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Abstract

While open Large Language Models (LLMs) have
made significant progress, they still fall short of
matching the performance of their closed, pro-
prietary counterparts, making the latter attractive
even for the use on highly private data. Recently,
various new methods have been proposed to adapt
closed LLMs to private data without leaking pri-
vate information to third parties and/or the LLM
provider. In this work, we analyze the privacy pro-
tection and performance of the four most recent
methods for private adaptation of closed LLMs.
By examining their threat models and thoroughly
comparing their performance under different pri-
vacy levels according to differential privacy (DP),
various LLM architectures, and multiple datasets
for classification and generation tasks, we find
that: (1) all the methods leak query data, i.e., the
(potentially sensitive) user data that is queried at
inference time, to the LLM provider, (2) three
out of four methods also leak large fractions of
private training data to the LLM provider while
the method that protects private data requires a
local open LLM, (3) all the methods exhibit lower
performance compared to three private gradient-
based adaptation methods for local open LLMs,
and (4) the private adaptation methods for closed
LLMs incur higher monetary costs than running
the alternative methods on local open LLMs. This
yields the conclusion that, to achieve truly privacy-
preserving LLM adaptations that yield high per-
formance and more privacy at lower costs, one
should use open LLMs.
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1. Introduction
Recently, there has been the trend of releasing open Large
Language Models (LLMs), such as LLama (Geng & Liu,
2023; Touvron et al., 2023), Vicuna (Chiang et al., 2023),
or Mistral (Jiang et al., 2023) as an alternative to their
proprietary closed counterparts, such as GPT from Ope-
nAI (Ope), Claude from Anthropic (Antropic), or Gemini
from Google (Team et al., 2023). Despite the significant
progress in improving open LLMs, they are still outper-
formed in multiple tasks by closed LLMs (Chiang et al.,
2024), making the latter attractive even for learning tasks
from highly private data.

Since it was shown that private data can leak from the
adaptations of LLMs (Duan et al., 2023a;b), in the last
few months alone, an array of new methods for privacy-
preserving adaptation of closed LLMs has been proposed
by the machine learning community at multiple conferences
(NeurIPS’23 (Duan et al., 2023a) and ICLR’24 (Hong et al.,
2024; Tang et al., 2024; Wu et al., 2024)). Given the lack
of access to the closed LLMs parameters—which renders
parameter-tuning based adaptations infeasible—they all rely
on the generation of privacy-preserving discrete prompts.
We detail their operational setup in Figure 1.

In this work, we ask the simple yet impactful question of
whether these efforts actually lead into the right direction
towards the goal of achieving truly privacy-preserving LLM
adaptations. Therefore, we thoroughly analyze the proposed
methods both conceptually and empirically and compare
them to alternatives that rely on privately adapting open
local LLMs. In particular, we study each approach’s threat
space, assumptions, and methodological limitations and
perform extensive experiments using ten state-of-the-art
open and closed LLMs of various sizes, including Vicuna,
Llama 3, Open LLaMa, BERT, RoBERTa, the Pythia suite
of models, Claude, two versions of GPT3 (Babbage and
Davinci), and GPT4 Turbo —applied to multiple datasets
both for classification and generation tasks. Our analyses
cover the axes of privacy protection, performance in terms
of privacy-utility trade-offs, and monetary costs for training
and queries.
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DP-ICL (Wu et al., 2024) ✕ ✕ ✓ Not Needed
PromptPATE (Duan et al., 2023a) ✕ ✕ ✓ Not Needed
DP-FewShotGen(1) (Tang et al., 2024) ✕ ✕ ✓ Not Needed
DP-FewShotGen(2) (Tang et al., 2024) ✓ ✕ ✓ Needed
DP-OPT (Hong et al., 2024) (✓) ✕ ✓ Needed
Private Local Adaptation ✓ ✓ ✓ Needed

Figure 1: Setup for Privacy Protection with Open vs
Closed LLMs. The three parties involved are (1) an LLM
provider who hosts the proprietary LLM, (2) a data owner,
such as a company that owns private data, for example, of
their customers’ previous transactions, and (3) a querying
party, i.e., a customer of the company who wants to perform
a new private transaction. There are three steps where pri-
vacy leaks: A During the creation of the discrete prompt,
the data owner’s private data leaks to the LLM provider. B
The private query of the querying party leaks to the LLM
provider. C Private information from the data owner leaks
to the querying party through the returned answers of the
prompted LLM (Duan et al., 2023b). Prior methods for
closed LLMs (Duan et al., 2023a; Tang et al., 2024; Wu
et al., 2024) only provide protection against C . None of
them protects against B . To prevent leakage through A
, they require access to a (powerful) local open LLM. As
an alternative (dashed purple lines), the data owner could
privately adapt the open LLM locally and let the querying
party interact with this LLM, protecting against A , B , C
.

Our results provide the following insights: (1) All methods
for adapting closed LLMs leak private query data (intended
for the data owner) at inference time to the LLM provider.
(2) Three out of the four methods studied also leak large
fractions of the private training data to the LLM provider.
The approaches that do not, require an additional locally de-
ployed open LLM for prompt engineering. (3) All methods
for closed LLMs yield lower final downstream performance
than privacy-preserving local adaptations on open LLMs—
even when the local methods rely on significantly smaller
LLMs than their closed counterparts. (4) The training and
query costs of the private adaptations of closed LLMs (API
access costs imposed by the LLM provider) are significantly

higher than the costs for private open LLM adaptations (es-
timated as the costs of training and querying on cloud-based
hardware). We provide a condensed summary of our results
in Figure 1 and Table 1.

Overall, our results indicate that, from the perspective of
effective privacy-preservation, open LLM adaptations are
strictly preferable over closed LLM adaptations, since they
are more private, more performant, and less expensive. Go-
ing beyond the concrete existing methods studied (Duan
et al., 2023a; Hong et al., 2024; Tang et al., 2024; Wu et al.,
2024), we then analyze the reasons behind the underwhelm-
ing results of privacy-preserving closed LLM adaptations
and discuss potential directions for improvements.

On the way, to further strengthen private adaptations
for open LLMs. We demonstrate how to locally apply
privacy-preserving prompt-based methods to train gener-
ation tasks with high-performance—claimed impossible by
prior work (Li et al., 2022). In particular, we show for the
first time that private prompt tuning for text generation tasks
PromptDPSGDGen can achieve comparable performance
to private (full) fine-tuning and private low-rank adaptations
(LoRA). Additionally, we demonstrate that ensemble-based
few-shot prompts PromptPATEGen can privately generate
high-quality text at a low privacy cost.

In summary, we make the following contributions:

1. We perform a thorough conceptual and experimental
study on existing privacy-preserving closed and open
LLM adaptations, analyzing their threat space, assump-
tions, and achieved results.

2. Our extensive experiments on various open and closed
LLMs and on multiple classification and generation tasks
show that the local (gradient-based) adaptations outper-
form their closed (discrete prompt-based) counterparts
in terms of privacy, performance, and cost efficiency.

3. We propose differentially private prompts for text gen-
eration tasks that, for the first time, reach performance
comparable to private LoRA or private fine-tuning.

2. Background and Related Work
LLM Adaptations. LLMs are pre-trained on large amounts
of public data and then adapted to downstream tasks us-
ing private data. We divide existing methods for private
LLM adaptations into private tuning methods that rely on
access to the LLM gradients, and private in-context learning
(ICL) which requires only API (black-box) access to the
LLM. While private tuning is only applicable to open LLMs,
private ICL can, in principle, be applied to both open and
closed LLMs. We further summarize existing methods, their
setup, and their assumptions in Table 2 (in Appendix).

