9-16-8-3-5-8-9-16-14-2-[SEP]

Answer Shrikhande graph

Figure 5: SR16 graphs and text records of random walks from Algorithms 1 and 3. The task is graph
classification into two isomorphism types {4× 4 rook’s graph,Shrikhande graph}. In random walks,
we label vertices by anonymization and color edges by their time of discovery.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

Graph

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24
25

Random Walk

t=l

t=0

Record [CLS]1-2-3#1-4#2-5#1#2-6#4-7#1#3-3-8#1#4#5#7-5-9#1#2#7-10#4#7#8-11#1#4#8#9-8-12#1#
3#6#7-3-13#2#4#6#7#9#11-2-3-7-6-14#2#5#7#8#13-15#2#3#7#9#10-16#3#5#8#10#14-17#1#6#
7#10#11#13#14-13-18#5#8#9#11#12#14#16-19#3#6#9#11#12#13#15#16-9-7-13-11-20#1#2#12#
14#15#17#18-21#2#4#6#8#10#11#12#14#15#19-8-7-14-5-22#4#6#7#9#10#12#15#18#20-23#2#
3#4#10#12#13#16#17#18#20-13-9-2-21-24#1#2#5#6#9#10#12#16#17#19#23-19-6-24-23-16-3-
1-5-8-21-14-2-3-7-8-5-6-7-1-25#3#4#5#6#11#15#16#17#19#20#22-17-1-11-4-3-15-20-2-5-
22-12-21-14-7-9-5-4-22-20-25-11-21-8-1-24-17-10-23-18-13-6-4-8-3-7-17-14-20-12-24-
16-17-10-21-14-5-4-13-14-7-13-3-8-1-3-7-14-13-2-3-8-18-22-5-[SEP]

Answer Graph 1

Graph

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

Random Walk

t=l

t=0

Record [CLS]1-2-3#1-4#1-5#2-6#2#4-7#2#3#4-3-8#4#5#7-9#3#6-10#1#6-11#1#4#6#7#8-12#2#7#8#10-
8-13#7#9#12-14#1#2#3#11#12-15#1#2#3#5#6#8#9#10#13-1-3-16#1#4#7#9#10#13-13-17#1#4#
6#9#11#14-18#2#3#6#7#9#10#12-19#3#5#8#9#11#14#17-11-7-20#5#6#10#11#13#14#15#16#19-
21#1#2#5#7#13#16#17#18#19-16-13-15-22#1#4#5#8#10#12#13#17#18#21-10-6-18-7-11-23#1#
2#5#8#9#10#12#16#19#21-12-8-4-24#2#5#6#9#12#13#14#16#17#23-16-10-23-9-6-5-8-19-3-1-
23-8-22-5-2-3-16-25#3#4#5#10#12#14#18#19#20#22#24-14-13-16-1-21-17-1-22-15-3-9-13-
16-21-22-15-10-11-4-24-9-6-10-12-14-24-12-8-7-11-20-5-25-20-7-6-4-8-3-16-21-20-13-
15-5-19-23-5-6-17-9-6-7-11-4-7-3-8-7-3-16-23-2-1-3-8-5-24-23-[SEP]

Answer Graph 8

Figure 6: Two SR25 graphs and text records of random walks from Algorithms 1 and 3. The task is
graph classification into 15 isomorphism types. In random walks, we label vertices by anonymization
and color edges by their time of discovery.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

System A walk on the arXiv citation network will be given. Predict the arXiv CS sub-cat
egory Paper 1 belongs to. It is one of the following: Numerical Analysis (cs.NA),
Multimedia (cs.MM), Logic in Computer Science (cs.LO), ... Discrete Mathematics
(cs.DM). Only respond with the answer, do not say any word or explain.

Record A walk on arXiv citation network is as follows:
Paper 1 - Title: Safety guided deep reinforcement learning via online gaussian
process estimation, Abstract: An important facet of reinforcement learning (rl)
has to do with how the agent goes about exploring the environment. traditional
exploration strategies typically focus on efficiency and ignore safety. however,
for practical applications, ensuring safety of the agent during exploration is
crucial since performing an unsafe action or reaching an unsafe state could result
in irreversible damage to the agent. the main challenge of safe exploration
is that characterizing the unsafe states and actions... Restart at 1. Paper
1 is cited by 2 - Learning to walk in the real world with minimal human effort,
Abstract: Reliable and stable locomotion has been one of the most fundamental
challenges for legged robots. deep reinforcement learning (deep rl) has emerged
as a promising method for developing such control policies... Restart at 1. Pa
per 1 cites 3 - Deep q learning from demonstrations, Category: Artificial Intelli
gence (cs.AI), Abstract: Deep reinforcement learning (rl) has achieved several
high profile successes in difficult decision-making problems. however, these
algorithms typically require a huge amount of data before they reach... Restart
at 1. Paper 1 cites 4 - Constrained policy optimization, Category: Machine Learn
ing (cs.LG), Abstract: For many applications of reinforcement learning it can
be more convenient to specify both a reward function and constraints, rather
than trying to design behavior through the reward function. for example,... Pa
per 4 is cited by 2. Paper 4 is cited by 5 - Artificial intelligence values and
alignment, Abstract: This paper looks at philosophical questions that arise in
the context of ai alignment. it defends three propositions. first, normative
and technical aspects of the ai alignment problem are interrelated,... Paper
5 cites 6 - Agi safety literature review, Category: Artificial Intelligence
(cs.AI), Abstract: The development of artificial general intelligence (agi)
promises to be a major event. along with its many potential benefits, it also
raises serious safety concerns (bostrom, 2014). the intention of... Paper 6
is cited by 7 - Modeling agi safety frameworks with causal influence diagrams,
Abstract: Proposals for safe agi systems are typically made at the level of
frameworks, specifying how the components of the proposed system should be trained
and interact with each other. in this paper, we model... Restart at 1. Pa
per 1 cites 8 - Safe learning of regions of attraction for uncertain nonlinear
systems with gaussian processes, Category: Systems and Control (cs.SY), Abstract:
Control theory can provide useful insights into the properties of controlled,
dynamic systems. one important property of nonlinear systems is the region of
attraction (roa), a safe subset of the state... Paper 8 is cited by 9 - Control
theory meets pomdps a hybrid systems approach, Abstract: Partially observable
markov decision processes (pomdps) provide a modeling framework for a variety of
sequential decision making under uncertainty scenarios in artificial intelligence
(ai). since the... Restart at 1.

...

Which arXiv CS sub-category does Paper 1 belong to? Only respond with the answer,
do not say any word or explain.

Answer Machine Learning (cs.LG)

Figure 7: Transductive classification on arXiv citation network using text record of random walk
from Algorithms 1 and 4. Colors indicate task instruction, walk information, and label information.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

System Title and abstract of an arXiv paper will be given. Predict the arXiv CS sub-cate
gory the paper belongs to. It is one of the following: Numerical Analysis (cs.NA),
Multimedia (cs.MM), Logic in Computer Science (cs.LO), ... Discrete Mathematics
(cs.DM). Only respond with the answer, do not say any word or explain.

Context Title: Safety guided deep reinforcement learning via online gaussian process
estimation
Abstract: An important facet of reinforcement learning (rl) has to do with
how the agent goes about exploring the environment. traditional exploration
strategies typically focus on efficiency and ignore safety. however, for
practical applications, ensuring safety of the agent during exploration is
crucial since performing an unsafe action or reaching an unsafe state could
result in irreversible damage to the agent. the main challenge of safe
exploration is that characterizing the unsafe states and actions...
Which arXiv CS sub-category does this paper belong to?

Answer Machine Learning (cs.LG)

Figure 8: Zero-shot format for vertex classification on arXiv citation network. Task instruction and
label information are colored.

System Title and abstract of an arXiv paper will be given. Predict the arXiv CS sub-cate
gory the paper belongs to. It is one of the following: Numerical Analysis (cs.NA),
Multimedia (cs.MM), Logic in Computer Science (cs.LO), ... Discrete Mathematics
(cs.DM).

Context Title: Deeptrack learning discriminative feature representations online for
robust visual tracking
Abstract: Deep neural networks, albeit their great success on feature learning
in various computer vision tasks, are usually considered as impractical for
online visual tracking, because they require very long...
Category: cs.CV

Title: Perceived audiovisual quality modelling based on decison trees genetic
programming and neural networks...
Abstract: Our objective is to build machine learning based models that predict
audiovisual quality directly from a set of correlated parameters that are
extracted from a target quality dataset. we have used the...
Category: cs.MM

...

Title: Safety guided deep reinforcement learning via online gaussian process
estimation
Abstract: An important facet of reinforcement learning (rl) has to do with
how the agent goes about exploring the environment. traditional exploration
strategies typically focus on efficiency and ignore safety. however, for
practical applications, ensuring safety of the agent during exploration is
crucial since performing an unsafe action or reaching an unsafe state could
result in irreversible damage to the agent. the main challenge of safe
exploration is that characterizing the unsafe states and actions...
Which arXiv CS sub-category does this paper belong to?

Answer cs.LG

Figure 9: One-shot format for transductive classification on arXiv citation network. 40 labeled
examples are given in form of multi-turn dialogue. Task instruction and label information are colored.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

[...] A walk on arXiv citation network is as follows:
Paper 1 - Title: Unsupervised and interpretable scene discovery with discrete attend infer
repeat, Abstract: In this work we present discrete attend infer repeat (discrete-air), a
recurrent auto-encoder with structured latent distributions containing discrete categori
cal distributions, continuous attribute distributions, and factorised spatial attention.
while inspired by the original air model andretaining air model’s capability in identify
ing objects in an image, discrete-air provides direct interpretability of the latent codes.
we show that for multi-mnist and a multiple-objects version of dsprites... Restart at 1.
[...] Restart at 1. Paper 1 cites 12 - Attend infer repeat fast scene understanding with

generative models, Category: Computer Vision and Pattern Recognition (cs.CV), Abstract: We
present a framework for efficient inference in structured image models that explicitly rea
son about objects. we achieve this by performing probabilistic inference using a recurrent
neural network that... Paper 12 cites 3. Paper 12 cites 7. Paper 12 is cited by 9. Paper
12 is cited by 10. Paper 12 cites 11. Restart at 1. Paper 1 cites 11. Restart at 1. Paper
1 cites 12. Paper 12 is cited by 13 - An architecture for deep hierarchical generative mod
els, Category: Machine Learning (cs.LG), Abstract: We present an architecture which lets us
train deep, directed generative models with many layers of latent variables. we include de
terministic paths between all latent variables and the generated output,... Paper 13 cites
3. Restart at 1. [...]

