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Abstract

Thanks to the rapid progress in RGB & thermal imaging, also known as multispec-
tral imaging, the task of multispectral video semantic segmentation, or MVSS in
short, has recently drawn significant attentions. Noticeably, it offers new opportu-
nities in improving segmentation performance under unfavorable visual conditions
such as poor light or overexposure. Unfortunately, there are currently very few
datasets available, including for example MVSeg dataset that focuses purely toward
eye-level view; and it features the sparse annotation nature due to the intensive
demands of labeling process. To address these key challenges of the MVSS task,
this paper presents two major contributions: the introduction of MVUAV, a new
MVSS benchmark dataset, and the development of a dedicated semi-supervised
MVSS baseline - SemiMV. Our MVUAV dataset is captured via Unmanned Aerial
Vehicles (UAV), which offers a unique oblique bird’s-eye view complementary
to the existing MVSS datasets; it also encompasses a broad range of day/night
lighting conditions and over 30 semantic categories. In the meantime, to bet-
ter leverage the sparse annotations and extra unlabeled RGB-Thermal videos, a
semi-supervised learning baseline, SemiMV, is proposed to enforce consistency
regularization through a dedicated Cross-collaborative Consistency Learning (C3L)
module and a denoised temporal aggregation strategy. Comprehensive empirical
evaluations on both MVSeg and MVUAV benchmark datasets have showcased the
efficacy of our SemiMV baseline.

1 Introduction

Semantic segmentation is the process of categorizing each pixel in an image/video to a specific class
label, which plays a vital role in visual scene understanding [1, 2]. Remarkable progresses has been
made in the past several years, particularly in RGB-based semantic segmentation [3, 4, 5, 6, 7, 8, 9, 10,
11]. With the increasing accessibility of thermal sensors in capturing thermal radiation of objects with
temperature above absolute zero, multispectral semantic segmentation (MSS) [12, 13, 14, 15], where
both RGB and infrared thermal cameras are engaged, starts to gain notable traction. An exemplar
illustration is shown in Fig. 1. This multispectral imaging setup excels specifically in scenes with
unfavorable visual conditions, such as low-light or overexposure. On the other hand, the dynamic and
ever-changing nature of real-world scenarios has propelled interests in video semantic segmentation
(VSS) [16, 17, 18, 19, 20] with impressive segmentation performance. The task of multispectral
(aka RGB-Thermal or RGB-T) video semantic segmentation (MVSS)[21] has emerged recently as a
promising visual segmentation setup that has the best of both worlds.

Nevertheless, as being a relatively new task, there are still a number of hurdles in MVSS research.
The most prominent one is the lack of quality datasets. One major MVSS benchmark presently
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Figure 1: (a) Viewpoint diversity of the existing MVSeg dataset [21] and the new MVUAV dataset.
(b) & (c) Representative samples from the MVSeg & MVUAV datasets, where RGB videos, thermal
videos, and the corresponding semantic annotations are visualized.

available is MVSeg [21], a recently introduced dataset. It is worth mentioning that the multispectral
videos in existing MVSS datasets, including MVSeg, are all taken from eye-level views, which clearly
suggests the lack of data source diversity in MVSS. Even after securing good quality of RGB-T
video footage, it is still a demanding exercise to make annotations. In practice, this is achieved by
furnishing pixel-wise semantic labels on a selected subset of frames or key-frames1. Consequentially,
there typically exists only sparse annotations in the MVSS datasets.

This paper aims to address the above-mentioned challenges. Specifically, we introduce MVUAV,
a new MVSS dataset containing a diverse range of RGB-T videos captured by Unmanned Aerial
Vehicles (UAVs) from an oblique bird’s-eye viewpoint. As depicted in Fig. 1, this viewpoint provides
a broader, holistic perspective free from the constraints of eye-level capture adopted by existing
MVSS datasets such as MVSeg. In detail, our MVUAV dataset comprises 413 RGB-Thermal videos
with 53,828 frame pairs in total. A subset of 2,183 key-frame pairs are meticulously annotated with
pixel-wise semantic labels across 36 different classes of objects and stuffs, where the pixel annotation
rate is 99.18%. Our dataset captures diverse real-world scenarios such as roads, streets, bridges,
parks, seas, beaches, courts and schools; it also spans different lighting conditions from daytime to
low-light and even pitch-dark scenarios. The MVUAV also presents some challenges, such as large
scale variation, fine-grained scene parsing, moving object segmentation, and adverse illumination
conditions, making it a valuable asset for evaluating various MVSS algorithms.