2



Open LLMs are Necessary for Private Adaptations and Outperform their Closed Alternatives

Table 1: Comparison of privacy protection, performance, and cost between private adaptations for closed vs open
LLMs. We consider the sentiment classification task on SST2 (Wang et al., 2019) and the dialog summarization on
SAMSum (Gliwa et al., 2019). We select the top-performing private LLM adaptations for the tasks. For closed LLMs,
we use DP-ICL (Wu et al., 2024) and PromptPATE (Duan et al., 2023a). Then, we leverage PromptDPSGD (Duan et al.,
2023a) and PrivateLoRA (Yu et al., 2022) on open LLMs. Since PromptDPSGD and PromptPATE were proposed only for
classification tasks, we further extend them to text generation tasks, denoted as PromptPATEGen and PromptDPSGDGen,
and show their performance on open LLMs. The training data is denoted by DT and the test queries by Q. Reveals represents
which data are exposed to the LLM provider. The methods were trained with DP guarantees: ε = 8 and δ = 1/N , where
N is the number of examples in DT . We report the Performance (higher is better) on test data (where Acc denotes the
classification accuracy). The cost (in $) is computed separately for training (Train) and for answering 10k test queries
(Query). All denotes the total cost. Note, the (estimated) number of parameters (expressed as T-trillion, B-Billion, M-million)
for closed LLMs is 1.76T for GPT4 Turbo, 200B for Claude 2.1, 175B for GPT3 Davinci, while Llama3 has only 8B.
RoBERTa-Large and BART-Large are significantly smaller with 355M and 340M parameters, respectively. The adaptations
of the open LLMs are more expensive on SST2 than on SAMSum due to the larger training data size for SST2. DP-ICL’s
query cost is high due to the usage of an ensemble of 100 prompts to answer each query. In summary, open local LLM
adaptations are more private, more performant, and less expensive.

Adaptation LLM Type Model Task Reveals Performance↑ Train($) Query($) All($)

DP-ICL (Wu et al., 2024) Closed GPT4 Turbo SST2 DT +Q Acc=95.9±0.1% 0 138.00 138.00
PromptPATE (Duan et al., 2023a) Closed Claude 2.1 SST2 DT +Q Acc=95.7±1.4% 48.24 5.36 53.6

PromptDPSGD (Duan et al., 2023a) Open RoBERTa-Large SST2 None Acc=92.3±0.5% 7.59 0.40 7.99
PrivateLoRA (Yu et al., 2022) Open Llama3-8B(instruct) SST2 None Acc=96.0±0.1% 27.60 0.78 28.38

DP-ICL (Wu et al., 2024) Closed GPT3 Davinci SAMSum DT +Q RougeL=31.8 0 665.91 665.91
PromptPATEGen Open OpenLLaMA 13B SAMSum None RougeL=34.2 18.63 0.80 19.43

PromptDPSGDGen Open BART-Large SAMSum None RougeL=37.4 1.73 0.40 2.13
PrivateLoRA (Yu et al., 2022) Open BART-Large SAMSum None RougeL=39.1 3.63 0.80 4.43

Private Tuning for Open LLMs. There exist three main
ways for private tuning. 1) Prompt-based adaptations adds
a small number of parameters (usually <1% of the total num-
ber of parameters) only in the model input space, either on
the level of token embeddings (soft prompts (Liu et al., 2021;
2022b)), or also to every LLM layer (prefix-tuning (Lester
et al., 2021; Li & Liang, 2021)). Duan et al. (2023a) pre-
sented PromptDPSGD, which adapts the DPSGD algo-
rithm to soft prompts. The main advantage of prompt-based
adaptations is that they enable multi-task batch processing,
i.e., many soft prompts for different users and tasks can be
processed in the same mini-batch during LLM training or
inference. 2) Parameter efficient fine-tuning-based adap-
tations such as LoRA (Hu et al., 2021) add a relatively small
number of parameters (<10% of total number of parameters)
within the model, usually in each block of a transformer
architecture (Vaswani et al., 2017). These added parame-
ters are then tuned while the pre-trained original parameters
remain frozen. PrivateLoRA (Yu et al., 2022) extends
LoRA with DP guarantees by building on the DPSGD algo-
rithm. 3) Full fine-tuning-based adaptations either fine-
tune the whole model or only a few last layers. The DP-fine-
tuning (Li et al., 2022), again based on the DPSGD algo-
rithm, shows that full fine-tuning with DP optimization can
provide strong privacy guarantees and good performance.
The general trend, when choosing an adequate method, sug-
gests that the more difficult the task, the higher the num-

ber of adaptation parameters required (Duan et al., 2023a).
Thus, for simple downstream tasks, PromptDPSGD (Duan
et al., 2023a) is sufficient, while DP-LoRA (Yu et al., 2022)
is recommended for medium-difficulty tasks, and the full
fine-tuning (Li et al., 2022) for complex tasks.

Private ICL for Closed LLMs. Recently, many new meth-
ods were proposed for private in-context learning with
closed LLMs. All of them leverage discrete (hard) prompts
and rely on a voting mechanism for privacy protection, sim-
ilar to PATE. We divide the existing methods into the fol-
lowing four categories: (1) Private Question Answering:
The work on DP-ICL (Wu et al., 2024) proposed to answer
queries based on the private dataset. Following the PATE
setup, the private data is divided into non-overlapping parti-
tions, and then each partition is prepended with an instruc-
tion to form a private teacher prompt. The prompts form
an ensemble of private teachers (prompted LLMs). Since
DP-ICL does not implement the idea of a student model
from PATE, all the teachers (usually 100) are required to
answer each query, rendering the method expensive when
executed on a closed LLM. Moreover, each query incurs
additional privacy cost, such that the method can answer
only a limited number of queries for a given privacy budget.
(2) Private Student Prompt: PromptPATE (Duan et al.,
2023a) tackles the problem of the high costs and the lim-
ited number of answered queries in DP-ICL by creating a
student prompt. PromptPATE uses an ensemble of teacher
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prompts (usually around 200) to label public data. Then it
selects the most performant shots for the student prompt
from these newly labeled examples. (3) Private Prompt
Generation: DP-FewShotGen (Tang et al., 2024) is similar
to PromptPATE but eschews the assumption about the pub-
lic data for labeling and, in turn, starting from a public label,
generates each output token privately to obtain a private shot.
(4) Private Prompt Engineering: Finally, DP-OPT (Hong
et al., 2024) privatizes prompt engineering based on the
Deep Language Network (DLN) method (Sordoni et al.,
2023). While DP-ICL, PromptPATE, and DPFewShotGen
assume a generic instruction and emphasize the protection
of the direct leakage from the shots only, DP-OPT (Hong
et al., 2024) proposed to privately generate shots and in-
structions since either can leak information about the private
training set. To overcome the problem that PATE-based
approaches face with large output spaces (here equal to the
vocabulary size of around 50k), DP-ICL (Wu et al., 2024)
and DP-OPT (Hong et al., 2024) incorporate the EM and
its improved versions (Durfee & Rogers, 2019; Gillenwater
et al., 2022; Zhu & Wang, 2022) to privately release a token
with the maximum count based on the voting from teacher
prompts.

3. Prompt-based Private Adaptations for Text
Generation

While PromptDPSGD and PromptPATE (Duan et al., 2023a)
were designed for classification tasks only, we further extend
them to text generation tasks. Having prompt-based gen-
eration holds the advantage that, in contrast to fine-tuning
based approaches, they support mixed-task inference (Lester
et al., 2021; Li & Liang, 2021; Liu et al., 2022a), i.e., they
require one frozen model for multiple tasks rather than a
separate model copy for each of them. This reduces storage
and offers greater flexibility and efficiency.

PromptDPSGDGen. We observe that an adequate
choice of hyperparameters is sufficient for adjusting Prompt-
DPSGD (Duan et al., 2023a) to generation tasks. This is
in line with prior work highlighting that the challenge of
prompt tuning is that it requires experimenting with various
hyperparameter choices to achieve good performance (Liu
et al., 2022a). In particular, we observe that increasing the
number of parameters in the soft prompt from 0.1% of the
total LLM parameters, as done for classification (Duan et al.,
2023a), to 10% of total model parameters, by enabling prefix
projection, yields a significant increase in generation perfor-
mance. Additionally, we observe the need for an increased
learning rate, compared to other tuning methods, to generate
more precise outputs. Otherwise, the hyperparameters are
dependent on the data the model is trained on.

PromptPATEGen. Adjusting PromptPATE (Duan et al.,
2023a) to generation tasks (where more than one output

token is generated) is challenging due to 1) the large output
space (equivalent to the number of tokens in the vocabulary)
and 2) the privacy costs incurred by generating multiple
tokens through the teacher ensemble. To overcome this
challenge and support generation tasks with an unlimited
number of queries, we extended PromptPATE by combining
the training of the student prompt from (Duan et al., 2023a)
with the privacy techniques used in (Wu et al., 2024) and
call the result PromptPATEGen. In particular, Prompt-
PATEGen uses the private generation in DP-ICL to obtain
longer output sequences for some public data inputs. The
outputs sequences can then be treated as a "label" for the
public data and can be deployed as a form of student prompt,
just like in PromptPATE (Duan et al., 2023a).