Attention (Layer 13/30)

Answer cs.CV

Prediction cs.CV

Figure 10: Example of attention in a frozen Llama 3 8B applied on arXiv transductive classification.
Attention weights are averaged over all 30 heads.

A.3 ATTENTION VISUALIZATIONS

In Figure 10, we show an example of self-attention in the frozen Llama 3 8B model applied to arXiv
transductive classification (Section 5.3). We show attention weights on text record of random walk
from the generated cs token as query, which is just before finishing the prediction e.g. cs.CV. We
color the strongest activation with orange, and do not color values below 1% of it. The model invests
a nontrivial amount of attention on walk information such as Paper 1 cites 12, while also
making use of titles and labels of labeled vertices. This indicates the model is utilizing the graph
structure recorded by the random walk in conjunction with other information to make predictions.

In Figures 11, 12, and 13, we show examples of self-attention in DeBERTa models trained for graph
separation (Section 5.2). We first show attention weights on text record of random walk from the
[CLS] query token. Then, we show an alternative visualization where the attention weights are
mapped onto the original input graph. For example, for each attention on vt+1 where the walk has
traversed vt → vt+1, we regard it as an attention on the edge (vt, vt+1) in the input graph. We ignore
[CLS] and [SEP] tokens since they do not appear on the input graph. We observe that the models
often focus on sparse, connected substructures, which presumably provide discriminative information
on the isomorphism types. In particular, for CSL graphs (Figure 11) we observe an interpretable
pattern of approximate cycles composed of skip links. This is presumably related to measuring the
lengths of skip links, which provides sufficient information of isomorphism types of CSL graphs.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

1-2-3-4-5-6-7-8#5-9#1#4-1-10-11#2-2-1-12#3#8-3-4-9-8-5-13-14#7-15#6-16-17-18-19#14#16-14-7-
8-12-1-9-20#3#10-21#2-22#11-23-24#10#21-10-1-12-25#4#7#13-7-6-5-4-25-12-8-5-4-25-12-8-7-25-
13-26#6#19-27#15#18-18-17-28-29-30-31-32#28-33#29-34#23#31-31-32-35#17#30-17-16-19-14-15-6-
7-8-5-6-7-8-9-4-3-12-1-10-20-9-8-7-14-19-16-15-6-5-4-9-8-5-4-9-20-21-22-11-36#24-37#23#31-
31-34-33-32-28-38#16#27-27-15-16-17-18-27-26-13-25-7-14-19-26-6-15-16-38-27-18-17-35-30-31-
34-23-24-21-2-1-10-11-22-39#34#36-40#30#33#37-33-29-30-35-32-33-40-30-35-32-31-37-36-39-34-
31-30-29-41#18#35#38-18-27-38-16-17-28-38-27-26-13-14-15-27-26-13-14-15-6-26-13-5-6-15-14-
13-25-7-14-15-6-26-27-38-28-29-33-34-39-36-24-10-1-2-

Attention (Head 12/12, Layer 12/12)

Graph

1

2

3

4

5

6

7

8

9

10

11

12 13

14

15
16

17

18

19

20
21

22

23
24

25
26

27

28

29

30

31

32
33

34

35

36

37

38

39 40

41

Attention Mapped onto Graph

1-2-3-4-5-6#3-7-8-9#1-10#7-7-11#5-5-6-3-4-12-13#5-14#11-15-16#8#11-11-5-13-12-4-5-6-3-4-12-
17#8-18#16-19#15-20-21-22-23#1-24-25#1#10-26-27-28-29#24#26-24-25-10-9-1-25-24-30#20#22-31#
19#29-29-28-27-32#22-33#21#28-21-34#13-35#12#18#20-12-17-36#2#4#9-9-10-25-26-27-32-22-23-24-
25-10-9-8-16-18-19-20-21-34-37#14#33-38#15#28#31-15-14-13-34-21-22-32-39#2#23-2-1-23-24-30-
31-38-15-19-31-30-24-29-31-38-15-19-20-35-18-19-15-14-37-34-35-20-21-34-37-33-32-22-21-34-
37-33-32-22-30-20-35-18-16-15-14-13-12-35-20-30-22-32-33-37-14-11-5-4-36-2-1-25-26-29-24-23-
39-32-22-23-24-25-1-2-36-9-10-25-24-30-31-19-15-16-11-14-37-38-15-14-11-7-10-40#6#26-6-7-10-
9-8-17-18-16-11-7-8-16-11-7-8-17-18-16-15-38-37-14-11-5-4-36-17-18-

Attention (Head 5/12, Layer 12/12)

Graph

1

2

3
4

5
6

7

8

9

10

11

12

13

14
15

16

17

18
19

20

21

22

23

24
25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

Attention Mapped onto Graph

Figure 11: Examples of attention from [CLS] token in a DeBERTa trained on CSL graph separation,
forming approximate cycles using skip links. This is presumably related to measuring the lengths of
skip links, which provides sufficient information to infer isomorphism types of CSL graphs.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

1-2-3-4#2-5-6-7#1#2#5-8#3#5#6-9#3-3-4-5-10#1#4-11#1#3#8#9-12#1#6#10-13#6#9-6-5-8-7-2-14#3#
4#6#12#13-13-9-15#1#2#7#13-7-6-13-12-1-2-4-10-12-11-1-7-15-1-11-12-10-4-14-13-15-2-7-8-9-3-
2-7-8-5-7-2-3-14-13-15-1-2-14-13-16#4#5#9#10#15-5-10-1-11-3-14-4-16-10-1-12-13-6-12-13-6-12-
10-11-12-10-11-1-7-6-13-15-16-5-4-14-3-9-13-16-15-1-12-13-9-15-7-2-14-13-6-5-7-2-4-3-9-15-
13-14-6-5-7-8-9-11-10-5-16-4-3-14-2-15-13-12-10-5-16-4-14-13-12-14-13-16-10-5-6-14-3-9-16-
13-9-15-1-2-15-7-1-12-13-6-8-5-7-6-12-1-11-12-14-4-2-15-9-8-7-1-15-16-4-14-12-1-10-5-16-9-8-
5-16-13-12-6-14-2-1-7-15-16-4-2-1-15-16-10-4-16-15-9-16-15-13-6-8-9-16-5-6-

Attention (Head 11/12, Layer 10/12)

Graph

1

2

3 4

5

6

7

8
9

10

11

12

13

14

15 16

Attention Mapped onto Graph

1-2-3-4#2-5#3-6#1-7#5-8#3#5-9#3-3-4-5-10#1#4#6-11#4#9-12#2#4#7-13#6#7#9#11-7-14#1#2#8#12-8-
5-6-7-13-9-11-4-5-3-4-12-14-1-10-6-15#1#2#3#9#13-2-14-16#1#8#9#10#11-10-11-4-10-6-1-16-8-7-
5-8-9-3-5-7-8-14-7-6-15-2-3-8-14-2-1-16-11-4-10-6-15-13-6-1-16-10-6-1-16-14-12-13-7-12-4-3-
2-12-11-4-5-7-13-15-3-5-6-1-15-9-13-11-16-10-6-13-9-11-4-12-7-13-6-7-5-6-1-15-9-11-13-6-5-4-
2-3-9-15-1-14-16-1-15-6-7-13-15-1-10-5-3-2-1-16-10-4-11-16-10-5-4-12-11-9-16-11-9-13-12-14-
16-1-10-4-11-12-13-6-5-7-12-2-3-5-4-10-6-13-9-8-5-10-16-11-12-2-1-6-10-5-3-9-8-14-16-11-10-
5-6-7-12-14-16-11-12-14-1-16-11-10-4-11-13-9-16-8-3-5-8-9-16-14-2-

Attention (Head 11/12, Layer 7/12)

Graph

1

2

3

4
5

6

7

8

9 10

11

12

13

14

15

16

Attention Mapped onto Graph

Figure 12: Examples of attention from [CLS] token in a DeBERTa trained on SR16 graph separation.
The model tend to focus on neighborhood records that form a sparse connected substructure, which
we conjecture to provide discriminative information on the isomorphism type of SR16 graphs.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

1-2-3#1-4#2-5#1#2-6#4-7#1#3-3-8#1#4#5#7-5-9#1#2#7-10#4#7#8-11#1#4#8#9-8-12#1#3#6#7-3-13#2#
4#6#7#9#11-2-3-7-6-14#2#5#7#8#13-15#2#3#7#9#10-16#3#5#8#10#14-17#1#6#7#10#11#13#14-13-18#
5#8#9#11#12#14#16-19#3#6#9#11#12#13#15#16-9-7-13-11-20#1#2#12#14#15#17#18-21#2#4#6#8#10#11#
12#14#15#19-8-7-14-5-22#4#6#7#9#10#12#15#18#20-23#2#3#4#10#12#13#16#17#18#20-13-9-2-21-24#
1#2#5#6#9#10#12#16#17#19#23-19-6-24-23-16-3-1-5-8-21-14-2-3-7-8-5-6-7-1-25#3#4#5#6#11#15#
16#17#19#20#22-17-1-11-4-3-15-20-2-5-22-12-21-14-7-9-5-4-22-20-25-11-21-8-1-24-17-10-23-18-
13-6-4-8-3-7-17-14-20-12-24-16-17-10-21-14-5-4-13-14-7-13-3-8-1-3-7-14-13-2-3-8-18-22-5-

Attention (Head 4/12, Layer 9/12)

Graph

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24
25

Attention Mapped onto Graph

1-2-3#1-4#1-5#2-6#2#4-7#2#3#4-3-8#4#5#7-9#3#6-10#1#6-11#1#4#6#7#8-12#2#7#8#10-8-13#7#9#12-
14#1#2#3#11#12-15#1#2#3#5#6#8#9#10#13-1-3-16#1#4#7#9#10#13-13-17#1#4#6#9#11#14-18#2#3#6#7#
9#10#12-19#3#5#8#9#11#14#17-11-7-20#5#6#10#11#13#14#15#16#19-21#1#2#5#7#13#16#17#18#19-16-
13-15-22#1#4#5#8#10#12#13#17#18#21-10-6-18-7-11-23#1#2#5#8#9#10#12#16#19#21-12-8-4-24#2#5#
6#9#12#13#14#16#17#23-16-10-23-9-6-5-8-19-3-1-23-8-22-5-2-3-16-25#3#4#5#10#12#14#18#19#20#
22#24-14-13-16-1-21-17-1-22-15-3-9-13-16-21-22-15-10-11-4-24-9-6-10-12-14-24-12-8-7-11-20-5-
25-20-7-6-4-8-3-16-21-20-13-15-5-19-23-5-6-17-9-6-7-11-4-7-3-8-7-3-16-23-2-1-3-8-5-24-23-

Attention (Head 10/12, Layer 8/12)

Graph

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

Attention Mapped onto Graph

Figure 13: Examples of attention from [CLS] token in a DeBERTa trained on SR25 graph separation.
The model tend to focus on neighborhood records that form a sparse connected substructure, which
we conjecture to provide discriminative information on the isomorphism type of SR25 graphs.

