
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

DIVIDE AND CONQUER: EFFICIENTLY DECOUPLING
CONSENSUS AND DIVERGENCE FOR FEDERATED
LARGE LANGUAGE MODEL FINE-TUNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Federated Learning provides an efficient framework for fine-tuning Large Lan-
guage Models (LLMs) on diverse private datasets, addressing the growing scarcity
of publicly available training data while maintaining data privacy. However, in
practice, client data typically spans multiple domains, posing significant chal-
lenges for the global model’s generalization capabilities. To address this issue,
we introduce a novel framework, Federated Consensus-Divergence Decoupling
for LLM Fine-Tuning (FedCDD), designed to enhance global model performance
in such heterogeneous environments. Our framework introduces a mechanism
for consensus aggregation and divergence alignment, decoupling client updates
into “consensus” and “divergence” parts. This allows the LLM to maintain
a unified consensus while accommodating domain-specific divergences. Addi-
tionally, we employ a Gaussian-Noise Mask to regulate local model uploads,
preventing the LLM from overfitting to domain-specific knowledge. Experi-
mental results on heterogeneous datasets demonstrate the superiority of our ap-
proach over existing methods. The code is anonymously available at https:
//anonymous.4open.science/r/FedCDD-5DA6.

1 INTRODUCTION

Trained on large public datasets, Large Language Models (LLMs) (Achiam et al., 2023) (Ouyang
et al., 2022) have demonstrated significant success in solving general problems (Imani et al., 2023)
(Didolkar et al., 2024), (Chen et al., 2023). However, the availability of high-quality public data
is diminishing, posing a serious obstacle to the continued development of LLMs (Kaddour et al.,
2023), and it is predicted that high-quality public data will be exhausted before 2026 (Villalobos
et al., 2022). As a result, there is a growing trend of either combining existing datasets (Wang et al.,
2023) or using datasets generated by models themselves (Wang et al., 2022). The former often
falls short, as more data generally leads to better performance (Kaplan et al., 2020), while the latter
may cause model degradation (Alemohammad et al., 2023) (Muennighoff et al., 2023). Meanwhile,
many high-quality private datasets exist but cannot be shared due to privacy concerns. Some large
language models, such as BloombergGPT (Wu et al., 2023), have been successfully trained on such
datasets. The challenge lies in utilizing these private, high-quality datasets while preserving pri-
vacy. Federated Learning (FL) offers a solution by allowing multiple parties to collaboratively train
a model without directly sharing their datasets. Participants train local models on private datasets,
and only model updates are aggregated centrally, ensuring privacy (Li et al., 2020). Applying fed-
erated learning to Large Language Models offers a solution to the limitations of public high-quality
datasets. It unlocks the potential value of private datasets without directly sharing them, thereby
ensuring the privacy and security of the model data. (Zhuang et al., 2023).

With the increasing integration of Federated Learning (FL) and Large Language Models (LLMs),
numerous studies have concentrated on training LLMs within a federated learning framework. In
this paper, we focus on the integration of the LLM Supervised Fine-Tuning (SFT) module within
the FL domain (Gunel et al., 2020). Existing approaches, such as FederatedScope-LLM (Kuang
et al., 2024) and Shepherd (He et al., 2021), attempted to incorporate the FedAvg algorithm into the
SFT process. However, subsequent research by Ye et al. (2024) pointed out that these studies were
limited by using only one dataset and relying solely on FedAvg, thereby overlooking other scenarios.

1

https://anonymous.4open.science/r/FedCDD-5DA6
https://anonymous.4open.science/r/FedCDD-5DA6

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Consequently, some research has explored the feasibility of the SFT module with a broader range
of datasets and FL methods. Nevertheless, a common limitation in these studies is their failure to
adequately address the diversity of real-world datasets, which can result in substantial client drift.
While some studies have attempted to train clients on diverse datasets during the SFT process, they
do not explicitly optimize for this scenario or propose methods tailored to this challenge, instead
relying on conventional federated learning approaches. To the best of our knowledge, we are the first
to study the integration of FL and SFT on Non-IID datasets and propose a innovative framework for
LLM fine-tuning in FL. We aim to explore optimization strategies to enhance the performance of
LLM SFT. By training on multiple datasets, we seek to closely simulate real-world environments,
provide relevant benchmarks for this domain, and offer preliminary contributions that may inspire
future research.

In the common experiment with federated large language model training on the Non-IID datasets,
the proposed approach involves clients fine-tuning their models using Low-Rank Adaptation (LoRA)
(Hu et al., 2021), then uploading the trained results to the cloud. The server aggregates models with
FedAvg and distributes the updated global model back to the clients for the next round of training.
In the server aggregation phase, we observe that the LoRA method can cause knowledge drift.
The local LLM tends to focus on the local domain, which negatively impacts the global model’s
generalization ability. Based on this observation, we raise the following question: 1) During the
global aggregation, how to design a new method that ensures the global model accurately captures
more details of local knowledge? In terms of client-side updates, we find that extracting local
features during client training is crucial for the global model. Great training method should be better
capture features from datasets while avoiding to upload the unimportant knowledge. However, in
the current method, the best algorithm proved by Ye et al. (2024) simply uploads all the LoRA
parameters to the global. Based on this, we further propose another question: 2) During client
training, how to employ a new algorithm that allows clients to provide the important knowledge
extracted from local dataset for global?

