
Mechanistic Neural Networks for Scientific Machine Learning

Adeel Pervez 1 Francesco Locatello 2 Efstratios Gavves 1

Abstract
This paper presents Mechanistic Neural Networks,
a neural network design for machine learning
applications in the sciences. It incorporates a new
Mechanistic Block in standard architectures to
explicitly learn governing differential equations
as representations, revealing the underlying
dynamics of data and enhancing interpretability
and efficiency in data modeling. Central to our
approach is a novel Relaxed Linear Programming
Solver (NeuRLP) inspired by a technique that
reduces solving linear ODEs to solving linear pro-
grams. This integrates well with neural networks
and surpasses the limitations of traditional ODE
solvers enabling scalable GPU parallel processing.
Overall, Mechanistic Neural Networks demon-
strate their versatility for scientific machine
learning applications, adeptly managing tasks
from equation discovery to dynamic systems mod-
eling. We prove their comprehensive capabilities
in analyzing and interpreting complex scientific
data across various applications, showing
significant performance against specialized state-
of-the-art methods. Source code is available at
https://github.com/alpz/mech-nn.

1. Introduction
Understanding and modeling the mechanisms underlying
the evolution of data is a fundamental scientific challenge
and is still largely performed by hand by domain experts,
who leverage their understanding of natural phenomena
to obtain equations. This process can be time-consuming,
error-prone, and limited by prior knowledge. In this paper,
we introduce Mechanistic Neural Networks, a new neural
network design that contains one or more Mechanistic
Block that explicitly integrate governing equations as

1Informatics Institute, University of Amsterdam, Amster-
dam, The Netherlands 2Institute of Science and Technology,
Klosterneuburg, Austria. Correspondence to: Adeel Pervez
<a.a.pervez@uva.nl>.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

Neural ODE,UDE SINDy Neural Operators Mech. NN
Chen et al. (2018) Brunton et al. (2016) Li et al. (2020c)

Rackauckas et al. (2020)

Linear discovery – ✓ – ✓
Nonlinear discovery – – – ✓
Physical parameters ✓ ✓ – ✓
Forecasting ✓ – ✓ ✓
Interpretability – ✓ – ✓

Mechanistic
Encoder

NeurRLP

<latexit sha1_base64="7zC6hCd8hv51o01Nq6MEUKWaw/A=">AAAfWniclZlrb+PGFYaVTS+J08um7bcCWaLGomngXdhGkfRjZPluy5av8oVeYYYcSpR585CipWX0C/q1/XEF+mM6pKR5D0XJ6QrYFfW8Z4bDwzM8ryweeW6crK//57NXn//il7/69Rdfrnz1m9/+7vevv/7DdRwOpCWurNAL5Q1nsfDcQFwlbuKJm0gK5nNPtPljI9fbqZCxGwaXySgSDz7rBq7jWixR6GzYeb26/n69eBnVg43pwWpt+mp1vv6mYdqhNfBFkFgei+P7jfUoeciYTFzLE+MVcxCLiFmPrCvu1WHAfBE/ZMVKx8ZbRWzDCaX6FyRGQemIjPlxPPK5ivRZ0ovntRwu0u4HifOPh8wNokEiAmtyImfgGUlo5Jdt2K4UVuKN1AGzpKvWalg9JpmVqOSUz+J1QxXQ89csFuVJGi+WXUsJ20LlQIqmWs9pJCRLQpmZnh+OMzMRwyS2suPm6Xhx4HeZyWTXd4OxSl7XXMuPXgpkw1mgOloxA/Fshb7PAjsz7UdvnG1/yI6O1blWlizLUhkfZ8X/yyNEEaFu4/KQtAhJl03iMEvE42zytiSmOw3qvnsxzMtz4y1Li7psl/kq03k1SD8rPi0Llcx2BzGCp5+XZsJzI3WZ+f8r5VQrcr/5kJnc7ZoeC7qeMFY31gxzzVjdNAoqCzp3hyIZDsf3Gw96AQXoZKsb42pkfz6yP4tcstxg4HkXasH5+9IgN5C4/vzDsov37edx5m+3vzWt+t+WBYk8SOigZVOxYq76z0xmqaBG27WT3svTRSquVY6jqWu2xtl04znq3Q1GhkLzCd5tV6IUqkaxRWEdk3lRj022WWkLhj7Ly9W0zuZmajjq4jqZs6aWPB4b86KcqbIXLomgIR82Fwfl167P8iFPRTWCzmPkGTStQfSuyOSyEa32S2Py7GT1+dTlAzGuWI4OXHCK2ao2i1O8tPxG8XzCcorYuXvUOD3ZqdzMfDQd/CnjhnTgTyYfdhLzp06RiE+YRTbYbI6igD51/fX2C2uvF+X7tjQkf0SjJptzE/oDJ38WDPIZl6VcxUgSpBdcXxA3yVE19v+5uNn4fF/+/Az1ix1jqzKHLbyEFRMUR518ky+IyDfJLCK/3pX8aZu6tsDjPQiELJ7wqv0IJ5k+4/NH/KoqULfbS2YP+LkTKNuhfFjx5J4MvV/dmAx4KOqemBU7daN4aoyGE2dUnisIpT+ZyZiu4lrIZDafKfNPRvEMWlGX45icTdLkJpN37mSsyFEh8orIIVoV0YJoV0QboqiIAqLjVFQHarcidiH2KmIPolsRDyD2K2If4mNFfIToVUQPol8RfYhBRQwghhUxhBhVxAjiU0V8gigrooQYV8QYYlIRE4iDijiAmFbEFOJzRXyGOKyIQ4ijijiC+LEifiwedO/oa+WtsRV6tqHcupswz/BEMvH0xRT1bGJ51Ng6Jt4C3QJtgDZAt0G3QXdAd0B3QXdB90D3QPdB90EPQElhH4Iegh6BHoEegx6DNkGboCegJ6CnoKegLdAW6BnoGeg56DnoBegF6CXoJegV6BXoNeg1aBu0DXoDegN6C3oLegd6V1SY0WCe25Us6uVfFBdVllWfDLGYN3FABdwC3NKwAdjQcBtwW8MdwB0NdwF3NdwD3NNwH3BfwwPAAw0PAQ81PAI80vAY8FjDJmBTwxPAEw1PAU81bAG2NDwDPNPwHPBcwwvACw0vAS81vAK80vAa8FrDNmBbwxvAGw1vAW81vAO8W/SEilkQG7GQrmN44bOQuVWYDI0dNi2+mDbt2OHAnGAL2CLYBrYJFgJcEK7as+YO4V3gLsE94B7BLrBLcB+4T/Aj8CPBHrBHsA/sExwABwSHwCHBEXBE8BPwE8ESWBIcA8cEJ8AJwQPgAcEpcErwM/AzwUPgIcEj4BHBH4EX98cLVN/CZ1ns1PUMdcy7peEWYEPDBuC2htuAOxruAO5quAu4p+Ee4L6G+4AHGh4AHmp4CHik4RHgsYbHgE0Nm4AnGp4Anmp4CtjSsAV4puEZ4LmG54AXGl4AXmp4CXil4RXgtYbXgG0N24A3Gt4A3mp4C3in4Z3ukDBSnBopOClOnRSsFKdWCl6KUy8FM8WpmYKb4tRNwU5xaqfgpzj1UzBUnBoqOCpOHRUsFaeWCp6KU08FU8WpqYKr4tRVwVZxaqvgqzj1VTBWnBorOCtOnRWsFafWCt6KU28Fc8WpuYK74tRdwV5xaq/grzj1VzBYnBosOCw+cVjl77ste5y1Onnnmuf9idDpVyS/UPxQfZ0v5svPsw4ftz7WVLLpH/Lyr9WqQ6PLSl5W0GilVVbQa6VdVtBupSgraLjSKStoubJbVtB1Za+soPFKt6yg98p+WUH7lY9lBR1YemXFmxhg6RtubDBPCmaPDGZME79m9AdxYthh8NfEyP+EYbBgZEilhL6RMuky7onY8KdzB+W50bJlWFbQtWVUVtC45VNZQe+Wsqygfcu4rKCDy6SsoInLQVlBH5dpWUErl89lBd1cDssKGroclRX0dPmxrBRtXd2U82mehZWEs+YtUxHFrhcGqH1zSsi6k55IGIkoPhOdaBRzYLI3UguYbIzUBia7IhXAZEukDjDZD2kXmGyGtAdMdkI6ACbbIO0Dkz2QPgKTDZB6wB7BPrBPMEk0zXAITIo5jYBJJadPwKSMUwlMajiNgWN6U4GTxTmhpZsCk7pNn4FJ0aZDYFKx6QiYlGv6EXhaq2bxW2ym6iyUwu8EYVL84vxeVbWSO69XN+Z/ZK4eXG++3/j+/fdnf1/9cWv6A/QXtT/X/lL7trZR+6H2Y22/1qpd1ayaqP2z9q/av7/575tXb75889Uk9NVn0zF/rJVeb/70P0bzIug=</latexit>x

<latexit sha1_base64="DtTaeEntV9QMmK/dSgi/1AgsZv4=">AAAfXXiclZnbcuPGEYZpJ04cxXHWyUUuUuVFRbWVtUu7JalSTi5NUWeJEnWkDtCyZoABCQonDUCIXJivkNvk1XKVV8kAJOdvEKScZdUuwe/vGQwaPeifIo88N07W1//z2ee/+OUXv/r1l79Z+e1Xv/v696+++cN1HA6kJa6s0AvlDWex8NxAXCVu4ombSArmc0+0+WMj19upkLEbBpfJKBIPPusGruNaLMnR4G3yXefV6vr79eJlVA82pgertemr1fnm24Zph9bAF0FieSyO7zfWo+QhYzJxLU+MV8xBLCJmPbKuuFeHAfNF/JAVix0bbxSxDSeU6l+QGAWlIzLmx/HI5yrSZ0kvntdyuEi7HyTOPx4yN4gGiQisyYmcgWckoZFfuWG7UliJN1IHzJKuWqth9ZhkVqLyUz6L1w1VQM9fs1iU52m8WHYtJWwLlQMpmmo9p5GQLAllZnp+OM7MRAyT2MqOm6fjxYHfZyaTXd8Nxip5XXMtP3opkA1ngepoxQzEsxX6PgvszLQfvXG2/SE7OlbnWlmyLEtlfJwV/y+PEEWEuo3LQ9IiJF02icMsEY+zyduSmO40qPvuxTAvz423LC3qsl3mq0zn1SD9rPi0LFQy2x3ECJ5+XpoJz43UZeb/r5RTrcj95kNmcrdreizoesJY3VgzzDVjddMoqCzo3B2KZDgc32886AUUoJOtboyrkf35yP4scslyg4HnXagF5+9Lg9xA4vrzD8su3refx5m/3X5rWvXvlgWJPEjooGVTsWKu+s9MZqmgRtu1k97L00UqrlWOo6lrtsbZdOM56t0NRoZC8wnebVeiFKpGsUVhHZN5UY9NtllpC4Y+y8vVtM7mZmo46uI6mbOmljweG/OinKmyFy6JoCEfNhcH5deuz/IhT0U1gs5j5Bk0rUH0rsjkshGt9ktj8uxk9fnU5QMxrliODlxwitmqNotTvLT8RvF8wnKK2Ll71Dg92anczHw0Hfwp44Z04E8mH3YS86dOkYhPmEU22GyOooA+df319gtrrxfl+6Y0JH9EoyabcxP6Ayd/FgzyGZelXMVIEqQXXF8QN8lRNfb/ubjZ+Hxf/vwM9YsdY6syhy28hBUTFEedfJMviMg3ySwiv96V/GmburbA4z0IhCye8Kr9CCeZPuPzR/yqKlC320tmD/i5EyjboaxY8eSeDL1f3ZgMeCjqnpgVO3WjeGqMhhNnVJ4rCKU/mcmYruJayGQ2nynzT0bxDFpRl+OYnE3S5CaTd+5krMhRIfKKyCFaFdGCaFdEG6KoiAKi41RUB2q3InYh9ipiD6JbEQ8g9itiH+JjRXyE6FVED6JfEX2IQUUMIIYVMYQYVcQI4lNFfIIoK6KEGFfEGGJSEROIg4o4gJhWxBTic0V8hjisiEOIo4o4gvixIn4sHnTv6GvljbEVerah3LqbMM/wRDLx9MUU9WxiedTYOibeAt0CbYA2QLdBt0F3QHdAd0F3QfdA90D3QfdBD0BJYR+CHoIegR6BHoMegzZBm6AnoCegp6CnoC3QFugZ6BnoOeg56AXoBegl6CXoFegV6DXoNWgbtA16A3oDegt6C3oHeldUmNFgntuVLOrlXxQXVZZVnwyxmDdxQAXcAtzSsAHY0HAbcFvDHcAdDXcBdzXcA9zTcB9wX8MDwAMNDwEPNTwCPNLwGPBYwyZgU8MTwBMNTwFPNWwBtjQ8AzzT8BzwXMMLwAsNLwEvNbwCvNLwGvBawzZgW8MbwBsNbwFvNbwDvFv0hIpZEBuxkK5jeOGzkLlVmAyNHTYtvpg27djhwJxgC9gi2Aa2CRYCXBCu2rPmDuFd4C7BPeAewS6wS3AfuE/wI/AjwR6wR7AP7BMcAAcEh8AhwRFwRPAT8BPBElgSHAPHBCfACcED4AHBKXBK8DPwM8FD4CHBI+ARwR+BF/fHC1TfwmdZ7NT1DHXMu6XhFmBDwwbgtobbgDsa7gDuargLuKfhHuC+hvuABxoeAB5qeAh4pOER4LGGx4BNDZuAJxqeAJ5qeArY0rAFeKbhGeC5hueAFxpeAF5qeAl4peEV4LWG14BtDduANxreAN5qeAt4p+Gd7pAwUpwaKTgpTp0UrBSnVgpeilMvBTPFqZmCm+LUTcFOcWqn4Kc49VMwVJwaKjgqTh0VLBWnlgqeilNPBVPFqamCq+LUVcFWcWqr4Ks49VUwVpwaKzgrTp0VrBWn1greilNvBXPFqbmCu+LUXcFecWqv4K849VcwWJwaLDgsPnFY5e+7LXuctTp555rn/YnQ6Vckv1D8UH2dL+bLz7MOH7c+1lSy6R/y8q/VqkOjy0peVtBopVVW0GulXVbQbqUoK2i40ikraLmyW1bQdWWvrKDxSresoPfKfllB+5WPZQUdWHplxZsYYOkbbmwwTwpmjwxmTBO/ZvQHcWLYYfDXxMj/hGGwYGRIpYS+kTLpMu6J2PCncwfludGyZVhW0LVlVFbQuOVTWUHvlrKsoH3LuKygg8ukrKCJy0FZQR+XaVlBK5fPZQXdXA7LChq6HJUV9HT5sawUbV3dlPNpnoWVhLPmLVMRxa4XBqh9c0rIupOeSBiJKD4TnWgUc2CyN1ILmGyM1AYmuyIVwGRLpA4w2Q9pF5hshrQHTHZCOgAm2yDtA5M9kD4Ckw2QesAewT6wTzBJNM1wCEyKOY2ASSWnT8CkjFMJTGo4jYFjelOBk8U5oaWbApO6TZ+BSdGmQ2BSsekImJRr+hF4Wqtm8VtspuoslMLvBGFS/Oj8XlW1kjuvVjfmf2SuHlxvvt/44f0PZ39b/XFr+gP0l7U/1/5Se1vbqP299mNtv9aqXdWsWq/2z9q/av/+9r+vv3j91euvJ6GffzYd88da6fX6T/8Dh/IjyA==</latexit>

u(t)