4. Comparing Open and Closed LLM
Adaptations

We perform a thorough conceptual and empirical study to
compare the adaptation of both open LLMs with private tun-
ing (PromptDPSGD (Duan et al., 2023a), PrivateLoRA (Yu
et al., 2022), and DP-FineTune (Li et al., 2022)) and closed
LLMs with private ICL (DP-ICL (Wu et al., 2024), Prompt-
PATE (Duan et al., 2023a), DP-FewShotGen (Tang et al.,
2024), and DP-OPT (Hong et al., 2024)). Our comparison
spans the axes of privacy protection, performance, and cost.
We provide an overview of our comparison between private
adaptations for closed vs open LLMs in Table 1.

4.1. Comparing Privacy Protection

All the considered methods offer privacy guarantees accord-
ing to DP. Thereby, they ensure that the final prompted
LLM’s predictions will not leak more than the specified tol-
erated privacy budget ε to any party who queries the LLM or
gets access to the final private prompt. Yet, the threat model
of multiple private ICL methods for closed LLMs does not
include providing privacy against the LLM provider. Those
methods that do might still occasionally experience leakage.
We analyze the result of this lack of consideration for the
goal of truly privacy-preserving LLM adaptations. In our
analysis, we distinguish between the leakage of private train-
ing data and the leakage of test data queried at inference
time, which might also be sensitive.

Private Training Data. PromptPATE (Duan et al., 2023a),
DP-ICL (Wu et al., 2024), and DP-FewShotGen (Tang et al.,
2024) (without using an open LLM) disclose (large parts of)
their private training set to the LLM provider in the form of
shots in their teacher prompts and their engineering. This
leakage is inherent in their design. To avoid such leakage,
DP-OPT (Hong et al., 2024) tunes the prompt locally with
DP guarantees and then exposes it to the LLM provider.
Thereby, the data that the prompt was generated from is
protected towards the LLM provider with the DP guarantees
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that also protect against leakage to a querying party. While
the experimental evaluation in (Hong et al., 2024) suggests
that at higher ε, the locally generated DP prompts might
still contain generated data close to the private training
data, this is a step towards the right direction. However, to
generate the private prompt, DP-OPT (Hong et al., 2024)
requires a powerful open LLM deployed locally. Looking at
Figure 1, it becomes obvious that any private tuning method
executed on that open LLM would, conceptually, improve
privacy protection since the LLM provider would neither
be involved in the adaptation nor in the use of the adapted
LLM, yielding absolute privacy against them.

Private Query Data. DP does not aim at protecting query
data. Hence, none of the private ICL methods attempts to
protect that data against the LLM provider. While the pro-
tection of query data is often considered as an orthogonal
research direction, we note that all the private tuning-based
adaptations of the open local LLMs do naturally prevent
leakage of the query data to the LLM provider. This is
because the querying party directly interacts with the data
owner (see Figure 1)—making the use of open models inher-
ently more suited for truly privacy-preserving application
than relying on closed models.

4.2. Comparing Performance

We look at privacy-utility trade-offs to compare the perfor-
mance of private tuning on open LLMs vs. private ICL on
their closed counterparts. Previous work (Liu et al., 2022a)
has shown for the non-private settings that gradient based
tuning methods (used for open LLMs) offer better accuracy
and significanly lower computational costs than ICL (used
for closed LLMs) since the adaptations can leverage the
internal behavior of the LLM. This benefit holds also in the
privacy regime. Moreover, the tuning based methods do
not make additional assumptions, such as the availability
of public data (required by PATE-based methods, such as
PromptPATE (Duan et al., 2023a)), making them inherently
more practical. We show that the private adaptations on
local open LLMs outperform the private methods for closed
LLMs in Table 1. Considering the text generation task, we
observe that our PromptPATEGen outperforms the closed
DP-ICL (Wu et al., 2024) alternative while PromptDPS-
GDGen matches the performance of the best performing
PrivateLoRA (Yu et al., 2022) method. We provide more de-
tails on the performance differences for classification tasks
in Table 3, and for three text generation tasks, namely dia-
log summarization with SAMSum (Gliwa et al., 2019) in
Table 5, question answering with PFL-DocVQA (Tito et al.,
2023) in Table 6, and information extraction with MIT-D
and MIT-G (Liu et al., 2012) in Table 7.

4.3. Comparing Costs

We compare the costs of obtaining a private predictor for a
given downstream task using open vs closed LLMs. We
use the wall clock time to capture the running time of
methods for local open LLMs, which we then translate
to the monetary cost that would be incurred if we ran the
method on cloud-based hardware. For the adaptations of
closed LLMs, we count the number of tokens used in the
queries and obtained outputs from the APIs. The pricing
from cloud providers and OpenAI forms the basis for the
cost estimations (see details in Appendix D). Based on the
estimated costs in Tables 1,3,5,6, and 7, Tables 1-7, the
privacy-preserving methods for open LLMs require much
lower costs (and perform better) than for closed LLMs in
the considered scenarios.

5. Discussion and Future Work on Private
Adaptations for LLMs

In summary, our results highlight that from the perspective
of providing truly privacy-preservation adaptations, open
LLMs are strictly preferable over closed LLMs, since their
adaptations are more private, more performant, and more
cost-effective. Going beyond the concrete existing methods
studied in this work (Duan et al., 2023a; Hong et al., 2024;
Tang et al., 2024; Wu et al., 2024), in the following, we ana-
lyze the general reasons behind the underwhelming results
of privacy-preserving closed LLM adaptations.

Privacy Leakage. The enhanced privacy protection from
adapting open LLMs is a major benefit: users’ private train-
ing data and queries to adapted open LLMs are never re-
vealed to third parties. On the contrary, the leakage of
private query data to the LLM provider is an inherent prob-
lem with closed LLMs, since no methods to provide formal
guarantees for the query data are known. Potential solutions
might involve private inference for LLMs, where a model
performs inference on encrypted queries, however, it is still
in its nascency (Chen et al., 2022; Hao et al., 2022; Li et al.,
2023) for the scale of closed LLMs (Brown et al., 2020).

Performance. We argue that the lower performance of
closed LLM adaptations stems from the fact that they have to
rely on discrete prompts and that engineering such prompts
for the closed LLMs is highly challenging. This is because
1) prompts, in general, have been shown to exhibit an unsta-
ble performance and to require a large number of trials and
errors or discrete optimization while still underperforming
gradient-based approaches (Liu et al., 2022a). Additionally,
2) when the prompts (for privacy reasons) are not tuned on
the closed LLM but on an open LLM surrogate model, addi-
tional performance decrease is incurred through the prompt
transfer, since it has been shown that transferred prompts
cannot reach the performance of prompts directly tuned on
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a given LLM (Su et al., 2022). While the latter problem
might be mitigated through the design of more performant
prompt transfer techniques, the former one seems to be a
more fundamental limitation (Liu et al., 2022a).

Costs. The high costs incurred by some closed LLM adap-
tations result from the fact that they rely on ensemble-based
approaches to yield DP guarantees and the fact that they
incur continuous query costs at inference time. The for-
mer one could be solvable by designing more efficient DP
schemes for discrete prompts, however, the latter is inherent
to the nature of closed LLMs.

While implementing the above-mentioned solutions might
shrink the gap between private adaptations of open and
closed LLMs, it remains unclear whether it is worth the
community’s effort, given the effectiveness of private adap-
tations for open LLMs.
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Table 2: Comparison of properties between private LLM adaptations. The in-context learning (ICL) optimizes
instructions and shots (demonstrations). Many privacy techniques include the ones designed for multi-label PATE (denoted
as MLPATE) (Zhu & Wang, 2022), exponential mechanism (EM) (McSherry & Talwar, 2007), joint exponential mechanism
(JEM) (Gillenwater et al., 2022), Gaussian Mechanism (GM), Report-Noisy-Max Mechanism (RNM), Propose-Test-Release
(PTR) (Dwork et al., 2014), sample-and-aggregate (SAA) (Nissim et al., 2007), Limited Domain Algorithm (LDA) (Durfee
& Rogers, 2019).