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

0 20000 40000 60000 80000 100000
Step

0.0

0.5

1.0

1.5

2.0

2.5

Tr
ai

ni
ng

 lo
ss

CSL training loss
Pretrained (Ours)
Scratch

0 20000 40000 60000 80000 100000
Step

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Tr
ai

ni
ng

 lo
ss

SR16 training loss
Pretrained (Ours)
Scratch

Figure 14: The impact of language pre-training for graph isomorphism learning (Section 5.2).

Record 1[O,sp2]=π2[C,d:3,sp2,r]-3[C,cw,d:4,H:1,sp3,r]-4[N,d:3,H:1,sp2,r]-
π5[C,d:3,sp2,r]=π6[O,sp2]=π5-π4-3-2=π1=π2-3-7[C,d:4,H:2,sp3,r]-8[S,d:2,sp3,r]-
9[S,d:2,sp3,r]-10[C,d:4,H:2,sp3,r]-11[C,ccw,d:4,H:1,sp3,r]-12[N,d:3,H:1,sp2,r]-
π13[C,d:3,sp2,r]=π14[O,sp2]=π13-π12-11-15[C,d:3,sp2,r]-π16[N,d:3,H:1,sp2,r]-
17[C,cw,d:4,H:1,sp3,r]-18[C,d:3,sp2,r]=π19[O,sp2]=π18-17-20[C,d:4,H:2,sp3]-
21[C,d:4,H:2,sp3]-22[C,d:3,sp2]=π23[O,sp2]=π22-π24[O,d:2,H:1,sp2]-π22=π23=
π22-π24-π22=π23=π22-21-20-17-16-π15=π25[O,sp2]=π15-π16-17-20-21-22-π24-π22=
π23=π22-21-20-17-16-π15=π25=π15-π16-17-20-21-22-π24-π22=π23=π22-π24-π22-21-
20-17-18=π19=π18-π26[N,d:3,H:1,sp2,r]-27[C,ccw,d:4,H:1,sp3,r]-28[C,d:3,sp2]=
π29[O,sp2]=π28-π30[N,d:3,H:1,sp2]-31[C,ccw,d:4,H:1,sp3]-32[C,d:4,H:1,sp3]-
33[C,d:4,H:3,sp3]-32-34[C,d:4,H:3,sp3]-32-33-32-34-32-33-32-34-32-33-32-31-30-
π28=π29=π28-π30-31-32-34-32-31-30-π28=π29=π28-π30-31-32-33-32-34-32-33-32-34-
32-31-30-π28=π29=π28-π30-31-35[C,d:3,sp2]=π36[O,sp2]=π35-π37[N,d:3,H:1,sp2]-
38[C,cw,d:4,H:1,sp3]-39[C,d:3,sp2]-π40[N,d:3,H:1,sp2]-41[C,cw,d:4,H:1,sp3]-
42[C,d:4,H:2,sp3]-43[C,d:3,sp2,∗,r]∗π44[C,d:3,H:1,sp2,∗,r]∗π45[N,d:3,H:1,sp2,∗
,r]∗π46[C,d:3,H:1,sp2,∗,r]∗π47[N,d:2,sp2,∗,r]#∗π43∗π43∗π44∗π45∗π46∗π47∗π43-42-41-
40-π39=π48[O,sp2]=π39-38-37-π35=π36=π35-π37-38-49[C,d:4,H:2,sp3]-50[C

Figure 15: An example text record for Peptides-func graph classification.

Table 5: Peptides-func graph classification. The baseline scores are from Tönshoff et al. (2023).

Method Test AP
GCN 0.5930
GINE 0.5498
GatedGCN 0.6069
Transformer 0.6326
SAN 0.6439
CRaWl 0.7074
RWNN-DeBERTa (Ours) 0.7124 ± 0.0016

A.4 SUPPLEMENTARY EXPERIMENTS

We include supplementary experiments we could not include in the main text due to space constraints.

A.4.1 THE BENEFIT OF LANGUAGE PRE-TRAINING (SECTION 5.2)

In Section 5.2, we have used language pre-trained DeBERTa for graph isomorphism learning, even
though the records of random walks do not resemble natural language (Appendix A.2 and A.3). To
test if language pre-training is useful, we additionally trained RWNN-DeBERTa on CSL and SR16
datasets using the same configurations to our reported models but from random initialization. The
training curves are given in Figure 14. We find that pre-training has significant benefits over random
initialization for isomorphism learning tasks, as randomly initialized models converge very slowly
for CSL, and fails to converge to near-zero training loss for SR16.

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2025

Table 6: Fine-tuning for arXiv, extending Table 4. † denotes using validation labels as in Table 4.

Method Training-free? Accuracy
Llama3-8b zero-shot ⃝ 50.20%
Llama3-8b one-shot ⃝ 52.49%
Llama3-8b one-shot† ⃝ 52.54%
Llama3-70b zero-shot ⃝ 65.33%
Llama3-70b one-shot ⃝ 67.57%
RWNN-Llama3-8b (Ours) ⃝ 71.10%
RWNN-Llama3-8b (Ours)† ⃝ 73.11%
RWNN-Llama3-70b (Ours)† ⃝ 74.75%
RWNN-Llama3-8b (Ours), LoRA × 74.95%

Table 7: Real-world transductive classification test accuracy on several homophilic (Cora, Citeseer)
and heterophilic (Amazon Ratings) datasets. The baseline results were collected from (Sato, 2024;
Zhao et al., 2023; Chen et al., 2024a; Liu et al., 2024; Chen et al., 2024b; Platonov et al., 2023). †
denotes using validation labels as in Table 4.

Method Training-free? Cora 20-shot Cora Citeseer Amazon Ratings
Training-free GNN ⃝ 60.00% - - -
GCN × 81.40% 89.13% 74.92% 48.70%
GAT × 80.80% 89.68% 75.39% 49.09%
GraphText ⃝ 68.30% 67.77% 68.98% -
LLaGA ⃝ - 59.59% - -
GraphText × - 87.11% 74.77% -
LLaGA × - 88.86% - 28.20%
OFA × 75.90% - - 51.44%
RWNN-Llama3-8b (Ours) ⃝ 72.05% 86.72% 78.37% 44.29%
RWNN-Llama3-8b (Ours)† ⃝ 79.40% 88.01% 78.53% 48.83%
RWNN-Llama3-8b (Ours), LoRA × 79.45% 86.72% 81.03% 53.90%

A.4.2 REAL-WORLD GRAPH CLASSIFICATION

We conduct a preliminary experiment on the Peptides-func dataset (Dwivedi et al., 2022) used in
Tönshoff et al. (2023). Our model is a pre-trained DeBERTa-base (identical to Section 5.2) fine-tuned
on text records of non-backtracking MDLR random walks with anonymization and neighborhood
recording. The recording function is designed to properly incorporate the vertex and edge attributes
provided in the dataset, including the atom and bond types. An example text is provided in Figure 15.

In Table 5, we report the test average precision (AP) at best validation accuracy, with 40 random
predicted logits averaged at test time. We report the mean and standard deviation of the test per-
formances for five repeated tests. The baseline scores, including CRaWl, are from Tönshoff et al.
(2023). We see that RWNN-DeBERTa, which has been successful in graph isomorphism learning
(Section 5.2), also shows a promising result in real-world protein graph classification, despite its
simplicity of recording random walks in text and processing them with a fine-tuned language model.

A.4.3 FINE-TUNING FOR ARXIV TRANSDUCTIVE CLASSIFICATION (SECTION 5.3)

In Section 5.3, our RWNNs are training-free. We provide a preliminary result on fine-tuning on
training labels using low-rank adaptation (LoRA) (Hu et al., 2022). The result is in Table 6, showing
a promising performance.

A.4.4 ADDITIONAL REAL-WORLD TRANSDUCTIVE CLASSIFICATION

We provide additional experiments on real-world transductive classification datasets Cora, Citeseer,
and Amazon Ratings. Our models are similar to ones in Section 5.3. We compile the baseline scores
from (Zhao et al., 2023; Chen et al., 2024a; Liu et al., 2024; Chen et al., 2024b; Platonov et al., 2023),
including MPNNs and language models on graphs. The results are in Table 7. Ours is competitive as
a training-free method, and is reasonably good when fine-tuned with LoRA. Especially, on Amazon
Ratings which is heterophilic (Platonov et al., 2023), our fine-tuned model outperforms all baselines.

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2025

Table 8: Substructure (8-cycle) counting. We report normalized test mean absolute error (MAE) at best
validation. We trained MP, Subgraph GNN, Local 2-GNN, and Local 2-FGNN using configurations
in Zhang et al. (2024), and trained MP-RNI, MP-Dropout, AgentNet, and CRaWl as in Table 3.

Method Graph-level Vertex-level
MP .0917 .1156
Subgraph GNN .0515 .0715
Local 2-GNN .0433 .0478
Local 2-FGNN .0422 .0438
Local 2-FGNN (large) .0932 .1121
MP-RNI .3610 .3650
MP-Dropout .1359 .1393
AgentNet .1107 N/A
CRaWl .0526 .0725
RWNN-DeBERTa (Ours) .0459 .0465

Table 9: Real-world link prediction. The baseline scores are from Table 5 of Cai et al. (2021), and we
reproduced LGLP ourselves. We report the aggregated test AP for 3 randomized runs.