Mechanistic
Block

ODE representation

<latexit sha1_base64="600a+zEB1210p6ZBoCFXtm0XWxI=">AAAfYXiclZnZcuPGFYZpZ7OVxWPn0lUeVFRTcVKaKUmVcnJpitolStRKLdCwuoEGCQqbGiBECuZL5DZ5sVznRdIAyf4PCFLOsGqG4PefbjQOTuP8FHnkuXGyvv6fzz7/xS9/9evffPHlym9/9/s/fPXm62+u43AgLXFlhV4obziLhecG4ipxE0/cRFIwn3uizR8bud5OhYzdMLhMRpF48Fk3cB3XYolCN07HTHoiYZ03q+sf1ouXUT3YmB6s1qavVufr7xqmHVoDXwSJ5bE4vt9Yj5KHjMnEtTwxXjEHsYiY9ci64l4dBswX8UNWLHhsvFPENpxQqn9BYhSUjsiYH8cjn6tInyW9eF7L4SLtfpA4/3jI3CAaJCKwJidyBp6RhEZ+9YbtSmEl3kgdMEu6aq2G1WOSWYnKUfksXjdUAT1/zWJRnqvxYtm1lLAtVA6kaKr1nEZCsiSUmen54TgzEzFMYis7bp6OFwf+NTOZ7PpuMFbJ65pr+dFrgWw4C1RHK2Ygnq3Q91lgZ6b96I2z7Y/Z0bE618qSZVkq4+Os+H95hCgi1G1cHpIWIemySRxmiXicTd6WxHSnQd33r4Z5eW68ZWlRl+0yX2U6rwbpZ8WnZaGS2e4gRvD089JMeG6kLjP/f6WcakXuNx8yk7td02NB1xPG6saaYa4Zq5tGQWVB5+5QJMPh+H7jQS+gAJ1sdWNcjezPR/ZnkUuWGww870ItOH9fGuQGEteff1h28b79PM787fb3plX/y7IgkQcJHbRsKlbMVf+ZySwV1Gi7dtJ7fbpIxbXKcTR1zdY4m248R727wchQaD7Bu+1KlELVKLYorGMyL+qxyTYrbcHQZ3m5mtbZ3EwNR11cJ3PW1JLHY2NelDNV9sIlETTk4+bioPza9Vk+5qmoRtB5jDyDpjWI3heZXDai1X5tTJ6drD6funwgxhXL0YELTjFb1WZxiteW3yieT1hOETt3jxqnJzuVm5mPpoM/ZdyQDvzJ5MNOYv7UKRLxCbPIBpvNURTQp66/3n5l7fWifN+VhuSPaNRkc25Cf+Dkz4JBPuOylKsYSYL0gusL4iY5qsb+Pxc3G5/vy5+foX6xY2xV5rCFl7BiguKok2/yBRH5JplF5Ne7kj9tU9cWeLwHgZDFE161H+Ek02d8/ohfVQXqdnvJ7AE/dwJlO5QdK57ck6H3qxuTAQ9F3ROzYqduFE+N0XDijMpzBaH0JzMZ01VcC5nM5jNl/skonkEr6nIck7NJmtxk8s6djBU5KkReETlEqyJaEO2KaEMUFVFAdJyK6kDtVsQuxF5F7EF0K+IBxH5F7EN8rIiPEL2K6EH0K6IPMaiIAcSwIoYQo4oYQXyqiE8QZUWUEOOKGENMKmICcVARBxDTiphCfK6IzxCHFXEIcVQRRxBfKuJL8aB7T18r74yt0LMN5dbdhHmGJ5KJpy+mqGcTy6PG1jHxFugWaAO0AboNug26A7oDugu6C7oHuge6D7oPegBKCvsQ9BD0CPQI9Bj0GLQJ2gQ9AT0BPQU9BW2BtkDPQM9Az0HPQS9AL0AvQS9Br0CvQK9Br0HboG3QG9Ab0FvQW9A70LuiwowG89yuZFEv/6K4qLKs+mSIxbyJAyrgFuCWhg3AhobbgNsa7gDuaLgLuKvhHuCehvuA+xoeAB5oeAh4qOER4JGGx4DHGjYBmxqeAJ5oeAp4qmELsKXhGeCZhueA5xpeAF5oeAl4qeEV4JWG14DXGrYB2xreAN5oeAt4q+Ed4N2iJ1TMgtiIhXQdwwufhcytwmRo7LBp8cW0accOB+YEW8AWwTawTbAQ4IJw1Z41dwjvAncJ7gH3CHaBXYL7wH2CH4EfCfaAPYJ9YJ/gADggOAQOCY6AI4KfgJ8IlsCS4Bg4JjgBTggeAA8IToFTgp+BnwkeAg8JHgGPCH4BXtwfL1B9C59lsVPXM9Qx75aGW4ANDRuA2xpuA+5ouAO4q+Eu4J6Ge4D7Gu4DHmh4AHio4SHgkYZHgMcaHgM2NWwCnmh4Aniq4SlgS8MW4JmGZ4DnGp4DXmh4AXip4SXglYZXgNcaXgO2NWwD3mh4A3ir4S3gnYZ3ukPCSHFqpOCkOHVSsFKcWil4KU69FMwUp2YKbopTNwU7xamdgp/i1E/BUHFqqOCoOHVUsFScWip4Kk49FUwVp6YKropTVwVbxamtgq/i1FfBWHFqrOCsOHVWsFacWit4K069FcwVp+YK7opTdwV7xam9gr/i1F/BYHFqsOCw+MRhlb/vtuxx1urknWue9ydCp1+R/ELxQ/V1vpgvP886fNz6WFPJpn/Iy79Wqw6NLit5WUGjlVZZQa+VdllBu5WirKDhSqesoOXKbllB15W9soLGK92ygt4r+2UF7Vc+lhV0YOmVFW9igKVvuLHBPCmYPTKYMU38mtEfxIlhh8GfEyP/E4bBgpEhlRL6Rsqky7gnYsOfzh2U50bLlmFZQdeWUVlB45ZPZQW9W8qygvYt47KCDi6TsoImLgdlBX1cpmUFrVw+lxV0czksK2joclRW0NPlS1kp2rq6KefTPAsrCWfNW6Yiil0vDFD75pSQdRc/9pGI4jPRiUYxByZ7I7WAycZIbWCyK1IBTLZE6gCT/ZB2gclmSHvAZCekA2CyDdI+MNkD6SMw2QCpB+wR7AP7BJNE0wyHwKSY0wiYVHL6BEzKOJXApIbTGDimNxU4WZwTWropMKnb9BmYFG06BCYVm46ASbmmL8DTWjWL32IzVWehFH4nCJPih+cPqqqV3HmzujH/I3P14Hrzw8YPH344+9vqj1vTH6C/qH1b+1Pt+9pG7e+1H2v7tVbtqmbVvNo/a/+q/fu7/7798u2bt99MQj//bDrmj7XS6+23/wMtMCXt</latexit>

f✓

Predict and Forecast

Discover

En
co

de
r

Mech.
Block

D
ecoder

En
co

de
r

Mech.
Block <latexit sha1_base64="600a+zEB1210p6ZBoCFXtm0XWxI=">AAAfYXiclZnZcuPGFYZpZ7OVxWPn0lUeVFRTcVKaKUmVcnJpitolStRKLdCwuoEGCQqbGiBECuZL5DZ5sVznRdIAyf4PCFLOsGqG4PefbjQOTuP8FHnkuXGyvv6fzz7/xS9/9evffPHlym9/9/s/fPXm62+u43AgLXFlhV4obziLhecG4ipxE0/cRFIwn3uizR8bud5OhYzdMLhMRpF48Fk3cB3XYolCN07HTHoiYZ03q+sf1ouXUT3YmB6s1qavVufr7xqmHVoDXwSJ5bE4vt9Yj5KHjMnEtTwxXjEHsYiY9ci64l4dBswX8UNWLHhsvFPENpxQqn9BYhSUjsiYH8cjn6tInyW9eF7L4SLtfpA4/3jI3CAaJCKwJidyBp6RhEZ+9YbtSmEl3kgdMEu6aq2G1WOSWYnKUfksXjdUAT1/zWJRnqvxYtm1lLAtVA6kaKr1nEZCsiSUmen54TgzEzFMYis7bp6OFwf+NTOZ7PpuMFbJ65pr+dFrgWw4C1RHK2Ygnq3Q91lgZ6b96I2z7Y/Z0bE618qSZVkq4+Os+H95hCgi1G1cHpIWIemySRxmiXicTd6WxHSnQd33r4Z5eW68ZWlRl+0yX2U6rwbpZ8WnZaGS2e4gRvD089JMeG6kLjP/f6WcakXuNx8yk7td02NB1xPG6saaYa4Zq5tGQWVB5+5QJMPh+H7jQS+gAJ1sdWNcjezPR/ZnkUuWGww870ItOH9fGuQGEteff1h28b79PM787fb3plX/y7IgkQcJHbRsKlbMVf+ZySwV1Gi7dtJ7fbpIxbXKcTR1zdY4m248R727wchQaD7Bu+1KlELVKLYorGMyL+qxyTYrbcHQZ3m5mtbZ3EwNR11cJ3PW1JLHY2NelDNV9sIlETTk4+bioPza9Vk+5qmoRtB5jDyDpjWI3heZXDai1X5tTJ6drD6funwgxhXL0YELTjFb1WZxiteW3yieT1hOETt3jxqnJzuVm5mPpoM/ZdyQDvzJ5MNOYv7UKRLxCbPIBpvNURTQp66/3n5l7fWifN+VhuSPaNRkc25Cf+Dkz4JBPuOylKsYSYL0gusL4iY5qsb+Pxc3G5/vy5+foX6xY2xV5rCFl7BiguKok2/yBRH5JplF5Ne7kj9tU9cWeLwHgZDFE161H+Ek02d8/ohfVQXqdnvJ7AE/dwJlO5QdK57ck6H3qxuTAQ9F3ROzYqduFE+N0XDijMpzBaH0JzMZ01VcC5nM5jNl/skonkEr6nIck7NJmtxk8s6djBU5KkReETlEqyJaEO2KaEMUFVFAdJyK6kDtVsQuxF5F7EF0K+IBxH5F7EN8rIiPEL2K6EH0K6IPMaiIAcSwIoYQo4oYQXyqiE8QZUWUEOOKGENMKmICcVARBxDTiphCfK6IzxCHFXEIcVQRRxBfKuJL8aB7T18r74yt0LMN5dbdhHmGJ5KJpy+mqGcTy6PG1jHxFugWaAO0AboNug26A7oDugu6C7oHuge6D7oPegBKCvsQ9BD0CPQI9Bj0GLQJ2gQ9AT0BPQU9BW2BtkDPQM9Az0HPQS9AL0AvQS9Br0CvQK9Br0HboG3QG9Ab0FvQW9A70LuiwowG89yuZFEv/6K4qLKs+mSIxbyJAyrgFuCWhg3AhobbgNsa7gDuaLgLuKvhHuCehvuA+xoeAB5oeAh4qOER4JGGx4DHGjYBmxqeAJ5oeAp4qmELsKXhGeCZhueA5xpeAF5oeAl4qeEV4JWG14DXGrYB2xreAN5oeAt4q+Ed4N2iJ1TMgtiIhXQdwwufhcytwmRo7LBp8cW0accOB+YEW8AWwTawTbAQ4IJw1Z41dwjvAncJ7gH3CHaBXYL7wH2CH4EfCfaAPYJ9YJ/gADggOAQOCY6AI4KfgJ8IlsCS4Bg4JjgBTggeAA8IToFTgp+BnwkeAg8JHgGPCH4BXtwfL1B9C59lsVPXM9Qx75aGW4ANDRuA2xpuA+5ouAO4q+Eu4J6Ge4D7Gu4DHmh4AHio4SHgkYZHgMcaHgM2NWwCnmh4Aniq4SlgS8MW4JmGZ4DnGp4DXmh4AXip4SXglYZXgNcaXgO2NWwD3mh4A3ir4S3gnYZ3ukPCSHFqpOCkOHVSsFKcWil4KU69FMwUp2YKbopTNwU7xamdgp/i1E/BUHFqqOCoOHVUsFScWip4Kk49FUwVp6YKropTVwVbxamtgq/i1FfBWHFqrOCsOHVWsFacWit4K069FcwVp+YK7opTdwV7xam9gr/i1F/BYHFqsOCw+MRhlb/vtuxx1urknWue9ydCp1+R/ELxQ/V1vpgvP886fNz6WFPJpn/Iy79Wqw6NLit5WUGjlVZZQa+VdllBu5WirKDhSqesoOXKbllB15W9soLGK92ygt4r+2UF7Vc+lhV0YOmVFW9igKVvuLHBPCmYPTKYMU38mtEfxIlhh8GfEyP/E4bBgpEhlRL6Rsqky7gnYsOfzh2U50bLlmFZQdeWUVlB45ZPZQW9W8qygvYt47KCDi6TsoImLgdlBX1cpmUFrVw+lxV0czksK2joclRW0NPlS1kp2rq6KefTPAsrCWfNW6Yiil0vDFD75pSQdRc/9pGI4jPRiUYxByZ7I7WAycZIbWCyK1IBTLZE6gCT/ZB2gclmSHvAZCekA2CyDdI+MNkD6SMw2QCpB+wR7AP7BJNE0wyHwKSY0wiYVHL6BEzKOJXApIbTGDimNxU4WZwTWropMKnb9BmYFG06BCYVm46ASbmmL8DTWjWL32IzVWehFH4nCJPih+cPqqqV3HmzujH/I3P14Hrzw8YPH344+9vqj1vTH6C/qH1b+1Pt+9pG7e+1H2v7tVbtqmbVvNo/a/+q/fu7/7798u2bt99MQj//bDrmj7XS6+23/wMtMCXt</latexit> f