To address the two issues mentioned above, this paper proposes a innovative framework to help
global model to absorb the knowledge from clients, enhancing generalization. To address problem
1, we explore the role of LoRA in federated learning, decomposing it into consensus characteristics
and divergence characteristics. The former reflects the generalization ability of knowledge, while
the latter indicates its divergence on specific domains. Based on this, we propose the Consensus-
Divergence Aggregation, which combines consensus aggregation and divergence alignment, opti-
mizing the global aggregation process and improving the performance of the global model. To the
specific problem 2, during local updates, we introduce the Gaussian-Noise Masking, which focus-
ing upload significantly altered parameters while disregarding minimal changes. The mask enables
the global model to accurately capture the direction of meaningful updates, reducing the risk of
entrapment in local optima caused by minor parameter adjustments.

Our primary contribution in this paper can be summarized as follows:

(1) We discover that LLM could be decoupled by consensus and divergence, which has practical
significance in the federated large language model training.

(2) We propose an innovative framework for federated large language model training. In the global
aggregation phase, we address the issue of domain knowledge drift in LLM clients by employing
a combination of consensus aggregation and divergence alignment. During the client uploading
process, we focus on ensuring that the parameter updates effectively contribute to the global model’s
knowledge base.

(3) Our framework applied in the same experimental environment significantly improves the model’s
generalization ability.

2 RELATED WORK

2.1 PARAMETER EFFICIENT FINE-TUNING IN LARGE LANGUAGE MODELS

Large Language Model (LLM) is a computational model capable of language generation or other
natural language processing tasks. LLMs such as GPT-4 (Achiam et al., 2023), LLama3 (Dubey
et al., 2024) (Touvron et al., 2023), Claude 3 has displayed great potential in various fields. Gener-

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Figure 1: Architecture illustration of the Aggregation and Masking components. The two key
components are shown at the top (a) and bottom (b) of the image, with nodes of different classes
marked in different colors. (a) Consensus-Divergence Aggregation (Section 3.2.1) module splits the
LoRA updates into consensus and divergence parts, applying consensus aggregation through delta
averaging and divergence alignment using cosine similarity. (b) Gauss-Noise Masking (Section
3.2.2) component adds a mask in the client upload process, selecting important knowledge from
LLM clients for updates. Best viewed in color. Zoom in for details.

ally, the process of training a LLM including: (1) Train the base model on the large dataset, such
as Pile (Gao et al., 2020), LLaMA (Touvron et al., 2023) and etc. (2) Use Supervised Fine-Tuning
(SFT) method (Xu et al., 2023a) (Brown, 2020) (Chen et al., 2024) to make LLM follow human’s
instruction. (3) Use Reinforcement Learning from Human Feedback (RLHF) (Sun et al., 2023) to
align the model on the human-annotated or AI-annotated preference dataset, making LLM under-
stand the human’s value.

Fine-tuning is critical for adapting large language models (LLMs) to downstream tasks, but it re-
quires significant computational resources (Houlsby et al., 2019) (Valipour et al., 2022) (Mao et al.,
2021). As a result, Parameter Efficient Fine-Tuning (PEFT) methods (Xu et al., 2023b) are com-
monly used in LLM training to better fit downstream domains, particularly for speeding up processes
such as SFT and RLHF. These methods require only small parameter updates compared to updat-
ing all the parameters of the pre-trained model, significantly reducing the computational overhead.
Common implementations of PEFT include adapter techniques (Houlsby et al., 2019) (Pfeiffer et al.,
2020) (He et al., 2021) (Edalati et al., 2022), prompting methods (Petrov et al., 2023) (Li & Liang,
2021), and Low-Rank Adaptation (LoRA) (Hu et al., 2021) (Valipour et al., 2022).

However, the adapter structure will introduce additional computational overhead (Houlsby et al.,
2019) (Hu et al., 2023). The prompt method is unstable, difficult to fine-tune and cannot take
long input sequences (Li & Liang, 2021). Nowadays, the LoRA structure is commonly used as
the primary PEFT method in the SFT process, as it reduces computational costs without adding
inference latency (Hu et al., 2021).

LoRA is a method that focuses on the low “intrinsic rank” of weight changes during model adapta-
tion (Hu et al., 2021). LoRA freezes the base model and uses the format below to update the low
“intrinsic rank.” In this way, LoRA only requires updating a small set of parameters compared to
the traditional approach, thereby accelerating the model θ training process.

θ′ = θ +∆W = θ +BA

In our paper, we focus on the SFT process, with the goal of exploring the practical significance of
LoRA in the integration of FL and LLM training. This approach aims to optimize our experimental
framework more effectively.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

2.2 FEDERATED LEARNING AND LARGE LANGUAGE MODELS

Federated Learning (FL) (Kairouz et al., 2019) is a method that holds great potential for enabling
privacy-preserving collaborative training. FL involves four key processes during training: (1) The
server sends the global model to the client side; (2) The client performs local model training on its
local dataset; (3) The client uploads the updated model parameters; and (4) The server receives the
client model parameters and performs global aggregation. Through these iterative steps, the server
is able to train a global model without requiring clients to directly share their local datasets.