Method YST KHN ADV
Katz 81.63 ± 0.41 83.04 ± 0.38 91.76 ± 0.15
PR 82.08 ± 0.46 87.18 ± 0.26 92.43 ± 0.17
SR 76.02 ± 0.49 75.87 ± 0.66 83.22 ± 0.20
node2vec 76.61 ± 0.94 80.60 ± 0.74 76.70 ± 0.82
SEAL 86.45 ± 0.25 90.37 ± 0.16 93.52 ± 0.13
LGLP 88.54 ± 0.77 90.80 ± 0.33 93.51 ± 0.32
RWNN-transformer (Ours) 88.18 ± 0.28 90.63 ± 0.44 93.52 ± 0.20

This supports our results in Section 3.2 that RWNNs avoid over-smoothing, as avoiding it is known
to be important for handling heterophily (Yan et al., 2022).

A.4.5 SUBSTRUCTURE COUNTING

We test RWNN on additional challenging tasks that require both expressive power and generalization
to unseen graphs. We use a synthetic dataset of 5,000 random regular graphs from Chen et al. (2020),
and consider the task of counting substructures. We choose 8-cycles since they are known to require
a particularly high expressive power (Zhang et al., 2024). We experiment with both graph- and
vertex-level counting i.e. counting 8-cycles containing the queried vertex, following Zhang et al.
(2024). We use the data splits from previous work (Chen et al., 2020; Zhao et al., 2022b; Zhang et al.,
2024), while excluding disconnected graphs following our modeling assumption in Section 2.1. Our
RWNN uses the same design to Section 5.2, and we train them with L1 loss for at most 250k steps
using batch size of 128 graphs for graph-level counting and 8 graphs for vertex-level. At test-time,
we ensemble 64 and 32 predictions by averaging for graph- and vertex-level tasks, respectively.

The results are in Table 8, and overall in line with Section 5.2. While MPNNs show a low perfor-
mance, variants with higher expressive powers such as local 2-GNN and local 2-FGNN achieve high
performances. This is consistent with the observation of Zhang et al. (2024). On the other hand,
MPNNs with stochastic symmetry-breaking often show learning difficulties and does not achieve
good performance. AgentNet was not directly applicable for vertex-level counting since its vertex
encoding depends on which vertices the agent visits, and a learning difficulty was observed for
graph-level counting. Our approach based on DeBERTa demonstrates competitive performance,
outperforming random walk baselines and approaching performances of local 2-GNN and 2-FGNN.

A.4.6 LINK PREDICTION

We test an extension to real-world link prediction, based on Cai et al. (2021) where link prediction
is cast as vertex classification on a line graph. We follow Cai et al. (2021) and only change their
3-layer 32-dim DGCNN with an RWNN that uses a 3-layer 32-dim transformer encoder. As the
task is vertex-level, we use periodic restarts with k = 4. The results in Table 9 shows that RWNN
performs reasonably well.

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2025

A.5 PROOFS

We recall that an isomorphism between two graphs G and H is a bijection π : V (G)→ V (H) such
that any two vertices u and v are adjacent in G if and only if π(u) and π(v) are adjacent in H . If an
isomorphism π exists between G and H , the graphs are isomorphic and written G ≃ H or G

π≃ H .
By X d

= Y we denote the equality of two random variables X and Y in distributions.

In the proofs, we write by id(·) the namespace obtained by anonymization of a walk v0 → · · · → vl
(Section 2) that maps each vertex vt to its unique integer name id(vt) starting from id(v0) = 1.

Let us define some notations related to cover times. These will be used from Appendix A.5.5. We
denote by H(u, v) the expected number of steps a random walk starting from u takes until reaching v.
This is called the hitting time between u and v. For a graph G, let CV (G, u) be the expected number
of steps a random walk starting from u takes until visiting every vertices of G. The vertex cover time
CV (G), or the cover time, is this quantity given by the worst possible u:

CV (G) := max
u∈V (G)

CV (G, u). (16)

Likewise, let CE(G, u) be the expected number of steps a random walk starting from u takes until
traversing every edge of G. The edge cover time CE(G) is given by the worst possible u:

CE(G) := max
u∈V (G)

CE(G, u). (17)

For local balls Br(u), we always set the starting vertex of the random walk to u (Section 2.2). Thus,
we define their cover times as follows:

CV (Br(u)) := CV (Br(u), u), (18)
CE(Br(u)) := CE(Br(u), u). (19)

A.5.1 PROOF OF PROPOSITION 2.1 (SECTION 2)

Proposition 2.1. Xθ(·) is invariant in probability, if its random walk algorithm is invariant in
probability and its recording function is invariant.

Proof. We recall the probabilistic invariance of random walk algorithm in Equation 3:

π(v0)→ · · · → π(vl)
d
= u0 → · · · → ul, ∀G π≃ H, (20)

where v[·] is a random walk on G and u[·] is a random walk on H . We further recall the invariance of
recording function q : (v0 → · · · → vl, G) 7→ z in Equation 7:

q(v0 → · · · → vl, G) = q(π(v0)→ · · · → π(vl), H), ∀G π≃ H, (21)

for any given random walk v[·] on G. Combining Equation 20 and equation 21, we have the following:

q(v0 → · · · → vl, G)
d
= q(u0 → · · · → ul, H), ∀G ≃ H. (22)

Then, since the reader neural network fθ is a deterministic map, we have:

fθ(q(v0 → · · · → vl, G))
d
= fθ(q(u0 → · · · → ul, H)), ∀G ≃ H, (23)

which leads to:

Xθ(G)
d
= Xθ(H), ∀G ≃ H. (24)

This shows Equation 2 and completes the proof.

A.5.2 PROOF OF PROPOSITION 2.2 (SECTION 2)

We first show a useful lemma.
Lemma A.2. The random walk in Equation 4 is invariant in probability, if the probability distributions
of the starting vertex v0 and each transition vt−1 → vt are invariant.

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2025

Proof. We prove by induction. Let us write probabilistic invariance of the starting vertex v0 as:

π(v0)
d
= u0, ∀G π≃ H, (25)

and probabilistic invariance of each transition vt−1 → vt as follows, by fixing vt−1 and ut−1:

π(vt−1)→ π(vt)
d
= ut−1 → ut, ∀G π≃ H, vt−1 ∈ V (G), ut−1 := π(vt−1). (26)

Let us assume the following for some t ≥ 1:

π(v0)→ · · · → π(vt−1)
d
= u0 → · · · → ut−1, G

π≃ H. (27)

Then, from the chain rule of joint distributions, the first-order Markov property of random walk in
Equation 4, and probabilistic invariance in Equation 26, we obtain the following:

π(v0)→ · · · → π(vt)
d
= u0 → · · · → ut, G

π≃ H. (28)

By induction from the initial condition π(v0)
d
= u0 in Equation 25, the following holds ∀l > 0:

π(v0)→ · · · → π(vl)
d
= u0 → · · · → ul, ∀G π≃ H. (29)

This shows Equation 3 and completes the proof.

We now prove Proposition 2.2.

Proposition 2.2. The random walk in Equation 4 is invariant in probability if its conductance c·
is invariant:

cG(u, v) = cH(π(u), π(v)), ∀G π≃ H. (30)

It includes constant conductance, and any choice that only uses degrees of endpoints deg(u), deg(v).

Proof. We recall Equation 4 for a given conductance function cG : E(G)→ R+:

Prob[vt = x|vt−1 = u] :=
cG(u, x)∑

y∈N(u) cG(u, y)
. (31)

From Lemma A.2, it is sufficient to show the probabilistic invariance of each transition vt−1 → vt as
we sample v0 from invariant distribution Uniform(V (G)) (Algorithm 1). We rewrite Equation 26 as:

Prob[vt = x|vt−1 = u] = Prob[ut = π(x)|ut−1 = π(u)], ∀G π≃ H. (32)

If the conductance function c· is invariant (Equation 30), we can show Equation 32 by:

Prob[vt = x|vt−1 = u] :=
cG(u, x)∑

y∈N(u) cG(u, y)
,

=
cH(π(u), π(x))∑

y∈N(u) cH(π(u), π(y))
,

=
cH(π(u), π(x))∑

π(y)∈N(π(u)) cH(π(u), π(y))
,

= Prob[ut = π(x)|ut−1 = π(u)], ∀G π≃ H. (33)

In the third equality, we used the fact that isomorphism π(·) preserves adjacency. It is clear that any
conductance function c· with a constant conductance such as cG(·) = 1 is invariant. Further-
more, any conductance function that only uses degrees of endpoints deg(u), deg(v) is invariant as
isomorphism π(·) preserves the degree of each vertex. This completes the proof.

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2025

A.5.3 PROOF OF PROPOSITION A.1 (APPENDIX A.1)

We extend the proof of Proposition 2.2 given in Appendix A.5.2 to second-order random walks
discussed in Appendix A.1. We first show a useful lemma:

Lemma A.3. A second-order random walk algorithm is invariant in probability, if the probability
distributions of the starting vertex v0, the first transition v0 → v1, and each transition (vt−2, vt−1)→
vt for t > 1 are invariant.

Proof. We prove by induction. The probabilistic invariance of starting vertex v0 and first transition
v0 → v1 are:

π(v0)
d
= u0, ∀G π≃ H, (34)

π(v0)→ π(v1)
d
= u0 → u1, ∀G π≃ H, v0 ∈ V (G), u0 := π(v0), (35)

and probabilistic invariance of each transition (vt−2, vt−1)→ vt for t > 1 can be written as follows
by fixing (vt−2, vt−1) and (ut−2, ut−1):

π(vt−2)→ π(vt−1)→ π(vt)
d
= ut−2 → ut−1 → ut, ∀G

π≃ H,
(vt−2, vt−1) ∈ E(G),

(ut−2, ut−1) := (π(vt−2), π(vt−1)). (36)

Let us assume the following for some t ≥ 2:

π(v0)→ · · · → π(vt−2)→ π(vt−1)
d
= u0 → · · · → ut−2 → ut−1, G

π≃ H. (37)

Then, from the chain rule of joint distributions, the second-order Markov property of second-order
random walks, and probabilistic invariance in Equation 36, we obtain the following:

π(v0)→ · · · → π(vt−1)→ π(vt)
d
= u0 → · · · → ut−1 → ut, G

π≃ H. (38)

By induction from the initial condition π(v0)→ π(v1)
d
= u0 → u1 given from Equations 34 and 35,

the following holds ∀l > 0:

π(v0)→ · · · → π(vl)
d
= u0 → · · · → ul, ∀G π≃ H. (39)

This shows Equation 3 and completes the proof.

We now prove Proposition A.1.