✓

D
ecoder

Basis
parameters

Ba
sis

<latexit sha1_base64="M2oOgN5Nc6BC1hCL3UOcB/9aY9E=">AAAfe3iclZnZbuPIFYY1k23ibD3JZYBpIkYjPQN3wzaSSRAgwMjyvsqLLC90C1VkUaLMzUWKlpqj2zxNbpN3ycMESJGS6j8UJU9aQLeo7z91VDyqqvPL4pHnxsn6+n8++/xHP/7JT3/2xc9XfvHLX/36N6++/O11HA6kJVpW6IXyhrNYeG4gWombeOImkoL53BNt/tjI9XYqZOyGwVUyisSDz7qB67gWSxTqvDJMnyU9i3lZa9wZGn8zdt+azIt6bM0Yfm383VjvvFpdf79ePIzqxcb0YrU2fTQ7X37VMO3QGvgiSCyPxfH9xnqUPGRMJq7lifGKOYhFxKxH1hX36jJgvogfsuJWxsYbRWzDCaX6FyRGQemIjPlxPPK5iswnHs9rOVyk3Q8S568PmRtEg0QE1uSNnIFnJKGR18WwXSmsxBupC2ZJV83VsHpMMitR1Su/i9cNVUDPX7NYlFdxvFh2LSVsC1UDKU7UfM4iIVkSysz0/HCcmYkYJrGVHZ+cjRcHfpOZTHZ9Nxir4nXNtfzqpUA2nAWqqxUzEM9W6PsssDPTfvTG2faH7OhYvdfKkmlZquLjrPh/eYQoItTHuDwkLULSZUkcZol4nE2elsR0p0Hddy+GeXltvGVlUbftMl9VOl8N0s+KV8tCJbPdQYzg6eullfDcSN1m/v9KudSK3G8+ZCZ3u6bHgq4njNWNNcNcM1Y3jYLKgs59QpEMh+P7jQc9gQJ0stWNcTWyPx/Zn0UumW4w8LxLNeH8eWmQG0jcf/5i2c379vM487fbb02r/vWyIJEHCR20LBUrctV/IJmlghpt1056L6eLVFyzHEdLd9IcZ9ON56hnNxgZCs0XeLddiVKoGsUWhXUmx+dkm5W2YOizfLma1vlcpoajbq6TOWtqyuOxMS/KmSp74ZIIGvJhc3FQfu/6XT7kpahG0DxGXkHTGkTvikouG9FsvzQmr05Wny9dPhDjiunowAVvMZvVZvEWL02/UZxPmE4RO/cZNc5OdyofZj6aDv6UcUM68HuTDzuJ+X2nKMQnZJENNstRLKBPnX+9/cLc68XyfVMakh/RWJMncwn9gZOfBYM847KSqxhJgvSE6wviJjWqxv4/Nzcbn+/LH85Qv9wxtio5bOElrEhQXHXyTb4gIt8ks4j8flfy0zZ1bYHjPQiELE541X6Ek0zP+PyIX1UL1O32ktkBP/cGynYoo1ac3JOh96sbkwEPxbonZsVO3SieGqPhxBmVcwWh9CeZjOksroVMZvlMmb8yijNoRd2OY3I2KZObTJ65k7GiRoXIKyKHaFVEC6JdEW2IoiIKiI5TUR2o3YrYhdiriD2IbkU8gNiviH2IjxXxEaJXET2IfkX0IQYVMYAYVsQQYlQRI4hPFfEJoqyIEmJcEWOISUVMIA4q4gBiWhFTiM8V8RnisCIOIY4q4gjix4r4sTjo3tHHyhtjK/RsQ7l1N2Ge4Ylk4umLFPVsYnnU2DoSb4FugTZAG6DboNugO6A7oLugu6B7oHug+6D7oAegZGEfgh6CHoEegR6DHoOegJ6AnoKegp6BnoE2QZug56DnoBegF6CXoJegV6BXoC3QFug16DVoG7QNegN6A3oLegt6B3pXrDCjwTy3K1nUy78oLlpZVj3T363rs0TWFuCWhg3AhobbgNsa7gDuaLgLuKvhHuCehvuA+xoeAB5oeAh4qOER4JGGx4DHGp4Anmh4Cniq4RngmYZNwKaG54DnGl4AXmh4CXip4RXglYYtwJaG14DXGrYB2xreAN5oeAt4q+Ed4N2iEypmQWzEQrqO4YXPQuZWYTI0dth08cW0accOB+YEW8AWwTawTbAQ4IJw1Z41dwjvAncJ7gH3CHaBXYL7wH2CH4EfCfaAPYJ9YJ/gADggOAQOCY6AI4KfgJ8IlsCS4Bg4JjgBTggeAA8IToFTgp+BnwkeAg8JHgGPCP4IvLg/XmL1LTzLYqeuM9SRd0vDLcCGhg3AbQ23AXc03AHc1XAXcE/DPcB9DfcBDzQ8ADzU8BDwSMMjwGMNjwFPNDwBPNXwFPBMwzPApoZNwHMNzwEvNLwAvNTwEvBKwyvAloYtwGsNrwHbGrYBbzS8AbzV8BbwTsM73SFhpDg1UnBSnDopWClOrRS8FKdeCmaKUzMFN8Wpm4Kd4tROwU9x6qdgqDg1VHBUnDoqWCpOLRU8FaeeCqaKU1MFV8Wpq4Kt4tRWwVdx6qtgrDg1VnBWnDorWCtOrRW8FafeCuaKU3MFd8Wpu4K94tRewV9x6q9gsDg1WHBYfOKwyt93m/Y4a3byzjXP+xOh069IfqH4ofo6X+TL32cdPm59rKlk0z/k5V+rVYdGl5W8rKDRSqusoNdKu6yg3UpRVtBwpVNW0HJlt6yg68peWUHjlW5ZQe+V/bKC9isfywo6sPTKijcxwNI33NhgnhTMHhnMmBZ+zegP4sSww+CPiZH/CcNgwciQSgl9I2XSZdwTseFPcwfl3GjZMiwr6NoyKito3PKprKB3S1lW0L5lXFbQwWVSVtDE5aCsoI/LtKyglcvnsoJuLodlBQ1djsoKerr8WFaKtq4+lItpnYWVhLPmLVMRxa4XBlj75pSQeSc9kTASUbwmOtEo5sBkb6QWMNkYqQ1MdkUqgMmWSB1gsh/SLjDZDGkPmOyEdABMtkHaByZ7IH0EJhsg9YA9gn1gn2BSaFrhEJgs5jQCJis5fQImyziVwGQNpzFwTD9U4GRxTejSTYHJuk2fgcmiTYfAZMWmI2CyXNOPwNO1aha/xWZqnYVS+J0gTIqfpN+rVa3kzqvVjfkfmasX15vvN759/+35n1a/25r+AP1F7fe1P9Te1jZqf6l9V9uvNWutmlX7R+2ftX/V/v3Vf1+vvv7m9dok9PPPpmN+Vys9Xv/5f7qqLhU=</latexit>Ux : F (↵, x) = 0

<latexit sha1_base64="oDF2usZ/tTvxq/cYWJZrmPij9EQ=">AAAflXiclZnZbuPIFYY1k23ibD3JRS4CxESMRiaBu2EbwSQIMMDI8m7Llld5oVuoIosSJW4uUrTUHL1Lnia3yW3eJkVKrv9QlDzTAmyR33+qWDysqvNL4pHnxsnGxv8++/xHP/7JT3/2xc9XfvHLX/36N2++/O1NHA6lJa6t0AvlLWex8NxAXCdu4onbSArmc0+0+aCR6+1UyNgNg6tkHIlHn3UD13EtlijUefNPk3lRjxnfGA9WJ3PXk/XRZN0wo57byQazM97JZjj0RZd1RutG3EkeO2/WNt5vFC+jerA5O1irzV6tzpd/bJh2aA19ESSWx+L4YXMjSh4zJhPX8sRkxRzGImLWgHXFgzoMmC/ix6y4yYnxVhHbcEKp/oLEKChtkTE/jsc+V5E+S3rxvJbDRdrDMHH+8Zi5QTRMRGBNL+QMPSMJjTxjhu1KYSXeWB0wS7pqrIbVY5JZicpr+SpeN1QBPX/dYlGe38li2bWUsCNUDqRoqvGcRUKyJJSZ6fnhJDMTMUpiKztpnk0WB/41M5ns+m4wUcnrmuv50WuBbPQSqI5WzEA8W6Hvs8DOTHvgTbKdD9nxibrWypJhWSrjk6z4vzxCFBHqMS4PSYuQdFknDrNEPMmmb0tiurOg7rtXw7w8N96ytKjbdpmvMp3PBulnxdmyUMlsdxgjeHa+NBOeG6nbzP+vlFOtyMPWY2Zyt2t6LOh6wljbVKtq3VjbMgoqCzr3hCIZjiYPm496AAXoZGubk2pkfz6y/xK5ZLjB0PMu1YDz96VBbiBx//nJspv37edJ5u+0vzKt+l+WBYk8SOigZV2xoq/693RmqaBG27WT3uvdRSquVY6jqWu2Jtls4Tnq3Q3GhkLzCd5rV6IUqkaxRWGd6VY7XWalJRj6LJ+upnU+11PDUTfXyZx1NeTJxJgX5Ysqe+GSCBryYWtxUH7v+iof8lRUI2g/Rp5B0xpG74pMLmvRar/WJs9OVp9PXd4Q7Yrh6MAFl3gZ1VZxideG3yj2JwyniJ17Ro2z093Kw8xb08af0m5EG35n8lEnMb/rFIn4hF5kg730UUygTx1/vf3K2OvF9H1bapJv0ZiTzbkO/aGT7wXDvMdlKVcxkgTpAdcXxE1zVI39ITf30j5fl9/fQ/1y19iu9GELL2FFB8VRJ1/kCyLyRfISkd/vSr7bpq4tsL0HgZDFDq/Kj3CS2R6fb/FraoK63V7yssHPXUDZDmXhip172vRhbXPa4LGY98Ss2KkbxTNjNJo6o3JfQSj9aU/GbBQ3QiYv/ZkyPzOKPWhF3Y5jcjZNk5tM37mTsSJHhcgrIodoVUQLol0RbYiiIgqIjlNRHajditiF2KuIPYhuRTyE2K+IfYiDijiA6FVED6JfEX2IQUUMIIYVMYQYVcQI4lNFfIIoK6KEGFfEGGJSEROIw4o4hJhWxBTic0V8hjiqiCOI44o4hvixIn4sNrp39LXy1tgOPdtQbt1NmGd4Ipl6+qKLeja1PKptHR1vg26DNkAboDugO6C7oLuge6B7oPug+6AHoAegh6BkYh+BHoEegx6DnoCegDZBm6CnoKegZ6BnoC3QFug56DnoBegF6CXoJegV6BXoNeg16A3oDWgbtA16C3oLegd6B3oPel/MMKPBPLcrmfoIbS2eWVZ92sRi3tQBFXAbcFvDBmBDwx3AHQ13AXc13APc03AfcF/DA8ADDQ8BDzU8AjzS8BjwWMMTwBMNm4BNDU8BTzU8AzzTsAXY0vAc8FzDC8ALDS8BLzW8ArzS8BrwWsMbwBsN24BtDW8BbzW8A7zT8B7wftEOFbMgNmIhXcfwwmchc6swbRo7bDb5Ylq0Y4cDc4ItYItgG9gmWAhwQbgqz5o7hHeBuwT3gHsEu8AuwX3gPsED4AHBHrBHsA/sExwABwSHwCHBEXBE8BPwE8ESWBIcA8cEJ8AJwUPgIcEpcErwM/AzwSPgEcFj4DHBH4EX18dLzL6Fe1ns1HUPdfS7reE2YEPDBuCOhjuAuxruAu5puAe4r+E+4IGGB4CHGh4CHml4BHis4THgiYYngE0Nm4CnGp4Cnml4BtjSsAV4ruE54IWGF4CXGl4CXml4BXit4TXgjYY3gG0N24C3Gt4C3ml4B3iv4b2ukDBSnBopOClOnRSsFKdWCl6KUy8FM8WpmYKb4tRNwU5xaqfgpzj1UzBUnBoqOCpOHRUsFaeWCp6KU08FU8WpqYKr4tRVwVZxaqvgqzj1VTBWnBorOCtOnRWsFafWCt6KU28Fc8WpuYK74tRdwV5xaq/grzj1VzBYnBosOCw+dVjlz7ste5K1Onnlmuf9qdDpVyS/UPxQfZwv+suvswEftzHRVLLZF3n5x2pVoVFlJS8rKLTSKiuotdIuKyi3UpQVFFzplBWUXNktK6i6sldWUHilW1ZQe2W/rKD8ykFZQQWWXlnxpgZY+oYbG8yTgtljgxmzxK8b/WGcGHYY/Dkx8q8wDBaMDamU0DdSJl3GPREb/qzvoNw3SrYMywqqtozKCgq3fCorqN1SlhWUbxmXFVRwmZQVFHE5LCuo4zItKyjl8rmsoJrLUVlBQZfjsoKaLj+WlaKsq4dyMcuzsJLwpXjLVESx64UB5r45I2TcSU8kjEQU50QnGsUcmKyN1AImCyO1gcmqSAUwWRKpA0zWQ9oFJosh7QGTlZAOgckySPvAZA2kA2CyAFIP2CPYB/YJJommGQ6ByWROI2Ayk9MnYDKNUwlM5nAaA8f0oQIni3NCp24KTOZt+gxMJm06AiYzNh0Dk+mafgSezVWz+C02U/MslMLvBGFS/Fj9Xs1qJXferG3O/8hcPbjZer/59fuvz/+29u327AfoL2p/qP2p9lVts/b32re1g1qrdl2zav+q/bv2n9p/V3+/+s3qzureNPTzz2ZtflcrvVbP/g9s7jgA</latexit>

↵ = [ci,t,x,�k,t,x, bt,x,!x, st]

Figure 1: Mechanistic Neural Networks are a new neu-
ral network design that learn explicit ODE representations.
Mechanistic Blocks can used as bottlenecks in other neural
networks to approximate dynamical systems and discover
governing equations underlying data. Additional encoders
and decoders are optional and depend on the application.

symbolic elements in the form of ODE representations. To
efficiently train them, we revisit classical results on linear
programs (Young, 1961; Rabinowitz, 1968) and develop
a GPU-friendly solver. Together, they enable automating
the discovery of best-fitting mechanisms from data in an
efficient, scalable, and interpretable way.