Meanwhile, we seek to tackle the MVSS task from a relatively new semi-supervised perspective. As
illustrated in Fig. 2, our strategy utilizes a small number of sparsely labeled RGB-Thermal videos,
alongside massive amount of unlabeled videos. In the closely-related domain of semi-supervised
RGB-based semantic image segmentation, the idea of consistency regularization has played important
role in the eventual performance. Its efficacy stems from perturbation-invariant training, by enforcing
consistent predictions despite of varied perturbations presented in unlabeled RGB images at different
processing levels: input [22], feature [23, 24], or network [25]. There motivates us to explore
consistency regularization in RGB-Thermal videos. In fact, MVSS seems to be an ideal setting, since
RGB and thermal images essentially capture the same scenes from different sensory perspectives,
that offers innate input perturbations. Further, processing the multimodal data through two parallel
networks with distinct parameters also leads to valuable feature-level and network-level perturbations.
Building on these insights, we introduce SemiMV, a novel semi-supervised MVSS framework. At
its core is a Cross-collaborative Consistency Learning (C3L) module, where the RGB and thermal
streams mutually offer pseudo-supervisions to each other. A pixel-wise reliability map is also
generated, based on the learned cross-modal consistency, to guide the temporal fusion process and
mitigate potential noise.

The main contributions of this paper are summarized as follows:
• A new benchmark dataset, MVUAV, is introduced. The RGB-T videos in the new dataset

present complementary perspectives to the the existing MVSS datasets such as MVSeg that
are typically from eye-level views, by capturing from an oblique bird’s-eye viewpoint. It
also provides pixel-level dense annotations with a rich set of 36 visual semantic categories.

1In video-based segmentation datasets (e.g., Cityscapes [1] and MVSeg [21]), it is a common practice to
sparsely annotate video frames, given similar content of consecutive frames and substantial cost saving in the
amount of annotation effort.
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Figure 2: Illustration of training examples in semi-supervised MVSS setting, where a limited amount
of sparsely labeled RGB-Thermal (RGBT) videos and massive unlabeled ones are utilized.

• We propose a simple yet effective semi-supervised MVSS baseline, SemiMV. Our baseline
is to our knowledge the first in employing the consistency regularization idea tailored for
the semi-supervised MVSS task. Our experimental evaluation on the MVSeg and MVUAV
benchmark datasets demonstrates the efficacy of the SemiMV baseline.

2 Related Work

2.1 Semantic Segmentation in Diverse Modalities

Semantic segmentation, a crucial task in computer vision, has evolved significantly over recent
decades. This evolution spans four primary data modalities: RGB images, multispectral images,
RGB videos, and multispectral videos, each uniquely contributing to the field’s advancement and
expanding its practical applications [26, 27, 28, 29, 19, 30, 31, 32].

RGB semantic segmentation (RSS) has undergone remarkable advancements. FCN [33], as a milestone
work, uses a fully convolutional network for per-pixel prediction. Subsequent innovations, such
as dilation convolution [34], pyramid pooling [35], and attention mechanisms [36, 37, 38], have
enriched segmentation by integrating contextual information and capturing global contexts. Recently,
transformer-based methods [39, 40, 41, 42] have gained prominence with the advent of Visual
Transformer [43]. For a detailed overview, readers are advised to refer to comprehensive survey
papers [44]. Multispectral semantic segmentation (MSS) is an emergent field that aims to enhance
model robustness in adverse lighting conditions by integrating RGB and thermal imagery [45]. The
primary challenge in MSS lies in effectively merging RGB and thermal data. Various strategies
have been developed, such as concatenation [46, 47], element-wise summation [48, 49], bridging-
then-fusing [14], attention-weighted fusion [50], explicit extract and fusion [13], and cross-modal
fusion [15]. Additionally, there is a related area of research focused on multimodal RGBD-based
segmentation [51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66], which addresses some
limitations of purely RGB-based segmentation. On the other hand, video semantic segmentation
(VSS) is gaining traction with the growing importance of dynamic video processing. VSS models [18,
67, 16, 68, 69, 70] have focused on leveraging temporal contexts of video frames. Notably, some
studies [71, 72, 73] utilize optical flow [74] to warp features from neighbouring frames for feature
alignment and aggregation. Recently, attention-based methods [17, 75, 76, 77] have been proposed to
selectively retrieve information from past frames for improving current frame segmentation, yielding
promising results. Multispectral video semantic segmentation (MVSS) is a nascent area that combines
the strengths of multispectral and temporal contexts. A pioneering study [21] introduces the large-
scale MVSeg dataset to benchmark this field, and proposes a baseline model for learning a joint
representation from multispectral video input. Our paper contributes a new MVUAV dataset to enrich
the dataset diversity in MVSS.

2.2 Semi-supervised Learning in Segmentation

Semantic segmentation has a major challenge in real-world scenarios where only limited pixel-
level labels are available due to high expense of human labor. Recently, semi-supervised semantic
segmentation has surged in popularity to utilize a plethora of unlabeled data.