Proposition A.1. The non-backtracking random walk in Equation 13 and the node2vec random walk
in Equation 14 are invariant in probability, if their underlying first-order random walk algorithm is
invariant in probability.

Proof. We assume that the first transition v0 → v1 is given by the underlying first-order random walk
algorithm. This is true for non-backtracking since there is no vt−2 to avoid, and true for the official
implementation of node2vec (Grover & Leskovec, 2016). Then from Lemma A.3, it is sufficient to
show probabilistic invariance of each transition (vt−2, vt−1)→ vt for t > 1 as we sample v0 from
the invariant distribution Uniform(V (G)) (Algorithm 1) and the first transition v0 → v1 is given by
the first-order random walk which is assumed to be invariant in probability. Rewrite Equation 36 as:

Prob[vt = x|vt−1 = j, vt−2 = i] = Prob[ut = π(x)|ut−1 = π(j), ut−2 = π(i)], ∀G π≃ H.
(40)

For non-backtracking, we first handle the case where i→ j reaches a dangling vertex j which has
i as its only neighbor. In this case the walk begrudgingly backtracks i → j → i (Appendix A.1).
Since isomorphism π(·) preserves adjacency, π(i)→ π(j) also reaches a dangling vertex π(j) and
must begrudgingly backtrack π(i) → π(j) → π(i). By interpreting the distributions on vt and ut
as one-hot at i and π(i), respectively, we can see that Equation 40 holds. If i→ j does not reach a

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2025

dangling vertex, the walk j → x follows the invariant probability of the underlying first-order random
walk Prob[vt+1 = x|vt = j] renormalized over N(j) \ {i}. Then we can show Equation 40 by:

Prob[vt = x|vt−1 = j, vt−2 = i]

:=


Prob[vt = x|vt−1 = j]∑

y∈N(j)\{i} Prob[vt = y|vt−1 = j]
for x ̸= i,

0 for x = i,

=


Prob[ut = π(x)|ut−1 = π(j)]∑

π(y)∈N(π(j))\{π(i)} Prob[ut = π(y)|ut−1 = π(j)]
for π(x) ̸= π(i),

0 for π(x) = π(i),

= Prob[ut = π(x)|ut−1 = π(j), ut−2 = π(i)], ∀G π≃ H. (41)

In the second equality, we have used the fact that isomorphism π(·) is a bijection and preserves
adjacency, and the assumption that the first-order random walk algorithm is invariant in probability.
For node2vec walk, we first show the invariance of the weighting term α(i, x) in Equation 15 using
the fact that isomorphism preserves shortest path distances between vertices d(i, x) = d(π(i), π(x)):

α(i, x) :=


1/p for d(i, x) = 0,
1 for d(i, x) = 1,
1/q for d(i, x) = 2.

=


1/p for d(π(i), π(x)) = 0,
1 for d(π(i), π(x)) = 1,
1/q for d(π(i), π(x)) = 2.

= α(π(i), π(x)). (42)

Then we can show Equation 40 by:

Prob[vt = x|vt−1 = j, vt−2 = i] :=
α(i, x) Prob[vt = x|vt−1 = j]∑

y∈N(j) α(i, y) Prob[vt = y|vt−1 = j]
,

=
α(π(i), π(x)) Prob[ut = π(x)|ut−1 = π(j)]∑

π(y)∈N(π(j)) α(π(i), π(y)) Prob[ut = π(y)|ut−1 = π(j)]
,

= Prob[ut = π(x)|ut−1 = π(j), ut−2 = π(i)], ∀G π≃ H.
(43)

In the second equality, we have used the fact that isomorphism π(·) preserves adjacency, and the
assumption that the first-order walk algorithm is invariant in probability. This completes the proof.

A.5.4 PROOF OF PROPOSITION 2.3 (SECTION 2)

Proposition 2.3. A recording function q : (v0 → · · · → vl, G) 7→ z that uses anonymization,
optionally with named neighbors, is invariant.

Proof. Given a walk v0 → · · · → vl on G, we can write the anonymized namespace id(·) as follows:

id(vt) = 1 + argmin
i

[vi = vt]. (44)

Consider any walk π(v0)→ · · · → π(vl) on some H which is isomorphic to G via π. Let us denote
the anonymization of this walk as id′(·). Then we have:

id′(π(vt)) = 1 + argmin
i

[π(vi) = π(vt)],

= 1 + argmin
i

[vi = vt],

= id(vt), ∀G π≃ H. (45)

37

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2025

The second equality is due to the fact that π is a bijection. This completes the proof for anonymization.
For the named neighbors, we prove by induction. Let us fix some t ≥ 1 and assume:

q(v0 → · · · → vt−1, G) = q(π(v0)→ · · · → π(vt−1), H), ∀G π≃ H. (46)

Let T ⊆ E(G) be the set of edges recorded by z := q(v0 → · · · → vt−1, G), and T ′ ⊆ E(H) be the
set of edges recorded by z′ := q(π(v0)→ · · · → π(vt−1), H). Then, T and T ′ are isomorphic via π:

T ′ = {(π(u), π(v))∀(u, v) ∈ T}. (47)

The equality is shown as follows. (⊇) Any (u, v) ∈ T is recorded in z as (id(u), id(v)). From
Equations 46 and 45, we have z = z′ and (id(u), id(v)) = (id(π(u)), id(π(v))). Thus, (π(u), π(v))
is recorded in z′ as (id(π(u)), id(π(v))), i.e. (π(u), π(v)) ∈ T ′. (⊆) This follows from symmetry.
Now, we choose some vt ∈ N(vt−1) and consider the set F ⊆ E(G) of all unrecorded edges from vt:

F := {(vt, u) : u ∈ N(vt)} \ T. (48)

Then, the set D of unrecorded neighbors of vt is given as:

D := {u : (vt, u) ∈ F}. (49)

Since π(·) preserves adjacency, the set F ′ ⊆ E(H) of all unrecorded edges from π(vt) is given by:

F ′ := {(π(vt), π(u)) : π(u) ∈ N(π(vt))} \ T ′,

= {(π(vt), π(u)) : u ∈ N(vt)} \ {(π(u′), π(v′))∀(u′, v′) ∈ T},
= {(π(vt), π(u)) : u ∈ N(vt), (vt, u) /∈ T},
= {(π(vt), π(u)) : (vt, u) ∈ F}, (50)

and consequently:

D′ := {π(u) : (π(vt), π(u)) ∈ F ′},
= {π(u) : u ∈ D}. (51)

While D and D′ may contain vertices not yet visited by the walks and hence not named by id(·),
what we record are named neighbors. Let S be the set of all named vertices in G. It is clear that the
set S′ of named vertices in H is given by S′ = {π(v) : v ∈ S}. Then, the named neighbors in G
to be newly recorded for vt−1 → vt is given by U = D ∩ S, and for π(vt−1)→ π(vt) in H the set
is given by U ′ = D′ ∩ S′. Since π(·) is a bijection, we can see that U ′ = {π(u) : u ∈ U}. From
the invariance of anonymization in Equation 45, U and U ′ are named identically {id(u) : u ∈ U} =
{id(π(u)) : π(u) ∈ U ′}, and therefore will be recorded identically. As a result, the information to be
added to the records at time t are identical, and we have:

q(v0 → · · · → vt, G) = q(π(v0)→ · · · → π(vt), H), ∀G π≃ H. (52)

Then, by induction from the initial condition:

q(v0, G) = q(π(v0), H) = id(v0) = id(π(v0)) = 1, (53)

the recording function using anonymization and named neighbors is invariant.

A.5.5 PROOF OF THEOREM 2.4 (SECTION 2.2)

Theorem 2.4. For a uniform random walk on an infinite graph G starting at v, the vertex and edge
cover times of the finite local ball Br(v) are not always finitely bounded.

Proof. We revisit the known fact that hitting times on the infinite line Z is infinite (Dumitriu et al.,
2003; Janson & Peres, 2012; carnage, 2012; McNew, 2013). Consider a local ball B1(0) of radius
1 from the origin 0 such that V (B1(0)) = {−1, 0, 1}. Let us assume that the expected number of
steps for a random walk starting at 0 to visit 1 for the first time is finite, and denote it by T . In
the first step of the walk, we have to go either to −1 or 1. If we go to −1, we have to get back
to 0 and then to 1 which would take 2T in expectation (by translation symmetry). This leads to
T = 1/2 · 1 + 1/2 · (1 + 2T) = 1 + T , which is a contradiction. Since visiting all vertices or
traversing all edges in in B1(0) clearly involves visiting 1, the vertex and edge cover times cannot be
finitely bounded.

38

2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2025

A.5.6 PROOF OF THEOREM 2.5 (SECTION 2.2)

Let us recall that our graph G is locally finite (Section 2.2), and denote its maximum degree as ∆. We
further denote by d(u, v) the shortest path distance between u and v. We show some useful lemmas.
We first show that H(u, x), the expected number of steps of a random walk starting at u takes until
reaching x, is finite for any u, x in Br(v) for any nonzero restart probability α or restart period k ≥ r.

Lemma A.4. For any u and x in Br(v), H(u, x) is bounded by the following:

H(u, x) ≤ 1

α
+

1

α

(
∆

1− α

)r

+
1

α

(
1

α
− 1

)(
∆

1− α

)2r

, (54)

if the random walk restarts at v with any probability α ∈ (0, 1), and:

H(u, x) ≤ k + k∆r, (55)

if the random walk restarts at v with any period k ≥ r.

Proof. We first prove for random restarts. The proof is inspired by Theorem 1.1 of McNew (2013)
and Lemma 2 of Zuckerman (1991). We clarify some measure-theoretic details. Let W be the set of
all (infinite) random walks on G. We denote by P the probability measure defined on the space W ,
equipped with its cylinder σ-algebra, by the random walk restarting at v with probability α ∈ (0, 1).
For a vertex x in G, we define the hitting time function | · |x :W → N ∪ {∞} as follows:

|w|x := argmin
i

[(w)i = x], ∀w ∈W. (56)

Let W (a) be the set of all random walks that start at a, W (a, b) be the set of random walks that start
at a and visit b, and W (a, b−) be the set of random walks that start at a and do not visit b. Then,
the measurability of | · |x follows from the measurability of the sets W (a), W (a, b), and W (a, b−),
which we show as follows. ∀a, b ∈ V (G), W (a) is clearly measurable, W (a, b) is measurable as it
equals

⋃
n∈N{w ∈W |(w)1 = a, (w)n = b}, and W (a, b−) is measurable as it is W (a) \W (a, b).