Mechanistic Neural Networks present a fundamentally
different computing paradigm than standard neural
networks that rely on scalar or vector-valued numerical
representations as their building block. They are composed
of two parts: a mechanistic encoder and a solver. The
output of the mechanistic encoder is an explicit symbolic
“ODE representation” Ux of the general form

Ux : F (α, x) = 0, (1) where α = fθ(x) (2)

In more detail, Ux is a family of ordinary differential equa-
tions F (α, x) = 0, governed by learnable coefficients α that
can be time-dependent or time-independent. Coefficients
α are obtained from the mechanistic encoder fθ, and pa-
rameters θ are trained to optimally model the evolution of
data x = [x1, ..., xt] over time. Unlike symbolic regression
methods like SINDy (Brunton et al., 2016), Mechanistic
blocks can be stacked hierarchically in neural networks, and

1

https://github.com/alpz/mech-nn

Mechanistic Neural Networks for Scientific Machine Learning

thus, the first challenge is that we must be able to train pa-
rameters and return accurate coefficients α for the hidden
ODE representations. As direct supervision on the coeffi-
cients α is not available, mechanistic layers are followed
by differentiable solvers. This is the second challenge, as
autoregressive ODE solvers are inefficient and will exhibit
noisier gradients due to accumulating errors over long roll-
outs. When training ODE representations, we must simul-
taneously learn the precise form of multiple independent
ODEs (or independent systems of ODEs) and solve them
over several time steps. Sequential numerical solvers such
as Runge-Kutta used in Neural ODEs (Chen et al., 2018) are
simply too inefficient for solving large batches of indepen-
dent ODEs, as required for Mechanistic Neural Networks.

With Mechanistic Neural Networks, we address both chal-
lenges directly in a “native” neural network context, as
shown in Figure 1. Building on an early method that reduces
linear ODEs to linear programs (Young, 1961); combined
with progress on differentiable optimization (Amos and
Kolter, 2017; Wilder et al., 2019); and also combined with
recent developments that integrate fast parallel solutions
of large constrained optimization problems in neural lay-
ers (Pervez et al., 2023), we propose a novel and “natively”
neural Relaxed Linear Programming Solver (NeuRLP) for
ODEs. NeuRLP has three critical advantages over tradi-
tional solvers, leading to more efficient learning over longer
sequences than traditional sequential solvers. These are: (i)
step parallelism, i.e., being able to solve for hundreds of
ODE time steps in parallel, allowing for faster solving and
efficient gradient flow; (ii) batch parallelism, where we can
solve in parallel on GPU batches of independent systems
of ODEs in a single forward pass; (iii) learned step sizes,
where the step sizes are differentiable and learnable by a
neural network. The NeurRLP solver is parallel, scalable,
and differentiable and can be extended with nonlinear dy-
namical loss terms for nonlinear ODEs. Thus, the NeurRLP
solver is ideal for training efficiently with neural networks
that model complex ODEs, be it in their input and output or
their intermediate hidden neural representations.

Relevance for scientific applications. Machine Learning
for dynamical systems has adopted specialized methodolo-
gies. Physics-Informed Neural Networks (Raissi et al.,
2019) can be used for solving PDEs, data-driven neural
operators (Li et al., 2020c) for forecasting and PDEs, lin-
ear regression on polynomial basis functions for discover-
ing governing equations (Brunton et al., 2016; Rudy et al.,
2017), Neural ODEs (Chen et al., 2018) for interpolation
and control of dynamical systems (Ruiz-Balet and Zuazua,
2023). Being able to weave in governing equations in neural
representations and solve them efficiently, Mechanistic Neu-
ral Networks potentially offer a stepping stone for broad
scientific applications of machine learning for dynamical
systems (see table from Figure 1). To empirically validate

the claim and showcase the power, versatility, and generality
of Mechanistic Neural Networks, we perform a large array
of experiments comparing and consistently outperforming
the specialized golden standards: SINDy for equation dis-
covery (Brunton et al., 2016) (Section 5.1), Neural ODE
variants (Chen et al., 2018; Norcliffe et al., 2020) for mod-
elling linear and nonlinear dynamics (Sections 5.3, 5.5, 5.4),
and Neural operators (Li et al., 2020c; Brandstetter et al.,
2022) for PDE modelling (Section 5.2).

2. Mechanistic Neural Networks
We first describe the model for a Mechanistic Block and
leave the description of the Neural Relaxed Linear Program
solver for Section 3.

Formally, a mechanistic encoder in a mechanistic
block takes an input x and generates a differential equation
Ux as representation according to equations 2 and 1. The
family of ordinary differential equations Ux : F (α, x) = 0

Linear Terms︷ ︸︸ ︷
d∑

i=0

ci(t;x)u
(i) +

Non-Linear Terms︷ ︸︸ ︷
r∑

k=0

ϕk(t;x)gk(t, u, u
′, . . .) = b(t;x), (3)

represents a broad parameterization for the ODE representa-
tion, with an arbitrary number d of linear terms with deriva-
tives u(i) and an arbitrary number r of nonlinear terms gk
including derivatives u(k), k = 1, ..., d. We drop the ob-
vious dependency of u, u′, ... on time t to reduce notation
clutter. The coefficients ci(t;x), ϕk(t;x) for the linear and
nonlinear terms are functions that possibly depend on the
time variable t (thus non-autonomous ODEs), and on input
x. Furthermore, u may also be multidimensional, in which
case equation 3 would be a system of ODEs. For clarity, we
assume in the description a single dimension for the ODEs.

After computing the ODE representation Ux, we solve it
with our specially designed parallel solver NeuRLP for n
time steps and get a numerical solution as output of the
mechanistic block: z = solve_ode(Ux, ωx, n). The ωx

includes initial or boundary conditions and variables con-
trolling step sizes that can also be specific to the input x. ωx

can be learned by NeurRLP, unlike traditional solvers.

Mechanistic Blocks in discrete time. Equations 2– 3
provide the mathematical description of ODE representa-
tion in mechanistic blocks in continuous time. To implement
them in a neural network, which is by nature discrete, we
discretize the continuous coefficients, parameters, function
values, and derivatives in the ODE of 3,

d∑
i=0

ci,t,xu
(i)
t +

r∑
k=0

ϕk,t,xgk(t, ut, u
′
t, . . .)) = bt,x (4)

s.t. [ut=1, u
′
t=1, ...] = ωx (5)

2

Mechanistic Neural Networks for Scientific Machine Learning

at discrete times t = 1, ..., n and with n − 1 time steps st.
Steps st do not have to be uniformly equal, and can either
be a hyperparameter or learned. Similarly, other conditions
in ωx can be a hyperparameter or learned to best explain the
data evolution. In the general case, we learn st and ωx and
parameterize all coefficients of an ODE representation α =
[ci,t,x, ϕk,t,x, bt,x, st, ωx] with a standard neural network
fθ(x) (see equation 2). Coefficients α are obtained with a
single forward pass for all discrete times t = 1, ..., n.

Time-invariant Coefficients and Universal ODEs. In
applications, we are often interested in discovering simpler
universal governing ODEs with coefficients that are either
time-independent (ci,x, ϕk,x), e.g., with autonomous ODEs,
or that are shared across inputs (ci,t, ϕk,t). For instance, we
might want to automatically discover the general governing
equation of planetary motions that apply to all astronomical
objects. Then, we simply drop the time dependency from the
coefficients and share them dataset-wide X = {x1, ..., xB}

Ux :

d∑
i=0

ci(X)u(i) +

r∑
k=0

ϕk(X)gk(u, u
′, . . .) = b(X).

(6)
Complexity of the forward pass. For a n-step discretiza-
tion of a one-dimensional ODE, and a single input x, from
equation 4 with r non-linear terms requires specifying of
d + r + n + 1 parameters per time step: on the left-hand,
d + 1 parameters to specify the values of ci,t,x for orders
i = 0, ..., d (including the 0-th order for the function eval-
uation), r parameters ϕk,t,x for nonlinear terms, and n− 1
parameters for the step sizes st; on the right-hand side, one
parameter for bt,x. We also specify any possible initial con-
ditions for the first time step t = 1 up to order d − 1, In
practice, we use sparse matrix methods for large problems
and can solve large systems efficiently. Other than estimat-
ing coefficients α and solving the ODE representation F , the
whole forward pass is like with standard neural networks.

Training challenges. During training, we need to com-
pute gradients ∂f

dα ,
∂f
dθ through the ODE solver. We compute

these gradients per layer and perform regular backpropaga-
tion, as with standard neural networks. The caveat is that
both the forward and backward passes require a significant
amount of computation for solving systems of ODEs en
masse and computing the gradients. We thus ideally want
an efficient, neural-friendly ODE solver.

One option is general-purpose ODE solvers such as Runge-
Kutta methods, which are inefficient for our case. First, they
are sequential, thus the gradient computations are recurrent.
Second, for batches of independent ODEs general-purpose
ODE solvers require independent computations. We address
both problems in the next section.

3. Neural Relaxed LP ODE Solver
We present the Neural Relaxed Linear Programming
(NeuRLP) solver, a novel, efficient, and parallel algorithm
for solving batches of independent ODEs. In section 3.1,
we show how we can solve linear ODEs with differentiable
quadratic programming with equality constraints, motivated
by a proposal (Young, 1961) for representing linear ODEs
as linear programs. In section 3.3, we explain how this is, in
practice, done efficiently by solving a KKT system for the
forward and the backward pass. In section 3.4, we extend
the solver for non-linear ODEs, which is not possible solely
with linear programs. In section 3.5, we prove error bounds
for the NeuRLP solver and show they are comparable to
Euler solvers. We analyze in section 3.6 the theoretical
computational and memory complexity of the solver.

The NeuRLP solver is differentiable, GPU parallelizable for
large ODE systems, supports multiple inputs in a mini-batch
for hundreds of discrete times t = 1, ..., n, learnable step
sizes st, and learnable initial conditions ωx, significantly im-
proving efficiency compared to traditional sequential ODE
solvers. We compare with standard ODE solvers in section
3.7 including Runge-Kutta (RK4) from popular software
packages, specifically scipy and torchdiffeq.

3.1. Linear ODEs as Linear Programs

We start with discretized linear ODEs ignoring the non-
linear terms gk in equation 4, that is

∑d
i=0 ci,t,xu

(i)
t =

bt,x, s.t. [ut=1, u
′
t=1, ...] = ωx. We reintroduce the nonlin-

ear terms gk in section 3.4.

As shown by Young (1961), one can solve linear ODEs by
solving the corresponding linear programs of the form

minimize δ⊤z
subject to Az ≥ β,

(7)

where z is the variable that we optimize for and A ∈ Rm×nv

and β ∈ Rm represent the (inequality or equality) con-
straints and δ ∈ Rnv represents the cost of each variable. In
the following subsections, we detail the form and intuition
of the different parts and variables of the linear program,
that is the constraints and the optimization objective.

3.1.1. CONSTRAINTS

Core to the linear program in equation 7 are the (in)equality
constraints Az ≥ β. We have three types of constraints: the
equality constraints that define the ODE itself, initial value
constraints, and smoothness constraints for the solution of
the linear program.

ODE equation constraints specify that at each time step
t the left-hand side of the discretized ODE is equal to the

3

Mechanistic Neural Networks for Scientific Machine Learning

right-hand side, e.g., for a second-order ODE,

c2,tu
′′
t + c1,tu

′
t + c0,tut = bt,∀t ∈ {1, . . . , n}. (8)

Initial-value constraints specify constraints on the function
or its derivatives for the initial conditions at t = 1, e.g.,, that
they have to be equal to 0,

u1 = 0, u′
1 = 0 (9)

Smoothness constraints control how smooth the discretiza-
tion in equation 4 of the continuous ODE in equation 3. In
other words, the smoothness constraints make sure the so-
lutions of the linear program to the function and derivative
values at each time step are ϵ-close in neighboring loca-
tions. We determine the values in neighboring locations by
Taylor approximations up to error ϵ. We define one Taylor
approximation for the forward-time evolution of the ODE,
t : 1 → n, and one for the backward-time, t : n → 1. If we
are interested in a second-order ODE for instance, we have
as Taylor expansions:

|ut + stu
′
t +

1
2
s2tu

′′
t − ut+1| ≤ ϵ

|stu′
t +

1
2
s2tu

′′
t − stu

′
t+1| ≤ ϵ

}
Forward-time (10)

|ut − stu
′
t +

1
2
s2tu

′′
t − ut−1| ≤ ϵ

| − stu
′
t +

1
2
s2tu

′′
t + stu

′
t−1| ≤ ϵ

}
Backward-time (11)

with ϵ ≥ 0. For higher-order ODEs, we simply include
to the Taylor expansions the additional smoothness con-
straints for the higher-order derivatives too. Note that in
equations 10- 11 the coefficients of the derivatives are st
rather than c· because they correspond to the Taylor expan-
sions of the function in neighboring locations.

Defining z. To describe how we transfer all the above con-
straints to A and b, we must first explain what goes into the
variable z that we will be solving for with our linear program.
In z, we introduce three types of variables. First, we intro-
duce per time step t ∈ {1, . . . , n} one variable z0t that corre-
sponds to the value of the function at time t, that is ut. Sec-
ond, we introduce per time step t ∈ {1, . . . , n} one variable
zit that corresponds to the value of the i-th function deriva-
tive at time t for all derivative orders, that is u(i)

t , i = 1, ..., d.
Third, we introduce a single scalar variable ϵ shared for all
time steps that corresponds to the error of the Taylor approx-
imation for all function values and derivatives. All in all, we
have that z = [zit, ϵ], t = 1, ..., n, and i = 0, ..., d, whereby
i = 0 refers to the function value (0-order derivative).

Defining A, b. In total, we have m constraints (one per
row) and nv variables. We rewrite the constraints so that the
terms with the variables appear on the left-hand side of the
constraint and everything else on the right-hand side. The
variable coefficients then are the elements in the matrix A ∈
Rm×nv . The right-hand sides of the rewritten constraints

are collected in b. To clarify, the step sizes only appear in
the matrix A and not in the variables z.

Optimization objective. The objective of the linear pro-
gram is to minimize the smoothness error ϵ. Solving the
linear program, we obtain in z the function values and
derivatives that satisfy all the ODE equality and inequal-
ity constraints, including ϵ-smoothness. Furthermore, we
also obtain a value for the minimized error ϵ.

3.2. Efficient Quadratic relaxation

Solving ODEs using the LP method inside neural networks
has three main obstacles: 1) the solutions to the LP are not
continuously differentiable (Wilder et al., 2019) with respect
to the variables A, b, c that interest us and 2) solving linear
programs is generally done using specialized solvers that
do not take advantage of GPU parallelization and are too
inefficient for neural networks applications, and 3) The ma-
trices A are highly sparse where dense methods for solving
and computing gradients (such as from Amos and Kolter
(2017)) are infeasible for large problems.