In response to the shortage of high-quality public datasets, FL provides an effective approach to
leveraging private datasets for training more optimal models while maintaining data privacy. The
combination of FL and LLMs presents a promising research direction for addressing data-related
challenges in the future (Li et al., 2024). FATE-LLM (Fan et al., 2023) explored traditional tasks
in federated learning fine-tuning for LLMs, while FwdLLM (Xu et al., 2023c) focused on improv-
ing memory and time efficiency during client training, thereby reducing the costs on client devices.
FederatedScope-LLM (Kuang et al., 2024) emphasized federated instruction tuning using the Fe-
dAvg algorithm. OpenFedLLM (Ye et al., 2024) introduced a framework capable of completing
both the SFT and RLHF training processes.

In our paper, we focus on SFT based on Non-IID datasets. To the best of our knowledge, we are
the first to study this issue and propose a innovative framework that addresses both the client upload
process and the global aggregation process.

3 METHODOLOGY

In this section, we will first introduce the problem that we face, and then propose our solution.

3.1 PRELIMINARIES

LoRA (Hu et al., 2021) is employed to enhance the efficiency of fine-tuning by focusing on the
internal rank variations that occur during parameter updates in the fine-tuning process. For fine-
tuning a pre-trained model θ ∈ Rd×k, LoRA keeps the pre-trained model’s parameter matrix frozen
and utilizes two lower-rank matrices, θdown ∈ Rd×r and θup ∈ Rr×d, to represent the update ∆θ.
This process can be formulated as:

θ′ = θ + (θdown · θup)︸ ︷︷ ︸
update

During the training process, θ remains frozen, while θdown and θup are updated. Prior to training,
we initialize θup using the Kaiming distribution and set θdown to a zero matrix, ensuring that θ′
initially equals θ. Throughout training, the pre-trained model θ stays frozen, with updates applied
only to θup and θdown. It is important to note that using θdown and θup is not the only approach for
decomposing ∆θ. Any low-dimensional decomposition method can be applied, as demonstrated in
recent works such as Dettmers et al. (2023) and Rajabzadeh et al. (2024). In LLM training, LoRA
is commonly used to reduce the computational cost associated with updating parameters. Typically,
the base model θ is kept frozen, while only θdown and θup of the Q, K, and V matrices are updated.

In federated learning, each client k trains its local model θik on its own dataset during the i-th
iteration, and then sends the model to the server for global aggregation. After the aggregation, the
client uses the updated global model θi to train and obtain the next local model θi+1

k .

θ ←
N∑

k=1

nk

n
θk

where θk is the model of k-th client, nk is the dataset number of the k-th client, n is the sum of the
dataset number.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Figure 2: The similarity matrices between clients are shown as follows: (a) Similarity of LoRA ma-
trices without decomposition, (b) Similarity of divergence matrices, and (c) Similarity of consensus
matrices. The results indicate that the differences between distributed LLM behavior become more
pronounced after decomposition into consensus and divergence.

In Fed LLM training, a common approach to reduce communication costs is to utilize LoRA, which
updates only a subset of parameters instead of the entire model. In the FedAvg method with LoRA,
the global model θ is updated as follows:

∆θ ←
N∑

k=1

nk

n
∆θk

where ∆θ is the LoRA model of the global model, and the ∆θk is the LoRA model of the k-th local
client model.

We can compute the global model by adding the θdown · θup to the frozen base model θ, meaning
that the global model θ′ after training is given by:

θ′ = θ +∆θ = θ + θdown · θup
where θdown · θup represents the LoRA matrix corresponding to ∆θ.

However, two significant problems can arise with this training method: (1) The direct and indiscrim-
inate aggregation of parameters from clients can lead to slow global convergence, particularly when
working with Non-IID datasets. This issue may also result in knowledge bias, which can negatively
impact the global model’s generalization. (2) Some of the knowledge learned by local clients on
their private datasets may not be relevant or important to the global model. These elements can
potentially steer the global model toward a local optimum, hindering overall performance.

3.2 METHOD

3.2.1 CONSENSUS-DIVERGENCE AGGREGATION

Motivation. In the current Fed LLM training process, the global model merely aggregates the LoRA
matrices uploaded by the clients, overlooking both the interpretability of LoRA and the instability
in global model aggregation that arises from client drift.

Consensus-Divergence Decomposition. Inspired by Weight Normalization (Salimans & Kingma,
2016), we decompose the client’s uploaded parameters into magnitude and direction and update the
direction vector using LoRA, as shown in the following formula, to investigate the distinct charac-
teristics of a vector’s mean in federated learning:

θi = ||θi||c ∗
θi

||θi||c

where ||θi||c refers to vector-wise norm of θi across each column, and θi

||θi||c refers to the unit vector
of θik. The first part refers to consensus factor and the second part refers to divergence factor.

We train the clients on the Non-IID datasets, as described in Section 4, and aggregate them using
the FedAvg method (McMahan et al., 2017). During this process, we calculate the similarity of the
LoRA matrices across different clients and visualized it using a heat map, as shown in Figure 2.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Easily, we can find that the client’s drift shows more clearly after splitting parameter matrices in
weight and direction. In the splitting situation, we can find that the differences between the clients
are displayed more prominently in Divergence Similarity Matrix and there is almost no difference
between the clients in the Consensus Similarity Matrix.

Therefore, we can get two conclusion. (1) The decomposition method can better capture the dif-
ferences between each client compared to base LoRA method. (2) We can get the real mean of the
two matrices after decomposition: the direction matrix express divergence characteristics and the
weight express the consensus characteristics of the model.

Consensus-Divergence Aggregation. In order to constraint the global aggregation, we introduce
global similarity aggregation.