Consider W (u, x−), the set of random walks that start at u and never visit x. We start by showing
that this set is of measure zero:

P (W (u, x−)) = 0. (57)

For this, we use the fact that W (u, x−) = W (u, v−, x−) ∪W (u, v, x−), where W (u, v−, x−) is
the set of random walks starting at u that do not visit v nor x, and W (u, v, x−) is the set of walks
starting at u that visit v and do not visit x. We have the following:

P (W (u, x−)) = P (W (u, v−, x−)) + P (W (u, v, x−)),

≤ P (W (u, v−)) + P (W (u, v, x−)). (58)

We show Equation 57 by showing P (W (u, v−)) = 0 and P (W (u, v, x−)) = 0 in Equation 58.

1. (P (W (u, v−)) = 0) Consider W (u, v−), the set of all random walks that start at u and never
visit v. Since restart sends a walk to v, every walk in this set never restarts. The probability
of a walk not restarting until step t is (1− α)t. Denote this probability by pt, and let p be the
probability of a random walk to never restart. Then pt ↓ p = 0 and P (W (u, v−)) ≤ p = 0.

2. (P (W (u, v, x−)) = 0) Assume P (W (u, v, x−)) > 0. Then P (W (v, x−)) > 0 since each
walk step is independent. Let WN (v, x−) be the set of walks that start at v and do not reach x
within N restarts. Then we have WN (v, x−) ↓W (v, x−). If a walk restarts at v, the probability
of reaching x before the next restart is at least the probability of exactly walking the shortest path
from v to x, which is ≥ (1−α

∆)d(v,x) ∈ (0, 1). Then P (WN (v, x−)) ≤ (1− (1−α
∆)d(v,x))N ↓ 0,

leading to P (W (v, x−)) = 0. This is a contradiction, so we have P (W (u, v, x−)) = 0.

We are now ready to bound H(u, x). Using the hitting time function | · |x in Equation 56, we have:

H(u, x) = E [|w|x|w ∈W (u)] . (59)

39

2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

Under review as a conference paper at ICLR 2025

Since W (u) =W (u, x) ∪W (u, x−), and P (W (u, x−)) = 0 from Equation 57, we have:

H(u, x) = E[|w|x|w ∈W (u, x)],

=

∫
W (u,x)

|w|x dP (w|w ∈W (u, x)). (60)

Each walk in W (u, x) starts at u and, when it reaches x, it either has or has not visited v. We treat
the two cases separately. Let W (a, b, c) be the set of walks that start at a and reach c after b, and let
W (a, b−, c) be the set of walks that start at a and reach c before b. Then we have:

H(u, x) =

∫
W (u,v,x)∪W (u,v−,x)

|w|x dP (w|W (u, x)),

=

∫
W (u,v,x)

|w|x dP (w|W (u, x)) +

∫
W (u,v−,x)

|w|x dP (w|W (u, x)). (61)

Let Ĥ(a, b, c) (or Ĥ(a, b−, c)) be the expected number of steps for a walk starting at a to reach c after
reaching b (or before b), given that it is in W (a, b, c) (or in W (a, b−, c)). If a walk from u reaches v
before x, the expected steps is given by Ĥ(u, x−, v) +H(v, x). If the walk reaches x before v, the
expected steps is Ĥ(u, v−, x). Then, if W (u, v−, x) ̸= ∅, we can write H(u, x) as follows:

H(u, x) =
[
Ĥ(u, x−, v) +H(v, x)

]
P (W (u, v, x)|W (u, x))

+ Ĥ(u, v−, x)P (W (u, v−, x)|W (u, x)). (62)

On the other hand, if W (u, v−, x) = ∅, we simply have:

H(u, x) = Ĥ(u, x−, v) +H(v, x). (63)

We first consider Ĥ(u, x−, v), the expected number of steps from u to reach v before x. We show:

Ĥ(u, x−, v) ≤ 1

α
. (64)

To see this, note that Ĥ(u, x−, v) is equivalent to the expectation E[T] of the number of steps T to
reach v from u, on the graph G with the vertex x deleted and transition probabilities renormalized. If
u is isolated on this modified graph, the only walk in W (u, x−, v) is the one that immediately restarts
at v, giving E[T] = 1. Otherwise, we have E[T] ≤ 1/α due to the following. Let T ′ be the number
of steps until the first restart at v. Since restart can be treated as a Bernoulli trial with probability of
success α, T ′ follows geometric distribution with expectation 1/α. Since it is possible for the walk
to reach v before the first restart, we have E[T] ≤ E[T ′] = 1/α, which gives Equation 64.

We now consider H(v, x), the expectation E[T] of the number of steps T to reach x from v. Let T ′

be the steps until the walk restarts at v, then exactly walks the shortest path from v to x for the first
time, and then restarts at v. Since T ′ walks until restart after walking the shortest path to x, and it is
possible for a walk to reach x before walking the shortest path to it, we have E[T] ≤ E[T ′]. Then,
we split the walk of length T ′ into N trials, where each trial consists of restarting at v and walking
until the next restart. A trial is successful if it immediately walks the shortest path from v to x. Then
N is the number of trials until we succeed, and it follows geometric distribution with probability of
success at least (1−α

∆)d(v,x) due to bounded degrees. Its expectation is then bounded as:

E[N] ≤
(

∆

1− α

)d(v,x)

. (65)

Let Si be the length of the i-th trial. Since each Si is i.i.d. with finite mean E[Si] = 1/α, and N is
stopping time, we can apply Wald’s identity (Hein) to compute the expectation of T ′:

E[T ′] = E[S1 + · · ·+ SN],

= E[N]E[S1],

≤ 1

α

(
∆

1− α

)d(v,x)

. (66)

40

2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213

Under review as a conference paper at ICLR 2025

We remark that H(v, x) ≤ E[T ′]. Combining this result with Equation 64, we have:

Ĥ(u, x−, v) +H(v, x) ≤ 1

α
+

1

α

(
∆

1− α

)d(v,x)

. (67)

If W (u, v−, x) = ∅, we have H(u, x) = Ĥ(u, x−, v) +H(v, x) from Equation 63 and it is finitely
bounded for any α ∈ (0, 1) by the above. If W (u, v−, x) ̸= ∅, Equations 62 and 67 lead to:

H(u, x) ≤ Ĥ(u, x−, v) +H(v, x) + Ĥ(u, v−, x)P (W (u, v−, x)|W (u, x)),

≤ 1

α
+

1

α

(
∆

1− α

)d(v,x)

+ Ĥ(u, v−, x)P (W (u, v−, x)|W (u, x)), (68)

and it suffices to bound Ĥ(u, v−, x)P (W (u, v−, x)|W (u, x)). We show the following:

Ĥ(u, v−, x) =

∫
W (u,v−,x)

|w|x dP (w|W (u, v−, x)),

=

∞∑
k=1

∫
{w∈W (u,v−,x)∧|w|x=k}

|w|x dP (w|W (u, v−, x)),

=

∞∑
k=1

k

∫
{w∈W (u,v−,x)∧|w|x=k}

dP (w|W (u, v−, x)),

=

∞∑
k=1

k P ({w ∈W (u, v−, x) ∧ |w|x = k}|W (u, v−, x)),

≤
∞∑
k=1

k P ({w : |w|x = k}|W (u, v−, x)),

=

∞∑
k=1

k
P ({w : |w|x = k ∧ w ∈W (u, v−, x)})

P (W (u, v−, x))
,

≤
∞∑
k=1

k(1− α)k 1

P (W (u, v−, x))
,

=
1

α

(
1

α
− 1

)
1

P (W (u, v−, x))
. (69)

We have used Fubini’s theorem for the second equality. Then we have:

Ĥ(u, v−, x)P (W (u, v−, x)|W (u, x)) ≤ 1

α

(
1

α
− 1

)
P (W (u, v−, x)|W (u, x))

P (W (u, v−, x))
,

=
1

α

(
1

α
− 1

)
1

P (W (u, x))
. (70)

P (W (u, x)) is at least the probability of precisely walking the shortest path from u to x, which has
length d(u, x) ≤ 2r since u and x are both in Br(v). This gives us the following:

P (W (u, x)) ≥
(
1− α
∆

)d(u,x)

,

≥
(
1− α
∆

)2r

. (71)

Combining this with Equation 70, we have:

Ĥ(u, v−, x)P (W (u, v−, x)|W (u, x)) ≤ 1

α

(
1

α
− 1

)(
∆

1− α

)2r

. (72)

Combining with Equations 62 and 67, we have:

H(u, x) ≤ 1

α
+

1

α

(
∆

1− α

)d(v,x)

+
1

α

(
1

α
− 1

)(
∆

1− α

)2r

, (73)

41

2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267

Under review as a conference paper at ICLR 2025

for any α ∈ (0, 1). Notice that, while this bound is for the case W (u, v−, x) ̸= ∅, it subsumes the
bound for the case W (u, v−, x) = ∅ (Equation 67). Then, using d(v, x) ≤ r, we get Equation 54.
This completes the proof for random restarts.

We now prove for periodic restarts. If the walk starting at u reaches x before restarting at v, the steps
taken is clearly less than k. If the walk starting at u restarts at v at step k before reaching x, it now
needs to reach x from v, while restarting at v at every k steps. Let T be the steps taken to reach x
from v. Let T ′ be the number of steps until the walk restarts at v, then exactly follows the shortest
path from v to x for the first time, and then restarts at v. It is clear that E[T] ≤ E[T ′]. Then, we
split the walk of length T ′ into N trials, where each trial consists of restarting at v and walking k
steps until the next restart. A trial is successful if it immediately walks the shortest path from v to
x. Then N is the number of trials until we get a success, and it follows geometric distribution with
probability of success at least (1/∆)d(v,x) only for k ≥ d(v, x), and zero for k < d(v, x) since the
walk cannot reach x before restart. Hence, its expectation is at most ∆d(v,x) for k ≥ d(v, x), and we
have E[T] ≤ E[T ′] = kE[N] ≤ k∆d(v,x). Adding the k steps until the first restart at v, we have:

H(u, x) ≤ k + k∆d(v,x), (74)

for any k ≥ d(v, x). Using d(v, x) ≤ r, we get Equation 55. This completes the proof.