We can avoid the non-differentiability of linear programs
by including a diagonal convex quadratic term (Wilder
et al., 2019) as a regularization term, converting inequali-
ties into equalities by slack variables and removing non-
negativity constraints (Pervez et al., 2023) to obtain an
equality-constrained quadratic program,

minimize 1
2z

⊤Gz + δ⊤z + ξ⊤ξ

subject to Ãz = β + ξ,
(12)

where G = γI, γ ∈ R is a multiple of the identity for a re-
laxation parameter γ and ξ are slack variables. Importantly,
equality-constrained quadratic programs can be directly and
very efficiently solved in parallel on GPU (Pervez et al.,
2023). This is why we rewrite inequalities as equalities
using slack variables. Although with equalities only we lose
the ability to explicitly encode non-negativity constraints,
we mitigate this by regularization making sure that solutions
remain bounded.

Dual Relaxation. The above relaxation starts with the
primal linear program 7 and applies the described relaxation.
One could also start from the dual of the LP in 7 and apply
the same procedure. The dual relaxation can result in an
implementation with lower memory requirement.

3.3. Efficient forward and backward computations

Forward propagation and solving the quadratic pro-
gram. We can solve the quadratic program directly with
well-known techniques (Wright and Nocedal, 1999), namely
by simplifying and solving the following KKT system for

4

Mechanistic Neural Networks for Scientific Machine Learning

some λ ∈ Rm, [
G A⊤

A 0

] [
−z
λ

]
=

[
δ
−β

]
(13)

For smaller problems, we can solve this system efficiently
using a dense Cholesky factorization. For larger problems,
we use an indirect conjugate gradient method to solve the
KKT system using only sparse matrix computations. Both
methods are performed batch parallel on GPU.

Backward propagation and gradients computation. In
the backward pass, we need to update the ODE coefficients
in the constraint matrix A and β. We obtain the gradient
relative to constraint matrix A by computing ∇Aℓ(A) =
∇Az∇zℓ(z), where ℓ(.) is our loss function and z is a solu-
tion of the quadratic program.

We can compute the individual gradients using already es-
tablished techniques for differentiable optimization (Amos
and Kolter, 2017) with the addition of computing sparse
gradients only for the constraint matrix A. Briefly, comput-
ing the gradient requires solving the system equation 13 for
with a right-hand side containing the incoming gradient g:

−
[
G A⊤

A 0

] [
dz
dλ

]
=

[
g
0

]
. (14)

The gradient ∇Aℓ(A) can then be computed by first solv-
ing for dz, dλ and then computing dλz

⊤ + λd⊤z (Amos and
Kolter, 2017). In general, this would produce a dense gradi-
ent matrix, which is very memory inefficient for sparse A.
We avoid this by computing gradients only for the non-zero
terms of A by computing sparse outer products.

3.4. Nonlinear ODEs

The standalone solver described above works for linear
ODEs. When combined with neural networks, we can ex-
tend the approach to nonlinear ODEs by combining solving
with learning.

For each non-linear ODEs term gk, we add an extra variable
νk,t with coefficients ϕk,t,x corresponding to the non-linear
term to our linear program.

We rewrite our nonlinear ODE in equation 5 as
d∑

i=0

ci,t,xu
(i)
t +

r∑
k=0

ϕk,t,xνk,t = bt,x (15)

νk,t = gk(t, ut, u
′
t, . . .), k = 0, ..., r (16)

s.t. [ut=1, u
′
t=1, ...] = ωx, (17)

that is, for each nonlinear term k and for every time step t
we also add in z an auxiliary variable νk,t. Additionally, we
include derivative variables νik,t that are part of the Taylor
approximations to ensure smoothness. We then solve the
linear part of the above ODE, that is equation 15 subject to

17 with the linear programs we described in the previous
subsections. Further, we convert the nonlinear part in equa-
tion 16 to a loss term

(
νk,t − gk(t, ut, u

′
t, . . .)

)2
, which is

added to the loss function of the neural network. With the
extra losses, we learn the parameters ϕ such that νk is close
to the required non-linear function of the solution.

Nonlinear ODEs for Discovery. When building MNN
models for governing equation discovery, we incorporate
nonlinear ODEs using a set of predefined basis functions
{θi}, such as the polynomial basis functions (Brunton et al.,
2016), to build an equation of the form

d

dt
u(t;x) =

k∑
i

θi(u
′
x(t)) (18)

The input u′
x(t) to the basis functions are generated by a

neural network with input x as u′
x = NN(x), where u′

x

(and possibly x) depends on time t. To ensure that this is a
proper nonlinear ODE we add a consistency term to the loss
function to minimize the squared loss (u(t;x) − u′

x(t))
2.

This ensures that the basis input and ODE solution are close.

3.5. Error bounds

We take the example of solving a second order linear ODE
c2u

′′+c1u
′+c0u = b over n steps for a fixed step size s. We

show in A.1 that under reasonable assumptions, namely c0
c2

is O(1
s2) and c1

c2
is O(1s), the error over n steps is bounded

by O(s2). This bound is for a second order approximation
and is comparable to the Euler method over n steps. The
error can be improved by taking smaller step sizes (which
we can learn) and higher-order approximation.

3.6. Complexity

The computational and memory complexity of MNNs is
determined by the size of the time grid n, and the order d
of the ODEs to be generated. The last layer of f outputs
n× (d+ 2) ODE parameters. This means that the memory
required to store the coefficients can be large depending
on the grid size and dimension. The main computational
effort in solving the system equation 13 for a batch of ODEs,
which we do by a Cholesky factorization for small problems
or sparse conjugate gradient for large ones. Cholesky factor-
ization has complexity cubic in nd while conjugate gradient
has quadratic complexity.

3.7. Numerical validation of the solver

Benchmarking against RK4 from scipy and
torchdiffeq. We compare with traditional ODE
solvers on second- and third-order linear ODEs with
constant coefficients from the scipy package. For a
learning comparison, we also compare with the RK4
solver with the adjoint method from the torchdiffeq

5

Mechanistic Neural Networks for Scientific Machine Learning

package on the benchmark task of fitting long and noisy
sinusoidal functions of varying lengths. The quantitative
and qualitative results in Appendix C show that NeuRLP is
comparable to standard solvers on the linear ODE-solving
task. On the fitting task NeurLP significantly improves
upon the baseline and is about 200x faster with a lower
MSE loss than the torchdiffeq baseline for 1000 steps.

NeuRLP can learn time steps. Unlike traditional solvers,
NeuRLP can learn the discretization grid for learning and
solving ODEs, becoming adaptively finer in regions where
the fit is poor. We validate this on fitting a damped sinusoid,
see results in figure 15, where we begin with a uniform grid
and with steps becoming denser in regions with bad fit.

4. Related Work
Neural Dynamical Systems. In terms of data-driven
modeling of dynamical systems with differential equations,
MNNs are related to Neural ODEs (Chen et al., 2018).
With neural ODEs the model can be seen as the forward
evolution of a differential equation. With MNNs a set of
ODEs are first generated and then solved in a single layer
for a specified number of time steps. Another important
difference is that with Neural ODEs the learned equation is
implicit and there is a single ODE for modeling the system.
MNNs, on the other hand, explicitly generate the dynamical
equation that governs the evolution of the input datum with
potential for analysis and interpretation. Variations such as
augmentation (Dupont et al., 2019) and second-order ODEs
(Norcliffe et al., 2020) overcome some of the limitations.
Universal differential equations (Rackauckas et al., 2020)
can also be seen as generalization of Neural ODEs. MNNs
generate a family of linear ODEs, one per initial state,
with arbitrary order which makes them very flexible and
enables non-linear modeling. Ruiz-Balet and Zuazua (2023)
consider Neural ODE applications for control.

Neural PDE Solvers. Recently the use of Deep Learning
to improve the speed and generalization of PDE solving has
gained significant interest, collecting training data by solv-
ing PDEs for known initial conditions and testing for unseen
initial conditions. Fourier Neural Operator (Li et al., 2020c)
uses the Fourier transform to focus significant frequencies
to model PDEs with super-resolution support. Brandstetter
et al. (2021) investigate PDE solver properties and methods
for improving rollout stability. Brandstetter et al. (2022)
consider Lie-group augmentations for improving neural op-
erators. MNNs show that Neural PDE solvers can be built
solely with a fast and parallel ODE solver such as NeuRLP
and with a performance that is close to specialized methods
without special tricks.

Discovery. MNNs are also related to discovery methods

for physical mechanisms with observed data. SINDy (Brun-
ton et al., 2016) discovers governing equations from time
series data using a pre-defined set of basis functions com-
bined with sparsity-promoting techniques. A number of
subsequent works have extend the basis method improve ro-
busts, PDE discovery, parameterized pattern formation etc.,
(Kaheman et al., 2020; Rudy et al., 2017; Nicolaou et al.,
2022). An advantage of MNNs is that they can handle larger
amounts of data than shallow methods like SINDy. Other
approaches to discover physical mechanisms are Physics-
informed networks (PINNs) and universal differential equa-
tions (Rackauckas et al., 2020; Raissi, 2018), where we as-
sume the general form of the equation of some phenomenon,
we posit the PDE operator as a neural network and optimize
a loss that enables a solution of the unknown parameters.
In contrast MNNs parameterize a family of ODEs by deep
networks and the solution is obtained by a specialized solver.

ODE Solvers. Traditional methods for solving ODEs
involve numerical techniques such as finite difference
approximations and Runge-Kutta algorithms. The linear
programming approach to numerical solution of linear
ordinary and partial differential equations was originally
proposed in Young (1961) (also see Rabinowitz (1968)).
MNNs require fast and GPU parallel solution to a large
number of independent but simple linear ODEs for which
general purpose solvers would be too slow. For this we
revisit the linear program approach to solving ODEs,
convert it to an equality constrained quadratic program for
fast batch solving and resort to differentiable optimization
methods (Amos and Kolter, 2017; Barratt, 2019; Wilder
et al., 2019) for differentiating through the solver.

5. Example Applications in Scientific ML
To probe the versatility of Mechanistic Neural Networks,
we benchmark them in five different settings from scien-
tific machine learning applications for dynamical systems.
Due to the vast heterogeneity of the problems, different
benchmarks and machine learning methods have prevailed
as golden standards. Per setting, we describe the state-of-
the-art and a way to use Mechanistic Layers for the task. In
the appendix, we provide a complete description of each
application and ablations, visual explanations and additional
results. We share source code for our method.

5.1. Discovery of Governing Equations

Problem. Often, the goal is to discover underlying laws gov-
erning the data in addition to making accurate predictions.
This is especially for applications in sciences, with great
interest in physics, fluid dynamics (Loiseau and Brunton,
2018), and material science (Alves and Fiuza, 2022).

Gold standard in discovering governing equations is

6

Mechanistic Neural Networks for Scientific Machine Learning

SINDy (Brunton et al., 2016; Rudy et al., 2017). SINDy
models the problem as linear regression on a library of
candidate nonlinear basis functions Θ(x), e.g., constant,
polynomial or trigonometric ones, such that the equation
discovery corresponds to the best-fitting linear combination
with coefficients Ξ. SINDy is fundamentally constrained
to problems where the governing equations are linear com-
binations of simpler terms, being a linear combination of
(nonlinear) basis functions.

Mechanistic NNs for ODE discovery. We model nonlin-
ear ODEs d

dtx(t) = F(x(t), t; Ξ). F may be a composite
function of ODE parameters to be discovered, Ξ, and an
arbitrary combination of differentiable nonlinear functions.
In particular, this means that the right hand side can be an
arbitrary non-linear function of the coefficients allowing
MNNs to model ODEs beyond generalized linear models.

To take the example of the Euler ODE, d
dtx(t) =√

a0 + a1x+ a2x2/
√
b0 + b1t+ b2t2, F is a nonlinear

function of x(t), t and parameters ai, bi, i ∈ {0, 1, 2} are to
be discovered.

To build the model, given x, we choose a finite set of ba-
sis functions such as a set of polynomial basis functions
{1, x, x2, . . .} (Brunton et al., 2016) and take linear combi-
nations with coefficients to be discovered in Ξ. The basis
functions determines the form in which the x (or t) terms
appear in F. The linear combination can be followed by
any combination of differentiable non-linear functions (with
parameters of their own), the precise form of which is a
modelling choice.

Once built, the ODE is fed to NeuRLP, which solves the
ODE. The solution is then compared to the input trajec-
tory using the L2 loss and the parameters are optimized
to minimize the error. To make the model flexible, we
build the ODE using a neural network transformed input x′,
x′(t) = NN(x(t)). The allows more capacity for training
the model when the discovered ODE is far from the ground
truth. To ensure that the final ODE is correct for x, we also
minimize the L2 loss between x and x′.

We note that the above procedure for discovering ODEs
with MNN does not require us to estimate derivatives from
data. Derivative estimation from data is especially prone
to error due to noise. Instead with MNN, all derivative
computations are done in the NeuRLP solver and correspond
to the currently learned ODE (rather than data), making the
procedure more reliable.

Following (Brunton et al., 2016), we can also encourage
sparse solutions by repeating the optimization procedure
serveral times and each time removing any parameters that
are less than a predetermined threshold.

In section B.1 in the appendix, we provide further descrip-

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
x1

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

x 2

True Field
MNN Learned Field
Train Sample
MNN Train Sample
Test Sample
MNN Test Sample

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
x1

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

x 2

True Field
SINDy Learned Field
Train Sample
SINDy Train Sample
Test Sample
SINDy Test Sample

Figure 2: Learned ODE vector fields for Mechanistic NN
(left) and SINDy (right) with non-linear tanh function of
basis combination and training and test trajectories.

tion of the model architecture and the training setting.

Experiment. We experiment with the following ODEs:

1. The Lorenz system.

2. ODEs with nonlinear function of the form d
dtx(t) =

F (Ax(t)), where A is a linear transformation and F
is a nonlinear function such as tanh.

3. ODEs with rational function derivatives, d
dtx(t) =

p(x)
q(x) , where p and q are polynomials.

4. A time-dependent Riccati ODE of the form d
dtx(t) =

(αt+ βt2)γx2 + t, where α, β and γ are to be discov-
ered.

5. A time-dependent Euler ODE of the form: d
dtx(t) =√

a0 + a1x+ a2x2/
√
b0 + b1t+ b2t2.

These ODEs, apart from the Lorenz ODE, cannot be repre-
sented as generalized linear models which is the approach
employed by standard SINDy. In particular, in the sec-
ond ODE a (generalized) linear function is followed by a
nonlinear function (say tanh). The Riccati ODE involves
time-dependent coefficients (αt2 − βt)γ with exponent γ
which also must be discovered. The Euler ODE involves a
ratio of radicals of generalized linear functions. Mechanistic
NNs for discovery can easily model such ODEs since they
support arbitrary differentiable functions as ODE terms.