Semi-supervised RSS has gained extensive research interest by extending the powerful semi-supervised
learning (SSL) techniques. Notably, consistency regularization and self-training have demonstrated
great success. Consistency regularization enforces the consistency of the predictions with vari-
ous perturbations, e.g., input perturbation via augmenting input images [22], feature perturbation
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Figure 3: Illustrations of the proposed MVUAV dataset. (a) Taxonomic system and its histogram
distribution showing the number of annotated frames across different categories. (b) Examples of
multispectral UAV videos and corresponding annotations in both daytime and nighttime scenarios.

using multiple decoders [23] or feature dropout [24], and network perturbation through different
initialization [25]. Meanwhile, self-training methods [78, 79] generate pseudo segments for the
unlabeled images and train subsequent models with both human-annotated and pseudo-labeled data.
To leverage temporal video information, several semi-supervised VSS methods [78, 80] have been
devised. For example, Zhuang et al. [80] propose inter-frame feature reconstruction to leverage the
ground-truth labels to supervise the model training on unlabeled frames. Despite their effectiveness,
these semi-supervised models are limited to single-mode RGB inputs. To our best knowledge, our
work is the first to deal with semi-supervised MVSS problem with RGB-Thermal video inputs.

3 The MVUAV Dataset

This section describes the construction of the MVUAV dataset and analyzes its statistical results.
Dataset Collection. The main principle of data acquisition is to provide a comprehensive collection
of calibrated RGB and thermal infrared video sequences from a new UAV perspective, and furnish
high-quality semantic annotations. Toward this objective, we initially gather about 500 RGB-T video
sequences from a latest aerial tracking dataset VTUAV [81] (altitudes ranging from 5-20m). The
RGB-Thermal videos are captured at diverse environments such as parks, streets, and beaches, under
various lighting conditions and seasons. To ensure the quality of our dataset, we remove unqualified
videos or frames that are blurry, misaligned, or repetitive. After this selection process, the MVUAV
dataset consists of 413 high-quality multispectral UAV videos, with 53,828 paired frames in total.
Dataset Annotation. We then provide pixel-wise semantic labels to the multispectral UAV videos.
We employ Labelme toolkit to annotate the multispectral UAV videos. The annotation process
presents many challenges. First, the dataset has many complex scenes at adverse conditions, e.g.,
nighttime, darkness, overexposure, making it difficult to identify target objects from RGB images
alone. Second, it is crucial to maintain annotation consistency across video frames, otherwise objects
might be misidentified in different frames. Third, the UAV-view presents a more complex and
crowded visual field compared to the eye-level view in MVSeg, making object identification and
silhouette distinction more challenging. To overcome these challenges, we first overlay thermal
heatmaps onto corresponding RGB images to visually aid annotators in identifying objects in complex
scenes. Meanwhile, video frames from the same video are annotated by the same person to ensure
temporal consistency. Three inspectors review and correct the annotations to make sure temporal
consistency, with the assistance of video-level annotation visualization. Due to these challenges, the
annotation and quality control process takes about 90 minutes per frame on average. We visualize
some representative examples from the MVUAV dataset in Fig. 3.
Dataset Statistics. Table 1 outlines some critical attributes of the MVUAV dataset and related
semantic segmentation datasets with different modalities. Our MVUAV dataset comprises 413 RGB-
Thermal videos at a frame rate of 25 fps, including 54k image pairs in total and 2,183 annotated
image pairs. The new MVUAV dataset can act as a valuable asset to complement the existing MVSeg
dataset for more thorough evaluations of various MVSS models. Additionally, the MVUAV dataset
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Table 1: Statistics of various semantic segmentation datasets in diverse modalities. ‘Surv.’, ‘#Cls’ and
‘Anno.’ are the shorthand for surveillance, the number of classes and annotation density, respectively.

Dataset Year Color Infrared Video UAV Capture #Vids(Frames) #GTs Resolution #Cls %Anno.
Cityscapes [1] 2016 ✓ ✗ ✓ ✗ Car - (150k) 5,000 2048×1024 30 97.10%
CamVid [82] 2009 ✓ ✗ ✓ ✗ Car 5 (40k) 701 960×720 32 96.20%
UAVid [83] 2020 ✓ ✗ ✓ ✓ Drone 42 (38k) 420 3840×2160 8 82.69%
SODA [84] 2020 ✗ ✓ ✗ ✗ Pedestrian - 2,168 640×480 21 79.73%
SCUT-Seg [85] 2021 ✗ ✓ ✗ ✗ Car - 2,010 720×576 10 56.50%
MFNet [46] 2017 ✓ ✓ ✗ ✗ Car - 1,569 640×480 9 7.86%
PST900 [47] 2020 ✓ ✓ ✗ ✗ Robot - 894 1280×720 5 3.02%
SemanticRT [45] 2023 ✓ ✓ ✗ ✗ Surv. - 11,371 1280×1024 13 21.27%
FMB [86] 2023 ✓ ✓ ✗ ✗ Car - 1,500 800×600 15 98.16%
CART [87] 2024 ✓ ✓ ✗ ✓ Drone - 2,282 960×600 11 99.98%
MVSeg [21] 2023 ✓ ✓ ✓ ✗ Car/Surv. 738 (53k) 3,545 480×640 26 98.96%
MVUAV - ✓ ✓ ✓ ✓ Drone 413 (54k) 2,183 1920×1080 36 99.18%