Adaptation
Property Privacy Optimization Privatize Inference RequireAlgorithms Strategy Type

PromptDPSGD (Duan et al., 2023a) DPSGD Gradient-based Soft Prompt/Prefix Multi-task Open LLM
PrivateLoRA (Yu et al., 2022) DPSGD Gradient-based Added parameters Single-task Open LLM
DP-FineTune (Li et al., 2022) DPSGD Gradient-based all LLM parameters Single-task Open LLM

DP-ICL (Wu et al., 2024) RNM,GM,JEM,PTR,MLPATE ICL Answers Limited Queries None
PromptPATE (Duan et al., 2023a) PATE ICL Shots Multi-task Public Data

DP-FewShotGen (Tang et al., 2024) GM,RNM,EM ICL Shots Multi-task Public Labels,Open LLM
DP-OPT (Hong et al., 2024) SAA,LDA ICL Instructions+Shots Multi-task Validation Data,Open LLM

A. Further Details on the Related Work
A.1. Differential Privacy.

Differential Privacy (DP) (Dwork, 2006) is a mathematical framework that provides privacy guarantees by implementing
the intuition that an algorithm A : I → R, executed on two neighboring datasets D, D′ that differ in only one data point,
will yield approximately the same output, i.e., Pr[A(D) ∈ R] ≤ eϵ · Pr[A(D′) ∈ R] + δ. While ε specifies by how much
the output can differ, δ specifies the probability of failure. There are two prevalent DP algorithms for training machine
learning models. The first one is the the differential private stochastic gradient descent algorithm (DPSGD) (Abadi et al.,
2016) where the impact of each private training data point is limited during training through gradient clipping, and privacy
guarantees are integrated through the addition of calibrated amounts of stochastic noise. The second algorithm is the private
aggregation of teacher ensembles (PATE) (Papernot et al., 2018) where first, an ensemble of teacher models is trained on
disjoint subsets of the private data, and then a noisy knowledge distillation is performed to a student model using public
data. Another general mechanism for implementing DP is the exponential mechanism (EM) (McSherry & Talwar, 2007).
The EM selects an output r from a set of possible outputs based on a scoring function q(D, r) that measures the quality
of r for dataset D. Let ∆q be the sensitivity of the scoring function. The EM chooses r with probability proportional to
exp

(
ϵq(D,r)
2∆q

)
.

A.2. Private Adaptations for Closed LLMs

We summarize existing methods for private LLM adaptations in Table 2, where we also analyze their setup and assumptions.
We provide further details on the methods below.

PromptPATE (Duan et al., 2023a) prompts an LLM with different prompts containing disjoint examples from the
private training dataset, each prompt corresponding to a teacher. To label the public data for the knowledge transfer,
PromptPATE (Duan et al., 2023a) infers the next token prediction of each teacher on public text sequences and interprets
them as labels. Instead of training a student model from scratch, PromptPATE (Duan et al., 2023a) creates a student prompt.
It utilizes the data efficiency of discrete prompts by selecting examples for the student prompt from the labeled public
sequences.

DP-ICL (Wu et al., 2024). For the generation tasks, it proposes the Embedding Space Aggregation(ESA), which involves
mapping each sentence produced by the LLM for a given exemplar-query pair onto the embedding space and then
reconstructing a sentence from the noisy mean of these embeddings. This process depends on the quality of the text-to-
embedding models and the zero-shot examples employed to map the noisy mean embedding back to the sentence, potentially
leading to suboptimal outputs. The other approach proposed in DP-ICL is keyword space aggregation (KSA). It creates a
keyword space by segmenting each output sentence into keywords to form a histogram. The keywords with the highest counts
are selected privately using either the Propose-Test-Release (PTR) or Joint Exponential Mechanism (JointEM) (Gillenwater
et al., 2022). The selected private keywords are then used to create a prompt and query the LLM.

DP-FewShotGen Tang et al. (2024) introduces a method for text generation of public prompts. In this method, tokens are
individually generated using disjoint subsets of the private data and then noisily aggregated based on the frequency of the
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generated tokens to predict the next token. The drawback of this approach is that the generation process is conditioned on the
label. Consequently, despite being a text generation task, it necessitates the assignment of a public label to the private data.

DP-OPT (Hong et al., 2024) is currently the only private ICL method that uses discrete prompt tranferrability to create a
private prompt on a local open model, which can be used to infer a closed model. Based on the approach of deep language
networks (Sordoni et al., 2023), multiple initial prompts with different private examples are optimized through separate back-
and forward passes such that a prompt is created that gives good performance on the downstream task. To add privacy, they
use the exponential mechanism to sample each generated token from all different initial prompts. Currently, their proposed
method is only shown to work with classification tasks.

A.3. Private Text Generation based on PATE

SeqPATE (Tian et al., 2022) safeguards the privacy of individual training samples and sensitive phrases in the training
data of a language model. To adapt PATE for text generation, SeqPATE creates pseudo-contexts, simplifying the sequence
generation task to a next-word prediction problem. To manage the extensive output space, SeqPATE introduces a candidate
filtering strategy that dynamically narrows the output space and enhances the teacher aggregation in PATE to avoid low
agreement caused by voting among a large number of candidates. Additionally, to further minimize privacy losses, it
employs knowledge distillation to reduce the number of teacher queries.

B. Additional Experiments
Private Tuning outperforms Private ICL Experimentally. To assess the performance of private tuning vs. private ICL,
we perform extensive experimental evaluation. We use various LLM architectures and multiple datasets for classification
and text generation tasks.

B.1. Experimental Setup

Text Classification. We follow the setup from (Hong et al., 2024) and use four datasets for the evaluation: SST2 from the
GLUE benchmark (Wang et al., 2018), Trec (Li & Roth, 2002), Mpqa (Lu et al., 2021) and Disaster (Bansal et al., 2019).
SST2 and Mpqa are two-class sentiment analysis datasets. SST2 includes 67.3k training samples and 872 test samples,
while Mpqa contains 8.6k training samples and 2k test samples. Trec is a six-class question-type classification dataset with
5.4k training samples and 500 test samples. Finally, the Disaster dataset involves determining whether a sentence is relevant
to a disaster scenario or not and includes 4.4k training and 1000 test samples.

Text Generation. We use three different datasets: SAMSum, a dialog summarization (Gliwa et al., 2019) (14732 train, 818
val, and 819 test samples), PFL-DocVQA, question answering (Tito et al., 2023) (85k train and 10k test samples), and MIT
Movies trivia10k13, movie extraction on directors (MIT-D with 1561 train and 415 test samples) and genre (MIT-G with
2953 train and 780 test samples) (Liu et al., 2012).

Closed Models. We follow the setup and choice of models originally proposed in the respective previous papers to evaluate
the four private ICL methods for closed LLMs (Duan et al., 2023a; Hong et al., 2024; Tang et al., 2024; Wu et al., 2024).
The GPT3-Babbage and GPT3-Davinci models cited in (Tang et al., 2024; Wu et al., 2024) were discontinued in early 20241

and replaced by their second versions (babbage-002 and davinci-002). Therefore, we use the newer versions here. The
(estimated) number of parameters for the closed models is: 1.3B for GPT3 Babbage, 175B for GPT3 Davinci, 1.76T for
GPT4 Turbo, and 200B for Claude 2.1.

Open Models. We consider various open LLMs with differing pre-training sets and numbers of parameters to simulate
the choices a data owner can make for their local LLM. We select the following models: Pythia (Biderman et al., 2023),
OpenLLaMA (Geng & Liu, 2023), Vicuna (Chiang et al., 2023), Mixtral (Jiang et al., 2024), Bart (Lewis et al., 2019), and
RoBERTA (Liu et al., 2020), whose sizes vary from 160M to 45B parameters.

B.2. Performance of Private Adaptations for Classification

We show that the private adaptations on local open LLMs outperform the private methods for closed LLMs for classification
tasks. In Table 3, we analyze the performance differences. We follow the evaluation in (Hong et al., 2024) (Table 2) and

1https://platform.openai.com/docs/deprecations
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Table 3: Private local adaptations on open LLMs outperform their closed alternatives for classification tasks. The
default privacy budget is set to ε = 8, except for PromptPATE (Duan et al., 2023a), where the performance plateaus after
ε = 0.3. The best result for a given task is bolded, and the 2nd best is underlined. T($) is training cost while Q($) is query
cost for 10k queries (SST2), All($) is total cost.