The models are trained with a single trajectory. Results are
shown in Figures 2, 3, and Figures 8 and 9 in the appendix.
For the Lorenz system which can be described as linear
basis combinations, both SINDy and variants, as well as
Mechanistic NNs recover the exact equations. MNN also
recovers the ground truth parameters for the Riccati ODE.
For other ODEs, MNN discovers a close approximation as
shown in the figures. For complex nonlinear and rational
function ODEs which requires nonlinear functions of basis
combinations, SINDy exhibits poor generalization and
overfits to the training domain. See appendices A.3, B.1
for more details and discovered equations.

7

Mechanistic Neural Networks for Scientific Machine Learning

0.0 0.2 0.4 0.6 0.8 1.0
t

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6
x

True Slope Field
MNN Learned Field

0 2 4 6 8
t

1.0

0.8

0.6

0.4

0.2

0.0

x

True Slope Field
MNN Learned Field

Figure 3: Learned ODE slope fields with Mechanistic NN
for Riccati (top) and Euler (bottom) ODEs.

5.2. PDE Solving with Neural Networks

Problem. Solving PDEs has been of tremendous inter-
est in the past 200 years in science and engineering, from
fluid dynamics to aeronautics (Borggaard and Burns, 1997),
weather forecasting (Fisher et al., 2009), and Deep Learning
can improve the speed and generalization of PDE solving.

Gold standard. FNO (Li et al., 2020c) and Lie-group
augmented models (Brandstetter et al., 2022) are strong
state-of-the-art baselines. FNO models are deep operator
architectures whose intermediate layers perform spectral
operations on the input. Lie-group augmentations for PDEs
exploit that PDEs conform by definition to certain Lie sym-
metries to generate new training data.

Mechanistic NNs for Neural PDE solving. We adapt
Mechanistic NNs from ODEs to PDEs. For 1-d PDEs, we
simply model spatial dimensions with independent ODEs.
With a spatial dimension of 256 and prediction over 10 time
steps, we learn 256 ODEs for 10 time steps each. For 2-d
PDEs we use a neural operator model with stacked MNN
layers. We provide further details of the model and training
and visualizations in appendix B.5.

Experiment. Following Brandstetter et al. (2022), we
compare relative MSE loss using Lie-symmetry augmented
ResNet, FNO and autoregressive FNO on the 1-d KdV equa-
tion (Figure 4) and with FNO on 2-d Darcy Flow (Li et al.,

Method RMSE

N=512 N=256

ResNet 0.0223 0.0392
ResNet-LPSDA-1 0.0200 0.0284
ResNet-LPSDA-2 0.0111 0.0185
ResNet-LPSDA-3 0.0155 0.0269
ResNet-LPSDA-4 0.0113 0.0184

FNO 0.0276 0.0407
FNO-LPSDA 0.0055 0.0132
FNO-AR 0.0030 0.0058
FNO-AR-LPSDA 0.0010 0.0037

Mechanistic NN (50 sec) 0.0039 0.0086

x [m]

t [
s]

Ground Truth

0.5

0.0

0.5

1.0

1.5

2.0

2.5

x [m]

t [
s]

MNN Prediction

0.5

0.0

0.5

1.0

1.5

2.0

2.5

Figure 4: Solving 1d KdV(Brandstetter et al., 2022) (N
train samples) (left). Comparison of ground truth and MNN
prediction for the 1d KdV equation for 100 seconds (right).

2020c) (Table 1 in the appendix). We use 50 second 1-d
KdV equation data and predict for 100 steps. We use 10
time steps of history as opposed to the baselines which use
20 time steps. We also show visualizations for KdV pre-
diction in Figure 4 on a 100 sec dataset. On this heavily
benchmarked setting, Mechanistic NNs are competitive with
FNO and augmented models without using any specialized
adaptions for stable rollout (Brandstetter et al., 2022).

5.3. N-body Prediction

Problem. N-body problems are ubiquitous, in machine
learning (Kipf et al., 2018) as well as sciences including
astronomy and particle physics. The task is to predict future
locations and velocities of all N bodies in the system given
past observations of locations and velocities.

Gold standard. One can see this as a forecasting task,
thus models that forecast trajectories of arbitrary lengths are
relevant. We use Neural ODEs (Chen et al., 2018; Norcliffe
et al., 2020) as a gold standard baseline.

Mechanistic NNs for N-body modeling. We use a basic
MNN with second-order ODEs, ẍ = G(x, ẍ).

Experiment. We use planetary ephemerides data from the
JPL Horizons database for solar system dynamics (Giorgini,
2015). The data is positions and velocities for the 25 largest
bodies in the solar system from 1980 to 2015 with a step size
of 12 hours. We use the first 70% of the data for training
and the rest for evaluation. At training the MNN model
predicts the next 50 steps given 50 input steps. At testing we
rollout predictions for 2000 steps given the starting 50 steps.
See prediction rollouts for Earth and Mars in and evaluation
losses in Figure 5. Mechanistic NNs improve Neural ODEs
significantly by at least a factor of 10.

5.4. Discovery of Physical Parameters

Problem. Often, the problem is not to discover the govern-
ing equations in a system but the most fitting physical pa-

8

Mechanistic Neural Networks for Scientific Machine Learning

x
y

t

Earth GT
Earth (MNN)
Mars GT
Mars (MNN)

Method Eval. MSE

ANODE 0.0470
NODE 0.0485
SONODE 12.200

MNN 0.0034

Figure 5: Ephemerides experiment predictions for orbits of
Earth, Mars (left) for 1000 days (2000 steps) and eval loss
(right). Showing x,y coordinates with time for visualization.

rameters explaining the observations. Applications include
inverse problems in dynamical systems (Wenk et al., 2020).

Gold standard. We use second order Neural ODEs (Nor-
cliffe et al., 2020) to fit ODE models of corresponding to
Newton’s second Law, matching corresponding derivative
coefficients to infer the physical parameters.

Mechanistic NNs for discovering physical parameters.
We use a second order ODE MNN with a time invariant 2nd
order coefficient to match Newton’s second Law. The force
is learned by a neural networks as a function of position.

Experiment. We design an experiment with two bodies
with masses m1 = 10,m2 = 20, distance d and initial
velocities v1, v2, moving under the influence of Newtonian
laws, and gravitational force, F = Gm1m2

r2 r̂, r̂ being the
unit vector of direction of force, G = 2 the gravitational
constant. We generate a single random train trajectory for
the two bodies for 40k steps. The physical parameters
we infer are mass ratio m1

m2
and distribution of force

values F = [Fx, Fy], by combining Newton’s second and
third law. We show quantitative and qualitative results
in Figure 6. Since forces are only determined up to a
constant, to compare forces we normalize by dividing by
the force at the first step. Neural ODE and Mechanistic NNs
estimate the mass ratio while MNNs perform significantly
better at estimating the force distribution and Neural ODE
forces often have the incorrect direction as shown by the
negative cosine similarity averaged over the entire trajectory.

5.5. Forecasting for time series

Problem. Time-series modelling and future forecasting is
a classical statistical and learning problem, usually with
low-dimensional signals, like financial data or complex dy-
namical phenomena from sciences.

Gold standard. We compare with Neural ODE and variants
including second order and augmented Neural ODEs.

Mechanistic NNs for time series. We use a basic Mecha-
nistic NN second-order ODE for this experiment.

Experiment. We validate on the benchmark of modeling

0 2 4 6 8
Trajectory x coordinate

9.5

9.0

8.5

8.0

7.5

7.0

6.5

6.0

Tr
aj

ec
to

ry
 y

 c
oo

rd
in

at
e

Ground Truth Force
MNN Learned Force
Node Learned Force

Method Force MSE Cosine sim. Mass Ratio
↓ ↑ GT=2

SONODE 879 -0.26 2.11
MNN 345 0.85 2.02

Figure 6: Normalized true and learned force vectors during
550 steps for 2-body parameter discovery and comparison.

the accelerations a2 produced over time by a shaker under a
wing in aircrafts (Norcliffe et al., 2020). The model sees
1,000 past time accelerations a2 and predicts the next 4000.
We show quantitative results in and qualitative results in
Figure 12 and B.3 in the appendix. The distribution of
predicted a2 at test time are very close to the true ones.
Mechanistic NNs are on-par with second-order ODE,
converge significantly faster, and achieve two times lower
training error showing they can model complex phenomena.

6. Conclusion
This paper presented Mechanistic Neural Networks (MNNs)
– an approach for modeling complex dynamical and physical
systems in terms of explicit governing mechanism. MNNs
represent the evolution of complex dynamics in terms of
families of differential equations. Any input or initial state
can be used to compute a set of ODEs for that state using
a learnable function. This makes MNNs flexible and able
to model the dynamics of complex systems. The computa-
tional workhorse of MNNs is NeuRLP – a new differentiable
quadratic programming solver which allows a fast method
for solving large batches of ODEs, allowing for efficient
modeling of observable and hidden dynamics in complex
systems. We demonstrated the effectiveness the method
with experiments in diverse settings, showcasing its superi-
ority over existing neural network approaches for modeling
complex dynamical processes.

Limitations and future work. In this work we have no way
to measure or guarantee the identifiability of the computed
ODEs, though in practice the computed equations might lie
close to the true ones. Inspired by the scientific method, it
would also be interesting to explore applications of MNN in
active setting, with experiments performed to falsify the pre-
dictions. Also, in the various experiments we did not explore
the model design space and better architectures and model
choices can be made. We leave all above for future work.

9

Mechanistic Neural Networks for Scientific Machine Learning

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.

References
E Paulo Alves and Frederico Fiuza. Data-driven discovery

of reduced plasma physics models from fully kinetic sim-
ulations. Physical Review Research, 4(3):033192, 2022.

Brandon Amos and J Zico Kolter. Optnet: Differentiable
optimization as a layer in neural networks. In Interna-
tional Conference on Machine Learning, pages 136–145.
PMLR, 2017.

Shane Barratt. On the differentiability of the solution to
convex optimization problems. 2019. URL http://
arxiv.org/abs/1804.05098.

Kaushik Bhattacharya, Bamdad Hosseini, Nikola B Ko-
vachki, and Andrew M Stuart. Model reduction and
neural networks for parametric pdes. The SMAI journal
of computational mathematics, 7:121–157, 2021.

Jeff Borggaard and John Burns. A pde sensitivity equa-
tion method for optimal aerodynamic design. Journal of
Computational Physics, 136(2):366–384, 1997.

Johannes Brandstetter, Daniel E Worrall, and Max Welling.
Message passing neural pde solvers. In International
Conference on Learning Representations, 2021.

Johannes Brandstetter, Max Welling, and Daniel E Wor-
rall. Lie point symmetry data augmentation for neural
pde solvers. In International Conference on Machine
Learning, pages 2241–2256. PMLR, 2022.

Steven L Brunton, Joshua L Proctor, and J Nathan Kutz. Dis-
covering governing equations from data by sparse iden-
tification of nonlinear dynamical systems. Proceedings
of the national academy of sciences, 113(15):3932–3937,
2016.

Ricky TQ Chen, Yulia Rubanova, Jesse Bettencourt, and
David K Duvenaud. Neural ordinary differential equa-
tions. Advances in neural information processing systems,
31, 2018.

Emilien Dupont, Arnaud Doucet, and Yee Whye Teh. Aug-
mented neural odes. Advances in neural information
processing systems, 32, 2019.

Mike Fisher, Jorge Nocedal, Yannick Trémolet, and
Stephen J Wright. Data assimilation in weather fore-
casting: a case study in pde-constrained optimization.
Optimization and Engineering, 10(3):409–426, 2009.

Jon D. Giorgini. Status of the JPL Horizons Ephemeris
System. In IAU General Assembly, volume 29, August
2015.

Kadierdan Kaheman, J Nathan Kutz, and Steven L Brunton.
Sindy-pi: a robust algorithm for parallel implicit sparse
identification of nonlinear dynamics. Proceedings of the
Royal Society A, 476(2242):20200279, 2020.

Thomas Kipf, Ethan Fetaya, Kuan-Chieh Wang, Max
Welling, and Richard Zemel. Neural relational inference
for interacting systems. In International conference on
machine learning, pages 2688–2697. PMLR, 2018.

Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli,
Burigede Liu, Kaushik Bhattacharya, Andrew Stuart, and
Anima Anandkumar. Neural operator: Graph kernel net-
work for partial differential equations, 2020a.

Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli,
Burigede Liu, Andrew Stuart, Kaushik Bhattacharya, and
Anima Anandkumar. Multipole graph neural operator
for parametric partial differential equations. Advances in
Neural Information Processing Systems, 33:6755–6766,
2020b.

Zongyi Li, Nikola Borislavov Kovachki, Kamyar Azizzade-
nesheli, Kaushik Bhattacharya, Andrew Stuart, Anima
Anandkumar, et al. Fourier neural operator for parametric
partial differential equations. In International Conference
on Learning Representations, 2020c.

Jean-Christophe Loiseau and Steven L Brunton. Constrained
sparse galerkin regression. Journal of Fluid Mechanics,
838:42–67, 2018.

Zachary Nicolaou, Steven Brunton, J Nathan Kutz, Guanyu
Huo, and Yihui Chen. Data-driven discovery and ex-
trapolation of parameterized pattern-forming dynamics.
Bulletin of the American Physical Society, 2022.

Jean-Philippe Noël and Maarten Schoukens. F-16 air-
craft benchmark based on ground vibration test data. In
2017 Workshop on Nonlinear System Identification Bench-
marks, pages 19–23, 2017.

Alexander Norcliffe, Cristian Bodnar, Ben Day, Nikola
Simidjievski, and Pietro Liò. On second order behaviour
in augmented neural odes. Advances in neural informa-
tion processing systems, 33:5911–5921, 2020.

Adeel Pervez, Phillip Lippe, and Efstratios Gavves.
Differentiable mathematical programming for object-
centric representation learning. In The Eleventh In-
ternational Conference on Learning Representations,
2023. URL https://openreview.net/forum?
id=1J-ZTr7aypY.

10

http://arxiv.org/abs/1804.05098
http://arxiv.org/abs/1804.05098
https://openreview.net/forum?id=1J-ZTr7aypY
https://openreview.net/forum?id=1J-ZTr7aypY

Mechanistic Neural Networks for Scientific Machine Learning

Philip Rabinowitz. Applications of linear programming to
numerical analysis. 10(2):121–159, 1968. ISSN 0036-
1445. doi: 10.1137/1010029. URL https://epubs.
siam.org/doi/10.1137/1010029. Publisher:
Society for Industrial and Applied Mathematics.

Christopher Rackauckas, Yingbo Ma, Julius Martensen,
Collin Warner, Kirill Zubov, Rohit Supekar, Dominic
Skinner, Ali Ramadhan, and Alan Edelman. Univer-
sal differential equations for scientific machine learning.
arXiv preprint arXiv:2001.04385, 2020.