features high-resolution imagery (1920×1080), which is helpful for fine-grained scene parsing. This
dataset also provides detailed annotations for a rich set of semantic categories, covering 8 root
categories and 36 sub-classes (including background) as shown in Fig. 3, at a high pixel annotation
rate of 99.18%. This can facilitate detailed and comprehensive scene understanding. Additional
dataset details and discussions with related UAV-view datasets [88, 89, 90, 91] are provided in the
supplementary material.
Dataset Splits. The dataset is partitioned into training, validation, and test sets, which contain 275, 35,
and 103 videos respectively, with 1,464, 171, and 548 annotated masks. One frame is annotated for
every 25 frames. Additionally, the test set data involves both daytime and nighttime scenes, consisting
of 72 videos with 351 annotated frames and 31 videos with 197 annotated frames, respectively.

4 Methodology
4.1 Problem Definition

The training setting of the semi-supervised MVSS task is illustrated in Fig. 2, where we have a
small set of labeled multispectral videos with sparse annotations and a larger corpus of unlabeled
multispectral videos. Following the common practice in VSS [75, 17] and MVSS [21], we use video
clips as input units. Each video clip contains a sequence of t frame pairs and only the final frame
pair in the labeled video clip has semantic annotations. Formally, we denote a multispectral video
clip as V = {(IRi , ITi )}ti=1, where (IRi , ITi ) represents the i-th frame pair with spatial resolution of
H×W . The labeled set is denoted as DL = {(VL

n , yn)}
nL
n=1, which comprises nL clips, and yn is the

pixel-level semantic labels for the final frame pair of each clip, in a space of C classes. The unlabeled
set is denoted as DU = {VU

n }nU
n=1, including nU unlabeled multispectral video clips. Additionally, we

use an evaluation set, DV = {(VV
n , yn)}nV

n=1. The goal of Semi-MVSS is to develop a segmentation
model that can effectively learn from both DL and DU , and exhibit robust generalization to DV .

4.2 Proposed SemiMV Framework

Fig. 4 depicts the overall architecture of our SemiMV. The network takes a multispectral video clip
as input, which contains a Query frame pair at time step t, and M Memory pairs selected from past
frames. In the semi-supervised MVSS setting, only the Query pairs from the labeled video set have
ground-truth semantic annotations.
Supervised Training. We first feed the RGB and Thermal pairs into two parallel segmentation
networks (NetR and NetT ), e.g., DeepLabv3+, which generate initial segmentation predictions PR

i

and PT
i (i ∈ [t−M, · · · , t]). For the labeled Query images, common supervised training is employed

on the outputs of two networks using ground-truth segmentation maps, represented by:

Lsup = E(IR
t ,IT

t ,y)∈DL(lce(P
R
t , y) + lce(P

T
t , y)). (1)

Here (IRt , ITt ) is a Query pair in the labeled set and y is the corresponding ground-truth map. lce
denotes the cross-entropy loss function.
Cross-collaborative Consistency Learning. The key challenge in semi-supervised MVSS lies in
how to mine effective supervision from unlabeled RGB-Thermal videos to complement label-guided
training. In semi-supervised RSS, consistency regularization has achieved notable success, benefiting
from perturbation-invariant training to enforce consistent predictions across various perturbations of
unlabeled RGB images at different processing levels—input [22], feature [23, 24], or network [25].
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This success motivates us to consider applying consistency regularization to RGB-thermal videos. To
explore this, a simple yet effective Cross-collaborative Consistency Learning (C3L) module is devised,
which leverages the unique properties of RGB-Thermal videos to perform perturbation-invariant
training. Our intuition is that: RGB and thermal images inherently capture the same scene from
distinct sensory perspectives, i.e., visible light and thermal infrared, which provide innate input
perturbations; further, processing these multimodal data through two parallel networks with distinct
parameters introduces valuable feature-level and network-level perturbations. With these insights, our
C3L is devised to apply mutual pseudo supervision between RGB and thermal streams to effectively
utilize unlabeled RGB-Thermal frame pairs.

Specifically, we first compute a pair of one-hot pseudo-labels from the initial probabilistic segmen-
tation predictions, PR

i and PT
i , using the argmax function: Y R

i , Y T
i = argmax(PR

i ), argmax(PT
i ).