Method LLM Type Model SST2 Trec Mpqa Disaster Average T($) Q($) All($)

DP-OPT (original) (Hong et al., 2024) Closed GPT3 Davinci 92.2±0.8 68.7±6.5 85.8±0.7 78.9±0.3 81.4 2.10 6.00 8.1
PromptPATE (Duan et al., 2023a)(ε = ∞) Closed GPT3 Babbage 93.8 58.7 83.0 64.3 75.0 8.66 1.72 10.38
PromptPATE (Duan et al., 2023a)(ε < 0.3) Closed GPT3 Babbage 88.8±2.3 52.8±1.5 79.0±0.5 58.0±0.5 69.6 9.72 1.72 11.44
PromptPATE (Duan et al., 2023a)(ε < 0.3) Closed Claude 2.1 95.7±1.4 79.3±1.2 92.1±0.6 71.0±0.8 84.5 48.24 5.36 53.6
DP-FewShotGen(1) (Tang et al., 2024) Closed GPT3 Babbage 72.8±7.7 51.3±5.8 73.4±8.5 59.2±2.5 64.2 0.86 1.10 1.96
DP-ICL (Wu et al., 2024) Closed GPT3 Babbage 92.8±0.9 26.3±5.6 80.6±0.9 50.6±1.1 62.6 0 17.2 17.2
DP-ICL (Wu et al., 2024) Closed GPT4 Turbo 95.9±0.1 16.2±1.7 90.4±0.1 70.3±0.4 68.2 0 138.00 138.00

PromptDPSGD (Duan et al., 2023a) Open RoBERTA Large 92.3±0.5 54.5±2.5 50.0±0.0 77.8±0.6 68.6 7.59 0.40 7.99
DP-FineTune (Li et al., 2022) Open RoBERTA Large 93.5±0.3 93.7±0.8 88.2±0.4 82.2±0.3 89.4 5.75 0.40 6.15
PrivateLoRA (Yu et al., 2022) Open RoBERTA Large 93.6±0.3 93.9±0.6 87.7±0.8 81.8±0.2 89.3 3.45 0.40 3.85

PrivateLoRA (Yu et al., 2022) Open Vicuna 7B 94.8±0.5 97.3±0.1 87.8±0.5 81.3±0.5 90.3 13.80 0.78 14.58
PromptDPSGD (Duan et al., 2023a) Open Vicuna 7B 90.4±1.7 32.3±3.1 84.2±4.0 78.5±0.4 71.4 16.30 0.78 17.08
DP-OPT (local) (Hong et al., 2024) Open Vicuna 7B 89.5±2.6 65.3±4.3 80.7±3.3 65.6±0.3 75.3 2.10 0.78 2.88

PrivateLoRA Open Pythia 6.9B 92.2±0.5 96.3±0.8 87.2±0.3 82.1±0.2 89.4 13.80 0.78 14.58
PrivateLoRA Open Pythia 160M 80.4±0.7 82.5±3.2 77.9±0.3 73.6±0.2 78.6 1.60 0.50 2.1

PrivateLoRA Open Llama3-8B(Instruct) 96.0±0.1 96.8±0.2 87.3±0.2 80.8±0.1 90.2 27.60 0.78 28.38

average the accuracy across the tasks (denoted as Average). Our analysis follows the standard practice and sets the privacy
budget as ε = 8 and δ = 1/|D| where |D| is the training size (Duan et al., 2023a; Hong et al., 2024). Among the methods
for closed LLMs, DP-OPT was tested on the strongest Davinci model (with 175B parameters) from the GPT3 family. Across
all the tasks, DP-OPT is outperformed by both DP-FineTune and PrivateLoRA by a large margin (even >26% absolute on
Trec), even though DP-FineTune and PrivateLoRA were trained on RoBERTa Large with only 355M parameters (500X
fewer than for GPT3 Davinci). Furthermore, we show that PrivateLoRA outperforms DP-OPT even when using Pythia-6.9B,
which guarantees that the open LLM for PrivateLoRA was not pre-trained on any of the downstream datasets. For a fair
comparison, we also train PrivateLoRA on Vicuna 7B, which was used in DP-OPT as the local model to find the transferable
prompts and show that PrivateLoRA is also significantly better than DP-OPT applied either directly to Vicuna 7B or when
run on GPT3 Davinci. This suggests that the data owners, rather than using their local LLM to tune prompts for DP-OPT,
should privately tune it with PrivateLoRA (in this case on RoBERTA Large) since it yields stronger performance and privacy
at a lower cost.

For PromptPATE, the performance plateaus after around ε = 0.3, since it creates a public prompt using only a few shots,
and the selection of the demonstrations from a large pool of publicly labeled examples has a negligible gain on the final
performance. In the limit, we also show that PromptPATE even with an infinite privacy budget (ε = ∞) for GPT3 Babbage
(with 1.3B parameters) performs worse than PrivateLoRA or DP-FineTune on RoBERTA Large (3.6X fewer parameters). In
the same setup of models, PrivateLoRA and DP-FineTune on RoBERTA Large also outperform DP-ICL tested on GPT3
Babbage on all tasks. Additionally, PrivateLoRA adapted on Pythia-160M (with even fewer parameters) performs much
better than DP-FewShotGen on GPT3-Babbage (8X more parameters).

We also run DP-ICL with GPT4 Turbo. The resulting accuracies are high for sentiment classification with SST-2 and Mpqa.
However, it has the lowest accuracy on Trec (with 6 classes), caused by a small number of output probability tokens released
for a query (only 20 vs 100 for GPT3, which might not contain the correct class label token) while being the most expensive
option. Similar trends are observed for PromptPATE on Claude, however, it has more consistent performance and emerges
as the most performant closed model on the tested tasks (while being the 2nd most expensive one). In contrast, Private
LoRA with Vicuna 7B performs the best on Trec and on average. It is the best of all tested adaptations while incurring
around 3.7 and 9.5 times lower costs than Claude and GPT4 Turbo, respectively. In general, the open models have the
highest average performance at a much lower cost.

We further analyze the privacy-utility trade-off for classification tasks across different privacy budgets (ε ∈ [0, 8]) in Figure 2.
We show that even under tight privacy constraints (ε < 1.0), the privacy-preserving adaptation for open LLMs performs
significantly better than the one for closed LLMs. Specifically, we analyze the differences between PrivateLoRA for open
LLMs vs PromptPATE for closed LLMs. The performance for PromptPATE plateaus after around ε = 0.3 and only for
one out of four datasets, namely for MPQA, we observe that the crossover point between PromptPATE and PrivateLoRA
(PromptPATE performs better than PrivateLoRA until ε = 0.6). For the smallest ε = 0.1 values that we analyzed, the
performance of PrivateLoRA is better by 0.6% on SST2, by 4.4% on Trec, and by 3.5% on Disaster. Overall, the private
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Figure 2: Privacy-utility trade-off for classifications tasks. We use PrivateLoRA to adapt Vicuna-7b to the downstream
tasks, PromptPATE, DP-ICL, and DP-FewShotGen with GPT3 Babbage. We analyze the privacy costs ε in the range [0, 8]
(see corresponding Figure 3 for text generation tasks).

Table 4: Private LoRA (Yu et al., 2022) top1-accuracies for the evaluated datasets given different ε.

ε Model SST-2 Trec Mpqa Disaster

8 Vicuna 7B 95.3 97.4 88.4 82.0

3 Vicuna 7B 94.4 96.2 87.6 79.6

1 Vicuna 7B 93.5 93.8 82.1 78.1

0.7 Vicuna 7B 93.4 93.2 79.5 76.4

0.3 Vicuna 7B 91.9 87.6 64.4 73.6

Table 5: Evaluation on Dialog Summarization with SAMSum for ε = 8. T($) is training cost while Q($) is query cost for
10k queries, All($) is total cost.