We now extend Lemma A.4 to edges. Let H(u, (x, y)) be the expected number of steps of a random
walk starting at u takes until traversing an edge (x, y) by x→ y. We show that H(u, (x, y)) is finite
for any u and adjacent x, y in Br(v) for any nonzero restart probability α or restart period k ≥ r+ 1.
Lemma A.5. For any u and adjacent x, y in Br(v), H(u, (x, y)) is bounded by the following:

H(u, (x, y)) ≤ 1

α
+

1

α

(
∆

1− α

)r+1

+
1

α

(
1

α
− 1

)(
∆

1− α

)2r+1

, (75)

if the random walk restarts at v with any probability α ∈ (0, 1), and:

H(u, (x, y)) ≤ k + k∆r+1, (76)

if the random walk restarts at v with any period k ≥ r + 1.

Proof. The proof is almost identical to Lemma A.4, except the target x of reaching is substituted by
(x, y) in the direction of x→ y, and all arguments that use the shortest path from u or v to x instead
use the shortest path to x postfixed by x→ y, which adds +1 to several terms in the bounds.

We are now ready to prove Theorem 2.5.
Theorem 2.5. In Theorem 2.4, if the random walk restarts at v with any nonzero probability α or
any period k ≥ r + 1, the vertex and edge cover times of Br(v) are always finite.

Proof. The proof is inspired by the spanning tree argument of Aleliunas et al. (1979). Let us consider
a depth first search of Br(v) starting from v. We denote by T the resulting spanning tree with vertices
V (T) = V (Br(v)). We consider the expected time for a random walk starting at v to visit every
vertex in the precise order visited by the depth first search by traversing each edge twice. It is clear
that this upper-bounds the vertex cover time of Br(v) starting at v (Equation 18):

CV (Br(v)) ≤
∑

(x,y)∈E(T)

[H(x, y) +H(y, x)]. (77)

Then, using the bounds from Lemma A.4, the property of spanning trees |E(T)| = |V (T)| − 1, and
the fact that |V (T)| = |V (Br(v))| ≤ ∆r from bounded degree, we obtain:

CV (Br(v)) ≤ 2(∆r − 1)

(
1

α
+

1

α

(
∆

1− α

)r

+
1

α

(
1

α
− 1

)(
∆

1− α

)2r
)
, (78)

if the random walk restarts at v with any probability α ∈ (0, 1), and:

CV (Br(v)) ≤ 2(∆r − 1)(k + k∆r), (79)

42

2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321

Under review as a conference paper at ICLR 2025

if the random walk restarts at v with any period k ≥ r. This completes the proof for the vertex cover
time. For the edge cover time, we consider the expected time for a random walk starting at v to visit
every edge in the precise order discovered6 by the depth first search by traversing each edge twice. It
is clear that this upper-bounds the edge cover time of Br(v) starting at v (Equation 19):

CE(Br(v)) ≤
∑

(x,y)∈E(Br(v))

[H(x, (x, y)) +H(y, (y, x))]. (80)

Then, using Lemma A.4 and the fact that |E(Br(v))| ≤ ∆2r − 1 from bounded degree, we obtain:

CE(Br(v)) ≤ 2(∆2r − 1)

(
1

α
+

1

α

(
∆

1− α

)r+1

+
1

α

(
1

α
− 1

)(
∆

1− α

)2r+1
)
, (81)

if the random walk restarts at v with any probability α ∈ (0, 1), and:

CE(Br(v)) ≤ 2(∆2r − 1) · (k + k∆r+1), (82)

if the random walk restarts at v with any period k ≥ r + 1. This completes the proof.

While our proof shows finite bounds for the cover times, it is possible that they can be made tighter,
for instance based on Zuckerman (1991). We leave improving the bounds as a future work.

A.5.7 PROOF OF THEOREM 3.2 (SECTION 3.1)

We recall universal approximation of graph-level functions in probability (Definition 3.1):

Definition 3.1. We say Xθ(·) is a universal approximator of graph-level functions in probability
if, for all invariant functions ϕ : Gn → R for a given n ≥ 1, and ∀ϵ, δ > 0, there exist choices of
length l of the random walk and network parameters θ such that the following holds:

Prob[|ϕ(G)−Xθ(G)| < ϵ] > 1− δ, ∀G ∈ Gn. (83)

We remark that an RWNN Xθ(·) is composed of a random walk algorithm, a recording function
q : (v0 → · · · → vl, G) 7→ z, and a reader neural network fθ : z 7→ ŷ ∈ R.

Intuitively, if the record z of the random walk always provides complete information of the input
graph G, we may invoke universal approximation of fθ to always obtain |ϕ(G)− fθ(z)| < ϵ, and
thus |ϕ(G) − Xθ(G)| < ϵ. However, this is not always true as the random walk may e.g. fail to
visit some vertices of G, in which case the record z would be incomplete. As we show below, this
uncertainty leads to the probabilistic bound > 1− δ of the approximation.

Let us denote the collection of all possible random walk records as {z} := Range(q), and consider a
decoding function ψ : {z} → Gn that takes the record z := q(v0 → · · · → vl, G) of a given random
walk v[·] and outputs the graph ψ(z) ∈ Gn composed of all recorded vertices V (H) := {id(vt) :
vt ∈ {v0, ..., vl}} and all recorded edges E(H) ⊂ V (H)× V (H). We show the following lemma:

Lemma A.6. Let Gz be the subgraph of G whose vertices and edges are recorded by z. Then the
graph ψ(z) decoded from the record z is isomorphic to Gz through the namespace id(·):

Gz
id≃ ψ(z). (84)

Furthermore, the decoded graph ψ(z) reconstructs G up to isomorphism, that is,

G
id≃ ψ(z), (85)

if the recording function q(·) and the random walk v[·] satisfies either of the following:

• q(·) uses anonymization, and v[·] has traversed all edges of G.

• q(·) uses anonymization and named neighbors, and v[·] has visited all vertices of G.
6We remark that depth first search discovers all edges of a graph, while not necessarily visiting all of them.

43

2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375

Under review as a conference paper at ICLR 2025

Proof. Equation 84 is straightforward from the fact that the namespace id(·) defines a bijection
from V (Gz) to [|V (Gz)|], and the recording function uses names id(vt) to record vertices and edges.
Equation 85 is satisfied when all vertices and edges of G have been recorded, i.e. Gz = G, which
is possible either when the random walk has traversed all edges of G, or when it has traversed all
vertices of G and named neighbors are used to record the induced subgraph G[V (G)] = G.

We further remark Markov’s inequality for any nonnegative random variable T and a > 0:

Prob[T ≥ a] ≤ E[T]
a

. (86)

We are now ready to prove Theorem 3.2.
Theorem 3.2. An RWNN Xθ(·) with a sufficiently powerful fθ is a universal approximator of
graph-level functions in probability (Definition 3.1) if it satisfies either of the below:

• It uses anonymization to record random walks of lengths l > CE(G)/δ.

• It uses anonymization and named neighbors to record walks of lengths l > CV (G)/δ.

Proof. Instead of directly approximating the target function ϕ : Gn → R, it is convenient to define a
proxy target function on random walk records ϕ′ : {z} → R where {z} := Range(q) as follows:

ϕ′ := ϕ ◦ ψ, (87)

where ψ : {z} → Gn is the decoding function of walk records. Then, for a given z, we have:

G ≃ ψ(z) =⇒ ϕ(G) = ϕ′(z), (88)

which is because ϕ is an invariant function, so ϕ(G) = ϕ(ψ(z)) = ϕ ◦ ψ(z) = ϕ′(z). Then we have:

Prob[G ≃ ψ(z)] ≤ Prob[|ϕ(G)− ϕ′(z)| = 0]. (89)

We now invoke universality of fθ to approximate ϕ′. If fθ is a universal approximator of functions on
its domain {z} := Range(q), for any ϵ > 0 there exists a choice of θ such that the below holds:

|ϕ′(z)− fθ(z)| < ϵ, ∀z ∈ Range(q). (90)

Combining Equations 89 and 90, we have:

Prob[G ≃ ψ(z)] ≤ Prob[|ϕ(G)− ϕ′(z)|+ |ϕ′(z)− fθ(z)| < ϵ]. (91)

We remark triangle inequality of distances on R, for a given z:

|ϕ(G)− fθ(z)| ≤ |ϕ(G)− ϕ′(z)|+ |ϕ′(z)− fθ(z)|, (92)

which implies, for a given z:

|ϕ(G)− ϕ′(z)|+ |ϕ′(z)− fθ(z)| < ϵ =⇒ |ϕ(G)− fθ(z)| < ϵ, (93)

and hence:

Prob[|ϕ(G)− ϕ′(z)|+ |ϕ′(z)− fθ(z)| < ϵ] ≤ Prob[|ϕ(G)− fθ(z)| < ϵ]. (94)

Combining Equations 91 and 94, we have:

Prob[|ϕ(G)− fθ(z)| < ϵ] ≥ Prob[G ≃ ψ(z)], (95)

which can be written as follows:

Prob[|ϕ(G)−Xθ(G)| < ϵ] ≥ Prob[G ≃ ψ(z)]. (96)

We now consider the probability of the event G ≃ ψ(z) based on Lemma A.6. We first consider the
case where the recording function q(·) uses anonymization. In this case, G ≃ ψ(z) is achieved if the
random walk of length l has traversed all edges of G. Let TE(G, v0) be the number of steps that a
random walk starting at v0 takes until traversing all edges of G. Since the edge cover time CE(G) is
its expectation taken at the worst possible starting vertex (Equation 17), we have the following:

E[TE(G, v0)] ≤ CE(G), ∀v0 ∈ V (G), (97)

44

2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429

Under review as a conference paper at ICLR 2025

which leads to the following from Markov’s inequality (Equation 86):

Prob[TE(G, v0) < l] ≥ 1− E[TE(G)]
l

≥ 1− CE(G)

l
. (98)

For a given random walk v0 → · · · → vl and its record z, the following holds:

TE(G, v0) < l =⇒ G ≃ ψ(z), (99)

which implies the following:

Prob[TE(G, v0) < l] ≤ Prob[G ≃ ψ(z)]. (100)

Combining Equations 96, 98, and 100, we have:

Prob[|ϕ(G)−Xθ(G)| < ϵ] ≥ 1− CE(G)

l
. (101)

Therefore, for any δ > 0, if we choose l > CE(G)/δ we would have the following:

Prob[|ϕ(G)−Xθ(G)| < ϵ] > 1− δ. (102)

This completes the proof for anonymization. The proof is identical for the recording function
that uses anonymization and named neighbors, except that the edge cover time is changed to the
vertex cover time CV (G) (Equation 16). This is because neighborhood recording automatically
records the induced subgraph of visited vertices, thus visiting all vertices implies recording all edges,
G[V (G)] = G.