Then, the pseudo-labels are exploited to provide pseudo supervisions to the other stream, defined as:

Lc3l = E(IR
i ,IT

i )∈DU
⋃

DL(lce(P
R
i , Y T

i ) + lce(P
T
i , Y R

i )). (2)
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Figure 4: Overview of proposed method. For sim-
plicity, the supervised losses are omitted. The C3L
loss Lc3l (Eq. 2) aims to learn from unlabeled RGB-
Thermal pairs. The DMR is responsible for integrat-
ing temporal information from the denoised memory
bank to update query features. A dual-C3L loss (Eq.
7) is further applied to regularize updated query fea-
tures. Finally, a segmentation head predicts the final
mask P final

t . The dotted \\ means stop gradient.

Ideally, the C3L loss is expected to enhance
the robustness of the model by fostering cross-
modal consistency between unlabeled RGB-
Thermal pairs. However, our experiments indi-
cate a decrease in segmentation performance
with this approach, as discussed in Sec. 5.4.
We conjecture this decrease is primarily due
to the inherent limitations of particular sen-
sors, where the pseudo label generated from
either RGB or thermal images alone might be
incomplete, causing confused training and er-
ror accumulation. To counteract this, we need
to consider effective cross-modal collaboration
in the C3L framework. In terms of the design
of cross-modal collaboration, a lot of fusion
strategies [48, 49, 50, 13, 15] have been pro-
posed in the MSS field as discussed in related
works. Therefore, our work does not claim a
new fusion strategy, but introduces the insights
to highlight the importance of cross-modal col-
laboration for semi-supervised consistency reg-
ularization in MVSS. In C3L, we employ the
Cross-modal Fusion block (CMF)2 from [13]
in our implementation and discuss other design
choices in the supplements. By introducing
cross-modal collaboration, the pseudo labels
are refined by engaging the complementary
information from the alternate stream, leading to significant improved performance.
Denoised Memory Read. Next we consider how to integrate temporal information from past video
frames. Among solutions in the related VSS and MVSS fields, attention-based memory read methods
[21, 75, 17] have yield promising results, which selectively retrieve information from past (Memory)
frames for improving current (Query) frame segmentation. In semi-supervised MVSS, due to the
absence of ground-truth supervisions for past frames, Memory features are prone to be unreliable.

To deal with this issue, we further introduce a reliability estimation strategy, which can be easily
integrated into existing temporal aggregation modules [21, 75] to mitigate potential noise. Here
we utilize prototypical memory read [21] for efficient temporal aggregation. Our intuition is that
reliable RGB and thermal features tend to yield consistent predictions. Conversely, discrepancies in
these predictions can, to a certain extent, suggest potential unreliability. To quantify this, we design
a normalized bidirectional Kullback–Leibler (KL) divergence function to estimate the pixel-wise

2CMF [13] is built on the gating mechanism that enables the model to emphasize useful features in one
modality and compensate its missing information from the other.

6



reliability map as:

Ri = 1− 1

2

(
N (

∑
c∈C

PR
i (c) log

PR
i (c)

PT
i (c)

) +N (
∑
c∈C

PT
i (c) log

PT
i (c)

PR
i (c)

)
)
. (3)

Here, the KL divergence function is performed pixel-wisely (we omit the pixel scripts for simplicity);
N (·) is a min-max normalization function performed spatially to normalize divergence values to the
range of 0 to 1. The final reliability map Ri is with the dimension of H ×W × 1.

To efficiently store reliable memory features with minimal memory usage, we then establish a
denoised prototype-based memory bank [21]. Concretely, for each memory feature f∗i ∈ RH×W×D

extracted from NetR and NetT , where ∗ ∈ {R, T} indicates the image modality and D is the
channel dimension, we generate C denoised class-level prototype features by spatially aggregating
denoised features belonging to each category:

p∗
i = G(f∗i ×Ri, Y

∗
i ) ∈ RC×D, (4)

Here × means pixel-wise multiplication to down-weight unreliable memory features based on the
reliability map Ri. G is the aggregation operation, which spatially averages the features belonging
to each class based on pseudo-label Yi. With this process, we obtain a condensed and denoised
prototype-based memory bank {p∗ ∈ RMC×D}∗∈{R,T}.

Subsequently, we use the attention mechanism to selectively retrieve relevant semantic information
from the denoised memory bank, thereby refining query features. Taking RGB query feature fRt
∈ RH×W×D as an example, the updated RGB query feature FR

t is derived as follows:

w∗ = Softmax(̄fRt ⊗ transpose(p̄∗)), ∗ ∈ {R, T}, (5)
FR
t = ϕ([wRpR,wT pT , fRt ]). (6)

Here, f̄Rt and p̄∗ indicate L2 normalized features, ⊗ denotes matrix multiplication, [·, ·, ·] means
feature concatenation, and ϕ(·) is a convolutional operation to adjust channel size.