For the consensus vector M i = ||θi||c of the client in the i-th iteration, we calculate the average
delta update of the client model. During the local training process, the local LLM extracts base
knowledge from the local datasets. Averaging the differences in updates ensures that the new con-
sensus factor absorbed by each client is more evenly integrated into the global model, following the
format outlined below:

∆M i = ∆M i−1 +

∑N
k=0(∆M i

k −∆M i−1)

N

For the divergence matrix V i = θi

||θi||c ∈ d×k, where k < d, can be decoupled by V i
base+V i

down·V i
up

and updates it using LoRA. At first, we expand the direction vector to obtain d vectors of size 1×K
from V i. Then, for every single vector v, we calculate the similarity for different clients using cosine
similarity follows:

sim(vi, vj) =
vi · vj
∥vi∥∥vj∥

where vi and vj refer to the same layer of the different clients.

For each client’s vector vk, we can calculate its average similarity v̄k. Since the cosine value reflects
the degree of deviation of vectors from the global model in the divergence, we add a softmax acti-
vation layer before aggregation to determine the deviation weights of each vector within the overall
divergence. Through this operation, we can obtain the weight proportion of each large language
model’s individual divergence within the overall consensus.

wk =
exp

(
v̄k
T

)∑n
s=1 exp

(
v̄s
T

)
Finally, we calculate the delta vector from the (i − 1) th to i th iteration, getting the real global
vector by adding weighted delta vector to the global divergence vector V i−1 in the i− 1 th iteration,
with following the formula below. In this way, we construct a global divergence vector during the
global update. On one hand, this approach ensures better compatibility with the consensus; on the
other hand, capturing the divergence weights allows the global model to more accurately track the
update directions driven by different clients, minimizing the negative impact of client knowledge
drift. Consequently, the overall knowledge domain becomes more stable, enhancing the model’s
generalization ability.

∆V i = ∆V i−1 +

N∑
k=0

wk · (∆V i
k −∆V i−1)

3.2.2 GAUSS-NOISE MASKING

Motivation. In existing methods, the local LLM uploads all parameters after each round of training.
However, in real-world scenarios, not all LoRA parameters are fully updated; instead, updates pri-
marily occur in certain key directions. Parameters that receive fewer updates can be considered less

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

important, which may slow down the aggregation of the global model and even negatively impact
its generalization capabilities.

Masking Generation And Upload We calculate the importance of vector k using the L2 norm, as
shown in the formula below. A larger ∥Dk∥2 indicates that the client is in an active state during the
current round of updates, while a smaller value suggests a more passive state during local updates.
We consider more active vectors to contribute more energy to the local LLM, both in terms of
consensus and divergence.

∥Dk∥2 = ∥Lk −Gk∥2
where Lk refers to the vector k in the local model while the Gk refers to the vector k in the global
model and ∥ · ∥2 refers to L2 norm.

Then, we sort to select top α vectors Kupdate for updating, while the rest of the vectors Knoise will
be filled with Gauss Noise. The whole parameters Uk which will be uploaded follows the formula
below.

Uk =

{
Lk, ∀k ∈ Kupdate

Lk +N (0, |Dk|), ∀k ∈ Knoise

For each client, we upload parameters to the global after adding a Gauss-Noise mask layer. This
method of updating through masking can effectively reduce the risk of local large language model
client overfitting to localized knowledge.

The above explanation can be summarized by the detailed algorithmic process 1 below.

Algorithm 1: FedCDD

Input: Communication rounds N , participant scale K, kth client private model θk, mask
sparsity α and temperature T .

Output: The final global model θN at N th round.
for t = 1, 2, · · · , N do

Client Side: for k = 1 to K in parallel do
fk(·)← ImportantSort(θt−1, α) // Sort important vector for updating
fk(·)← GaussNoiseMask(fk(·), θt−1) // Masking unimportant parameters
θk ← f t

k(θk) // Calculate the new θk for uploading
Server Side:
M t

k, V
t
k ← θk // Decoupling the θk into consensus and divergence

// Consensus Aggregation
M t = M t−1 +

∑N
k=0(M

t
k−Mt−1)

N

// Divergence Alignment
g(·)← CaculateCosineSimilarity(V t−1) // Build cosine similarity matrix
g(·)← Softmax(g(·), T) // Calculate weight for vectors
V t = V t−1 + g(V0, V1, ..., Vk)

θt ←M t, V t

return θN

4 EXPERIMENT

4.1 EXPERIMENTAL SETUP

Datasets. Following Ye et al. (2024), we train our model on the following datasets.

• Taori et al. (2023): The dataset used for fine-tuning the Alpaca model. Alpaca is a dataset of
52,000 instructions and demonstrations generated by OpenAI’s text-davinci-003 engine.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Generalization Code Financial Math Average
Methods

MT-1 MT-2 Final Gen Rank Avg Rank Score Rank Score Rank Score Rank Score Rank

Base 2.92 2.05 2.48 8 8 0.018 8 0.297 8 0.04 8 7.813 8

FedAvg 4.47 3.32 3.89 2 2 0.048 7 0.345 5 0.05 7 12.120 4.6
FedProx 4.29 3.30 3.79 4 4 0.079 5 0.284 7 0.13 3 11.874 4.6

FedAvgM 4.52 2.95 3.74 5 5 0.091 3 0.397 1 0.1 6 11.800 4
Scaffold 4.58 3.10 3.84 3 3 0.100 1 0.297 6 0.12 5 12.036 3.6

FedAdam 4.45 2.91 3.67 6 6 0.085 4 0.381 3 0.122 4 11.627 4.6
FedYogi 4.46 2.90 3.67 7 7 0.061 6 0.382 2 0.16 1 11.616 4.6

Ours 5 3.2 4.10 1 1 0.097 2 0.351 4 0.14 2 12.888 2

Table 1: Comparison of other methods on different evaluation methods. The best and second results are high-
lighted with bold and underline, respectively.