Maziar Raissi. Deep hidden physics models: Deep learning
of nonlinear partial differential equations. The Journal of
Machine Learning Research, 19(1):932–955, 2018.

Maziar Raissi, Paris Perdikaris, and George E Karniadakis.
Physics-informed neural networks: A deep learning
framework for solving forward and inverse problems in-
volving nonlinear partial differential equations. Journal
of Computational physics, 378:686–707, 2019.

Samuel H Rudy, Steven L Brunton, Joshua L Proctor, and
J Nathan Kutz. Data-driven discovery of partial differen-
tial equations. Science advances, 3(4):e1602614, 2017.

Domènec Ruiz-Balet and Enrique Zuazua. Neural ode
control for classification, approximation, and transport.
SIAM Review, 65(3):735–773, 2023. doi: 10.1137/
21M1411433. URL https://doi.org/10.1137/
21M1411433.

Philippe Wenk, Gabriele Abbati, Michael A Osborne, Bern-
hard Schölkopf, Andreas Krause, and Stefan Bauer. Odin:
Ode-informed regression for parameter and state infer-
ence in time-continuous dynamical systems. In Proceed-
ings of the AAAI Conference on Artificial Intelligence,
volume 34, pages 6364–6371, 2020.

Bryan Wilder, Bistra Dilkina, and Milind Tambe. Melding
the data-decisions pipeline: Decision-focused learning
for combinatorial optimization. In Proceedings of the
AAAI Conference on Artificial Intelligence, volume 33,
pages 1658–1665, 2019.

Stephen Wright and Jorge Nocedal. Numerical optimization.
Springer Science, 35(67-68):7, 1999.

Jonathan D Young. Linear programming applied to linear
differential equations. 1961.

A. Further Details
Linear programs. A linear program in the primal form is
specified by a linear objective and a set of linear constraints.

minimize ctx

subject to Ax = b,

x ≥ 0

(19)

where A ∈ Rm×n, c ∈ Rn, b ∈ Rm the following specifies
a linear program. Matrix A and vector b define the equality
constraints that the solution for x must comply with. ctx is a
cost that the solution x must minimize. The linear program
can also be written in dual form,

minimize btλ

subject to Atλ = c.
(20)

Central Difference for Highest Order. The method pro-
posed in (Young, 1961) does not add a smoothness con-
straint for the highest order derivative term. In cases where
a more accurate highest order term is required, we also add
a central difference constraint as a smoothness condition on
the highest order term.

A.1. Error Analysis

We consider the case of a second order linear ODE with an
N -step grid. For simplicity we consider a fixed step size h,
i.e., st = h.

c2u
′′ + c1u

′ + c0u = b, (21)

Let u(t) denote the true solution with initial conditions
u(0) = r, u′(0) = s.

Define

ũt+1 = ut + hu′
t +

1

2
h2u′′

t , (22)

ũ′
t+1 = hu′

t +
1

2
h2u′′

t , (23)

as Taylor approximations and ũ′′
t is obtained by plugging

the approximate values in the ODE 21.

We consider the following Taylor constraints (expressions
10 11) for the function and its first derivative. We use the
absolute-value error inequalities for conciseness, the case
for equalities is similar.

|ũt+1 − ut+1| ≤ ϵ (24)
|hũ′

t+1 − hu′
t+1| ≤ ϵ (25)

Step t = 1. From Taylor’s theorem we have that for the
first step, t = 1,

u(h) = ũ1 +O(h3) (26)

u′(h) = ũ′
1 +O(h2) (27)

11

https://epubs.siam.org/doi/10.1137/1010029
https://epubs.siam.org/doi/10.1137/1010029
https://doi.org/10.1137/21M1411433
https://doi.org/10.1137/21M1411433

Mechanistic Neural Networks for Scientific Machine Learning

From 24, 25

u1 = ũ1 +O(ϵ+ h3) (28)

u′
1 = ũ′

1 +O(ϵ/h+ h2) (29)

This implies a local error at each step of O(ϵ+ h3) in ut.

Step t = 2. To estimate the error at step 2 we need to
estimate the error in u′′

1 at step 1.

For u′′
1 we get the error by multiplying the error in u1 by c0

c2
and that of u′

1 by c1
c2

and adding.

u′′
1 = ũ′′

1 +O(
c1
c2

(
ϵ

h
+ h2)) +O(

c0
c2

(ϵ+ h3)) (30)

Notice that u′′
1 always appears with a coefficient of h2. As-

suming c0
c2 is O(1

h2) and c1
c2 is O(1h) we have

h2u′′
1 = h2ũ′′

1 +O(ϵ+ h3) +O(ϵ+ h3). (31)

Each of the terms u1, hu
′
1, h

2u′′
1 contribute an error of O(ϵ+

h3) to u2 plus an additional error of O(h3) arising from the
Taylor approximation and an error of ϵ arising from the
inequalities 24, 25.

N Steps. Proceeding similarly, after N steps we get a
cumulative error of O(N(ϵ+ h3)).

For ϵ ≈ h3 and N ≈ 1/h, we get an error of O(h2) for
N -steps under the assumption that c0

c2 is O(1
h2) and c1

c2 is
O(1h).

The analysis implies that the cumulative error can become
large for equations where c0

c2 , c1
c2 are large. Or, in little

omega notation, c0
c2 is ω(1

h2) and c1
c2 is ω(1h) .

A.2. Non-linear ODE Details

In this section we give some further details regarding the
formualtion of non-linear ODEs. We illustrate with the
following non-linear ODE as an example

c2(t)u
′′ + c1(t)u

′ + d0(t)u
3 + d1(t)u

′2 = b, (32)

where u3 and u′2 are non-linear functions of u, u′.

As described in Section 3.1, we create one set of variables ut

for each time step t for the solution u. In addition we create
a set of variables ν0,t for u3 and another set of variables
ν1,t for u′2. In addition we create variables ν′i,t, ν

′′
i,t for

derivatives for each i, as in Section 3.1.

Next we build constraints. We add equation constraints for
each time step as follows.

c2,tu
′′
t + c1,tu

′
t + d0,tν0,t + d1,tν1,t = bt,∀t ∈ {1, . . . , n}.

(33)

We add smoothness constraints for each νi,t in the same
way as described for ut in expressions 10, 11.

Next we solve the quadratic program to obtain
ut, u

′
t, ν0,t, ν1,t in the solution. Now we need to re-

late the nu0,t, nu1,t variables to non-linear functions of
the ut, u

′
t variables. For this we add the term to the loss

function

1

N

∑
t

(u3
t − ν0,t)

2 + (u′2
t − ν1,t)

2.

Figure 16 shows solving and fitting of a non-linear ODE.

A.3. Discovery

We give further details regarding the ODE discovery setup.

The input to the basis functions is produced by a neural
network from the input data. Learnable parameters ξ spec-
ify the weight of each basis function by computing Θξ.
An arbitrary nonlinear function g may be applied to Θξ to
produce the right hand side of the differential equation as
u′ = F (u) = g(Θξ). Given the right hand side as F (u) we
use the QP solver to solve the ODE to produce the solution
u. Given data x we compute a two part loss function: The
first part minimizes the MSE between x and u and the sec-
ond part minimizes the MSE between the neural network
output f(x) and x. Using the neural network in this way
allows for a higher capacity model and allows handling
noisy inputs. The model is then trained using gradient de-
scent. Following (Brunton et al., 2016) we also threshold
the learned parameters ξ to produce a sparse ODE solution.

Vector fields for the learned systems are shown in Figure
2 for MNN and SINDy. We see that although SINDy fits
the training example, the directions diverge further away.
With MNN we see that the learned vector field is consistent
with the ground truth far from the training example even
though we use only a single trajectory.

In the following we show two examples of such cases where
F (u) is a rational function (a ratio of polynomials) and
when F (u) is a nonlinear function of Θξ. Moreover, un-
like SINDy, MNN can learn a single governing equation
from multiple trajectories each with a different initial state
making MNN more flexible. In many situations a single
trajectory sample is not enough represent to the entire state
space while multiple trajectories allow discovery of a more
representative solution.

Planar and Lorenz System. We first examine the ability
of MNN equation discovery for systems where the true
ODE can be exactly represented as a linear combination of
polynomial basis functions. We use a two variable planar
system and the chaotic Lorenz system as examples. Both
MNN and SINDy are able to recover the planar system.
Simulation of the learned Lorenz ODE are shown in Figure

12

Mechanistic Neural Networks for Scientific Machine Learning

8 for MNN and SINDy.

Next we consider ODE systems where the derivative cannot
be written as a linear combination of polynomial (or other)
basis function.

Nonlinear Function of Basis. First, we consider systems
where the derivative is given by a nonlinear function of a
polynomial. For simplicity we assume that the nonlinear
function is known. As an example we solve the system from
Figure 2 with the tanh nonlinear function.

Vector fields for the learned systems are shown in Figure
2 for MNN and SINDy. We see that although SINDy fits
the training example, the directions diverge further away.
With MNN we see that the learned vector field is consistent
with the ground truth far from the training example even
though we use only a single trajectory.

Rational Function Derivatives. Second, we consider the
case where the derivative is given by a rational function, i.e.,
F (u) = p(u)/q(u), where p and q are polynomials. Such
functions cannot be represented by the linear combination of
polynomials considered by SINDy, however such functions
can be represented by MNNs by taking p and q to be two sep-
arate combinations of basis polynomials and dividing. An
example is shown in Figure 9 in the appendix for the system
where we see again MNNs learning much better equations
compared to SINDy with a second-order polynomial basis
tha overfits. Further, by including more trajectories in the
training, results improve further, see Figure 9.

We provide further details of the discovery method from
Section 5.1. This method follows the SINDy (Brunton et al.,
2016) approach for discovering sparse differential equations
using a library of basis functions. Unlike SINDy, which
resorts to linear regression, the MNN method uses deep
neural networks and builds a non-linear model which allows
modeling of a greater class of ODEs.

The method requires a set of basis functions such as
the polynomial basis functions up to some maximum de-
gree. Over two variables x, y this is the set of functions
{0, x, y, x2, xy, y2, xy2, . . . , yd} for some maximum de-
gree d. Let k denote the total number of basis functions.

Next we are given some observations X =
[(x0, y0), (x1, y1), . . . , (xn−1, yn−1)] for n steps. We
first transform the sequence by applying an MLP to the
flattened observations producing another sequence of the
same shape.

X̃ = [(x̃0, ỹ0), . . . , (x̃n−1, ỹn−1)] = MLP(X)

We apply the basis functions to X̃ to build the basis matrix
Θ ∈ Rn×k.

Θ(X̃) =


1 x̃0 ỹ0 x̃2

0 x̃0ỹ0 ỹ2
0 . . .

1 x̃1 ỹ1 x̃2
1 x̃1ỹ1 ỹ2

1 . . .
...

...
...

...
...

...
1 x̃n−1 ỹn−1 x̃2

n−1 x̃n−1ỹn−1 ỹ2
n−1 . . .


(34)

Let ξ ∈ Rn×2 be a set of parameters, with each column
specifying the active basis functions for the corresponding
variable in [ẋ, ẏ].

The ODE to be discovered is then modeled as

[ẋ, ẏ] = f(Θ(X̃)ξ) (35)

where f is some arbitrary differentiable function. Note that
for SINDy X̃ = X and f is the identity function and the
problem is reduced to a form of linear regression adapted
to promote sparsity in ξ. SINDy estimates the derivatives
using finite differences with some smoothing methods.

With MNN the ODE 35 is solved using the quadratic pro-
gramming ODE solver to obtain the solution x̄t, ȳt for
t ∈ {0, . . . , n− 1}. The loss is then computed as the MSE
loss between x̃t, ỹt, x̄t, ȳt and the data xt, yt.

loss =
1

N

∑
t

(x̃t−xt)
2+(ỹt−yt)

2+(x̄t−xt)
2+(ȳt−yt)

2

A.4. Physical Parameter Discovery

We give more details about the parameter discovery setting.

We know from Newton’s second and third law that F = mẍ,
where ẍ is the acceleration, and F1 = −F2 respectively. By
combining the two, the ratio of masses is equal p̈2

p̈1
= −m1

m2
.

To estimate, therefore, the ratio of masses m1

m2
we train

the model to predict a differential equation ẍ = H(x(t))
for the 2-dimensional x = [x1, x2] in the xy-plane. For
the Mechanistic NN, we constrain the library to include
precisely ODE terms for the Newton laws. The differential
equation we discover with Mechanistic NNs comprises the
basis functions ui,j , üi,j and four coefficients ci,j for the
i = 1, 2 objects and the j = 1, 2 directions in the xy-plane.
The force F is computed by neural networks satisfying the
third law and superposition.

B. Experimental Details
B.1. Discovery of Governing Equations

B.1.1. DISCOVERING GOVERNING EQUATIONS OF
SYSTEMS WITH RATIONAL FUNCTION
DERIVATIVES

In Figure 9 we plot the vector fields learned with SINDy
and with MNNs. MNNs are considerably more accurate.

13

Mechanistic Neural Networks for Scientific Machine Learning

MSE
LossMLP Basis Library

Parameters

QP ODE
SolverData

Threshold

Figure 7: Governing equation discovery architecture

20 10 0 10 20
x1

0

10

20

30

40

50

x 3

Target

20 10 0 10 20
x1

0

10

20

30

40

50

x 3

MNN Learned

20 10 0 10 20
x1

0

10

20

30

40

50

x 3

SINDy

Figure 8: Learned ODEs for the chaotic Lorenz system.
Showing the true trajectory, the MNN learned ODE trajec-
tory and SINDy learned ODE trajectory.

B.1.2. DISCOVERED EQUATIONS.

MNN Lorenz

x′ = −10.0003x+ 10.0003y

y′ = 27.9760x+−0.9934y − 0.9996xz

z′ = −2.6660z + 0.9995xy

SINDy Lorenz

x′ = −10.000x+ 10.000y

y′ = 27.998x+−1.000y +−1.000xz

z′ = −2.667z + 1.000xy

MNN Non-linear

x′ = tanh(−0.7314x+ 0.5545y+

− 1.2524x2 +−0.1511xy + 0.2134y2)

y′ = tanh(0.9879x+ 1.0005y + 0.1742x2)

SINDy Non-linear

x′ = −1.968x+ 0.985y +−0.054x2

y′ = 1.466y + 11.892x2 +−5.994xy + 0.085y2

MNN Rational

x′ =
−0.9287x+ 0.4386y +−1.1681x2 + 0.3545y2

0.4871 + 0.8123x+ 0.0984x2 + 0.3700xy + 0.3081x2

y′ =
0.6360x+ 0.5971y + 0.3267x2

0.6090 + 0.7507x2 + 0.5694y2

SINDy Rational

x′ = −1.705x+ 0.899y +−0.318x2

y′ = −0.795 + 3.072y + 4.777x2 + 6.892xy +−4.681y2

0.1 0.2 0.3 0.4 0.5 0.6
x1

0.1

0.2

0.3

0.4

0.5

0.6

x 2

True Field
MNN Learned Field
Train Sample2
MNN Train 2
Test Sample
MNN Test

0.1 0.2 0.3 0.4 0.5 0.6
x1

0.1

0.2

0.3

0.4

0.5

0.6

x 2

True Field
MNN Learned Field
Train Sample 1
MNN Train 1
Train Sample2
MNN Train 2
Test Sample
MNN Test

0.1 0.2 0.3 0.4 0.5 0.6
x1

0.1

0.2

0.3

0.4

0.5

0.6

x 2

True Field
SINDy Learned Field
Train Sample
Test Sample
SINDy Train
SINDy Test

dx

dt
=

−2x+ y

1 + x2

dy

dt
=

x+ y

1 + y2
,

Figure 9: Learned ODE vector fields for MNN and SINDy
with rational function derivatives and one and two training
trajectories. MNN can handle multiple input examples. The
ground truth ODE is also shown.