The denoised memory read module finally outputs two enhanced query features FR
t ,FT

t ∈ RH×W×D,
which are enriched with useful denoised temporal contexts from unlabeled past frames.
Dual-C3L. In order to make full use of the unlabeled data and to further regularize the memory-
updated features, we add C3L loss on the updated query features as well, called Dual-C3L loss:

L̂c3l = E(IR
t ,IT

t )∈DU
⋃

DL(lce(P̂
R
t , Ŷ T

t ) + lce(P̂
T
t , Ŷ R

t )), (7)

where {P̂R
t , P̂T

t } are updated predictions inferred from updated query features {FR
t ,FT

t }, and
{Ŷ R

t , Ŷ T
t } are corresponding pseudo labels. Accordingly, for the labeled query pairs, an additional

supervision loss, L̂sup, is also applied on the updated predictions, similar to Eq. 1.
Final Prediction and Training Objective. To infer the final output, the updated query features
{FR

t ,FT
t } are concatenated together, followed by a 3× 3 convolutional layer as segmentation head

to predict the final mask P final
t . A supervised cross-entropy loss is also applied to P final

t , as:

Lfinal
sup = E(IR

t ,IT
t ,y)∈DL lce(P

final
t , y). (8)

The overall training objective of the proposed SemiMV framework is thus defined as:

Ltotal = Lsup + L̂sup + Lfinal
sup + λ(Lc3l + L̂c3l), (9)

where λ is the trade-off weight to balance the supervised losses and pseudo losses from C3L.

5 Experiments
5.1 Datasets and Evaluation Metric

Our experiments are conducted on both MVSeg and MVUAV datasets. MVSeg [21] is a street scene
dataset with 26 semantic classes. It consists of 452, 84, and 202 videos in its training, validation, and
testing subsets, respectively. Annotations are provided for every 15 frames, resulting in 2,241 training,
378 validation, and 926 testing semantic masks. MVUAV provides bird’s-eye view scenes with 36
semantic classes. The dataset splits are mentioned in Sec. 3. We follow the partition protocols of [25]
and divide the whole training set via randomly sub-sampling 1/2, 1/4, 1/8, and 1/16 training videos
as the labeled set, and treat the remaining videos as the unlabeled set. The numbers of annotated
videos/frames for each training partition, denoted as (#videos, #frames), are included in Table 2 and
Table 3. By convention [21], we adopt the mean Intersection over Union (mIoU) for evaluation.
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5.2 Implementation Details

The model is implemented on the Pytorch and trained using two NVIDIA A100 GPUs. To be
consistent with previous work [25, 21], we adopt DeepLabv3+ [34] with ResNet50 as backbone, for
both RGB and thermal streams. For the RGB stream, we initialize the network parameters using
weights pretrained on ImageNet [92]. For the thermal stream, we randomly initialize the network
parameters, and generate 3-channel thermal images as inputs by repeating the 1-channel thermal
images. All training images are resized to 320× 480. The model is optimized by Adam with batch
size of 2, and the learning rate is 2e-4 which is annealed following the poly LR policy. The network
converges around 200 epochs. We follow [21] to adopt three reference frames (M = 3) at a sample
rate of 3 as Memory. λ is empirically set as 1. The network training involves two-stages: the first
stage is backbone warming-up trained with only annotated query frames (50 epochs), and the second
stage is main-training of SemiMV trained with all videos (150 epochs). During testing, the SemiMV
processes each frame sequentially, inferring results in just 19.1 ms per frame.

5.3 Comparison with the State-of-the-Arts
Since our SemiMV is the first work to address semi-supervised MVSS, to provide a reference level,
we reimplement some related approaches in semi-supervised RSS (MT [22], CCT [23], CPS [25],
and UniMatch [24]), semi-supervised VSS (IFR [80]), VSS (Accel [77]), and MVSS (MVNet [21])
fields, using their official codes. These models use ResNet50 [93] as feature extractor.

Table 2: Quantitative evaluation on the MVSeg dataset.
SupOnly stands for the model trained on the labeled data.

Method
1/16 1/8 1/4 1/2

(26,140) (54,282) (111,561) (228,1119)
SupOnly (RGB) 21.95 27.09 35.79 42.37
MT [22] 23.39 29.45 38.75 44.51
CCT [23] 23.81 29.66 39.04 44.89
CPS [25] 23.88 30.05 39.27 45.34
UniMatch [24] 24.73 30.47 39.39 45.42
Accel [77] (Video) 23.16 28.41 37.31 43.75
IFR [80] 24.79 30.97 40.69 46.21
SupOnly (RGBT) 23.26 28.45 36.88 43.75
MVNet [21] 24.70 30.32 39.89 46.08
SemiMV (Ours) 25.48 34.12 43.04 49.73