Method LLM Type Model Rouge-1 Rouge-2 Rouge-L T($) Q($) All($)

DP-ICL (Wu et al., 2024) Closed GPT3 Davinci 41.2±0.6 16.3±0.4 31.8±0.3 0 665.91 665.91
DP-ICL (Wu et al., 2024) Closed GPT3.5 Turbo 42.6±0.2 18.9±0.3 33.8±0.5 0 449.16 449.16
DP-ICL (Wu et al., 2024) Closed GPT4 Turbo 41.8±0.2 17.3±0.3 33.4±0.2 0 3419.42 3419.42
PromptPATEGen Open Vicuna 7B 41.3 18.0 32.8 3.29 2.74 6.03
PromptPATEGen Open OpenLLaMA 13B 43.38 19.7 34.2 18.63 0.80 19.43
PromptDPSGDGen Open BART-Large 46.1±0.4 21.3±0.1 37.4±0.0 1.73 0.40 2.13
PrivateLoRA (Yu et al., 2022) Open BART-Large 48.8±0.6 23.5±0.5 39.1±0.2 2.90 0.69 3.59
PrivateLoRA (Yu et al., 2022) Open Pythia 410M 40.4±0.1 16.6±0.3 33.0±0.4 3.45 1.34 4.79
PromptDPSGDGen Open Pythia 1B 41.2±0.2 17.8±0.1 33.7±0.1 4.83 0.95 5.78
DP-FineTune (Li et al., 2022) Open Pythia 1B 42.5±0.7 18.4±0.3 33.9±0.3 9.84 1.08 10.92
PrivateLoRA (Yu et al., 2022) Open Pythia 1B 42.3±0.6 18.4±0.7 34.7±0.5 4.24 1.00 5.24
PrivateLoRA (Yu et al., 2022) Open Pythia 6.9B 45.6±0.3 21.4±0.3 37.4±0.5 10.18 6.57 16.75
PrivateLoRA (Yu et al., 2022) Open Vicuna 7B 48.6±3.5 24.8±2.6 40.2±3.4 11.28 6.19 17.47
PrivateLoRA (Yu et al., 2022) Open OpenLLaMA 13B 48.5±1.1 24.2±0.8 40.1±0.9 19.46 8.05 27.51
PrivateLoRA (Yu et al., 2022) Open Mixtral 8x7B 52.8±0.4 29.6±0.2 44.7±0.2 57.96 9.99 67.95

Table 6: Evaluation on Question Answering with PFL-DocVQA for ε = 8.

Method LLM Type Model Rouge-1 BLEU Levenshtein T($) Q($) All($)

DP-ICL (Wu et al., 2024) Open OpenLLaMA 13B 60.7±0.6 23.9±0.5 52.5±1.1 0 641.32 641.32
PromptPATEGen Open Vicuna 7B 31.67 26.67 35.67 2.28 0.57 2.85
PromptDPSGDGen Open Pythia 1B 57.3±0.9 40.1±1.1 66.8±0.7 37.26 0.96 38.22
DP-FineTune (Li et al., 2022) Open Pythia 1B 70.2±0.2 55.7±0.3 78.3±0.3 137.06 1.32 138.38
PrivateLoRA (Yu et al., 2022) Open Pythia 1B 64.2±0.7 43.2±0.8 73.4±1.3 44.16 1.28 45.44
PrivateLoRA (Yu et al., 2022) Open Pythia 6.9B 64.4±0.1 47.9±0.2 73.3±0.2 293.25 5.80 299.05
PrivateLoRA (Yu et al., 2022) Open OpenLLaMA 13B 63.1±1.1 22.2±1.3 70.7±2.1 358.80 9.02 367.82

adaptations for open LLMs outperform the ones for closed LLMs in most privacy regimes.

PrivateLoRA extensive classification results. Table 4 shows the top1 accuracies at different ε used to compute the
PrivateLoRA graph for each of the 4 text classification tasks in Figure 2.

B.3. Performance of Private Adaptations for Text Generation

The evaluation of the three text generation tasks demonstrates superior performance of private adaptations on open vs closed
LLMs. We consider the privacy-preserving ICL methods of DP-ICL and DP-FewShotGen on closed LLMs, since only these
methods were executed for generative tasks. For the SAMSum datasets in Table 5, the first three adaptations (including our
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Table 7: Evaluation on information extraction with MIT-D and MIT-G for ε = 8.

Method LLM Type Model MIT-D MIT-G T($) Q($) All($)

DP-FewShotGen (Tang et al., 2024) Closed GPT3 Davinci 80.6 64.1 0.42 2.36 2.78
PromptPATEGen Open Vicuna 7B 74.05 41.74 0.52 0.73 1.25
PromptPATEGen Open OpenLLaMA 13B 70.85 33.38 3.11 0.80 3.91

PrivateLoRA (Yu et al., 2022) Open Pythia 410M 74.3±8.3 64.3±2.8 0.06 0.50 0.56
PromptDPSGDGen Open Pythia 1B 89.8±0.3 69.1±1.7 0.17 0.25 0.42

DP-FineTune (Li et al., 2022) Open Pythia 1B 92.2±1.1 71.6±1.1 0.94 0.50 1.44
PrivateLoRA (Yu et al., 2022) Open Pythia 1B 90.2±0.1 68.8±0.8 0.08 0.31 0.39
PrivateLoRA (Yu et al., 2022) Open Vicuna 7B 95.0±0.2 74.4±1.2 0.52 5.92 6.44
PrivateLoRA (Yu et al., 2022) Open OpenLLaMA 13B 94.0±0.8 76.4±0.9 1.04 6.21 7.25

PromptPATEGen) are based on few-shot in-context learning (using discrete prompts), while the remaining results are for
the private gradient-based adaptations. For the discrete prompts, our PromptPATEGen runs on local open Vicuna 7B and
outperforms other discrete prompt-based methods from closed LLMs. Our PromptDPSGDGen performs on par with the
other private tuning method (PrivateLoRA) run on Pythia 1B. Note that only PromptDPSGDGen and ICL adaptations
(PromptPATEGen and DP-ICL) support multi-task inference.

We additionally leverage BART-Large (with 355M parameters) (Bar) that was fine-tuned on the XSum summarization
task (Narayan et al., 2018) (which does not include SAMSum). This specialized open model outperforms other LLMs
apart from Vicuna with 7B parameters, OpenLLaMA with 13B parameters, and Mixtral with 45B parameters. Crucially,
PrivateLoRA on BART-Large outperforms DP-ICL run on GPT3 Davinci, despite using the model with around 500X fewer
parameters. This further indicates that we can leverage a large selection of open models to solve a specific task at lower cost
and with better privacy protection without resorting to general-purpose closed LLMs. We also use PrivateLoRA on larger
models from different families (Vicuna 7B, OpenLLama 13B, and Mixtral 8x7B) and observe that its performance and cost
steadily increase with more parameters.

The evaluation on PFL-DocVQA in Table 6 shows that PrivateLoRA on open LLMs outperforms DP-ICL (which was run
also only on OpenLLaMA 13B in the original paper (Wu et al., 2024) due to the cost constraints). We also evaluate both
MIT-D and MIT-G in Table 7 on the accuracy of predicted vs target labels following the metrics in DP-FewShotGen. The
adaptations of open LLMs with privacy-preserving gradient-based methods outperform DP-FewShotGen on the significantly
larger GPT3 Davinci, for example, on MIT-D by 13.4% and on MIT-G by 22.3% absolute, respectively by PrivateLoRA on
OpenLLaMA 13B.Further analyses of privacy-utility trade-offs for text generation are presented in Figure 3 in the Appendix.

Privacy-utility trade-off of text generation tasks. In the following, similar to what we did in Figure 2, we show the privacy-
utility trade-off for SAMSum, MIT-G, and MIT-D in Figure 3 for varying ε between PrivateLoRA, PromptPATEGen, and
DP-FewShotGen. For MIT-D and MIT-G, we trained the Pythia 1B model, and for SAMSum the BART-Large Model. It can
be clearly seen, that the graphs follow the same trend that we showcased in Figure 2.
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Figure 3: Privacy-utility trade-off for generation tasks. We analyze the privacy costs ε in the range [0, 8] for the three
generation tasks. PrivateLoRA for open LLMs substantially outperforms DP-ICL and DP-FewShotGen, which both utilize
GPT3 Davinci. PrivateLoRA for MIT-D and MIT-G is trained on the Pythia 1B model, and for SAMSum on the BART-Large
Model. PromptPATEGen uses Vicuna 7B.
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C. Additional Details on our Setup
In this section, we present the detailed (hyper-)parameters used to evaluate all the tasks that were used for the different Open
and Closed LLMs privacy-preserving training methods.

C.1. Text classification

Detailed information about the datasets. We expose the different statistics of each dataset used for text classification
evaluation in Table 8. For SST2, the validation set was used as the test set, as the original test set is only provided with
unknown labels for each sample.

Table 8: Stastistics of the 4 evaluated tasks related to text classification.

Task #Train #Test #Class Task description

SST2 66,674 872 2 Sentiment analysis on movie reviews

Trec 5,452 500 6 Question type classification

Mpqa 8,603 2,000 2 Sentiment analysis on short ensembles

Disaster 4,430 1,000 2 Relevance of sentence to a disaster

Private Tuning. We detail the hyperparameters used to fine-tune the models with private LoRA in Table 9, for DP-FineTune
in Table 10 and for PromptDPSGD in Table 11. All the experiments were conducted on 3 different seeds. Note that unlike
LoRA or Full-Finetune, PromptDPSGD requires a precise tuning of hyperparameters. A total of 50 trials over 100 epochs
were necessary to tuned them. For the Mpqa sentiment analysis task, no converging set of hyperparameters was found.