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
x1

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

x 2

True Field
MNN Learned Field
Train Sample
MNN Train Sample
Test Sample
MNN Test Sample

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
x1

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

x 2

True Field
SINDy Learned Field
Train Sample
SINDy Train Sample
Test Sample
SINDy Test Sample

dx

dt
= tanh(−2x+ y)

dy

dt
= tanh(x+ y)

Figure 10: Learned ODE vector fields for Mechanistic NN
and SINDy with non-linear tanh function of basis combina-
tion and training and test trajectories.

Ground Truth Riccati

x′ = (3t2 − t)0.8x2 + t

MNN Riccati

x′ = (2.997t2 − 0.994t)0.8001x2 + t

MNN Riccati

x′ = (2.997t2 − 0.994t)0.8001x2 + t

Ground Truth Euler

x′ =

√
|0.5 + 2x+ 0.8x2|√
|1 + 0.1t+ 0.2t2|

MNN Euler

x′ =

√
|0.2203 + 0.6655x+−0.3009x2|√
|0.3436 + 0.1813t+ 0.1814t2|

14

Mechanistic Neural Networks for Scientific Machine Learning

NODE ANODE(1) SONODE MNN


0.66
−6.8
−7.1
−5.9
1.4

u′′ +


−0.78
1.19
−0.46
−0.25
1.31

u′ +


−0.48
0.18
0.28
0.27
−0.47

 = 0

Figure 11: (a) Visualizing the state evolution of the learned
equations Ux data points in nested spheres. The points from
the two classes are perfectly separated despite the nested
topology without requiring augmentations. (b) The learned
equation Ux from MNN that corresponds to a single data
point for 5 steps. This equation can thereafter be used for
analysis, or even classification.

B.2. Nested Spheres

We test MNN on the nested spheres dataset (Dupont et al.,
2019), where we must classify each particle as one of
two classes. This task is not possible for unaugmented
Neural ODEs since they are limited to differomorphisms
(Dupont et al., 2019). We show the results in Figure 11,
including comparisons with Neural ODE (Chen et al.,
2018), Augmented Neural ODE and second-order Neural
ODE (Norcliffe et al., 2020). MNNs can comfortably
classify the dataset without augmentation and can also
derive a governing equation.

We use a second order ODE with coefficients computed
with a single layer and the right hand side is set to 0. We
use a step size of 0.1 and length 30. However, as we note, 5
time steps are enough for accurate classification. The loss
function is the cross entropy loss.

MNNs obtain an explicit linear ODE per datapoint that
governs the evolution of the point. The example we give
is for one of the ODEs for one point and for a 5-time step
evolution. This computed equation is sufficient for perfect
classification.

B.3. Airplane Vibrations

MNNs can learn complex dynamical phenomena signif-
icantly faster than Neural ODE and second order Neural
ODE. We reproduce an experiment with a real-world aircraft
benchmark dataset (Noël and Schoukens, 2017; Norcliffe
et al., 2020). In this dataset the effect of a shaker producing
acceleration under a wing gives rise to acceleration a2 on
another point. The task is to model acceleration a2 as a func-
tion of time using the first 1000 step as training only and to
predicting the next 4000 steps. Results of the experiment

0 10 20 30 40 50 60

Iterations

0

2

4

6

8

10

M
S

E

Airplane Training MSE
SONODE

ANODE(1)

MNN

0 1000 2000 3000 4000

t

0.0

0.1

0.2

0.3

0.4

0.5

0.6

R
u

n
n

in
g

A
ve

ra
ge

R
M

S
E

Airplane Running Error
SONODE

ANODE(1)

MNN

0 1000 2000 3000 4000 5000

t

−1.0

−0.5

0.0

0.5

1.0

a
2

Airplane a2

True a2

MNN

Figure 12: Modeling airplane vibrations.

are shown in Figure 12. We compare against Augmented
Neural ODE and second order Neural ODE. MNNs are on-
par with second-order ODE, converge significantly faster in
the number of training steps, and achieve two times lower
training error, showcasing the capacity for modeling com-
plex phenomena and improving with modest architectural
modifications. The predicted a2 accelerations are very close
to the true ones in the center-right plot.

For this experiment (Section 5.5) we use an MNN with a
second order ODE, step size of 0.1 and 200 steps during
training. The coefficients and constant terms are computed
with MLPs with 1024 hidden units.

B.4. Discovering Mass and Force Parameters.

For this part of the experiment we use an MNN with a
restricted ODE to match Newton’s second law. In the
MNN model for this experiment, we use the same coef-
ficient for the second derivative term for all time steps with
the remaining coefficients fixed to 0, that is c2(t) = c and
c1(t) = 0, c0(t) = 0. b(t) = Ft corresponds to the force
term which is computed by a neural network from the initial
position and velocity with two hidden layers of 1024 units
and Newton’s second law F21 = −F12. We use a step size
of 0.01 and run for 50 epochs.

The baseline is an SONODE designed to correspond to
Newton’s second and third law with an MLP for force as
above.

B.5. PDE Solving

1d Model. For 1d problems we use a simplest possible
model of modeling the spatial dimension by independent
ODEs. We use a history of 10 time steps and predict for 9
time steps in one iteration, using the last time step as initial
condition for the ODE. During evaluation we predict and
evaluate for 100 steps. We use 3rd and 4th order ODEs. The
coefficients for ODEs, step sizes the right hand side (b) are
computed by 1d ResNets with 10 blocks. We use the L1
loss which we find improves rollout performance.

2d Model. In Figure 13 we show the MNN architecture
we used to solve PDEs. We use the 2d Darcy Flow dataset
used by (Li et al., 2020c) scaled to 85x85. The ODE is
solved for 30 steps and the entire soluton trajectory is then

15

Mechanistic Neural Networks for Scientific Machine Learning

Method RMSE

NN(Li et al., 2020c) 0.1716
FCN(Li et al., 2020c) 0.0253
PCANN (Bhattacharya et al., 2021) 0.0299
RBM(Li et al., 2020c) 0.0244

GNO (Li et al., 2020a) 0.0346
LNO (Li et al., 2020c) 0.0520
MGNO(Li et al., 2020b) 0.0416
FNO (Li et al., 2020c) 0.0070

Mechanistic NN 0.0065

Table 1: PDE results on 2d Darcy flow

CNN CNN

UpsampleDownsample
ODE
Solve
Layer

Figure 13: PDE module architecture used for 2d data

upsampled and combined with the input features map. The
network is built by stacking three such modules together
plus an input MLP layer and an output layer.

C. Further Experiments
C.1. Validating the NeuRLP ODE Solver

First we examine whether our quadratic programming solver
is able to solve linear ODEs accurately. For simplicity we
choose the following second and third order linear ODEs
with constant coefficients.

u′′ + u = 0 (36)
u′′′ + u′′ + u′ = 0 (37)

For the NeuRLP solver we discretize the time axis into 100
steps with a step size of 0.1. We compare against the ODE
solver odeint included with the SciPy library. The results
are shown in 14 where we show the solutions, u(t), for
the two ODEs along with the first and second derivatives,
u′(t), u′′(t). The results from the two solvers are almost
identical validating the quadratic programming solver.

Next we examine the ability of the solver to learn the dis-
cretization. We learn an ODE to model a damped sine wave
where each step size is a learanable parameter initial to 0.1
and modeled as a sigmoid function. We show the results in
Figure 15 for a sample of training steps. We see the step
sizes varying with training and the steps generally clustered
together in regions with poorer fit.

Solving u''(t) + u'(t) = 0

0 50 100
1.0

0.5

0.0

0.5

1.0
u(t)

0 50 100

u'(t)

0 50 100

u''(t)
Scipy odeint Solver

0 50 100
1.0

0.5

0.0

0.5

1.0

0 50 100 0 50 100

QP Solver

Solving u'''(t) + u''(t) + u'(t) = 0

0 50 100
1.0

0.5

0.0

0.5

1.0
u(t)

0 50 100

u'(t)

0 50 100

u''(t)
Scipy odeint Solver

0 50 100
1.0

0.5

0.0

0.5

1.0

0 50 100 0 50 100

QP Solver

Figure 14: Comparing ODE solvers on 2nd and 3rd order
ODEs.

Next we demonstrate a non-linear equation. For this we
introduce a variable in the QP solver for a non-linear term
add a squared loss term as described in the paper. We use
the equation c2(t)y

′′+ c1(t)y
′+ c0(t)y+ϕ(t)y2 = 1, with

time varying coefficients and fit a sine wave. The result is in
Figure 16. The ODE fits the sine wave and at the same time
the non-linear solver term fits the true non-linear function
of the solution.

C.2. Learning with Noisy Data

We perform an simple experiment illustrate how the ODE
learning method can fit ODEs to noisy data. We generate a
sine wave with dynamic Gaussian noise added during each
training step. We train two models: the first a homoge-
neous second order ODE with arbitrary coefficients and the
second a homogeneous second order ODE with constant co-
efficients. We also train a model without noise. The results
are shown in Figure 17. The figures show that the method
can learn an ODE in the presence of noise giving a smooth
solution. The model with constant coefficients learns the

16

Mechanistic Neural Networks for Scientific Machine Learning

Figure 15: Demonstrating a learned grid for fitting a damped
sinuoidal wave (blue curve) over the course of training. The
dots show the learned grid positions. The grid generally
becomes finer for regions where the fit is poorer.

Figure 16: Demonstrating fitting a sine wave with a non-
linear ODE c2(t)y

′′ + c1(t)y
′ + c0(t)y + ϕ(t)y2 = 1. The

non-linear function is y2 and the bottom shows the solver
variable fitting the non-linear function.

following ODE.

0.92023u′′ − 0.00016u′ + 0.228u = 0,

with (learned) initial conditions u(0) = −0.031799 and
u′(0) = 2.3657.

2

0

2

2

0

2

2

0

2

2

0

2

2

0

2

2

0

2

2

0

2

2

0

2

2

0

2

0 10 20 30 40 50

2

0

2

2

0

2

2

0

2

2

0

2

2

0

2

2

0

2

2

0

2

2

0

2

2

0

2

2

0

2

0 10 20 30 40 50

2

0

2

2

0

2

2

0

2

2

0

2

2

0

2

2

0

2

2

0

2

2

0

2

2

0

2

2

0

2

0 10 20 30 40 50

2

0

2

Figure 17: Learning sine waves without and with dynam-
ically added Gaussian noise with 2nd order ODE with
arbitrary coefficients (middle) and constant coefficients
(right). The figure on the right corresponds to the ODE
0.92023u′′ − 0.00016u′ + 0.228u = 0.

C.3. Comparing RK4 with the NeuRLP solver

We compare NeuRLP with the RK4 solver from torchdiffeq
on a task of fitting noisy sinusoidal waves of varying lengths.
We compare MSE and time in Table 2 and Figure 18.

Table 2: Comparing the NeuRLP solver with the RK4 solver
with a step size of 0.1 on fitting noisy sinusoidal waves of
300 and 1000 steps. Showing MSE loss and time.

Steps QP (seconds) RK4 (seconds) QP Loss RK4 Loss

40 1.52 28.06 11.4 29.3
100 1.61 64.57 27.9 35.6
300 1.76 211.52 52 96.8
500 2.12 359.7 128 301

1000 3.68 666.69 292 589

17

Mechanistic Neural Networks for Scientific Machine Learning

RK4 Solver

0 5 10 15 20 25 30
2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0
300 Steps

Target
RK4

0 20 40 60 80 100

2

1

0

1

2

1000 Steps
Target
RK4

NeuRLP Solver

0 5 10 15 20 25 30

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

300 Steps

Target
QP

0 20 40 60 80 100

2

1

0

1

2

1000 Steps

Target
QP

Figure 18: Comparison of RK4 solver from torchdiffeq
and our NeuRLP solver for fitting sinusoidal waves with
Gaussian noise added at each iteration. Length of the wave
and number of steps is 300 (left column) and 1000 (right
column). Step size is 0.1. Trained for 100 iterations. The
NeuRLP solver has better performance (and efficiency) for
longer trajectories.

0 200 400 600 800 1000
Number of Steps

0

100

200

300

400

500

600

Se
co

nd
s p

er
 1

00
 It

er
at

io
ns QP

RK4

Figure 19: Number of seconds per 100 iterations for fitting
noisy sinusoidal waves. The NeuRLP solver is significantly
more efficient over longer times due to its parallelism.

C.4. 2-Body Problem

We show learned trajectories for a 2-body prediction prob-
lem with an MNN on synthetic data in Figure 20. The
objects are generated using the gravitation force law for
4000 steps and the first half are used for training and we
predict the second half.

MNN Prediction 1
MNN Prediction 2
Object 1
Object 2

Figure 20: 2-body problem: Predicted orbits for MNN

18

	Introduction
	Mechanistic Neural Networks
	Neural Relaxed LP ODE Solver
	Linear ODEs as Linear Programs
	Constraints

	Efficient Quadratic relaxation
	Efficient forward and backward computations
	Nonlinear ODEs
	Error bounds
	Complexity
	Numerical validation of the solver

	Related Work
	Example Applications in Scientific ML
	Discovery of Governing Equations
	PDE Solving with Neural Networks
	N-body Prediction
	Discovery of Physical Parameters
	Forecasting for time series

	Conclusion
	Further Details
	Error Analysis
	Non-linear ODE Details
	Discovery
	Physical Parameter Discovery

	Experimental Details
	Discovery of Governing Equations
	Discovering governing equations of systems with rational function derivatives
	Discovered Equations.

	Nested Spheres
	Airplane Vibrations
	Discovering Mass and Force Parameters.
	PDE Solving

	Further Experiments
	Validating the NeuRLP ODE Solver
	Learning with Noisy Data
	Comparing RK4 with the NeuRLP solver
	2-Body Problem