• Xiang Yue (2023): The dataset concerning the math field. Math instruct is compiled from 13 math
rationale datasets, six of which are newly curated by this work. It uniquely focuses on the hybrid
use of chain-of-thought (CoT) and program-of-thought (PoT) rationales, and ensures extensive
coverage of diverse mathematical fields.

• CodeAlpaca-20k: The dataset concerning the code field. The 20K instruction-following data
generated by the techniques Self-Instruct (Wang et al., 2022), with some modifications by author
of the datasets.

• FinGPT: The specialized financial datasets used in FinGPT (Yang et al., 2023).

Framework Setup. We train our model based on the NousResearch’s Llama-2-7b-hf within 200
rounds. And the we use different evaluation methods to test the performance of the model.

Comparison Methods. We compare FedCDD with several state-of-the-art methods in recently re-
search and traditional FL: (1) Base Model without SFT. (2) FedAvg. (McMahan et al., 2017) the
standard federated averaging algorithm, where updates from all clients are averaged at the server.
(3) FedProx. (Li et al., 2018) An extension of FedAvg that introduces a proximal term to tackle het-
erogeneity across clients. (4) Scaffold. (Karimireddy et al., 2019) A control variate-based method
designed to reduce the impact of client drift in federated learning with Non-IID data. (5) FedAvgM
(Hsu et al., 2019) A momentum-based variant of FedAvg, which integrates server-side momentum
into the federated learning process. (6) FedAdam. (Reddi et al., 2020) A federated version of the
Adam optimizer. It adapts the learning rates at the server side using first and second-order moments
of gradients, aiming to provide better performance in challenging federated settings. (7) FedYogi.
(Reddi et al., 2020) An adaptive federated optimization method similar to FedAdam. Notably, recent
studies on federated language model training are all based on the FL algorithm framework, where
multiple LLM clients are run independently, and their parameters are simply aggregated. Therefore,
in this test, we only compare the classic FL algorithms that have been widely used in peer research.

Implement Details. We provide the details from three views as:

• Dataset Split: We use datasets from four different domains as mentioned above, with each client
randomly selecting 5000 labeled data points from its respective dataset for SFT.

• Training Setting: In the training process, we keep the learning rate 5e− 5. In the first set, we set
up the µ of FedProx 0.01. We repeat each experiment three times for each federated approaches
to ensure the robustness and reliability of the results.

• Evaluation Metric: (1) Generalization: We use the first turn’s score from MT-Bench (Zheng
et al., 2023) as the primary evaluation metric to assess the general performance of different mod-
els (Ye et al., 2024). This score is the most critical in the overall evaluation. (2) Contextual
Understanding: We use the final score from MT-Bench to evaluate the model’s ability to under-
stand context. MT-Bench comprises two turns of conversation, making it suitable for contextual
testing. (3) Code: We use Human Eval (Chen et al., 2021) to evaluate the model’s coding ca-
pabilities. (4) Financial: We utilize the MMLU dataset (Hendrycks et al., 2020) to evaluate the

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Figure 3: Hyper-parameter evaluation on MT-
Bench, focusing on (a) the temperature of Consensus-
Divergence Aggregation and (b) the sparsity of
Gauss-Noise Masking. Higher scores indicate better
performance.

Generalization
Client Global

MT-1 MT-2 Final

✗ ✗ 4.47 3.32 3.89
✓ ✗ 4.70 3.39 4.04
✗ ✓ 4.70 3.41 4.06
✓ ✓ 5.00 3.20 4.10

Table 2: Ablation study of key components in MT-
Bench. The score of MT-1 indicates the general abil-
ity of the large language model and the final score
indicates the contextual understanding.

model’s financial knowledge, specifically selecting the finance-related domains for this assess-
ment. (5) Math: The GSM8k dataset (Cobbe et al., 2021) is used to test the model’s mathematical
abilities. For each evaluation, we either use GPT-4o to assess the model’s responses in an open-
ended environment or compare them against standard answers according to the requirement of
the benchmark. To account for the variability in large model outputs, each experiment is repeated
three times to ensure robustness and reliability. After the above evaluation, we use average rank
to display the comprehensive capabilities of the model.

4.2 EXPERIMENT RESULTS

Performance Comparison. Table 1 presents the performance of different methods in traditional FL
compared to our FedCDD approach. The results demonstrate that FedCDD outperforms the other
methods, highlighting its effectiveness in large language model training within a federated learning
context. Traditional methods like FedAvg and FedProx fail to effectively aggregate client consensus
and align divergences, resulting in a degradation of model performance. In contrast, FedCDD suc-
cessfully preserves the model’s generalization capabilities under these conditions. Specifically, our
framework demonstrates a significant improvement in generalization and consistently maintains an
advantage across various specialized domains.

4.3 DIAGNOSTIC EXPERIMENTS

Key Components. We conduct an ablation study on the key components of our method using
the MT-Bench on the four diverse datasets with the optimal hyper-parameters of the different key
components. The results, demonstrating the effectiveness of each component, are presented in Table
2. Both components can enhance the performance of the global model and achieve optimal results
when combined.