Table 9: Hyperparameters for PrivateLoRA (Yu et al., 2022) on evaluated classification datasets for ε = 8.

Hyperparameters Datasets

SST2 Trec Mpqa Disaster

bs 128 128 128 128

lr 1e-3 1e-3 1e-3 1e-3

max grad clip 0.1 0.1 0.1 0.1

epochs 10 40 20 20

lora rank 4 4 4 4

δ 1
|D|

1
|D|

1
|D|

1
|D|

GradClip 0.1 0.1 0.1 0.1

Table 10: Hyperparameters for DP-FineTune (Li et al., 2022) on evaluated classification tasks with Roberta-Large for
ε = 8.

Hyperparameters SST2 Trec Mpqa Disaster

LR 1e-4 1e-4 1e-4 1e-4

BS 128 128 128 128

Epoch 10 40 40 50

δ 1
|D|

1
|D|

1
|D|

1
|D|

GradClip 0.1 0.1 0.1 0.1
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Table 11: Hyperparameters for PromptDPSGD (Duan et al., 2023a). The hyperparameters for SST2 datasets are directly
extracted from the paper and are evaluated on Roberta-Large for ε = 8. LR = learning rate, BS = batch size, GRAD = per
sample gradient clipping. P-length = length of the prepended prompt in number of tokens. The trainings are all performed
with prefix-tuning and not soft-prompt. Those are the hyperparameters of the best performing prompt on the test set of each
dataset, and the accuracy of this prompt is reported in the table.

Hyperparameters SST2 Trec Mpqa Disaster

LR 0.01 0.001 - 0.01

BS 32 32 32 32

GRAD 4 0.3 - 1.0

Epochs 22 100 100 100

P-length 1 10 10 10

Best accuracy 92.8 58.0 50.0 78.6

Private in-context learning. The respective set of hyperparameters for DP-FewShotGen, PromptPATE and DP-ICL are
listed in Table 12, Table 13 and Table 14. For the used hyperparameters for DP-OPT, see (Hong et al., 2024) since the results
of Table 3 are directly extracted from the paper. The accuracy results for DP-FewShotGen were computed for 5 different
generated prompts following the method from the paper. For the PromptPATE method, experiments were only conducted for
MPQA and Disaster datasets as we used already made evaluation from the original paper PromptPATE (Duan et al., 2023a)
for SST2 and Trec datasets on using GPT3-Babbage. All hyperparameters here are extracted directly from the previous
paper.

Table 12: Hyperparameters for DP-FewShotGen (Tang et al., 2024) for the evaluation of new datasets with ε = 8 on
GPT3-Babbage. M = Number of private prompts used for meta prompt generation. N = number of private shots per prompt.
σ = noise relative to wanted ε using the Gumbel mecanism. Tmax = max number of tokens of the generate prompt.

Hyperparameters SST2 Trec Mpqa Disaster

σ (ε = [0.1, 1, 3, 8])
[1.0,0.61,
0.48,0.34]

[3.0,0.83,
0.59,0.44]

[2.0,0.77,
0.57,0.41]

[3.5,0.93,
0.64,0.46]

MN 80 80 80 80

M 20 20 20 20

Tmax 50 50 50 50

Table 13: Hyperparameters for PromptPATE (Duan et al., 2023a) for the evaluation of new datasets with ε = 8 on
GPT3-Babbage.Those parameters are common to all 4 tasks.

Hyperparameters Claude GPT3-babbage

train set 400 400

student set 200 300

num shots 2 1
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Table 14: Hyperparameters for DP-ICL (Wu et al., 2024) for the evaluation of the text classification datasets with ε = 8
on GPT3-Babbage.

Hyperparameters SST2 Trec Mpqa Disaster

num shots 4 4 4 4

Ensemble 10 10 10 10

Queries 872 500 1000 1000

C.2. Text Generation

We analyze the following generative downstream tasks: SAMSum, PFL-DocVQA, and MIT Movies trivia10k13. As we
did for classification tasks, we compare the methods on closed LLMs against PrivateLoRA (Yu et al., 2022), Prompt-
DPSGD (Duan et al., 2023a), and DP-FineTune (Li et al., 2022) that are run on open LLMs. For the PrivateLoRA (Yu et al.,
2022) training, we use 4-bit quantization with QLoRA (Dettmers et al., 2023) to reduce the occupied GPU memory, which
was implemented for the adaptations of open LLMs with more than 1B parameters on PFL-DocVQA and SAMSum datasets
due to their long input sequences.

Detailed information about the datasets. We show the amount of data that we utilized in the experiments in Table 15.

Table 15: Overview of the 4 text ge tasks related to text generation.

Task #Train #Test Task description

SAMSum 14,732 819 Dialogue summarization

PFL-DocVQA 85,000 10,000 Question and answering

MIT-G 2,953 780 Extracting genres from movie reviews

MIT-D 1,561 415 Extracting directors from movie reviews

Private Tuning. In Table 16, Table 17, and Table 18, we show the hyperparameters we used to train the open models
with PrivateLoRA, PromptDPSGDGen, DP-FineTune respectively. For PrivateLoRA, we were able to use the same
hyperparameters for all models for each task. In the tables, the Max Seq Length refers to the maximum amount of tokens of
the sequence the model trains on. For Schedulers, we chose two different options, a constant scheduler that does not change
the learning rate during training, and a linear scheduler. The linear scheduler is the default scheduler of the Hugging Face
implementation of the Trainer class. It linearly decreases the learning rate over the whole training. For PromptDPSGDGen,
we additionally have Prefix Projection. If enabled, prefix projection adds two additional linear layers to the prefix encoder.
This increases the amount of trainable parameters, which in turn also increases the capability of the prefix to represent tasks.
The evaluations for MIT-D, MIT-G, and SAMSum were done for 3 different seeds, whereas we used 2 different seeds for
PFL-DocVQA.
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Table 16: Hyperparameters for PrivateLoRA (Yu et al., 2022) on evaluated generation tasks for ε = 8. The hyperparam-
eters are the same for the used models. The tested schedulers for MIT-G and MIT-D does not make a difference during
training

Hyperparameters SAMSum PFL-DocVQA MIT-G MIT-D

LR 8e-4 8e-4 8e-4 8e-4

BS 256 256 256 256

LoRA Rank 8 8 8 8

Max Seq Length 650 1500 128 128

Epoch 20 15 20 20

Scheduler Linear Linear / /

δ 1
|D|

1
|D|

1
|D|

1
|D|

GradClip 0.1 0.1 0.1 0.1

Table 17: Hyperparameters for PromptDPSGDGen on evaluated generation tasks for ε = 8. The hyperparameters are the
same for the used models. The tested schedulers for MIT-G and MIT-D do not result in difference in performance.

Hyperparameters SAMSum PFL-DocVQA MIT-G MIT-D

LR 1e-3 1e-3 1e-3 3e-3

BS 256 256 256 256

P-Length 10 25 5 5

Prefix Projection True True True True

Max Seq Length 650 1500 128 128

Epoch 20 15 40 40

Scheduler Linear Linear / /

δ 1
|D|

1
|D|

1
|D|

1
|D|

GradClip 0.1 0.1 0.1 1

Table 18: Hyperparameters for DP-FineTune (Li et al., 2022) on evaluated generation tasks for ε = 8.

Hyperparameters SAMSum PFL-DocVQA MIT-G MIT-D

LR 8e-4 2e-4 2e-4 2e-4

BS 256 256 256 256

Max Seq Length 650 1500 128 128

Epoch 20 15 20 20

Scheduler Linear Linear Constant Linear

δ 1
|D|

1
|D|

1
|D|

1
|D|

GradClip 0.1 0.1 0.1 0.1

Privacy-preserving prompt tuning. In the following, we provide the used hyperparameters for the methods for Private
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ICL for Closed LLMs. In detail, for DP-FewShotGen in Table 19, for DP-ICL in Table 20, and for PromptPATEGen in
Table 21.

Table 19: Hyperparameters for DP-FewShotGen (Tang et al., 2024) on evaluated generation tasks for ε = 8. We used the
hyperparameters given in the original paper for MIT-G and MIT-D.

Hyperparameters SAMSum MIT-G MIT-D

σ 0.384 0.5 0.58

MN 80 80 80

M 20 20 20

Tmax 50 20 20

Table 20: Original hyperparameters for DP-ICL (Wu et al., 2024) on evaluated generation tasks for ε = 8.