A.5.8 PROOF OF THEOREM 3.4 (SECTION 3.1)

Theorem 3.4. An RWNN Xθ(·) with a sufficiently powerful fθ and any nonzero restart probability
α or restart period k ≥ r + 1 is a universal approximator of vertex-level functions in probability
(Definition 3.3) if it satisfies either of the below for all Br(v) ∈ Br:

• It uses anonymization to record random walks of lengths l > CE(Br(v))/δ.

• It uses anonymization and named neighbors to record walks of lengths l > CV (Br(v))/δ.

Proof. The proof is almost identical to Theorem 3.2, except G ∈ Gn are substituted by Br(v) ∈ Br,
and the decoding function ψ : {z} → Br is defined to ignore all recorded vertices id(x) whose
shortest path distance from the starting vertex id(v) = id(v0) = 1 exceeds r. The latter is necessary
to restrict the range of the decoding function ψ to Br. In addition, any nonzero restart probability α
or restart period k ≥ r + 1 is sufficient to make the cover times CE(Br(v)) and CV (Br(v)) finite
(Theorem 2.5), thereby guaranteeing the existence of a finite choice of l.

A.5.9 PROOF OF THEOREM 3.5 (SECTION 3.2)

Theorem 3.5. The simple RWNN outputs h(l) → x⊤π as l→∞.

Proof. Since G is connected and non-bipartite, the uniform random walk on it defines an ergodic
Markov chain with a unique stationary distribution π. The limiting frequency of visits on each vertex
v is precisely the stationary probability πv. Since the model reads xv0 → · · · → xvl by average
pooling, the output is given by weighted mean

∑
v πvxv which is x⊤π.

A.5.10 PROOF OF THEOREM 3.6 (SECTION 3.2)

Theorem 3.6. Let h(l)
u be output of the simple RWNN queried with u. Then:

E

[∣∣∣∣∣∂h(l)
u

∂xv

∣∣∣∣∣
]
=

1

l + 1

[
l∑

t=0

P t

]
uv

→ πv as l→∞. (103)

45

2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483

Under review as a conference paper at ICLR 2025

Proof. Since the model reads xv0
→ · · · → xvl by average pooling, the feature Jacobian |∂h(l)

u /∂xv|
is given as number of visits to the vertex v in the random walk v0 → · · · → vl starting at v0 = u,
divided by length l+1. Let us denote the expected number of these visits by J(u, v, l). Let 1vt=v be
the indicator function that equals 1 if vt = v and 0 otherwise. Then we can write J(u, v, l) as:

J(u, v, l) = E

[
l∑

t=0

1vt=v|v0 = u

]
,

=

l∑
t=0

E[1vt=v|v0 = u]. (104)

We have used linearity of expectations for the second equality. E[1vt=v|v0 = u] is the probability of
being at v at step t given that the walk started at u. This probability is precisely [P t]uv . Therefore:

J(u, v, l) =

l∑
t=0

[
P t
]
uv

=

[
l∑

t=0

P t

]
uv

, (105)

which gives the equality in Equation 103. Furthermore, since G is connected and non-bipartite, the
uniform random walk on it defines an ergodic Markov chain with a unique stationary distribution π.
The limiting frequency of visits on vertex v is precisely the stationary probability πv, which gives
the convergence in Equation 103. This completes the proof.

A.6 EXTENDED RELATED WORK

Anonymized random walks (Micali & Zhu, 2016) The initial work on anonymization by Micali
& Zhu (2016) has stated an important result, that a sufficiently long anonymized walk starting from a
vertex v encodes sufficient information to reconstruct the local subgraph Br(v) up to isomorphism.
While the focus of Micali & Zhu (2016) was a probabilistic graph reconstruction algorithm that uses
a set of independent anonymized walks and accesses the oracle set of all possible anonymized walks,
we adopt the idea in a neural processing context to acquire universality in probability (Section 3.1). In
addition, the invariance property of anonymization has rarely been noticed formally in the literature,
which is our key motivation for using it, on top of being able to recover the whole graph (Section 2).

In-depth comparison with CRaWl (Tönshoff et al., 2023) Our approach is related to CRaWl in
two key aspects: (1) identity and connectivity encodings of CRaWl contains analogous information
to anonymization and neighborhood recording, respectively, and (2) CRaWl uses 1D CNNs as the
reader NN. A key technical difference lies in the first part. The identity and connectivity encodings
of CRaWl are defined within a fixed window size (denoted s in (Tönshoff et al., 2023)), which
puts a locality constraint on the recorded information. Precisely, the encodings at step t can encode
the information of the walk from step t − s to t (precisely, its induced subgraph), referred to as a
walklet. The window size s is a hyperparameter that controls the expressive power of CRaWl, and
this dependency makes CRaWl non-universal (Section 3.2, (Tönshoff et al., 2023)). Our choice of
anonymization and neighborhood recording are not under such a local constraint, and they encode
the full information of a given walk globally. This property underlies our universality results in
Section 3.1, which also naturally motivates our choice of universal reader NNs, e.g. a transformer
language model, which were not explicitly considered in CRaWl.

Random walks on graphs Our work builds upon theory of random walks on graphs, i.e. Markov
chains on discrete spaces. Their statistical properties such as hitting and mixing times have been
well-studied (Aleliunas et al., 1979; Lovász, 1993; Coppersmith et al., 1996; Feige, 1995; Oliveira,
2012; Peres & Sousi, 2015), and our method (Section 2) is related to vertex cover time (Aleliunas
et al., 1979; Kahn et al., 1989; Ding et al., 2011; Abdullah, 2012), edge cover time (Zuckerman,
1991; Bussian, 1996; Panotopoulou, 2013; Georgakopoulos & Winkler, 2014), and improving them,
using local degree information (Ikeda et al., 2009; Abdullah et al., 2015; David & Feige, 2018), non-
backtracking (Alon et al., 2007; Kempton, 2016; Arrigo et al., 2019; Fasino et al., 2021), or restarts in
case of infinite graphs (Dumitriu et al., 2003; McNew, 2013; Janson & Peres, 2012). Our work is also
inspired by graph algorithms based on random walks, such as anonymous observation (Micali & Zhu,
2016), sublinear algorithms (Dasgupta et al., 2014; Chiericetti et al., 2016; Ben-Hamou et al., 2018;

46

2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537

Under review as a conference paper at ICLR 2025

Bera & Seshadhri, 2020), and personalized PageRank for search (Page et al., 1999). While we adopt
their techniques to make our walks and their records well-behaved, the difference is that we use a
deep neural network to process the records and directly make predictions. Our method is also related
to label propagation algorithms (Zhu & Ghahramani, 2002; Zhu, 2005; Grady, 2006) that perform
transductive learning on graphs based on random walks, which we further discuss in Section 5.3.

Over-smoothing and over-squashing Prior work on over-smoothing and over-squashing of
MPNNs (Barceló et al., 2020; Topping et al., 2022; Giovanni et al., 2023; Giraldo et al., 2023;
Black et al., 2023; Nguyen et al., 2023; Park et al., 2023; Wu et al., 2023) often make use of structural
properties of graphs, such as effective resistance (Doyle & Snell, 1984; Chandra et al., 1997), Lapla-
cian eigen-spectrum (Lovász, 1993; Spielman, 2019), and discrete Ricci curvatures (Ollivier, 2009;
Devriendt & Lambiotte, 2022). Interestingly, random walks and their statistical properties are often
closely related to these properties, indicating some form of parallelism between MPNNs and RWNNs.
This has motivated our analysis in Section 3.2, where we transfer the prior results on over-smoothing
and over-squashing of MPNNs based on these properties into the results on our approach.

Language models for learning on graphs While not based on random walks, there have been
prior attempts on applying language models for problems on graphs (Wang et al., 2023; Chen et al.,
2023b; Zhao et al., 2023; Fatemi et al., 2023; Ye et al., 2024), often focusing on prompting methods
on problems involving simulations of graph algorithms. We take a more principle-oriented approach
based on invariance and expressive power, and thus demonstrate our approach mainly on the related
tasks, e.g. graph separation. We believe extending our work to simulating graph algorithms requires
a careful treatment (Weiss et al., 2021; Delétang et al., 2023; de Luca & Fountoulakis, 2024; Sanford
et al., 2024) and plan to investigate it as future work.

A.7 LIMITATIONS AND FUTURE WORK

Our current main limitation is the cost of performing training and inference if using language models,
especially on long walks. We believe efficient fine-tuning with e.g. low-rank adaptation (Hu et al.,
2022; Chen et al., 2023a) may help overcome the issue. A question for future work is whether we
can train a language model on a large pseudocorpus of random walks (Klubicka et al., 2019; 2020)
to build a foundation model for graphs which is language-compatible. We plan to investigate this
direction in the future.

47

	Introduction
	Random Walk Neural Networks
	Graph-Level Tasks
	Vertex-Level Tasks

	Analysis
	Expressive Power
	Over-smoothing, Over-squashing, and Under-reaching

	Related Work
	Experiments
	Synthetic Experiments
	Graph Isomorphism Learning
	Real-World Transductive Classification

	Conclusion
	Appendix
	Second-Order Random Walks (Section 2)
	Main Algorithm
	Attention Visualizations
	Supplementary Experiments
	The Benefit of Language Pre-training (Section 5.2)
	Real-world Graph Classification
	Fine-tuning for arXiv Transductive Classification (Section 5.3)
	Additional Real-world Transductive Classification
	Substructure Counting
	Link Prediction

	Proofs
	Proof of Proposition 2.1 (Section 2)
	Proof of Proposition 2.2 (Section 2)
	Proof of Proposition A.1 (Appendix A.1)
	Proof of Proposition 2.3 (Section 2)
	Proof of Theorem 2.4 (Section 2.2)
	Proof of Theorem 2.5 (Section 2.2)
	Proof of Theorem 3.2 (Section 3.1)
	Proof of Theorem 3.4 (Section 3.1)
	Proof of Theorem 3.5 (Section 3.2)
	Proof of Theorem 3.6 (Section 3.2)

	Extended Related Work
	Limitations and Future Work