Hyper-Parameters. We conduct a hyper-parameter ablation analysis using MT-Bench, focusing
on the general performance of the model, as shown in Figure 3. The analysis examines two key
hyper-parameters: the masking sparsity α and the temperature T in the global aggregation process.
We observe that variations in temperature within a narrow range do not significantly affect the aver-
age results, likely because optimal performance can be achieved within an appropriate range of T .
However, masking sparsity α has a much larger impact, as deviations in α led to performance fluc-
tuations. Specifically, if α is too large, the global model may lose important updates from clients,
while setting α too low results in an overemphasis on less significant client information. In most of
our experiments, we set the default values to T = 0.1 and α = 30%.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

5 DISCUSSION AND LIMITATION

(1) Our method is based on LoRA, which does not enhance model performance as effectively as full
parameter fine-tuning. However, training with LoRA significantly reduces training time and is easily
adaptable to various downstream tasks. In the future, we aim to develop a method that combines the
peak performance of full fine-tuning with the flexibility and cost-efficiency of LoRA.

(2) Our method is rooted in the field of federated large language model training, but its underlying
principles are broadly applicable. In the future, we will continue to explore this approach to extend
its applicability to more specific domains within federated learning.

6 CONCLUSION

In this paper, we are pioneers in innovatively exploring the large language model fine-tuning in
the federated learning on the Non-IID datasets. Additionally, we are the first to establish a new
algorithm for federated LLM training. We propose a novel framework called FedCDD, an effective
federated consensus-divergence decoupling for LLM fine-tuning. We decouple the updates of LoRA
into divergence and consensus, seizing the subtle updates of the LLM updates. At server level,
we align the divergence using cosine similarity and aggregate consensus of LLM, enhancing the
generalization ability of the global model. At the client level, we apply Gauss-Noise Mask to the
parameters being updated, avoiding the client’ local knowledge affecting the generalization ability of
the global model due to the over-fitting. This method has demonstrated effectiveness and robustness
across multiple experiments. We hope this work offers a novel perspective for future research on
federated large language model fine-tuning.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical
report. arXiv preprint arXiv:2303.08774, 2023.

Sina Alemohammad, Josue Casco-Rodriguez, Lorenzo Luzi, Ahmed Imtiaz Humayun, Hossein
Babaei, Daniel LeJeune, Ali Siahkoohi, and Richard G Baraniuk. Self-consuming generative
models go mad. arXiv preprint arXiv:2307.01850, 2023.

Tom B Brown. Language models are few-shot learners. arXiv preprint arXiv:2005.14165, 2020.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde De Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
language models trained on code. arXiv preprint arXiv:2107.03374, 2021.

Weize Chen, Yusheng Su, Jingwei Zuo, Cheng Yang, Chenfei Yuan, Chen Qian, Chi-Min Chan,
Yujia Qin, Yaxi Lu, Ruobing Xie, et al. Agentverse: Facilitating multi-agent collaboration and
exploring emergent behaviors in agents. arXiv preprint arXiv:2308.10848, 2(4):6, 2023.

Zixiang Chen, Yihe Deng, Huizhuo Yuan, Kaixuan Ji, and Quanquan Gu. Self-play fine-tuning
converts weak language models to strong language models. arXiv preprint arXiv:2401.01335,
2024.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
Schulman. Training verifiers to solve math word problems. arXiv preprint arXiv:2110.14168,
2021.

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and Luke Zettlemoyer. Qlora: efficient finetuning
of quantized llms (2023). arXiv preprint arXiv:2305.14314, 52:3982–3992, 2023.

Aniket Didolkar, Anirudh Goyal, Nan Rosemary Ke, Siyuan Guo, Michal Valko, Timothy Lillicrap,
Danilo Rezende, Yoshua Bengio, Michael Mozer, and Sanjeev Arora. Metacognitive capabilities
of llms: An exploration in mathematical problem solving. arXiv preprint arXiv:2405.12205,
2024.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv preprint arXiv:2407.21783, 2024.

Ali Edalati, Marzieh Tahaei, Ivan Kobyzev, Vahid Partovi Nia, James J Clark, and Mehdi
Rezagholizadeh. Krona: Parameter efficient tuning with kronecker adapter. arXiv preprint
arXiv:2212.10650, 2022.

Tao Fan, Yan Kang, Guoqiang Ma, Weijing Chen, Wenbin Wei, Lixin Fan, and Qiang Yang. Fate-
llm: A industrial grade federated learning framework for large language models. arXiv preprint
arXiv:2310.10049, 2023.

Leo Gao, Stella Biderman, Sid Black, Laurence Golding, Travis Hoppe, Charles Foster, Jason
Phang, Horace He, Anish Thite, Noa Nabeshima, et al. The pile: An 800gb dataset of diverse text
for language modeling. arXiv preprint arXiv:2101.00027, 2020.

Beliz Gunel, Jingfei Du, Alexis Conneau, and Ves Stoyanov. Supervised contrastive learning for
pre-trained language model fine-tuning. arXiv preprint arXiv:2011.01403, 2020.