Hyperparameters SAMSum PFL-DocVQA

Model GPT-Davinci OpenLLaMA 13B

Ensemble 100 100

#Queries 10,000 10,000

Table 21: Hyperparameters for PromptPATEGen on generation tasks for ε = 8.

Hyperparameters SAMSum MIT-G MIT-D

Model Vicuna 7B Vicuna 7B Vicuna 7B

Ensemble 100 25 25

#Queries 100 100 100

#Student Prompt 10 4 4

σ 1.15 0.9 0.9

D. Costs
D.1. Cost Comparison

Based on the estimated costs in Tables 1,3,5,6, and 7, the privacy-preserving methods for open LLMs require much lower
costs (and perform better) than for closed LLMs in the considered scenarios. The costs for classification tasks are relatively
low, especially for closed LLMs, since the tasks are simple and the number of tokens (particularly for outputs) is small.
However, the costs increase substantially for generation tasks, especially for the closed LLMs, where DP-ICL is around
150X more expensive than PrivateLoRA for dialog summarization. While larger models often incur higher costs, they do not
necessarily imply higher performance. For example, smaller models like RoBERTA Large for classification or BART-Large
for dialog summarization can obtain the highest performance at the lowest price.

D.2. Cost Calculation

We provide the details on measuring the cost for different methods. The assumed costs for interacting with the model APIs
per 1 million tokens and GPU cost per hour are shown in Table 23. For the open LLMs, we set the median pricing per
hour (based on prices from three GPU cloud providers shown in Table 23) which is $0.69 using an A40 GPU with 48GB
of memory 2, which is a popular graphics card, also used in the previous work (Duan et al., 2023a). We note that we do

2The pricing is for the RunPod Cloud Service: https://www.runpod.io/gpu-instance/pricing.
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refrain from using other metrics than monetary cost. For example, FLOPS are not a direct measurement of real-world
computational cost because latency, power usage, and other costs can vary significantly depending on hardware and other
factors (Dehghani et al., 2021).

Costs for private-tuning-based adaptations. The private tuning-based adaptations of open LLMs require us to adjust the
model parameters or the inputs for a given task, thus, we measure the running time of the training process and then query
answering.

Costs for private ICL-based adaptations. DP-ICL does not incur any training cost but uses an ensemble of teachers for
each query (the same as PromptPATE for labeling public examples), which elevates the cost by the number of teachers,
which can be 10 or even 100. For PromptPATE, the generation of public student prompts is done using an ensemble of
teacher prompts, thus labeling each public data point costs much more (proportional to the number of teachers) than running
a query (with a single prompt). DP-FewShotGen also uses an ensemble of prompts, where the number of accesses to the
API in the training process is equal to the number of tokens in a public prompt. The cost of training the public prompt for
DP-OPT is through the iterative process of instructing the local model to improve the prompt and obtain better predictions,
however, this part is done on a local open LLM, thus, the cost is relatively low. For ease of approximation and to the benefit
of the ICL methods, we assume that the creation of the teacher prompts and the private aggregation of the outputs have
negligible costs. After preparing the public prompt, PromptPATE, DP-FewShotGen, and DP-OPT, need a single access to
the API to answer a query.

To obtain the cost for closed LLMs, we have to compute the average number of tokens per query. For the classification task,
we can take the example of the DP-OPT method applied on the SST2 dataset. For this dataset, only one token is returned
by the API provider, so the cost of the outputs is negligible. SST-2 inputs have an average length of 12.35 and the best
performing prepended prompt from DP-OPT training has a length of 39 tokens. Thus, for the DP-OPT task, for each query
to the API, 41.35 tokens are sent approximately. This gives a cost of $0.0006 per query for GPT-3 Davinci and the total cost
of $6 for 10k queries in Table 1. The cost per query is computed similarly, depending on the size of the prepended prompt of
each ICL method. Regarding the generation task, we can take the example of the SAMSum dialog summarization dataset,
in which the average token length is 141 for the input and 26 for the output, hence, a single query costs $0.000333 (for
GPT3-Davinci). The cost for a 0-shot inference to Davinci would therefore be $3.33 for 10k queries. As DP-ICL considers
the 1-shot scenario and an ensemble of 100 teachers, we add the average input and label lengths to the input and multiply
this by the size of the ensemble, which results in an overall cost of roughly $666. The exact average token count for each
dataset which we used for the cost estimations can be found in Table 22.

Table 22: Average token length of different inputs and outputs of the used datasets. The average does not include
instructions.

Dataset SST-2 Trec Mpqa Disaster MIT-D MIT-G SAMSum DocVQA

Input 12.35 11.43 3.88 30.79 25.276 24.314 140.857 924.191

Output 1 1 1 1 3.877 2.301 25.620 6.384
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Table 23: Pricing for the models and cloud options (as of May 22nd, 2024).

Model Cost/1M tokens Cost/hour
Input Output

GPT-Babbage 3 $0.40 $0.40 -

GPT-Davinci $2.00 $2.00 -

GPT-3.5-turbo Instruct $1.50 $2.00 -

GPT-4-turbo $10.00 $30.00 -

Claude 2.1 4 $8 $24 -

A40 (RunPod) 5 - $0.69
A40 (Replicate) 6 - $2.07

A40 (Hyperstack) 7 - (starts from)$0.50

E. Generation Metrics
In this section, we briefly discuss the different metrics we use to evaluate the generation tasks.

Rouge (Lin, 2004). The metrics in the Rouge, short for Recall-Oriented Understudy for Gisting Evaluation, set describe
how many word-wise n-grams match between the predicted and target text. For Rouge-1, we look at uni-grams whereas for
Rouge-2 we calculate the similarity of all 2-grams. Rouge-L refers to the similarity of the longest common subsequence
between prediction and target. Important to note for Rouge-L, the grams do not need to be consecutive, but have to be in
order. The scores lie between 0 and 100, where 100 is the best score.

BLEU (Papineni et al., 2002). Similar to the Rouge metric, the BLEU score, which is the abbreviation for Bilingual
Evaluation Understudy, is used to evaluate the similarity of generated and reference text. To calculate the score, the precision
and brevity between the two sentences have to be determined. The precision is the ratio of n-grams that match exactly
between generated and reference text. Usually, n goes up to 4. Brevity, on the other hand, penalizes the score of the generated
text, if it’s shorter than the reference. Combining brevity and precision results in the BLEU score of the generated text. The
score itself is again between 0 and 100, where higher scores are better. We use the SacreBLEU (Post, 2018) version of BLEU.

Levenshtein Distance. Lastly, to evaluate PFL-DocVQA, we also use the Levenshtein Distance. This metric is used
to directly compare strings on a letter by letter basis. The Levenshtein Distance calculates the minimum amount of
substitutions, insertions, and deletions between two sequences. We use the normalized version to have a score between 0
and 100 independent of sequence length. As with the other metrics, the higher the score the better.

F. Abbreviations
In Table 24, we show the abbreviations we used throughout this paper for the different private in context learning methods
of LLMs.

3https://openai.com/api/pricing/
4https://www.anthropic.com/api
5https://www.runpod.io/gpu-instance/pricing
6https://replicate.com/pricing
7https://www.hyperstack.cloud/gpu-pricing
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Table 24: Abbreviations for ICL papers and their proposed techniques.

Publication
Abbreviation

Publication Name Technique
Abbreviation

Privacy Technique

DP-ICL Privacy-Preserving
In-Context Learning
for Large Language
Models (Wu et al.,
2024)

DP-ICL Classifi-
cation

DP-ICL for text classifica-
tion

ESA Embedding Space Aggre-
gation

KSA Keyword Space Aggrega-
tion

DP-OPT DP-OPT: Make
Large Language
Model Your Privacy-
Preserving Prompt
Engineer (Hong et al.,
2024)

DP-OPT Differentially-Private Off-
site Prompt Tuning

FewShotGen Privacy-Preserving
In-Context Learning
with Differentially
Private Few-Shot
Generation (Tang
et al., 2024)

FewShotGen Differential Private Few-
Shot Generation

PrivatePrompts (Duan
et al., 2023a)

Flocks of Stochastic
Parrots: Differen-
tially Private Prompt
Learning for Large
Language Models
(Duan et al., 2023a)

PromptDPSGD (Duan
et al., 2023a)

DPSGD for Private Soft
Prompt Learning

PromptPATE (Duan
et al., 2023a)

PATE for Privacy-
Preserving Discrete
Prompts
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