Results on MVSeg Dataset. Ta-
ble 2 lists the segmentation results
on the MVSeg dataset. We show
the fully-supervised performance
achieved by training only on the la-
beled data using different modalities,
in the first row of each block. We ob-
serve that the semi-supervised mod-
els consistently surpass their super-
vised baselines across all data parti-
tions, highlighting the significance
of semi-supervised learning in se-
mantic segmentation. In particular,
our SemiMV improves the SupOnly
(RGBT) baseline by large margins,
i.e., +2.22%, +5.67%, +6.16%, +5.98%, under 1/16, 1/8, 1/4, 1/2 partition protocols, respectively.
This demonstrates the effectiveness of our SemiMV in engaging unlabeled multispectral videos to
enhance the generalization capabilities of segmentation models. Moreover, compared to MVNet [21],
which utilizes sparsely labeled videos alone, our SemiMV consistently performs better. This is at-
tributed to the simultaneous usage of both unlabeled past frames and extensive unlabeled multispectral
videos in our SemiMV framework.

Table 3: Quantitative evaluation on the MVUAV dataset.

Method
1/16 1/8 1/4 1/2

(23,91) (40,184) (70,365) (141,732)
SupOnly (RGB) 10.09 13.47 20.07 26.25
MT [22] 11.33 15.89 23.02 27.83
CCT [23] 11.75 16.11 23.72 28.71
CPS [25] 12.55 16.70 24.01 29.09
UniMatch [24] 13.36 17.21 24.10 29.21
Accel [77] (Video) 11.23 14.69 21.45 27.70
IFR [80] 13.11 17.03 24.91 29.87
SupOnly (RGBT) 11.28 14.88 21.31 27.60
MVNet [21] 13.07 16.86 23.36 29.77
SemiMV (Ours) 15.10 20.04 26.52 32.23

Results on MVUAV Dataset. Ta-
ble 3 reports the comparison re-
sults on the MVUAV dataset. Ben-
efiting from the integration of rich
multispectral video information and
the powerful capability of semi-
supervised learning to utilize unla-
beled data, our SemiMV achieves
the highest performance. The im-
provement of our SemiMV over
the supervised baseline SupOnly
(RGBT) are +3.82%, +5.16%,
+5.21%, +4.63% under 1/16, 1/8,
1/4, 1/2 partition protocols, respectively. Overall, our architecture can adapt to various settings
and scenarios by achieving superior performance on both MVSeg and MVUAV datasets. This
showcases the robustness of our SemiMV framework.
Visual Comparison. Fig. 5 illustrates the qualitative results of different methods on the MVSeg
dataset under 1/4 partition protocol. As seen, the MVNet and our SemiMV reconciling both multispec-
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Figure 5: Qualitative results on MVSeg dataset. We highlight the details with the yellow boxes.

tral and temporal contexts can better identify objects in low-light places, for example, the pedestrians
within the yellow boxes, while other methods struggle. Moreover, the results of our method are closer
to the ground truths than MVNet, attributing to the combined benefits of semi-supervised learning
and multispectral video data. More results are provided in the supplementary materials.

5.4 Ablation Studies
In this section, we conduct ablation studies on the MVSeg dataset under 1/4 partition setup.

Table 4: Ablation study of the proposed SemiMV framework.

Methods
Information

mIoURGB Thermal Labeled Unlabeled Video
RGB ✓ ✓ 35.79
RGB-Thermal ✓ ✓ ✓ 36.88
+C3L ✓ ✓ ✓ ✓ 40.73
+DMR ✓ ✓ ✓ ✓ ✓ 42.39
+Dual-C3L ✓ ✓ ✓ ✓ ✓ 43.04

Effect of each component. In Ta-
ble 4, we evaluate the performance
improvements achieved by systemati-
cally integrating key components into
our framework. Initially, we compare
two supervised baselines: RGB vs.
RGB-Thermal, each trained with la-
beled RGB frames or RGB-Thermal
frame pairs, respectively. It is observed that incorporating a thermal infrared branch brings a notable
performance gain of 1.09%, verifying the value of multispectral information in semantic segmentation.
As the proposed C3L and DMR are gradually incorporated, increased performance is consistently
observed. In particular, C3L enhances the supervised baseline by a remarkable amount of +3.85%
(36.88% → 40.73%), demonstrating its efficacy in harnessing unlabeled RGB-Thermal frame pairs.
The addition of our DMR further boosts performance by +1.66% mIoU, benefiting from the ex-
ploitation of denoised and context-rich unlabeled past frames. Notably, our Dual-C3L loss added on
updated query features further elevates the mIoU score to 43.04%, amplifying the combined strengths
of our C3L and DMR modules in leveraging unlabeled multispectral videos for Semi-MVSS.