Junxian He, Chunting Zhou, Xuezhe Ma, Taylor Berg-Kirkpatrick, and Graham Neubig. Towards a
unified view of parameter-efficient transfer learning. arXiv preprint arXiv:2110.04366, 2021.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and
Jacob Steinhardt. Measuring massive multitask language understanding. arXiv preprint
arXiv:2009.03300, 2020.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin De Laroussilhe, An-
drea Gesmundo, Mona Attariyan, and Sylvain Gelly. Parameter-efficient transfer learning for nlp.
In International conference on machine learning, pp. 2790–2799. PMLR, 2019.

Tzu-Ming Harry Hsu, Hang Qi, and Matthew Brown. Measuring the effects of non-identical data
distribution for federated visual classification. arXiv preprint arXiv:1909.06335, 2019.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. Lora: Low-rank adaptation of large language models. arXiv preprint
arXiv:2106.09685, 2021.

Zhiqiang Hu, Lei Wang, Yihuai Lan, Wanyu Xu, Ee-Peng Lim, Lidong Bing, Xing Xu, Soujanya
Poria, and Roy Ka-Wei Lee. Llm-adapters: An adapter family for parameter-efficient fine-tuning
of large language models. arXiv preprint arXiv:2304.01933, 2023.

Shima Imani, Liang Du, and Harsh Shrivastava. Mathprompter: Mathematical reasoning using large
language models. arXiv preprint arXiv:2303.05398, 2023.

Jean Kaddour, Joshua Harris, Maximilian Mozes, Herbie Bradley, Roberta Raileanu, and
Robert McHardy. Challenges and applications of large language models. arXiv preprint
arXiv:2307.10169, 2023.

Peter Kairouz, H Brendan McMahan, Brendan Avent, Aurélien Bellet, Mehdi Bennis, Arjun Nitin
Bhagoji, Keith Bonawitz, Zachary Charles, Graham Cormode, Rachel Cummings, et al. Advances
and open problems in federated learning. corr. arXiv preprint arXiv:1912.04977, 2019.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child,
Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language
models. arXiv preprint arXiv:2001.08361, 2020.

Sai Praneeth Karimireddy, Satyen Kale, Mehryar Mohri, Sashank J Reddi, Sebastian U Stich, and
Ananda Theertha Suresh. Scaffold: Stochastic controlled averaging for on-device federated learn-
ing. arXiv preprint arXiv:1910.06378, 2(6), 2019.

Weirui Kuang, Bingchen Qian, Zitao Li, Daoyuan Chen, Dawei Gao, Xuchen Pan, Yuexiang Xie,
Yaliang Li, Bolin Ding, and Jingren Zhou. Federatedscope-llm: A comprehensive package for
fine-tuning large language models in federated learning. In Proceedings of the 30th ACM SIGKDD
Conference on Knowledge Discovery and Data Mining, pp. 5260–5271, 2024.

Li Li, Yuxi Fan, Mike Tse, and Kuo-Yi Lin. A review of applications in federated learning. Com-
puters & Industrial Engineering, 149:106854, 2020.

Shenghui Li, Fanghua Ye, Meng Fang, Jiaxu Zhao, Yun-Hin Chan, Edith C-H Ngai, and Thiemo
Voigt. Synergizing foundation models and federated learning: A survey. arXiv preprint
arXiv:2406.12844, 2024.

Tian Li, Anit Kumar Sahu, Maziar Sanjabi, Manzil Zaheer, Ameet Talwalkar, and Virginia Smith.
On the convergence of federated optimization in heterogeneous networks. arXiv preprint
arXiv:1812.06127, 2018.

Xiang Lisa Li and Percy Liang. Prefix-tuning: Optimizing continuous prompts for generation. arXiv
preprint arXiv:2101.00190, 2021.

Yuning Mao, Lambert Mathias, Rui Hou, Amjad Almahairi, Hao Ma, Jiawei Han, Wen-tau Yih, and
Madian Khabsa. Unipelt: A unified framework for parameter-efficient language model tuning.
arXiv preprint arXiv:2110.07577, 2021.

Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas.
Communication-efficient learning of deep networks from decentralized data. In Artificial intelli-
gence and statistics, pp. 1273–1282. PMLR, 2017.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Niklas Muennighoff, Alexander Rush, Boaz Barak, Teven Le Scao, Nouamane Tazi, Aleksandra Pik-
tus, Sampo Pyysalo, Thomas Wolf, and Colin A Raffel. Scaling data-constrained language mod-
els. In A. Oh, T. Naumann, A. Globerson, K. Saenko, M. Hardt, and S. Levine (eds.), Advances in
Neural Information Processing Systems, volume 36, pp. 50358–50376. Curran Associates, Inc.,
2023. URL https://proceedings.neurips.cc/paper_files/paper/2023/
file/9d89448b63ce1e2e8dc7af72c984c196-Paper-Conference.pdf.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to fol-
low instructions with human feedback. Advances in neural information processing systems, 35:
27730–27744, 2022.

Aleksandar Petrov, Philip HS Torr, and Adel Bibi. When do prompting and prefix-tuning work? a
theory of capabilities and limitations. arXiv preprint arXiv:2310.19698, 2023.

Jonas Pfeiffer, Aishwarya Kamath, Andreas Rücklé, Kyunghyun Cho, and Iryna Gurevych. Adapter-
fusion: Non-destructive task composition for transfer learning. arXiv preprint arXiv:2005.00247,
2020.

Hossein Rajabzadeh, Mojtaba Valipour, Tianshu Zhu, Marzieh Tahaei, Hyock Ju Kwon, Ali Ghodsi,
Boxing Chen, and Mehdi Rezagholizadeh. Qdylora: Quantized dynamic low-rank adaptation for
efficient large language model tuning. arXiv preprint arXiv:2402.10462, 2024.

Sashank Reddi, Zachary Charles, Manzil Zaheer, Zachary Garrett, Keith Rush, Jakub Konečnỳ,
Sanjiv Kumar, and H Brendan McMahan. Adaptive federated optimization. arXiv preprint
arXiv:2003.00295, 2020.

Tim Salimans and Durk P Kingma. Weight normalization: A simple reparameterization to accelerate
training of deep neural networks. Advances in neural information processing systems, 29, 2016.

Zhiqing Sun, Sheng Shen, Shengcao Cao, Haotian Liu, Chunyuan Li, Yikang Shen, Chuang Gan,
Liang-Yan Gui, Yu-Xiong Wang, Yiming Yang, et al. Aligning large multimodal models with
factually augmented rlhf. arXiv preprint arXiv:2309.14525, 2023.

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li, Carlos Guestrin, Percy
Liang, and Tatsunori B. Hashimoto. Stanford alpaca: An instruction-following llama model.
https://github.com/tatsu-lab/stanford_alpaca, 2023.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023.

Mojtaba Valipour, Mehdi Rezagholizadeh, Ivan Kobyzev, and Ali Ghodsi. Dylora: Parameter effi-
cient tuning of pre-trained models using dynamic search-free low-rank adaptation. arXiv preprint
arXiv:2210.07558, 2022.

Pablo Villalobos, Jaime Sevilla, Lennart Heim, Tamay Besiroglu, Marius Hobbhahn, and Anson Ho.
Will we run out of data? an analysis of the limits of scaling datasets in machine learning. arXiv
preprint arXiv:2211.04325, 2022.

Yizhong Wang, Yeganeh Kordi, Swaroop Mishra, Alisa Liu, Noah A Smith, Daniel Khashabi, and
Hannaneh Hajishirzi. Self-instruct: Aligning language models with self-generated instructions.
arXiv preprint arXiv:2212.10560, 2022.

Yizhong Wang, Hamish Ivison, Pradeep Dasigi, Jack Hessel, Tushar Khot, Khyathi Chandu, David
Wadden, Kelsey MacMillan, Noah A Smith, Iz Beltagy, et al. How far can camels go? exploring
the state of instruction tuning on open resources. Advances in Neural Information Processing
Systems, 36:74764–74786, 2023.

Shijie Wu, Ozan Irsoy, Steven Lu, Vadim Dabravolski, Mark Dredze, Sebastian Gehrmann, Prab-
hanjan Kambadur, David Rosenberg, and Gideon Mann. Bloomberggpt: A large language model
for finance. arXiv preprint arXiv:2303.17564, 2023.

13

https://proceedings.neurips.cc/paper_files/paper/2023/file/9d89448b63ce1e2e8dc7af72c984c196-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/9d89448b63ce1e2e8dc7af72c984c196-Paper-Conference.pdf
https://github.com/tatsu-lab/stanford_alpaca

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Ge Zhang Yao Fu Wenhao Huang Huan Sun Yu Su Wenhu Chen Xiang Yue, Xingwei Qu. Mam-
moth: Building math generalist models through hybrid instruction tuning. arXiv preprint
arXiv:2309.05653, 2023.

Can Xu, Qingfeng Sun, Kai Zheng, Xiubo Geng, Pu Zhao, Jiazhan Feng, Chongyang Tao, and
Daxin Jiang. Wizardlm: Empowering large language models to follow complex instructions.
arXiv preprint arXiv:2304.12244, 2023a.

Lingling Xu, Haoran Xie, Si-Zhao Joe Qin, Xiaohui Tao, and Fu Lee Wang. Parameter-efficient
fine-tuning methods for pretrained language models: A critical review and assessment. arXiv
preprint arXiv:2312.12148, 2023b.

Mengwei Xu, Dongqi Cai, Yaozong Wu, Xiang Li, and Shangguang Wang. Fwdllm: Efficient fedllm
using forward gradient. arXiv preprint arXiv:2308.13894, 2023c.

Hongyang Yang, Xiao-Yang Liu, and Christina Dan Wang. Fingpt: Open-source financial large
language models. FinLLM Symposium at IJCAI 2023, 2023.

Rui Ye, Wenhao Wang, Jingyi Chai, Dihan Li, Zexi Li, Yinda Xu, Yaxin Du, Yanfeng Wang, and
Siheng Chen. Openfedllm: Training large language models on decentralized private data via fed-
erated learning. In Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery
and Data Mining, pp. 6137–6147, 2024.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang,
Zi Lin, Zhuohan Li, Dacheng Li, Eric Xing, et al. Judging llm-as-a-judge with mt-bench and
chatbot arena. Advances in Neural Information Processing Systems, 36:46595–46623, 2023.

Weiming Zhuang, Chen Chen, and Lingjuan Lyu. When foundation model meets federated learning:
Motivations, challenges, and future directions. arXiv preprint arXiv:2306.15546, 2023.

14

	Introduction
	Related Work
	Parameter Efficient Fine-Tuning In Large Language Models
	Federated Learning and Large Language Models

	Methodology
	Preliminaries
	Method
	Consensus-Divergence Aggregation
	Gauss-Noise Masking

	Experiment
	Experimental Setup
	Experiment Results
	Diagnostic Experiments

	Discussion and Limitation
	Conclusion