Table 5: Ablation analysis of our C3L module.
Ablation analysis on C3L Labeled Unlabeled mIoU

Baseline ✓ 36.88
C3L−

1 w/o cross supervision ✓ ✓ 39.12
C3L−

2 w/o cross collaboration ✓ ✓ 36.67
C3L ✓ ✓ 40.73

Analysis on C3L. We then delve
into the designs of C3L in Table 5.
To effectively utilize unlabeled RGB-
Thermal frame pairs, our C3L lever-
ages cross pseudo labels as super-
vision signals and introduces cross-
modal collaboration to enable the
generation of reliable pseudo labels. To verify their significance, we develop two variants, C3L−

1

w/o cross supervision and C3L−
2 w/o cross collaboration. In C3L−

1 , the mean-teacher output of each
stream is used to generate pseudo label for itself without using cross supervisions. This leads to
a reduction of 1.61% mIoU compared to the standard C3L. We conjecture this drop is due to the
accumulation of self-errors, whereas our C3L, with its cross supervision, has the ability to mutually
correct potential errors, thereby enhancing overall accuracy. Moreover, it is worth noting that the
C3L−

2 variant, which applies cross pseudo supervision without the benefit of cross-modal collabora-
tion, leads to a deterioration in result. This indicates that cross-modal collaboration is critical and
indispensable for the effective functioning of our Semi-MVSS framework.

Table 6: Ablation analysis of our DMR module.

Methods w/o
DMR-STM DMR-Proto

temporal w/o
denoised

with
denoised

w/o
denoised

with
denoised

mIoU 40.73 41.47 42.25 41.85 42.39
∆ - (+0.74) (+1.52) (+1.12) (+1.66)

Analysis on DMR. Table 6 presents
our DMR-Proto and an alternative
module - DMR-STM as in [75].
DMR-STM performs an all-to-all at-
tention mechanism for matching be-
tween query and memory frames.
Our results reveal that, 1) engaging temporal contexts from unlabeled past frames is indeed useful,
as both DMR modules yield increased mIoU scores; 2) the proposed reliability estimation strategy
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effectively filters out unreliable features, enhancing the performance of both DMR variants. Consid-
ering computational efficiency, DMR-Proto is used for temporal integration in our SemiMV network.
Additional model analyses are provided in the supplementary materials.

6 Conclusion

This study introduces MVUAV, a new multispectral video semantic segmentation dataset obtained
through UAVs from oblique bird’s-eye viewpoint. The dataset, accompanied with precise semantic
annotations, serves as a complementary resource to the MVSeg dataset, offering a broader perspective
for evaluating MVSS models. Additionally, this paper pioneers the development of SemiMV, the first
semi-supervised MVSS framework tailored to utilize both labeled and unlabeled multispectral videos
effectively. Comprehensive empirical results affirm the effectiveness of our approach and highlight
the promising potential of semi-supervised leaning in MVSS.
Broader Impacts. The proposed MVUAV dataset offers significant value in enhancing the perfor-
mance of semantic segmentation and propelling further research in the field of MVSS. We envisage
that the most proximate impacts of this dataset will be positive, providing a valuable asset for
researchers and developers in the field. Our semi-supervised MVSS method makes robust scene
parsing available without intensive human annotation efforts, which saves a lot of costs. Note that the
proposed MVUAV dataset is strictly prohibited from being used to identify or invade the privacy of
any individual and is made available solely for academic purposes. In addition, we discuss potential
limitations with some feasible solutions in the supplements.
Reproducibility Statement. Our source code and dataset, along with easy-to-follow instructions, are
publicly available on our project website.
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Question: Do the main claims made in the abstract and introduction accurately reflect the
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made in the paper.
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much the results can be expected to generalize to other settings.
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2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
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• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
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tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
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Justification: Sec. 4 provides a detailed explanation of the proposed SemiMV.
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• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
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• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The proposed method is illustrated in Sec. 4, and our implementation details
are provided in Sec. 5.2. The MVSeg dataset used in the experiments are public available
from previous works. Besides, we will release the code and our new dataset on our website.
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• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
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instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

16



Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: The authors will make the newly proposed dataset and source code, along with
detailed instructions, publicly available on our project website.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: The details are given in Sec. 3 and Sec. 5.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: We show the reliability of the proposed method by conducting multiple running
experiments on the SemiMV, as in the supplementary materials.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The details are given in Sec. 5.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We have reviewed the NeurIPS Code of Ethics and confirmed that we conform
the code of ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We have discussed the potential societal impacts in Sec. 6.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: We prohibit people from using our MVUAV in any manner to identify or
invade the privacy of any person. Additionally, our MVUAV dataset is made freely available
solely for academic purposes.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We have cited the original papers for all assets used in our research, which are
publicly available to the research community.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: The newly proposed MVUAV dataset is detailed in Sec. 3. We will also release
it along with user-friendly usage guidelines.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: This paper does not involve crowdsourcing experiments and research with
human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: This paper does not involve crowdsourcing experiments and research with
human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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